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Abstract. In this paper, we study the polynomial optimization problem of a multiform over
the intersection of the multisphere and the nonnegative orthants. This class of problems is NP-hard
in general and includes the problem of finding the best nonnegative rank-one approximation of a
given tensor. A Positivstellensatz is given for this class of polynomial optimization problems, based
on which a globally convergent hierarchy of doubly nonnegative (DNN) relaxations is proposed. A
(zeroth order) DNN relaxation method is applied to solve these problems, resulting in linear matrix
optimization problems under both the positive semidefinite and nonnegative conic constraints. A
worst case approximation bound is given for this relaxation method. The recent solver SDPNAL+
is adopted to solve this class of matrix optimization problems. Typically the DNN relaxations are
tight, and hence the best nonnegative rank-one approximation of a tensor can be obtained frequently.
Extensive numerical experiments show that this approach is quite promising.
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1. Introduction. Nonnegative factorizations of data observations, prevalent in
data analysis, have been popularized to an unprecedented level since the works of
Paatero and Tapper [45] and Lee and Seung [30]. In many applications, data are nat-
urally represented by third order or higher order tensors (also known as hypermatri-
ces). For example, a color image is stored digitally as a third order nonnegative tensor
composed of three nonnegative matrices, representing the red, green, and blue pixels,
and therefore a set of such images or a video is actually a fourth order nonnegative
tensor. In the literature, however, these fourth order tensors are typically flattened
into matrices for data analysis [8, 22, 30, 45]. As we can see, intrinsic structures of
an image or a video are destroyed after the flattening. Therefore, direct treatments
of tensors are necessary, and accordingly nonnegative factorizations of higher order
data are needed. As a result, tensor counterparts of the nonnegative matrix factor-
izations have become a new frontier in this area [1, 11, 13, 26, 31, 44, 54, 55, 64]. As
expected, nonnegative tensor factorizations have their own advantages over the tradi-
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1528 SHENGLONG HU, DEFENG SUN, AND KIM-CHUAN TOH

tional nonnegative matrix factorizations; see, for example, [22, 56] and the references
therein.

Nonnegative tensor factorizations have found diverse applications, such as latent
class models in statistics, spectroscopy, sparse image coding in computer vision, sound
source separation, and pattern recognition, etc.; see [8, 15, 22, 55, 58] and the refer-
ences therein. Several methods have been proposed for computing nonnegative tensor
factorizations; see, for example, [7, 9, 16, 29, 33, 44, 57, 64, 67] and the references
therein. Due to errors in measurements of the data collected or simply because of
inattainability, the problem of approximating a given tensor by a nonnegative tensor
factorization of low rank occurs more often in practice than the problem of finding
the exact factorization of a given tensor. We note that the existence and uniqueness
of nonnegative tensor factorizations are well studied in [33, 52].

As is well known, mathematical models and numerical methods are both neces-
sary ingredients for tackling an application problem. An accurate method for the
mathematical model is a necessary tool to certify whether the model built is appro-
priate and whether we are on the correct path for solving the application problem.
Thus, it is of both theoretical importance and application necessity to study global
solution methods for computing the best low rank nonnegative tensor approxima-
tion. As an initial attempt, in this paper, we will investigate the specific case when
the approximating tensor is of rank one. There is also another motivation from the
computational perspective. For a given tensor, a classical method to compute a non-
negative tensor factorization/approximation is by multiple best nonnegative rank-one
approximations, proposed by Shashua and Hazan [55]. The principle is alternatively
splitting/approximating the given tensor by several (nonnegative) ones and approxi-
mating each (nonnegative) tensor by a best nonnegative rank-one tensor. Therefore,
in this framework, finding the best nonnegative rank-one approximation of a given
tensor is of crucial importance in nonnegative tensor factorizations/approximations.
This problem is also the foundation for the heuristic methods based on greedy rank-
one downdating for nonnegative factorizations [2, 4, 5, 19]. It plays an analogous role
as the best rank-one approximations of tensors to approximation and decomposition
problems of tensors, studied by De Lathauwer, De Moor, and Vandewalle [11, 12].

This article will focus on the problem of computing the best nonnegative rank-one
approximation of a given tensor from the perspective of mathematical optimization.
The problem will be formulated as a polynomial minimization problem over the inter-
section of the multisphere and the nonnegative orthants. With this formulation, the
study can also be applied to the problem of testing the copositivity for a homogeneous
polynomial, which is important in completely positive programming [47].

A negative aspect from the computational complexity point of view is that the
problem under consideration is NP-hard in general (cf. Proposition 3.1); see also
[14, 21, 36, 63]. Thus, no algorithm with polynomial complexity exists unless P=NP.
Consequently, in practical applications, approximation or relaxation methods are em-
ployed to solve this problem. In this article, instead of adopting the traditional
sums of squares (SOS) relaxation methods for a polynomial optimization problem (cf.
[28, 37, 38, 39, 46]), we will introduce a doubly nonnegative (DNN) relaxation method
to solve this problem. DNN relaxation methods will provide tighter approximation
results, since the cone of SOS polynomials is strictly contained in the cone of polyno-
mials that can be written as sums of SOS polynomials and polynomials with nonneg-
ative coefficients. While the standard SOS relaxations of a polynomial optimization
problem will give rise to standard semidefinite programming (SDP) problems with
variables in the SDP cones, the DNN relaxation method will give rise to DNNSDP
problems whose variables are constrained to be in the SDP cones and the cones of
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BEST NONNEGATIVE RANK-ONE APPROXIMATION 1529

nonnegative matrices, in addition to linear equality constraints. It has been well rec-
ognized that solving the DNNSDP problems by primal-dual interior-point methods
as implemented in popular solvers such as Mosek, SDPT3 [62], or SeDuMi [59] is
computationally much more challenging than solving the standard SDP counterparts.
Fortunately, with the recent advances on augmented Lagrangian based methods for
solving SDP problems with bound constraints [60, 61, 65], we have reached a stage
where solving the DNNSDP problems is computationally not much more expensive
than the standard SDP counterparts. In this paper, we will employ the Newton-
conjugate gradient augmented Lagrangian method implemented in the solver SDP-
NAL+ [65] to solve the DNNSDP problems arising from best nonnegative rank-one
tensor approximation problems. Extensive numerical computations will show that
our new approach is quite promising.

The main message we want to convey in this paper is that the proposed DNN
approach can serve as a global optimal solution method for the best nonnegative
rank-one tensor approximation problem. More importantly, it can certify the global
optimality of the solution found in many cases. Putting aside the requirement of
accurate global solution in several applications, this will also provide a benchmark
for evaluating the quality of approximate solutions obtained by faster local solution
methods, such as alternating methods [24, 58]. It can be seen from section 4.1.2
that the gap (in terms of attained approximation errors) between the approximate
solutions obtained by the global and local method is not negligibly small. Although
the scalability of the DNN approach is limited by that of the SDP solvers at present,
much more efficient numerical computation for specific problems by exploiting data
structure within this approach is conceivable.

The remaining parts of this article are organized as follows. Some preliminaries
will be given in section 2, in which nonnegative tensor approximations and in par-
ticular the best nonnegative rank-one approximation problems will be presented in
section 2.1. The problem of testing the copositivity of a tensor will be given in sec-
tion 2.2. Both the problems in section 2 will be formulated as minimizing a multiform
over the intersection of the multisphere and the nonnegative orthants in section 3. In
the ensuing section, basic properties of this polynomial optimization problem will be
investigated, including a Positivstellensatz for this problem (cf. section 3.3), the DNN
relaxation (cf. section 3.4), a worst case approximation bound (cf. section 3.6), and
the extraction of a nonnegative rank-one tensor from a solution of the DNN problem
(cf. sections 3.7 and 3.8). Numerical experiments will be presented in section 4, in
which extensive examples on best nonnegative rank-one approximations and examples
on testing the copositivity of a tensor will be given. Some conclusions will be given
in the last section.

2. Preliminaries. In this article, tensors will be considered in the most general
setting. Given positive integers n1, . . . , nr, a tensor \scrA \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nr is a collection
of n1 \cdot \cdot \cdot nr scalars ai1...ir , termed as the entries of \scrA , for all ij \in \{ 1, . . . , nj\} and
j \in \{ 1, . . . , r\} . If n1 = \cdot \cdot \cdot = nr = n, \BbbR n1 \otimes \cdot \cdot \cdot \otimes \BbbR nr is abbreviated as \otimes r\BbbR n. Given
positive integers p, \alpha 1, . . . , \alpha p, n1, . . . , np, we denote by Sym(\otimes \alpha i\BbbR ni) the symmetric
subspace of the tensor space \otimes \alpha i\BbbR ni , consisting of real symmetric tensors with order
\alpha i and dimension ni, and Sym(\otimes \alpha 1\BbbR n1)\otimes \cdot \cdot \cdot \otimes Sym(\otimes \alpha p\BbbR np) the tensor space with
p symmetric factors. Note that when p = 1, the tensor space is the usual space of
symmetric tensors, and when \alpha 1 = \cdot \cdot \cdot = \alpha p = 1, the tensor space is the usual space
of nonsymmetric tensors. A tensor \scrA \in Sym(\otimes \alpha 1\BbbR n1)\otimes \cdot \cdot \cdot \otimes Sym(\otimes \alpha p\BbbR np) is usually
referred to as a partially symmetric tensor, which appears in many applications. A
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1530 SHENGLONG HU, DEFENG SUN, AND KIM-CHUAN TOH

symmetric rank-one tensor in Sym(\otimes \alpha i\BbbR ni) is an element
\bigl( 
x(i)

\bigr) \otimes \alpha i
for some nonzero

vector x(i) \in \BbbR ni , where
\bigl( 
x(i)

\bigr) \otimes \alpha i
is a short hand for

x(i) \otimes \cdot \cdot \cdot \otimes x(i)\underbrace{}  \underbrace{}  
\alpha i copies

.

Therefore, a rank-one tensor in Sym(\otimes \alpha 1\BbbR n1) \otimes \cdot \cdot \cdot \otimes Sym(\otimes \alpha p\BbbR np) is of the form

x\alpha :=
\bigl( 
x(1)

\bigr) \otimes \alpha 1 \otimes \cdot \cdot \cdot \otimes 
\bigl( 
x(p)

\bigr) \otimes \alpha p
for some nonzero vectors x(i) \in \BbbR ni , i = 1, . . . , p.

As an Euclidean space, the inner product \langle \scrA ,\scrB \rangle of two tensors \scrA ,\scrB \in \BbbR n1 \otimes \cdot \cdot \cdot \otimes 
\BbbR nr is defined as

\langle \scrA ,\scrB \rangle :=
n1\sum 

i1=1

\cdot \cdot \cdot 
nr\sum 

ir=1

ai1...irbi1...ir .

The Hilbert--Schmidt norm \| \scrA \| is then defined as

\| \scrA \| :=
\sqrt{} 

\langle \scrA ,\scrA \rangle .

We refer the readers to [32] and the references herein for basic notions on tensors.

2.1. Nonnegative tensor approximation. In the context of computer vision,
chemometrics, statistics, and spectral intensity, the multiway (tensor) data often can-
not take negative values. Therefore, one expects to approximate as much as possible
the observed data (which may have negative components) \scrA \in Sym(\otimes \alpha 1\BbbR n1)\otimes \cdot \cdot \cdot \otimes 
Sym(\otimes \alpha p\BbbR np) with a sum of rank-one nonnegative tensors

(2.1) \scrA \approx 
r\sum 

i=1

\lambda ix
\otimes \alpha 
i , \lambda i \geq 0, xi \geq 0, i = 1, . . . , r

for some nonnegative integer r, with

xi := (x
(1)
i , . . . ,x

(p)
i ) \in \BbbR n1 \times \cdot \cdot \cdot \times \BbbR np

and
x\otimes \alpha 
i :=

\bigl( 
x
(1)
i

\bigr) \otimes \alpha 1 \otimes \cdot \cdot \cdot \otimes 
\bigl( 
x
(p)
i

\bigr) \otimes \alpha p
.

For a given continuous distance measure \phi over the tensor space, we can formulate
problem (2.1) as

(2.2) min

\biggl\{ 
\phi (\scrA ,

r\sum 
i=1

\lambda ix
\otimes \alpha 
i ) : \lambda i \geq 0, xi \geq 0, i = 1, . . . , r

\biggr\} 
.

In most cases, \phi is chosen as the Hilbert--Schmidt norm distance, i.e., \phi (\scrA ,\scrB ) :=
\| \scrA  - \scrB \| . Problem (2.2) is well defined for each r \in \BbbN , while it is NP-hard in most
cases. Moreover, it is extremely difficult to solve problem (2.1) when we do not know
a priori the value of r, and even if we are lucky enough to know the exact r, it is still
very difficult to solve (2.2). Thus, one procedure to solve (2.1) is by multiple best
nonnegative rank-one approximations, and another is by successive best nonnegative
rank-one approximations.

In this article, we focus on the problem (2.2) with fixed r = 1, i.e., the best
nonnegative rank-one approximation of the tensor \scrA . We will see that this problem
is already hard, both theoretically and numerically. The computational complexity is
NP-hard in general.
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BEST NONNEGATIVE RANK-ONE APPROXIMATION 1531

With the common choice of \phi as the Hilbert--Schmidt norm distance, problem
(2.2) becomes

(2.3)
min\lambda ,\bfx \| \scrA  - \lambda x\otimes \alpha \| 2

such that (s.t.) \lambda \geq 0, \langle x(i),x(i)\rangle = 1, x(i) \geq 0 for all i = 1, . . . , p,

where x := (x(1), . . . ,x(p)). It is easy to see that (2.3) always has an optimal solution
(\lambda ,x) with

(2.4) \lambda :=

\Biggl\{ 
\langle \scrA ,x\otimes \alpha \rangle whenever \langle \scrA ,x\otimes \alpha \rangle > 0,

0 otherwise,

and in both cases
\| \scrA  - \lambda x\otimes \alpha \| 2 = \| \scrA \| 2  - \lambda 2.

Therefore, (2.3) is equivalent to

(2.5)
min \langle  - \scrA ,x\otimes \alpha \rangle 

s.t. \langle x(i),x(i)\rangle = 1, x(i) \geq 0 for all i = 1, . . . , p

in the sense that
1. if the optimal value of (2.5) is nonnegative, then the zero tensor is the best

nonnegative rank-one approximation of \scrA ,
2. if the optimal value \lambda of (2.5) is negative with an optimal solution x\ast , then

 - \lambda x\otimes \alpha 
\ast is the best nonnegative rank-one approximation of \scrA .

2.2. Copositivitiy of tensors. A given tensor \scrA \in Sym(\otimes \alpha 1\BbbR n1) \otimes \cdot \cdot \cdot \otimes 
Sym(\otimes \alpha p\BbbR np) is said to be copositive if

\langle \scrA ,x\otimes \alpha \rangle \geq 0 for all x \in \BbbR n1
+ \times \cdot \cdot \cdot \times \BbbR np

+ .

The copositivity of a tensor is a generalized notion of both the nonnegativity of a
matrix and the copositivity of a symmetric matrix. When p = 1 and \alpha 1 = 2, it
reduces to the copositivity of a symmetric matrix, and when \alpha 1 = \cdot \cdot \cdot = \alpha p = 1, it
reduces to the nonnegativity of a tensor. The problem of deciding the copositivity of
a tensor is therefore co-NP-hard [14, 36], i.e., testing whether a given tensor is not
copositive is an NP-hard problem. When p = 1, discussions on copositive tensors can
be found in [42, 51] and the references therein.

Testing the copositivity of a tensor can also be formulated as a polynomial op-
timization problem as in (2.5). Indeed, a tensor \scrA is copositive if and only if the
optimal value of

(2.6)
min \langle \scrA ,x\otimes \alpha \rangle 
s.t. \langle x(i),x(i)\rangle = 1, x(i) \geq 0 for all i = 1, . . . , p

is nonnegative.

3. Homogeneous polynomials. Since both the problem of finding the best
nonnegative rank-one approximation of a tensor and the copositivity certification of a
tensor can be equivalently reformulated as (2.5) (or (2.6)), we focus on this polynomial
optimization problem in this section.
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Let x := (x(1), . . . ,x(p)) \in \BbbR n1 \times \cdot \cdot \cdot \times \BbbR np be partitioned into p groups. A
polynomial f(x) is multihomogeneous or a multiform if each monomial of f has the
same degree with respect to each group variables x(i) for all i \in \{ 1, . . . , p\} . We
consider the following optimization problem:

(3.1)
fmin := min f(x(1), . . . ,x(p))

s.t. \| x(i)\| = 1, x(i) \geq 0, x(i) \in \BbbR ni , i = 1, . . . , p,

where f(x(1), . . . ,x(p)) \in \BbbR [x] is a multiform of even degree di = 2\tau i for some \tau i \geq 0
with respect to each x(i) for all i \in \{ 1, . . . , p\} . Problem (3.1) covers all instances of
minimizing a multiform over the intersection of the multisphere and the nonnegative
orthants, since the cases with odd di's can be equivalently formulated into (3.1) as in
section 3.1. Polynomial optimization over the multisphere is one research direction
in recent years; see [34, 37, 41, 43] and the references therein. Moreover, in [34] a
biquadratic optimization over the joint sphere (multisphere with p = 2) with one
group variables being nonnegative is discussed as well.

For easy references, in the following, we will denote the (n - 1)-dimensional sphere
in \BbbR n as \BbbS n - 1, i.e., \BbbS n - 1 := \{ x \in \BbbR n : x\sansT x = 1\} . The nonnegative part of the (n - 1)-
dimensional sphere is denoted by \BbbS n - 1

+ , i.e., \BbbS n - 1
+ := \{ x \in \BbbR n

+ : x\sansT x = 1\} . Thus, the
feasible set of (3.1) can be called the nonnegative multisphere.

3.1. Odd order case. If f(x(1), . . . ,x(p)) is of odd degree d > 0 for x(1) (without
loss of generality), then we introduce a variable t and let

\~f(\~x(1),x(2), . . . ,x(p)) := tf(x(1), . . . ,x(p))

with \~x(1) = ((x(1))\sansT , t)\sansT . It can be shown that

fmin =

\sqrt{} 
(d+ 1)d+1

dd
\~fmin,

since

max\{ t\alpha d : \alpha 2 + t2 = 1\} =

\sqrt{} 
dd

(d+ 1)d+1

with a positive optimal t.
If the degree of f for x(1) is one, we can construct

g(x(2), . . . ,x(p)) :=

n1\sum 
j=1

\bigl( 
f(e

(1)
j ,x(2), . . . ,x(p))

\bigr) 2
,

where e
(1)
j \in \BbbR n1 is the jth standard basis vector. In some cases, (3.1) can be solved

via maximizing g over the nonnegative multisphere, i.e.,

(3.2) max\{ g(x(2), . . . ,x(p)) : \| x(i)\| = 1, x(i) \geq 0, x(i) \in \BbbR ni , i = 2, . . . , p\} .

Actually, if (x(2), . . . ,x(p)) is an optimal solution of (3.2) with positive optimal value

and f(e
(1)
j ,x(2), . . . ,x(p))'s are all nonpositive, then we can construct a solution for

(3.1) from a solution for (3.2). Indeed, one optimal solution of (3.1) is given by\biggl( 
x(1) :=  - u - 

\| u\| 
,x(2), . . . ,x(p)

\biggr) D
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with
u := (f(e

(1)
1 ,x(2), . . . ,x(p)), . . . , f(e(1)n1

,x(2), . . . ,x(p)))\sansT 

and (u - )i := min\{ 0, ui\} . This is based on the fact that

min\{ x\sansT y : \| y\| = 1, y \geq 0\} =  - \| x - \| 

with the optimizer y\ast :=  - \bfx  - 
\| \bfx  - \| when x - \not = 0. Note that the number of variables is

reduced from (3.1) to (3.2).
Before proceeding to the computation of (3.1), we state the computational com-

plexity of it.

3.2. NP-hardness.

Proposition 3.1. Let di \geq 2 for all i \in \{ 1, . . . , p\} . Problem (3.1) is NP-hard in
general.

Proof. We will construct a subclass of (3.1), which is NP-hard. Let G = (V,E)
be a simple graph with the set of vertices being V = \{ 1, . . . , n\} and the set of edges
being E. Let \Delta n \subset \BbbR n

+ be the standard simplex. Then

1 - 1

\alpha (G)
= 2 max

\bfx \in \Delta n

\sum 
(i,j)\in E

xixj

by the famous Motzkin--Straus theorem [35], where \alpha (G) is the stability number of
G. It is well known that computing \alpha (G) is an NP-hard problem [18, 36]. On the
other hand, we have that

max
\bfx \in \Delta n

\sum 
(i,j)\in E

xixj = max
\| \bfy \| =1

\sum 
(i,j)\in E

y2i y
2
j = max

\| \bfy \| =1, \bfy \geq \bfzero 

\sum 
(i,j)\in E

y2i y
2
j ,

where the second equality follows from the fact that in the objective function only
squared y2i 's are involved. Immediately, the last optimization problem is of the form
given in (3.1). The required result then follows.

A standard SOS relaxation can be applied to the polynomial optimization problem
(3.1); see [28]. However, in order to reduce the size of the resulting SDP, we would
like to compress the spherical constraints as follows.

The homogeneity property implies that (3.1) is equivalent to

(3.3)

fmin := min f(x(1), . . . ,x(p))

s.t.
\prod p

i=1 \| x(i)\| di = 1,

x(i) \geq 0, x(i) \in \BbbR ni , i = 1, . . . , p

in the sense that they have the same optimal objective value and we can get an optimal
solution for one from the other.

3.3. A Positivstellensatz. Testing the nonnegativity of a polynomial over a
(compact) semialgebraic set is a very difficult problem [6]. Thus, certifications of
nonnegativity of a polynomial are foundations for polynomial optimization [28]. In
the literature, such certifications are called Positivstellensatz. Of crucial importance
are Putinar's Positivstellensatz [50], P\'olya's theorem [48] and Reznick's theorem [53].

While Putinar's result is more general, and the theorems of P\'olya and Reznick are
applicable only to homogeneous polynomials over the simplices and spheres, respec-
tively, the resulting SDP problems obtained from the latter two theorems have sizes
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that are about half of those obtained by using Putinar's Positivstellensatz directly.
Since the cost of solving SDP problems grow rapidly with the sizes of problems, P\'olya's
theorem and Reznick's theorem are more important for homogeneous problems.

In this section, we will derive a Positivstellensatz for the optimization problem
(3.3) by taking into account both the homogeneity structures of the objective function
and constraints, as well as the nonnegativity constraints.

Let g(x) :=
\prod p

i=1 \| x(i)\| di and \scrF be the feasible set of problem (3.3). Suppose
that \gamma := fmin is the optimal value of (3.3). It follows that

f(x) - \gamma g(x) \geq 0 for all x \in \scrF .

Since f(x) - \gamma g(x) is a multihomogeneous polynomial, we then have

f(x) - \gamma g(x) \geq 0 for all x \in \BbbS n1 - 1
+ \times \cdot \cdot \cdot \times \BbbS np - 1

+ ,

which is equivalent to

f(x) - \gamma g(x) \geq 0 for all x \in \Delta n1
\times \cdot \cdot \cdot \times \Delta np

,

where \Delta ni
is the standard simplex in \BbbR ni , i.e., \Delta ni

:= \{ x \in \BbbR ni
+ : e\sansT x = 1\} with

e being the vector of all ones with matching dimension. In the following, we will
discuss the positivity of a multiform over the joint simplex. To that end, we first recall
the well-known P\'olya theorem on positive polynomials over the simplex [20, 48]. A
quantitative version (cf. [49, Theorem 1]) is needed for our analysis.

Let h be a homogeneous polynomial of degree d in n variables with the monomial
expansion

h(x) :=
\sum 
| \alpha | =d

\alpha !h\alpha x
\alpha ,

where \alpha \in \BbbN n and \alpha ! := | \alpha | !\prod n
i=1 \alpha i!

. Define

L(h) := max\{ | h\alpha | : | \alpha | = d\} and \lambda (h) := min\{ h(x) : x \in \Delta n\} .

The following result can be found in [49, Theorem 1].

Proposition 3.2. Let h be a homogeneous polynomial of degree d in n variables
and positive on the simplex \Delta n. Then, for any positive integer

r >
d(d - 1)

2

L(h)

\lambda (h)
 - d,

the polynomial
(e\sansT x)rh(x)

has positive coefficients.

Next, we will generalize Proposition 3.2 to multiforms over the joint simplex. It
will serve as a theoretical foundation for the DNN relaxation methods to be introduced
later for (3.3).

Proposition 3.3. Let f be a multiform of degree di with respect to each x(i) for
i = 1, . . . , p. If f is positive on \Delta n1

\times \cdot \cdot \cdot \times \Delta np
, then\biggl[ p\prod 

i=1

(e\sansT x(i))ri
\biggr] 
f(x)

is a polynomial with positive coefficients for all sufficiently large ri with i \in \{ 1, . . . , p\} .
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Proof. For any \gamma = (\gamma (1), . . . , \gamma (p)) \in \BbbN n1 \times \cdot \cdot \cdot \times \BbbN np , let

\gamma (i)! :=
| \gamma (i)| !\prod ni

j=1 \gamma 
(i)
j !

for all i \in \{ 1, . . . , p\} 

and

\gamma ! := \gamma (1)! . . . \gamma (p)!.

Let the monomial expansion of f be

f(x) =
\sum 

\alpha \in \Lambda (d1,...,dp)

\alpha !a\alpha 

p\prod 
i=1

\bigl( 
x(i)

\bigr) \alpha (i)

,

where

\Lambda (d1, . . . , dp) := \{ \alpha \in \BbbN n1 \times \cdot \cdot \cdot \times \BbbN np : | \alpha (i)| = di for all i = 1, . . . , p\} .

Define M(f) as

M(f) :=
\sum 

\alpha \in \Lambda (d1,...,dp)

\alpha !| a\alpha | ,

i.e., the absolute sum of the coefficients of the multiform f .
We will prove this result by induction on p, the number of group variables. The

case p = 1 is the classical result by Proposition 3.2. Suppose that the result is true
for the case p = s - 1 for some s \geq 2. In the following, we show that it is true for the
case p = s.

We first rewrite the multiform f as

f(x) =
\sum 

| \gamma (s)| =ds

\gamma (s)!f\gamma (s)(\^xs)
\bigl( 
x(s)

\bigr) \gamma (s)

,

where \gamma (s) \in \BbbN ns , \^xs := (x(1), . . . ,x(s - 1)), and f\gamma (s)(\^xs) is a multiform in \^xs of degree

di with respect to each x(i) for i = 1, . . . , s - 1. Thus, f(x) can be viewed as a form
h\^\bfx s

(x(s)) in x(s) with coefficients being multiforms in \^xs. We have that

\lambda (h\^\bfx s
) \geq \lambda (f) := min\{ f(x) : x \in \Delta n1

\times \cdot \cdot \cdot \times \Delta ns
\} for all \^xs \in \Delta n1

\times \cdot \cdot \cdot \times \Delta ns - 1
.

In addition, for each \^xs \in \Delta n1
\times \cdot \cdot \cdot \times \Delta ns - 1

, viewed as a form in x(s),

L(h\^\bfx s
) = max

\biggl\{ 
1

\gamma (s)!

\bigm| \bigm| \bigm| \bigm| \sum 
\alpha \in \Lambda (d1,...,ds), \alpha (s)=\gamma (s)

\alpha !a\alpha 

s - 1\prod 
i=1

\bigl( 
x(i)

\bigr) \alpha (i)
\bigm| \bigm| \bigm| \bigm| : | \gamma (s)| = ds

\biggr\} 

\leq max

\biggl\{ \bigm| \bigm| \bigm| \bigm| \sum 
\alpha \in \Lambda (d1,...,ds), \alpha (s)=\gamma (s)

\alpha !a\alpha 

s - 1\prod 
i=1

\bigl( 
x(i)

\bigr) \alpha (i)
\bigm| \bigm| \bigm| \bigm| : | \gamma (s)| = ds

\biggr\} 

\leq max

\biggl\{ \sum 
\alpha \in \Lambda (d1,...,ds), \alpha (s)=\gamma (s)

\alpha !| a\alpha | : | \gamma (s)| = ds

\biggr\} 
\leq M(f),
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where the first inequality follows from the fact \gamma (s)! \geq 1 and the second from the fact
\^xs \in \Delta n1

\times \cdot \cdot \cdot \times \Delta ns - 1
. Thus, by Proposition 3.2, for any positive integer

(3.4) rs >
ds(ds  - 1)

2

M(f)

\lambda (f)
 - ds,

the polynomial
(e\sansT x(s))rsh\^\bfx s

(x(s))

is a polynomial with positive coefficients. Since the lower bound in (3.4) is independent
of \^xs, it is uniformly true for all \^xs \in \Delta n1 \times \cdot \cdot \cdot \times \Delta ns - 1 .

Now fix a positive integer rs satisfying (3.4). Let

g\^\bfx s
(x(s)) = (e\sansT x(s))rsh\^\bfx s

(x(s)).

Then each coefficient of g\^\bfx s
(x(s)) is a multiform in \^xs of degree di with respect to

each x(i) for i = 1, . . . , s - 1, which is positive on the joint simplex \Delta n1
\times \cdot \cdot \cdot \times \Delta ns - 1

.
For each coefficient multiform, by the induction hypothesis, there exists r1, . . . , rs - 1

such that it has positive coefficients after multiplying
\prod s - 1

i=1 (e
\sansT x(i))ri . Since there are

only finitely many such coefficient multiforms and e\sansT x(i)'s are all polynomials with
positive coefficients, a valid tuple (r1, . . . , rs - 1) for all the coefficients can be chosen.
Therefore, a tuple (r1, . . . , rs) can be found such that all the coefficients of\biggl[ s\prod 

i=1

(e\sansT x(i))ri
\biggr] 
f(x)

are positive.
Finally, if a tuple (r1, . . . , rs) is valid for the conclusion, then it is easy to see that

any other tuples with larger exponents are definitely valid as well. The conclusion
then follows.

The complexity of this Positivstellensatz can be investigated, as in [40, 49]. But
we will leave it for future research since this article is focused on the zeroth order
relaxation.

3.4. DNN relaxation. In this section, we will introduce a DNN relaxation
method for solving problem (3.3).

Let z = (z1, . . . , zn)
\sansT and

z[s] :=
\bigl( 
zs1, z

s - 1
1 z2, z

s - 1
1 z3, . . . , z

s - 2
1 z22 , z

s - 2
1 z2z3, . . . , z

s
2, . . . , z

s
n

\bigr) \sansT 
be the monomial basis of degree s in n variables. The order is the lexicographic order
and z1 \succ z2 \succ \cdot \cdot \cdot \succ zn. Note that the length of z[s] is

\nu (s, n) :=

\biggl( 
n+ s - 1

s

\biggr) 
.

Let \tau = (\tau 1, . . . , \tau p) \in \BbbZ p
+, x \in \BbbR n1 \times \cdot \cdot \cdot \times \BbbR np , and

x[\tau ] :=
\bigl( 
x(1)

\bigr) [\tau 1] \otimes \cdot \cdot \cdot \otimes 
\bigl( 
x(p)

\bigr) [\tau p]
.

The monomials are ordered in the lexicographic order with x(1) \succ \cdot \cdot \cdot \succ x(p) for the
groups of variables. Let

\nu (\tau , n1, . . . , np) :=

p\prod 
j=1

\nu (\tau j , nj)
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and A\alpha \in \BbbR \nu (\tau ,n1,...,np)\times \nu (\tau ,n1,...,np) be the coefficient matrix of x[\tau ]
\bigl( 
x[\tau ]

\bigr) \sansT 
in the

standard basis x[2\tau ], i.e.,

(3.5) x[\tau ]
\bigl( 
x[\tau ]

\bigr) \sansT 
=

\sum 
\alpha \in \BbbN n1

2\tau 1
\times \cdot \cdot \cdot \times \BbbN np

2\tau p

A\alpha x
\alpha ,

where \BbbN n
m := \{ \gamma \in \BbbN n : | \gamma | := \gamma 1 + \cdot \cdot \cdot + \gamma n = m\} .

Before stating the DNN relaxation problem, we first give a simple observation on
the nonnegativity of moment sequences. Denote d := 2\tau = (2\tau 1, . . . , 2\tau p).

Proposition 3.4 (nonnegativity equivalence). Let all notation be as above.
Then, the coefficient matrices in the set \{ A\alpha \} are nonnegative and orthogonal to
each other, and thus

(3.6) y \in \BbbR \nu (\bfd ,n1,...,np)
+ if and only if M(y) :=

\sum 
\alpha \in \BbbN n1

d1
\times \cdot \cdot \cdot \times \BbbN np

dp

A\alpha y\alpha \geq 0.

Proof. According to the definition, each A\alpha is a nonnegative matrix. Therefore,
the necessity is obvious. The sufficiency follows from the fact that \langle A\alpha , A\gamma \rangle = 0 for
all \alpha \not = \gamma and \sum 

\alpha \in \BbbN n1
d1

\times \cdot \cdot \cdot \times \BbbN np
dp

A\alpha = E,

where E is the matrix of all ones.

Let f \in \BbbR \nu (\bfd ,n1,...,np) be the coefficient vector of the polynomial f(x(1), . . . ,x(p))
in the standard basis x[\bfd ], and let g \in \BbbR \nu (\bfd ,n1,...,np) be that for the polynomial

g(x) :=
\prod p

j=1

\bigl[ \bigl( 
x(j)

\bigr) \sansT 
x(j)

\bigr] \tau j
.

The basic idea of the SOS relaxation in [28] is by relaxing the rank characteriza-
tion of a moment vector y \in \BbbR \nu (\bfd ,n1,...,np). Without the nonnegativity constraint, it
is classically relaxed as M(y) \succeq 0, i.e., the positive semidefiniteness of the moment
matrix; see [28, 37, 43]. It can be shown that the dual problem under this method
is an SDP problem obtained by representing a polynomial as an SOS. Therefore,
this relaxation method is usually referred to as the SOS relaxation. With Proposi-
tion 3.4, a moment vector generated by a nonnegative vector is then naturally relaxed
as M(y) \succeq 0 and M(y) \geq 0, i.e., the moment matrix is both positive semidefinite
and componentwise nonnegative. A matrix that is both positive semidefinite and
componentwise nonnegative is said to be DNN.

Naturally, a standard DNN relaxation of problem (3.3) is

(3.7)

fdnn := min \langle f ,y\rangle 

s.t. M(y) \succeq 0,

M(y) \geq 0,

\langle g,y\rangle = 1, y \in \BbbR \nu (\bfd ,n1,...,np),

the dual of which is

(3.8)
max \gamma 

s.t. f  - \gamma g \in \Sigma +
\bfd ,n1,...,np

,
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where

\Sigma +
\bfd ,n1,...,np

:=

\Biggl\{ 
h :

h(x) \in \BbbR [x]\bfd ,
h(x) =

\bigl( 
x[\tau ]

\bigr) \sansT 
(S + T )(x[\tau ]) for some S \succeq 0 and T \geq 0

\Biggr\} 
.

Here \BbbR [x]\bfd \subset \BbbR [x] is the set of multiforms being homogeneous of degree di with
respect to x(i) for all i \in \{ 1, . . . , p\} . Note that the cone of SOS

\Sigma \bfd ,n1,...,np
=

\bigl\{ 
h : h(x) \in \BbbR [x]\bfd , h(x) =

\bigl( 
x[\tau ]

\bigr) \sansT 
S(x[\tau ]) for some S \succeq 0

\bigr\} 
is strictly contained in \Sigma +

\bfd ,n1,...,np
. If there is no confusion, we sometimes will write

h(x) \in \Sigma +
\bfd ,n1,...,np

for a multiform h(x), meaning its coefficient vector h \in \Sigma +
\bfd ,n1,...,np

.
The above DNN relaxation, together with Proposition 3.3, motivates a hierarchy

of DNN relaxations for the optimization problem (3.3).

Proposition 3.5. Let \eta \in \BbbN p and \gamma \eta be the optimal value of the following
problem:

(3.9) \gamma \eta := max

\biggl\{ 
\gamma :

p\prod 
i=1

(e\sansT x(i))2\eta i(f(x) - \gamma g(x)) \in \Sigma +
\bfd +2\eta ,n1,...,np

\biggr\} 
.

Then

(3.10) fdnn \leq \gamma \eta \leq fmin and \gamma \eta \leq \gamma \eta whenever \eta \leq \eta .

Moreover,

\gamma \eta \rightarrow fmin as min\{ \eta i : i = 1, . . . , p\} \rightarrow \infty .

Proof. The relations in (3.10) follows directly from the fact that each e\sansT x(i) is a
polynomial with positive coefficients.

Given an arbitrary \epsilon > 0, we know that the multiform f(x)  - (fmin  - \epsilon )g(x) is
positive on the nonnegative multisphere. Since f(x) - (fmin - \epsilon )g(x) is a multiform, it
is still positive on the joint simplex. Thus, it follows from Proposition 3.3 that there
are positive integers ri's such that

p\prod 
i=1

(e\sansT x(i))2\eta i(f(x) - (fmin  - \epsilon )g(x)) \in \Sigma +
\bfd +2\eta ,n1,...,np

for all \eta \geq r. Therefore, for all \eta \geq r,

fmin  - \epsilon \leq \gamma \eta \leq fmin.

The conclusion thus follows.

Proposition 3.5 gives the global convergence of the hierarchy of DNN relaxations
(cf. (3.9)) for the problem (3.3), parallel to that of SOS relaxations (cf. [28, Theo-
rem 3.4]). Problem (3.8) is the zeroth order DNN relaxation, i.e., \eta = 0 in (3.9).

In the following, some properties on the two matrix optimization problems (3.7)
and (3.8) will be investigated.

Lemma 3.6. There exists a y \in \BbbR \nu (\bfd ,n1,...,np) such that M(y) \succ 0 and M(y) > 0,
i.e., the linear conic problem (3.7) is strictly feasible.
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Proof. Let \lambda be the Lebesgue measure on \BbbS n1 - 1 \times \cdot \cdot \cdot \times \BbbS np - 1. Let \mu be the
normalized standard measure over the nonnegative multisphere S := (\BbbR n1

+ \cap \BbbS n1 - 1)\times 
\cdot \cdot \cdot \times (\BbbR np

+ \cap \BbbS np - 1), also known as the uniform probability measure on \BbbS n1 - 1
+ \times \cdot \cdot \cdot \times 

\BbbS np - 1
+ , defined as

\mu (A) :=
1

\lambda (S)
\lambda (A \cap S) for any Borel set A.

Define

y\alpha :=

\int 
x\alpha d\mu for all \alpha \in \BbbN n1

d1
\times \cdot \cdot \cdot \times \BbbN np

dp

to be the truncated moment sequence of \mu . It is obvious that y > 0, and

\langle g,y\rangle =
\int 

g(x) d\mu = 1,

since g(x) \equiv 1 over the support S of \mu .
For any f(x) \in \BbbR [x]\tau , we have

f\sansT M(y)f =

\int 
f(x)2 d\mu .

Since the support of \mu is the nonnegative orthant part of the multisphere, we can then
conclude from the fact f\sansT M(y)f = 0 that

f(x) = 0 for all x \in S := (\BbbR n1
+ \cap \BbbS n1 - 1)\times \cdot \cdot \cdot \times (\BbbR np

+ \cap \BbbS np - 1).

Since f is multihomogeneous, we immediately have that

f(x) = 0 for all x \in \BbbR n1
+ \times \cdot \cdot \cdot \times \BbbR np

+ .

Note that \BbbR n1
+ \times \cdot \cdot \cdot \times \BbbR np

+ is a set with the Zariski closure being the whole space
\BbbR n1 \times \cdot \cdot \cdot \times \BbbR np . We conclude that f \equiv 0. Thus, the matrix M(y) is positive
definite.

Lemma 3.7. There exist a scalar \gamma , a matrix S \succ 0, and a matrix T > 0 such

that f(x) - \gamma g(x) =
\bigl( 
x[\tau ]

\bigr) \sansT 
(S+T )(x[\tau ]), i.e., the linear conic problem (3.8) is strictly

feasible.

Proof. Note that there exists a nonnegative diagonal matrix D such that

g(x) =
\bigl( 
x[\tau ]

\bigr) \sansT 
D(x[\tau ])

with the minimum diagonal element being one. Thus, D \succ 0. The result follows
immediately if a sufficiently small \gamma < 0 is chosen.

Proposition 3.8. Both (3.7) and (3.8) are solvable, and there is no duality gap.

Proof. Both (3.7) and (3.8) have strictly feasible solutions by Lemmas 3.6 and
3.7, respectively. The conclusion then follows from standard duality theory for linear
conic optimization problems (cf. [3]).

Proposition 3.9 (exact relaxation). Let di = 2\tau i for all i = 1, . . . , p. If (3.7)
has an optimal solution y\ast such that

(3.11) rank(M(y\ast )) = 1,

then the relaxation is tight, i.e., fmin = fdnn, and an optimal solution for (3.1) can
be extracted from y\ast .
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Proof. It follows from [10, 46] that y\ast is a monomial vector in this situation. Let

M(y\ast ) = x
[\tau ]
\ast 
\bigl( 
x
[\tau ]
\ast 
\bigr) \sansT 

with x\ast = (x
(1)
\ast , . . . ,x

(p)
\ast ). Then, we have from M(y\ast ) \geq 0 that

x
(i)
\ast \geq 0 or x

(i)
\ast \leq 0

for each i = 1, . . . , p. Since each di is even, the monomial vector z\ast with

M(z\ast ) = w
[\tau ]
\ast 
\bigl( 
w

[\tau ]
\ast 
\bigr) \sansT 

and w\ast = (| x(1)
\ast | , . . . , | x(p)

\ast | )

satisfies z\ast = y\ast . Therefore, the results follow.

We will see from later numerical experiments that (3.11) is a typical property, i.e.,
it holds with high probability if we randomly generate f from a continuous probability
distribution.

3.5. DNN reformulation. In this section, we formulate (3.7) as a linear opti-
mization problem over the cone of DNN matrices more explicitly. We shall eliminate
the variable vector y by exploiting the hidden constraints on the matrix M(y). We
have already shown that the \nu (d, n1, . . . , np) matrices (cf. (3.5))

A\alpha : \alpha \in \BbbN n1
2\tau 1

\times \cdot \cdot \cdot \times \BbbN np

2\tau p

are orthogonal to each other. Let\bigl\{ 
Bi : 1 \leq i \leq \mu (d, n1, . . . , np)

\bigr\} 
with \mu (d, n1, . . . , np) := \nu (\tau , n1, . . . , np)(\nu (\tau , n1, . . . , np) + 1)/2  - \nu (d, n1, . . . , np) be
the set of matrices that are orthogonal to each other such that\bigl\{ 

A\alpha : \alpha \in \BbbN n1
2\tau 1

\times \cdot \cdot \cdot \times \BbbN np

2\tau p

\bigr\} 
\cup 
\bigl\{ 
Bi : i = 1, . . . , \mu (d, n1, . . . , np)

\bigr\} 
forms an orthogonal basis of the space of \nu (\tau , n1, . . . , np)\times \nu (\tau , n1, . . . , np) real sym-
metric matrices. Let

w \in \BbbR \nu (\bfd ,n1,...,np) with w\alpha = \langle A\alpha , A\alpha \rangle for all \alpha .

Then the problem (3.7) can be equivalently reformulated as

(3.12)

fdnn := min
\bigl\langle \sum 

\alpha \in \BbbN n1
2\tau 1

\times \cdot \cdot \cdot \times \BbbN np
2\tau p

f\alpha 
w\alpha 

A\alpha , X
\bigr\rangle 

s.t. \langle Bi, X\rangle = 0, i = 1, . . . , \mu (d, n1, . . . , np),\bigl\langle \sum 
\alpha \in \BbbN n1

2\tau 1
\times \cdot \cdot \cdot \times \BbbN np

2\tau p

g\alpha 
w\alpha 

A\alpha , X
\bigr\rangle 
= 1,

X \succeq 0, X \geq 0.

The optimization problem (3.12) is classified as a DNN problem, since it requires the
matrix variableX to be both positive semidefinite and component-wisely nonnegative.
As a linear conic problem, it can be reformulated as a standard SDP problem by
introducing a new variable Y and adding the constraints that X  - Y = 0 so that the
original DNN conic constraint can be replaced by X \succeq 0 and Y \geq 0. However, this
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Table 1
(d, n1, . . . , np) : (number of equations; dimension of the matrix variable) of (3.12) for several

d's and (n1, . . . , np)'s.

(d, n1, . . . , np):(\# eq.; dim) (d, n1, . . . , np):(\# eq.; dim)

(4, 100):(8,332,501; 5,050) ((2,2,2), 20,20,20):(22,743,001; 8,000)

(4,150):(42,185,626; 11,325) ((2,2,3),15,10,10):(42,403,351; 9,900)

((2,2), 100,100):(24,502,501; 10,000) ((2,2,2,2), 10,10,10,10):(40,854,376; 10,000)

((2,3),50,20):(53,158,876; 11,550) ((2,2,2,3),6,6,6,8):(42,659,866; 9,720)

reformulation introduces too many new equality constraints which not only make the
resulting standard SDP problem computationally much more expensive to solve but
also make it likely to encounter numerical difficulties when solving the standard SDP
reformulation since it is likely to be constraint degenerate (cf. [66]).

Table 1 gives some information on the sizes of the DNN relaxation problem (3.12)
for different d and n1, . . . , np. When di is odd, we use the technique in section 3.1 to
transform it into the standard formulation involving only even orders. In this table,
\# eq. means the number of equality constraints, and dim means the dimension of the
matrix variable. For a general DNN problem, on a laptop, the current state-of-the-art
solver can solve problems with the matrix dimension around 5000 and several millions
of equality constraints. Therefore, except the first case of a quartic polynomial in 100
variables, all the other cases are almost hopeless to solve at present [65]. On the
other hand, all the cases are tensors with small to moderate dimensions, showing the
difficulty of solving the problem (3.1) globally from another perspective.

3.6. Worst case approximation bound. In this section, we present a worst
case approximation bound for fdnn.

Given a positive integer n, define the matrix \Theta n by

\Theta n :=

\int 
\BbbS n - 1
+

x[n]
\bigl( 
x[n]

\bigr) \sansT 
d\mu (x),

where \mu (x) is the uniform probability measure on \BbbS n - 1
+ . It is easy to see that \Theta n is

positive definite, since the set \BbbS n - 1
+ is of dimension n  - 1 and the monomial vector

x[n] consists of homogeneous monomials. Let

\delta n1,...,np
:=

p\prod 
i=1

\sqrt{} 
\lambda min(\Theta ni

),

where \lambda min(\Theta ni) is the smallest eigenvalue of the matrix \Theta ni . Since each \Theta ni is
positive definite, we have that \delta n1,...,np

> 0.

Since the set \BbbS n - 1
+ is involved in this article instead of \BbbS n - 1, \lambda min(\Theta ni) is different

from those given in [37, Table 1]. For example,

\Theta 2 =
1

8\pi 

\left[   3\pi 4 \pi 

4 2\pi 4

\pi 4 3\pi 

\right]   .

Consequently, \delta 2 =
\sqrt{} 
\lambda min(\Theta 2) = 0.4849, which is different from 0.5 in [37] with

respect to \BbbS n - 1.
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1542 SHENGLONG HU, DEFENG SUN, AND KIM-CHUAN TOH

Let fmax and fmin be the maximum and minimum values of the objective function
f over the feasible set of problem (3.1), and fmax > fmin. We then have the next
proposition, whose proof is almost the same as that in [37, Theorem 3.4].

Proposition 3.10. Suppose that ni \geq di for all i \in \{ 1, . . . , p\} and all notation
are as above. Then we have that

(3.13) 1 \leq fmax  - fdnn
fmax  - fmin

\leq 1

\delta d1,...,dp

\sqrt{} \biggl( 
n1

d1

\biggr) 
. . .

\biggl( 
np

dp

\biggr) 
.

With \delta 2 computed as above, we have that for a biquadratic form over the inter-
section of the multisphere and the nonnegative orthant

1 \leq fmax  - fdnn
fmax  - fmin

\leq 4.2535

\sqrt{} \biggl( 
n1

2

\biggr) \biggl( 
n2

2

\biggr) 
.

The upper bound is slightly different from that with respect to the multisphere; see [37,
Corollary 3.5].

If the polynomial is sparse, i.e., with fewer terms in its polynomial expansion, then
an improved worst case approximation bound in terms of the number of monomials
\Omega (f) can be derived as in [37, section 4]. In particular, if the polynomial is a monomial
or the number of monomials is bounded by a constant, then a constant worst case
approximation bound, independent of the problem dimensions, can be given.

3.7. Solution extraction for even order tensors. Let y\ast be an optimal
solution for (3.7). By Proposition 3.4, y\ast \geq 0. Let

y\ast 2\gamma := max\{ y\ast 2\mu : x\mu \in x[\tau ]\} .

Since the set \{ y\ast 2\mu : x\mu \in x[\tau ]\} forms the diagonal elements of the positive semidefinite
matrix M(y\ast ) and y\ast \not = 0, we have that

y\ast 2\gamma > 0.

Denote
\gamma := (\gamma 1, . . . , \gamma p)

with
\gamma i := (\gamma i

1, . . . , \gamma 
i
ni
)

for all i = 1, . . . , p. Then \gamma i \not = 0 for all i = 1, . . . , p. Let

\gamma i
ki

:= max\{ \gamma i
1, . . . , \gamma 

i
ni
\} .

Define

z
(i)
\ast := (y\ast 

\gamma +(\gamma 1,...,\gamma i - 1,\gamma i - \bfe 
(i)
ki

+\bfe 
(i)
1 ,\gamma i+1,...,\gamma p)

, . . . , y\ast 
\gamma +(\gamma 1,...,\gamma i - 1,\gamma i - \bfe 

(i)
ki

+\bfe 
(i)
ni

,\gamma i+1,...,\gamma p)
)\sansT ,

x
(i)
\ast := | z(i)\ast | /\| z(i)\ast \| for all i = 1, . . . , p.

The approximation solution is then

x\ast = (x
(1)
\ast , . . . ,x

(p)
\ast ),
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and the approximation value is

fapp := f(x
(1)
\ast , . . . ,x

(p)
\ast ).

If rank(M(y\ast )) = 1, then it holds that (cf. Proposition 3.9)

M(y\ast ) = x
[\tau ]
\ast 
\bigl( 
x
[\tau ]
\ast 
\bigr) \sansT 

.

3.8. Solution extraction for odd order tensors. Let y\ast be an optimal solu-
tion for (3.7). Suppose that the tensor space is Sym(\otimes \alpha 1\BbbR n1)\otimes \cdot \cdot \cdot \otimes Sym(\otimes \alpha p\BbbR np),
and without loss of generality that \alpha 1, . . . , \alpha q are odd for some q \leq p. Let d =
(\alpha 1 + 1, . . . , \alpha q + 1, \alpha q+1, . . . , \alpha p). By the scheme in section 3.1, we have that

y\ast \in \BbbR \nu (\bfd ,n1+1,...,nq+1,nq+1,...,np).

Let

y\ast \gamma := max
\bigl\{ 
y\ast \mu : \mu =

\bigl( 
(\mu 1, 1), . . . , (\mu q, 1), \mu q+1, . . . , \mu p

\bigr) 
with \mu i \in \BbbN ni

\alpha i

\bigr\} 
.

If y\ast \gamma = 0, it follows from section 2.1 that zero is the best approximation solution,
since in this case the optimal value of (3.7) is zero. In the following, we assume that

y\ast \gamma > 0.

Denote
\gamma := (\gamma 1, . . . , \gamma p)

with
\gamma i := (\gamma i

1, . . . , \gamma 
i
ni
, 1)

for all i = 1, . . . , q, and
\gamma i := (\gamma i

1, . . . , \gamma 
i
ni
)

for all i = q + 1, . . . , p. Let

\gamma i
ki

:= max\{ \gamma i
1, . . . , \gamma 

i
ni
\} .

Define

z
(i)
\ast := (y\ast 

(\gamma 1,...,\gamma i - 1,\gamma i - \bfe 
(i)
ki

+\bfe 
(i)
1 ,\gamma i+1,...,\gamma p)

, . . . , y\ast 
(\gamma 1,...,\gamma i - 1,\gamma i - \bfe 

(i)
ki

+\bfe 
(i)
ni+1,\gamma 

i+1,...,\gamma p)
)\sansT ,

\~x
(i)
\ast := | z(i)\ast | /\| z(i)\ast \| for all i = 1, . . . , q,

and

z
(i)
\ast := (y\ast 

(\gamma 1,...,\gamma i - 1,\gamma i - \bfe 
(i)
ki

+\bfe 
(i)
1 ,\gamma i+1,...,\gamma p)

, . . . , y\ast 
(\gamma 1,...,\gamma i - 1,\gamma i - \bfe 

(i)
ki

+\bfe 
(i)
ni

,\gamma i+1,...,\gamma p)
)\sansT ,

x
(i)
\ast := | z(i)\ast | /\| z(i)\ast \| for all i = q + 1, . . . , p.

The approximation solution for the extended problem is then

\~x\ast = (\~x
(1)
\ast , . . . , \~x

(q)
\ast ,x

(q+1)
\ast , . . . ,x

(p)
\ast ).

Let
\~x
(i)
\ast = (x(i), ti) for i = 1, . . . , q.

For i = 1, . . . , q, if ti \not = 1, then we take

x
(i)
\ast := x(i)/\| x(i)\| ;

otherwise, we conclude that the best approximating nonnegative rank-one tensor is
the zero tensor.
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4. Numerical experiments. In this section, we present some preliminary nu-
merical experiments for solving problem (3.1) via the DNN relaxation method devel-
oped in section 3. All the tests were conducted on a Lenovo laptop with 32GB RAM
and 2.7GHz CPU running 64bit Windows operation system. All codes were written
in MATLAB with some subroutines in C++. All the linear matrix conic problems
were solved by the solver SDPNAL+ [61, 65].

The numerical results will be divided into four subsections, which consist of in-
stances of the best nonnegative rank-one approximations of tensors (cf. sections 4.1,
4.2, and 4.3) and the copositivities of tensors (cf. section 4.4).

Given a tensor \scrA , we use fdnn to denote the optimal value of the corresponding
DNN relaxation problem. The approximation solution x of problem (3.1) is extracted
according to sections 3.7 and 3.8. Then \lambda x\otimes \bfd with \lambda giving by (2.4) is the best
nonnegative rank-one approximation found. Therefore, fapp := \lambda is the approximate
optimal value of (3.1) found by the method. We use the relative approximation error

apperr(\scrA ) :=

\Biggl\{ 
| fdnn - fapp| 

| fdnn| if fdnn \not = 0,

| fapp| otherwise

and the relative approximation error with respect to the problem data size

apperrnm(\scrA ) :=
| fdnn  - fapp| 

\| \scrA \| 

to measure the approximation quality. Note that due to the accuracy tolerance (the
default is 10 - 6) setting in solving the DNN relaxation problem of (3.1), even if the
matrix M(y\ast ) for the optimal y\ast of (3.7) has rank one (thus the approximation is
tight), we may still have fdnn \not = fapp. But their difference should have the same
magnitude as the accuracy tolerance used.

Numerically, we regard the relaxation to be tight (e.g., when rank(M(y\ast )) = 1)
whenever the second largest singular value of M(y\ast ) is smaller than 1.0\times 10 - 6.

4.1. Comparisons. This section presents the comparisons of the performance
among different formulations of DNN problems by different solvers for efficiency, and
between AO-ADMM proposed in [24] and the DNN relaxation for global optimality.

4.1.1. Formulations and SDP solvers. It is already mentioned that the DNN
problems can be formulated as standard SDP problems by introducing extra variables
and constraints, and the resulting standard SDP problems can also be solved directly
by the solver SDPNAL [66] (cf. section 3.5). We will call this approach the na\"{\i}ve
SDPNAL. On the other hand, we can solve the DNN relaxation via the dual formula-
tion (3.8). Moreover, during the implementation, we can take a nonnegative vector of
dimension \nu (d, n1, . . . , np) to represent the linear equality constraint, instead of the
nonnegative matrix of size \nu (\tau , n1, . . . , np)\times \nu (\tau , n1, . . . , np) (cf. see the definition of
\Sigma +

\bfd ,n1,...,np
in section 3.4). By doing so, the number of nonnegative variables can be

reduced dramatically; see Table 2. This approach is termed SDPNAL.
On the other hand, the DNN relaxation can be solved more efficiently by the

DNN-focused solver SDPNAL+ [61, 65]. Thus, we apply SDPNAL+ for solving our
DNN problems (3.12). In the following, we have a comparison among the perfor-
mance of na\"{\i}ve SDPNAL, SDPNAL, and SDPNAL+ in solving Example 4.1. The
primary purpose is to give recommendation on the approaches for solving the DNN
relaxations. The results are reported in Table 2. We can see the superiority of SDP-
NAL and SDPNAL+ over na\"{\i}ve SDPNAL. Moreover SDPNAL+ performs better than
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Table 2
Comparisons on Example 4.1.

m n \# sdp
Na\"{\i}ve SDPNAL SDPNAL SDPNAL+

\#non; \# con Time \#non; \# con Time \# con Time

3 5 216 23436; 37612 29.9 9261; 9261 6.4 14176 7.9

3 8 729 266085; 441046 27:1.5 91125; 91125 2:21.9 174961 2:23.2

3 10 1331 886446; 1485397 2:55:5.8 287496; 287496 F 598951 20:16.2

3 12 2197 2414503; 4075436 3:51:46.8 753571; 753571 43:16.4 1660933 49:53.5

4 4 625 195625; 340626 7:43.7 50625; 50625 24.1 145001 28.8

4 5 1296 840456; 1486432 1:18:10.8 194481; 194481 8:44.4 645976 4:39.3

4 6 2401 2883601; 5152547 4:24:32.7 614656; 614656 30:33.5 2268946 18:10.7

5 3 1024 524800; 949601 1:4:52.0 100000; 100000 1:56.2 424801 1:46.9

6 2 729 266085; 485515 1:54.7 46656; 46656 41.9 219430 32.9

7 2 2187 2392578; 4505221 3:59:18.0 279936; 279936 6:17.9 2112643 12:4.6

SDPNAL for most cases with large problem sizes. Note that SDPNAL fails in the case
(3, 10). In the tables, Time denotes the computation time consumed in the format
of hours:minutes:seconds, \# sdp the dimension of the positive semidefinite matrix
variable, \# non the number of nonnegative constraints, and \# con the number of
equality constraints.

Example 4.1. This example comes from [41, Example 3.16]. The tensor \scrA \in 
\otimes m\BbbR n has the entries

ai1...im =

m\sum 
j=1

( - 1)j+1 \cdot j \cdot exp( - ij).

4.1.2. AO-ADMM. In this subsection, we compare the method proposed by
Huang, Sidiropoulos, and Liavas in [24] (see also the excellent survey [58]) with the
DNN relaxation approach proposed for a set of examples. The method in [24] is
called alternating optimization (AO) with subproblems being solved by alternating
direction method of multipliers (ADMM). This method is designed for the case of
nonnegative tensor approximation with \alpha 1 = \cdot \cdot \cdot = \alpha p = 1 (cf. section 2). For the
sake of simplicity, we take p = 3 for an illustration. It can be extended to the more
general case p > 3 directly. The method is terminated when the improvements of
both the iteration and the objective function value are within 10 - 6.

Example 4.2. This example comes from [41, Example 3.14]. The tensor\scrA \in \otimes 3\BbbR n

has the entries

aijk = cos
\bigl( 
i+ 2j + 3k

\bigr) 
.

The numerical computations are recorded in Table 3, in which T(DNN) denotes
the computation time in the format of hours:minutes:seconds consumed for solving
the corresponding problem by the DNN approach and \lambda (DNN) the norm of the best
rank-one approximation tensor found, i.e., fapp. T(AO) and \lambda (AO) are for the AO-
ADMM method. fdnn is the optimal value of the DNN relaxation found.1 We see
that the DNN relaxation method finds a nonnegative rank-one approximation with
much larger norm (cf. \lambda ) in most cases.

1By the formulation (2.5), there is a sign change of the objective function in the case of best
nonnegative rank-one approximation. Thus, the columns of fdnn in this case are actually  - fdnn of
that given by (3.12).
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Table 3
Computational results for Example 4.2.

n T(DNN) \lambda (DNN) T(AO) \lambda (AO) fdnn apperr apperrnm

2 0.12 1.2208 0.005 0.8439 1.2208 6.75\times 10 - 6 3.85\times 10 - 6

3 0.29 1.7342 0.002 1.0715 1.7342 1.90\times 10 - 5 8.96\times 10 - 6

4 1.67 2.4413 0.038 2.4417 2.4508 3.88\times 10 - 3 1.67\times 10 - 3

5 3.33 2.9581 0.119 2.9309 3.0911 4.30\times 10 - 2 1.69\times 10 - 2

6 5.95 2.8465 0.011 2.7676 3.7989 0.251 9.16\times 10 - 2

7 26.41 4.0467 0.017 3.5431 4.6857 0.136 4.90\times 10 - 2

8 46.12 5.0071 0.186 4.3912 5.7113 0.123 4.41\times 10 - 2

9 3:33.83 6.0120 0.211 4.8147 6.7987 0.116 4.11\times 10 - 2

10 11:52.01 6.9082 0.504 5.1320 7.4669 0.748 2.50\times 10 - 2

Table 4
Computational results for Example 4.3.

n T(DNN) \lambda (DNN) T(AO) \lambda (AO) fdnn apperr apperrnm

2 0.207 36.90 0.002 36.62 36.90 9.06\times 10 - 6 8.85\times 10 - 6

3 0.606 166.6 0.005 158.0 166.6 5.54\times 10 - 8 5.22\times 10 - 8

4 3.578 636.9 0.006 521.0 636.9 1.44\times 10 - 8 1.32\times 10 - 8

5 7.164 2229.9 0.007 1580.2 2229.9 3.11\times 10 - 8 2.79\times 10 - 6

6 5.874 7408.07 0.006 4817.8 7408.02 7.23\times 10 - 6 6.38\times 10 - 6

7 51.01 23785.9 0.007 14706.2 23785.9 2.10\times 10 - 7 1.83\times 10 - 7

8 2:26.62 74495.0 0.007 44287.5 74495.0 1.03\times 10 - 6 8.87\times 10 - 7

9 2:50.34 229151.2 0.006 131688.4 229150.8 1.43\times 10 - 6 1.22\times 10 - 6

Example 4.3. This example is a modification of [41, Example 3.16]. The tensor
\scrA \in \otimes 3\BbbR n has the entries

aijk = exp(i) - 2 exp(j) + 3 exp(k).

The numerical computations are recorded in Table 4. In each case, the DNN
relaxation finds a global optimal solution. We can see from Table 4 that the gap
between the solution found by AO-ADMM and the global optimal solution is large in
most cases.

Example 4.4. This example comes from [41, Example 3.18]. The tensor\scrA \in \otimes 3\BbbR n

has the entries

aijk = tan

\biggl( 
i - j

2
+

k

3

\biggr) 
.

The numerical computations are recorded in Table 5. Similar conclusions as in
Example 4.3 can be drawn from Table 5. We note that for the case n = 4, AO-ADMM
returns the zero tensor and hence fails to find a valid nonnegative approximation
solution.

Example 4.5. This example tests a tensor \scrA \in \BbbR m \otimes \BbbR n \otimes \BbbR k with the entries
being randomly chosen from either [0, 1] (the case in the upper six rows of Table 6)
or [ - 1, 1] (the last six rows of Table 6). For each case, ten simulations are drawn
with T(DNN) being the mean computation time consumed for DNN. We can observe
that the DNN approach always finds a better objective function value fdnn than faoD
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Table 5
Computational results for Example 4.4.

n T(DNN) \lambda (DNN) T(AO) \lambda (AO) fdnn apperr apperrnm

2 0.114 4.1462 0.023 2.7232 4.1462 9.79\times 10 - 6 3.33\times 10 - 6

3 0.696 14.4480 0.002 4.2858 14.4480 9.19\times 10 - 8 5.52\times 10 - 8

4 1.205 15.3004 2.912 0.0000 15.3004 6.14\times 10 - 7 3.16\times 10 - 7

5 17.261 22.1107 0.041 3.8793 25.3944 0.129 5.99\times 10 - 2

6 6.681 22.0960 0.093 22.0068 27.9674 0.210 8.23\times 10 - 2

7 1:05.47 56.0168 4.373 24.9464 56.0168 1.80\times 10 - 7 8.50\times 10 - 8

8 42.086 51.9399 0.112 15.0330 64.5472 0.195 7.93\times 10 - 2

Table 6
Computational results for random examples. Ten instances are considered for each case.

m n k T(DNN) T(AO) mean(rt) max(rt) min(rt) bet tight

3 3 3 0.5803 0.9944 0.0170 0.0361 0.0020 10 10

3 4 5 1.1348 0.8587 0.0120 0.0245 0.0020 10 10

5 5 5 2.3505 0.0411 0.0110 0.0209 0.0055 10 10

5 6 7 5.1839 0.0059 0.0064 0.0103 0.0035 10 10

7 7 7 21.3171 0.0040 0.0083 0.0152 0.0027 10 10

6 7 8 16.6694 0.0036 0.0085 0.0140 0.0050 10 10

2 2 2 0.2609 0.1032 0.3826 1.0000 0.0000 10 10

3 3 3 0.5481 1.0151 0.5623 1.0000 0.0772 10 10

2 3 4 0.6125 0.8665 0.5385 1.0000 0.0033 10 10

3 4 5 1.4403 2.5975 0.0659 0.2169 0.0010 10 10

5 5 5 2.6163 3.1757 0.2227 0.5908 0.0031 10 10

4 5 6 7.7050 2.4806 0.2613 0.8483 0.0728 10 10

of AO-ADMM. Actually, the DNN approach always finds a global optimal solution.
Thus, we use

(4.1) rt :=
fdnn  - fao

fdnn

to measure the relative gap between the objective function value returned by AO-
ADMM and the optimal function value. mean(rt), max(rt) and min(rt) are respec-
tively, the mean, maximum, and minimum among the ten simulations. bet counts
the number of times DNN being better than AO-ADMM in objective function values,
and tight counts the number of times DNN finding a global optimal solution.

For the case of nonnegative tensors, AO-ADMM performed quite well in finding
approximate global optimal solutions. (We know that randomly generated tensors
tend to be easy for alternating minimization [23].) However, when the tensor has
negative components, the gap becomes large. Moreover, for tensors with negative
components, we see from Table 6 that even the computation time consumed by DNN
is not much worse than that of AO-ADMM.

4.2. Relaxation hierarchy. In this section, we present two concrete examples
for our DNN relaxation hierarchy (cf. Proposition 3.5), particularly on problems for
which the zeroth order relaxation is not tight. If a higher order relaxation is used, we
solve the dual problem (3.9).
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Table 7
Computational results for Example 4.6.

\eta fapp fdnn apperr apperrnm x\ast Time

0 0.6416 0.6999 5.838\times 10 - 2 2.592\times 10 - 2 (0.9328, 0, 0.3603)\sansT 0.124

1 0.6795 0.6800 5.064\times 10 - 4 2.248\times 10 - 4 (0.8892, 0, 0.4576)\sansT 0.797

2 0.6798 0.6798 5.832\times 10 - 6 2.589\times 10 - 6 (0.8848, 0, 0.4660)\sansT 0.937

Table 8
Computational results for Example 4.7.

\eta fapp fdnn apperr apperrnm x\ast Time

0 2.000 2.005 2.292\times 10 - 3 9.298\times 10 - 4 (1, 0, 0)\sansT 1.031

1 2.000 2.001 5.343\times 10 - 4 2.163\times 10 - 4 (0, 1, 0)\sansT 1.719

2 2.000 2.000 1.019\times 10 - 5 4.125\times 10 - 6 (0, 1, 0)\sansT 2.390

Example 4.6. This example comes from [25, Example 1]. It is a tensor \scrA in
Sym(\otimes 4\BbbR 3) with the independent entries being

a1111 = 0.2883, a1112 =  - 0.0031, a1113 = 0.1973, a1122 =  - 0.2485, a1123 =  - 0.2939,

a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862, a1233 = 0.0919, a1333 =  - 0.3619,

a2222 = 0.1241, a2223 =  - 0.3420, a2233 = 0.2127, a2333 = 0.2727, a3333 =  - 0.3054.

The zeroth order relaxation is not tight, while the second order relaxation is tight.
The computational result is given in Table 7.

Example 4.7. This example comes from [41, Example 3.8]. It is a tensor \scrA in
Sym(\otimes 6\BbbR 3) with the nonzero independent entries being

a111111 = 2, a111122 = 1/3, a111133 = 2/5, a112222 = 1/3, a112233 = 1/6,

a113333 = 2/5, a222222 = 2, a222233 = 2/5, a223333 = 2/5, a333333 = 1.

This is a nonnegative tensor that is related to the Motzkin polynomial. The relaxation
is not tight until the second order, but the rank-one tensor found by the zeroth order
is a best nonnegative rank-one approximation (cf. [41, Example 3.3]). The numerical
computation is given in Table 8 and is consistent with [41, Example 3.3].

4.3. Best nonnegative rank-one approximation of tensors. In this section,
we present some numerical results for some concrete examples from the literature. A
larger set of examples were tested. Similar numerical behaviors were observed. The
zeroth order DNN relaxation can always return a global optimal solution. Due to
space limitation, a small portion of representative examples are shown here.

Example 4.8. This example comes from [12, Example 3]. This is a tensor \scrA in
\otimes 4\BbbR 2 with nonzero entries being

a1111 = 25.1, a1212 = 25.6, a2121 = 24.8, a2222 = 23.

This is a nonnegative and nonsymmetric tensor. The relaxation is tight, and the best
nonnegative rank-one approximation tensor is the best rank-one approximation tensor
(cf. [52]), which is found as

\lambda = 25.6000, x1
\ast = x3

\ast = (1, 0)\sansT , x2
\ast = x4

\ast = (0, 1)\sansT .
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The errors apperr(\scrA ) = 9.1676 \times 10 - 6 and apperrnm(\scrA ) = 4.7616 \times 10 - 6. The
numerical computation is consistent2 with [41, Example 3.11].

Example 4.9. This example comes from [12, Example 2]. This is a symmetric
tensor \scrA in Sym(\otimes 3\BbbR 2) with the independent entries being

a111 = 1.5578, a222 = 1.1226, a112 =  - 2.4443, a221 =  - 1.0982.

The relaxation is tight. The best nonnegative rank-one approximation tensor found is

\lambda = 1.5578, x\ast = (1, 0)\sansT .

The errors apperr(\scrA ) = 3.5924\times 10 - 6 and apperrnm(\scrA ) = 1.1142\times 10 - 6.

Example 4.10. This example comes from [27, Example 3.6]. It is a symmetric
tensor \scrA in Sym(\otimes 3\BbbR 3) with the independent entries being

a111 =  - 0.1281, a112 = 0.0516, a113 =  - 0.0954, a122 =  - 0.1958, a123 =  - 0.1790,

a133 =  - 0.2676, a222 = 0.3251, a223 = 0.2513, a233 = 0.1773, a333 = 0.0338.

The relaxation is tight. The best nonnegative rank-one approximation tensor found is

\lambda = 0.6187, x\ast = (0, 0.8275, 0.5615)\sansT .

The errors apperr(\scrA ) = 2.9194\times 10 - 6 and apperrnm(\scrA ) = 2.9194\times 10 - 6.

Example 4.11. This example comes from [41, Example 3.5]. The symmetric tensor
\scrA \in Sym(\otimes m\BbbR n) has the entries

ai1...im =

m\sum 
j=1

( - 1)ij

ij
.

The numerical computations are recorded in Table 9. We can see that in all cases,
the method can find a very good best nonnegative rank-one approximation.

Table 9
Computational results for Example 4.11.

m n Time \lambda apperr m n Time \lambda apperr

3 10 1.4 9.48 4.67\times 10 - 9 5 10 5.2 114.86 1.71\times 10 - 8

3 20 7.8 19.24 1.96\times 10 - 5 5 20 14:15.0 480.17 3.74\times 10 - 9

3 30 24.3 28.72 2.58\times 10 - 4 6 5 0.27 46.66 1.73\times 10 - 5

3 50 6:21.4 47.16 6.00\times 10 - 8 6 10 3.7 386.04 2.69\times 10 - 5

4 10 0.58 33.49 4.93\times 10 - 8 6 20 4:49.3 2319.15 2.50\times 10 - 7

4 20 3.3 97.60 1.33\times 10 - 6 7 5 1.5 103.01 6.43\times 10 - 7

4 30 22.2 179.55 6.59\times 10 - 9 7 10 2:23.7 1278.41 2.05\times 10 - 5

4 50 11:4.4 382.44 7.43\times 10 - 8 8 5 1.7 225.31 2.85\times 10 - 7

5 5 0.34 20.82 3.15\times 10 - 5 8 10 2:48.2 4186.13 2.06\times 10 - 4

2We remark on the different errors obtained in our computation and that in [41]. Actually, Nie
and Wang reported smaller approximation error. This is due to the facts that (i) the SDP solvers
are different (SDPNAL vs. SDPNAL+). Our formulation has an extra nonnegative constraint on
the matrix variable. Although the SDPs have the same optimal values, the numerical computations
adopt different termination accuracy tolerances. (ii) When we extract the solution for x\ast , we also
take the absolute values to make sure that x\ast \geq 0. This will introduce another difference.
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4.4. Copositivitiy of tensors. In this section, we test some tensors for their
copositivities. Let fdnn be the optimal value of the DNN relaxation and fapp be the
approximation value found as before. Then

1. if fdnn \geq 0, then we can conclude that the tensor is copositive;
2. if fapp < 0, then we can conclude that the tensor is not copositive.

Example 4.12. This example comes from [51, page 237]. It is a tensor \scrA in
Sym(\otimes 3\BbbR 3) with nonzero entries being

a113 = 2, a223 = 2, a123 =  - 1.

It can be shown that

\langle \scrA ,x\otimes 3\rangle = 6x3(x
2
1 + x2

2  - x1x2),

and hence \scrA is copositive. We have that

fdnn = 9.3650\times 10 - 15 and fapp = 2.3094.

Therefore we can conclude that the numerical computation gives the correct answer.

Example 4.13. This example comes from [51, Theorem 10]. It is a tensor \scrA \in 
Sym(\otimes m\BbbR n) such that for all i \in \{ 1, . . . , n\} 

aii...i \geq  - 
\sum 

\{ aii2...im : (i, i2, . . . , im) \not = (i, i, . . . , i) and aii2...im < 0\} .

Tensors satisfying the above assumption are always copositive (cf. [51]). For each case,
we first randomly generate a tensor\scrA \in Sym(\otimes m\BbbR n) and then set for all i \in \{ 1, . . . , n\} 

aii...i = 10 - 6  - 
\sum 

\{ aii2...im : (i, i2, . . . , im) \not = (i, i, . . . , i) and aii2...im < 0\} .

It is simulated rep times for each case, and prob represents the percentage of the
instances which are certified as copositive. From the theory, we know that prob
should be one. The numerical computations are recorded in Table 10, in which min,
mean, and max represent, respectively, the minimum, mean, and maximum values
among the simulations.

Example 4.14 (random examples). For Sym(\otimes m\BbbR n), randomly generated instances
were tested in this example. Each entry of the tensor is generated randomly uniformly
from [ - 1, 1]. The numerical computations are recorded in Table 11.

Table 10
Computational results for Example 4.13.

m n rep Time (min;mean;max) fdnn (min;mean;max) prob

3 2 100 0.0650; 0.1218; 0.5040 0.0019; 0.5527; 1.7766 1.0000

3 4 100 0.1170; 0.3354; 4.4760 0.5590; 2.0039; 3.3429 1.0000

4 4 100 0.1000; 0.2808; 1.6110 2.0387; 3.4413; 5.3520 1.0000

4 6 100 0.3090; 0.4830; 1.1150 5.5450; 9.5029; 14.0782 1.0000

4 8 100 0.4920; 0.8504; 1.3890 14.0392; 19.7660; 23.7444 1.0000

4 10 100 0.5260; 1.1967; 1.8570 28.4651; 36.6117; 45.1736 1.0000
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Table 11
Computational results for Example 4.14.

m n rep Time (min;mean;max) fdnn (min;mean;max) prob

3 2 100000 0.0170; 0.0836; 1.4910 -0.9901; 0.4744; 2.4283 0.7976

3 3 100 0.0530; 0.2025; 4.9460 -1.9355; 0.7035; 2.5131 0.7100

3 4 100 0.0840; 0.3150; 4.4830 -1.0134; 1.1267; 3.4869 0.8200

4 2 100 0.0280; 0.0883; 0.9500 -0.6436; 0.7512; 2.7042 0.8700

4 3 100 0.0410; 0.1184; 0.7480 -0.8643; 1.1732; 3.8440 0.8900

4 4 100 0.0600; 0.2185; 1.5470 -0.3611; 2.1712; 5.6694 0.9800

5 2 100 0.0500; 0.2081; 4.3240 -0.9681; 0.7340; 3.5141 0.7200

5 3 100 0.0820; 0.7420; 16.2170 -2.8147; 1.5161; 5.6667 0.7600

5 4 100 0.1220; 1.1890; 34.4940 -3.3983; 2.6409; 9.2966 0.7600

5. Conclusions. This article studied the problem of minimizing a multiform
over the nonnegative multisphere. This problem is a special polynomial optimization
problem. Although standard SOS relaxation method can be employed to solve this
problem, there are computational advantages to consider the more specialized ap-
proach in this paper. Taking the biquadratic case for example, i.e., d1 = d2 = 2, the

matrix in the resulting SDP is of dimension (n1+n2+1)(n1+n2)
2 . However, the matrix

dimension in the DNN relaxation method introduced here is n1n2. We can see that
the latter method provides a linear matrix conic optimization problem with matrix
size that is about half of the former when n1 = n2, and the ratio is even smaller
when n1 \ll n2 or n2 \ll n1. Given the current limitations of SDP solvers for handling
large scale problems with high-dimensional matrix variables (cf. [17, 59, 62, 66]), the
DNN method proposed in this article is promising. Our approach is made practical
by the recent solver SDPNAL+ [61, 65], which is designed to efficiently handle large-
scale problems with a particular focus on DNN problems having moderate matrix
dimensions while allowing the number of linear constraints to be very large.

The method is applied to the problem of finding the best nonnegative rank-one
approximation of a given tensor and the problem of testing the copositivity of a
given tensor. Based on the promising numerical results, we are motivated to carry
out further investigations of the DNN relaxation methods for multiform optimization
over the nonnegative multisphere in the future.
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