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1. Introduction

Let K be a closed convex subset in Rn, and let f; g and h be three functions from
Rn into itself. We consider the following nonlinear projection equation (NPE):

h(x) = :K (g(x)− f(x)); x ∈ Rn; (1)

where :K (·) is the orthogonal projection operator onto the set K . This equation provides
a uni<ed formulation of several interesting and important special cases. In the case
when h(x)= g(x) for any x∈Rn; then (1) reduces to the equation studied by Pang and
Yao [17] under the name of generalized normal equation which is equivalent to the
following generalized variational inequality (GVI):

g(x) ∈ K; (y − g(x))Tf(x) ≥ 0 for all y ∈ K: (2)

Moreover, if g(x) = x, then the above problem reduces to the variational inequality
problem (VIP), i.e.,

x ∈ K; (y − x)Tf(x) ≥ 0 for all y ∈ K; (3)
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which was extensively studied in the last several decades. In the case when K = Rn+
(the nonnegative orthant), problems (2) and (3) are further reduced to the following
generalized complementarity problem (GCP):

g(x) ≥ 0; f(x) ≥ 0; f(x)Tg(x) = 0;

and complementarity problem (NCP):

x ≥ 0; f(x) ≥ 0; xTf(x) = 0;

respectively.
Given functions f; g and h, the existence of a solution to NPE is not always assured.

In this paper, we study the existence of a solution to NPE by using new concepts, that
is, the exceptional families for NPE. Based on these concepts, two important alternative
theorems for NPE are established, which state that there exists either a solution or an
exceptional family for NPE. Thus, the condition “there exists no exceptional family for
NPE” is suOcient for the existence of a solution to NPE. Due to the importance of
complementarity problems in practical applications (see [4,7]), in Section 3 of this
paper, we use one of the alternative theorems to develop several new existence condi-
tions for GCP.
So far, a large number of existence results have been proved for complementarity

problems with diPerent classes of the functions. Most of these results assume mono-
tonicity or certain generalized monotonicity of the functions [15,10,6,2,3,19,20,17,5,21,
9,24,23]. These concepts of generalized monotonicity were emerged from the pseudo-
monotonicity introduced by Karamardian [10,11]. He showed that the complementarity
problem over a pointed, solid closed convex cone K in Rn has a solution if f is a
continuous pseudo-monotone function and satis<es the strictly feasible condition, i.e.,
there exists an x ∈ K such that f(x) is an interior point of K∗, the dual cone of K .
Particularly, when K = Rn+, this strictly feasible condition reduces to the following:
There exists a point u ≥ 0 such that f(u)¿ 0. Later, several generalizations of Kara-
mardian result have been developed. Under the same pseudo-monotonicity assumption,
Cottle and Yao [3] generalized the Karamardian result to the case of a solid, closed
and convex cone in Hilbert space. Harker and Pang [6] and Yao [19,20] extended
the Karamardian result to variational inequality problems. The class of quasi-monotone
maps is larger than the pseudo-monotone maps. Hadjisavvas and Schaible [5] estab-
lished an existence result for quasi-monotone VIP in reQexive Banach space. When
restricted to NCP, their result states that if the strictly feasible condition holds, there
exists a solution to the complementarity problem with a quasi-monotone map. The
concept of monotonicity is also generalized in other directions, for instance, the class
of nonlinear P∗-maps. It is easy to give examples to show that a P∗-map need not
to be a quasi-monotone map, and the vice versa. Zhao and Han [23] showed that if
the strictly feasible condition is satis<ed then there exists a solution to NCP with a
nonlinear P∗-map.
In this paper, we introduce several new classes of nonlinear functions including

so-called quasi-P∗, quasi-PM∗ and P(�; �; �)-maps. Each of these classes can be viewed
as the generalization of P∗-maps. For these maps, our main results state that the com-
plementarity problem has a solution if it is strictly feasible. Since quasi-P∗-maps and
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quasi-PM∗ -maps include the union of quasi-monotone maps and P∗-maps, the existence
results established in the paper signi<cantly generalize several previous results, includ-
ing those of MorSe [15], Karamardian [10], Hadijisavvas and Schaible [5], and Zhao
and Han [23], in the framework of complementarity problems.
In Section 2, the concepts of exceptional families (A) and (B) for NPE are introduced

and several special cases are also discussed. By using the two concepts, we prove two
alternative theorems on the existence of a solution to NPE. In Section 3, we de<ne
several new classes of functions and develop several new existence conditions for
GCPs. Conclusions are given in the last section.

2. Alternative theorems for NPE

Throughout the paper, ‖ · ‖ denotes the Euclidean-norm, Rn+ the nonnegative orthant,
and :K (·) the orthogonal projection operator on the convex set K; that is, for any
z ∈ Rn, :K (z) is the unique solution to the following problem:

min
y
{‖y − z‖: y ∈ K}:

Let D be an open bounded set of Rn: We denote by TD and B(D) the closure and
boundary of D; respectively. Let f be a continuous function from TD into Rn. For
and y∈Rn such that y �∈f(B(D)), the notation deg(f;D; y) is the topological degree
associated with f;D and y. See [13,16] for a detailed discussion on degree theory.
The following three lemmas play a very important role in our analysis.

Lemma 2.1 (Lloyd [13]; Ortega and Rheinboldt [16]). Let D⊂Rn be an open bounded
set and F;G be two continuous functions from TD into Rn. The homotopy H (x; t) is
de�ned by

H (x; t) = tG(x) + (1− t)F(x); 0 ≤ t ≤ 1:

Let y be an arbitrary point in Rn. If

y �∈ {H (x; t): x ∈ B(D) and t ∈ [0; 1]};
then

deg(G;D; y) = deg(F;D; y):

Lemma 2.2 (Lloyd [13]; Ortega and Rheinboldt [16]). Let D and F be given as in
Lemma 2:1. If y �∈F(B(D)) and deg(F;D; y) �=0; then the system of equations F(x)=
y has a solution in D.

Lemma 2.3 (Clarke [1]). Let v :Rn→R be a local Lipschitz continuous function; and
let K be a closed convex set in Rn: If x∗ is a solution to the following problem:

min
x∈K
v(x);

then

0 ∈ @v(x∗) +NK (x∗);
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where @v(x∗) denotes the subdiAerential of v at x∗; and NK (x∗) the normal cone of
K at x∗.

Now, we are ready to de<ne the concept of exceptional family (A) for NPE.

De�nition 2.1. Let f; g; and h be three functions from Rn into itself, and let x̂ be an
arbitrary point in Rn: A sequence {xr}r¿0 ⊂Rn is said to be an exceptional family (A)
with respect to x̂ for the NPE if ‖xr‖ → ∞ as r → ∞, and for each xr there exists a
positive scalar �r such that

e(xr; �r) := �r((g+ h)(xr)− (g+ h)(x̂)) + h(xr) ∈ K (4)

and

− f(xr) + (1− �r)g(xr)− (1 + �r)h(xr) + �r(g(x̂) + h(x̂)) ∈ NK (e(xr; �r)); (5)

where NK (e(xr; �r)) is the normal cone of K at e(xr; �r).

Using the above concept, we have the following result.

Theorem 2.1. Let f; g; and h be three continuous functions from Rn into itself; and
let g+h be an injective mapping. Let x̂ be an arbitrary point in Rn. Then there exists
either a solution for NPE or an exceptional family (A) with respect to x̂ for NPE.

Proof. Denote � :Rn → Rn by

�(x) = h(x)−:K (g(x)− f(x)): (6)

By the continuity of h; g; f and the property of the projection operator, �(x) is a
continuous function from Rn into itself. We now consider the homotopy between the
mapping [(g+ h)(x)− (g+ h)(x̂)]=2 and �(x); that is

H (x; t) = t
[
(g+ h)(x)

2
− (g+ h)(x̂)

2

]
+ (1− t)�(x); t ∈ [0; 1]:

Consider the following family of open sets:

Dr = {x ∈ Rn: ‖x − x̂‖¡r}:
Then the boundary B(Dr) = {x ∈ Rn: ‖x − x̂‖= r}. There are only two cases.
Case 1: There exists a scalar r ¿ 0 such that

0 �∈ {H (x; t): x ∈ B(Dr) and t ∈ [0; 1]}: (7)

By Lemma 2.1, we have

deg
(
(g+ h)(x)

2
− (g+ h)(x̂)

2
; Dr; 0

)
= deg(�(x); Dr; 0): (8)

Since g+ h is injective, we have (see [13,16])∣∣∣∣deg
(
(g+ h)(x)

2
− (g+ h)(x̂)

2
; Dr; 0

)∣∣∣∣= 1:

Thus, it follows from (8) and the above relation that deg(�(x); Dr; 0) �= 0. By Lemma
2.2, the equation �(x) = 0, i.e., the NPE, has at least a solution.
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Case 2: For each r ¿ 0; there exist some point xr ∈B(Dr) and tr ∈ [0; 1] such that

0 = H (xr; tr) = tr

(
(g+ h)(xr)

2
− (g+ h)(x̂)

2

)
+ (1− tr)�(xr): (9)

In this case, if tr = 0; it follows from (9) that �(xr) = 0, i.e., xr is a solution to NPE.
On the other hand, we have that tr �= 1. Indeed, if tr = 1, from (9) we obtain

g(xr) + h(xr) = g(x̂) + h(x̂):

Since g + h is an injective mapping, we deduce that xr = x̂ which contradicts that
xr ∈ B(Dr), i.e., ‖xr− x̂‖= r ¿ 0. Therefore, in the rest of this proof, it is suOcient to
consider the case tr ∈ (0; 1). We show that in this case NPE has an exceptional family
(A) with respect to x̂. Combining (6) and (9) yields

tr
1− tr

(
(g+ h)(xr)

2
− (g+ h)(x̂)

2

)
+ h(xr) = :K (g(xr)− f(xr)): (10)

Let �r = tr=[2(1− tr)] and
e(xr; �r) := �r((g+ h)(xr)− (g+ h)(x̂)) + h(xr):

Then (10) can be rewritten as

e(xr; �r) = :K (g(xr)− f(xr));
which implies that e(xr; �r) ∈ K; and that e(xr; �r) is the unique solution to the follow-
ing convex program:

min
y∈K
Q(y) := 1

2‖y − (g(xr)− f(xr))‖2: (11)

Clearly, Q(y) is diPerentiable and therefore must be locally Lipschitz continuous, thus
by Lemma 2.3, we have

−∇Q(e(xr; �r)) =−e(xr; �r) + (g(xr)− f(xr)) ∈ NK (e(xr; �r)):

Therefore,

−f(xr) + (1− �r)g(xr)− (1 + �r)h(xr) + �r(g(x̂) + h(x̂)) ∈ NK (e(xr; �r)):

Furthermore, by noting that xr ∈B(Dr) which implies that ‖xr‖ → ∞ as r → ∞, we
deduce that {xr} is an exceptional family (A) with respect to x̂ for NPE.

It should be pointed out that the injectivity of the map g + h can be removed by
using other versions of the exceptional families.

De�nition 2.2. Given x̂, a sequence {xr}r¿0 ⊂Rn is said to be an exceptional family
(B) with respect to x̂ for the nonlinear projection equation (NPE) if ‖xr‖→∞ as
r→∞ and for each xr there exists a positive scalar �r such that

w(xr; �r) := �r(xr − x̂) + h(xr) ∈ K (12)

and

− f(xr) + g(xr)− h(xr)− �r(xr − x̂) ∈ NK (w(xr; �r)): (13)
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We now prove the following result without the assumption of the injectivity of g+h.

Theorem 2.2. Let f; g; and h be three continuous functions from Rn into itself; and
let x̂ be an arbitrary point in Rn. Then there exists either a solution for NPE or an
exceptional family (B) with respect to x̂ for NPE.

Proof. Let �(x) and the family of open sets {Dr} be de<ned as in the proof of
Theorem 2.1. We consider the following homotopy between the maps x− x̂ and �(x);
that is:

H (x; t) = t(x − x̂) + (1− t)�(x); t ∈ [0; 1]:

It is suOcient to consider two cases.
Case 1: There exists a scalar r ¿ 0 such that (7) holds. Since |deg(x− x̂; Dr; 0)|=1;

by the same argument of the “Case 1” of the proof of Theorem 2.1, we can show that
NPE has a solution.
Case 2: For each r ¿ 0, there exists a vector xr ∈ B(Dr) and scalar tr ∈ [0; 1] such

that

0 = H (xr; tr) = tr(xr − x̂) + (1− tr)�(xr): (14)

Clearly, tr �= 1 since xr �= x̂. If tr = 0; then �(x) = 0; and hence xr is a solution to
NPE. Thus, in the rest of the proof, we only consider the case tr ∈ (0; 1). We show
that for this case there exists an exceptional family (B) with respect to x̂ for NPE.
Indeed, combining (6) and (14) leads to

tr
1− tr (x

r − x̂) + h(xr) = :K (g(xr)− f(xr)): (15)

Let �r = tr=(1− tr)¿ 0. Then from the above equation we have

w(xr; �r) := �r(xr − x̂) + h(xr) ∈ K:
Clearly, w(xr; �r) is the unique solution to the following convex program:

min
x∈K

1
2‖y − (g(xr)− f(xr))‖2:

Thus, by Lemma 2.3 we have

−f(xr) + g(xr)− h(xr)− �r(xr − x̂) ∈ NK (w(xr; �r)):

Therefore, {xr}r¿0 is an exceptional family with respect to x̂ for NPE.

The result below is an immediate consequence of Theorems 2.1 and 2.2.

Corollary 2.1. Let f; g; and h be three continuous functions from Rn into itself.
(a) If g + h is an injective map and there exists a point x̂ ∈ Rn such that the NPE

has no exceptional family (A) with respect to x̂; then there exists a solution to
NPE.

(b) If there exists a point x̂ ∈ Rn such that the NPE has no exceptional family (B)
with respect to x̂; then there exists a solution to NPE.
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In Section 3, we use Theorem 2.1 to prove several new practical existence results
for generalized complementarity problems. Our idea is to develop the conditions under
which the problem has no exceptional family (A) with respect to some point. While
Theorem 2.2 does not require the injectivity of g + h, for a general NPE we are not
clear at present what conditions can guarantee that the problem is without exceptional
family (B) with respect to certain point. However, for some special cases such as VIP
and NCP, it is easy to see that the concept of exceptional family (A) with respect to x̂
coincides with exceptional family (B) with respect to the same x̂. Thus, for VIP both
De<nitions 2.1 and 2.2 reduce to the following notion.

De�nition 2.3 (Zhao [22]). Let f be a mapping from Rn into itself and x̂ ∈ Rn. A
sequence {xr} is said to be an exceptional family with respect to x̂ for VIP if ‖xr‖ → ∞
as r → ∞ and for each xr there exists a positive scalar �r such that

$(xr; �r) := (1 + �r)xr − �rx̂ ∈ K (16)

and

− f(xr)− ar(xr − x̂) ∈ NK ($(xr; �r)): (17)

The results of Theorems 2.1 and 2.2 reduce to the following.

Corollary 2.2 (Zhao [22]). Let f be a continuous function. Given any x̂ ∈ Rn; then
there exists either a solution to VIP or an exceptional family with respect to x̂
for VIP.

In most situations, K is represented by a system of inequalities or equations. In
this case, (5) and (13) can be further written as a system of equations by using the
Lagrangian multipliers involving the inequalities and equations of K . Indeed, we assume
that K is given as follows:

K = {x ∈ Rn: C(x) ≤ 0; E(x) = 0} (18)

where C(x) = (C1(x); : : : ; Cm(x))T and E(x) = (E1(x); : : : ; El(x)))T: Each component Ci
is a continuous diPerentiable convex function from Rn into R, and each Ei is an aOne
function from Rn into R. We also assume that some standard constraint quali<cations
hold, for instance, there exists some point x0 such that C(x0)¡ 0 and E(x0) = 0 (the
Slater constraint quali<cation).
Since e(xr; �r) is the unique solution to the problem (11), it satis<es the Karush–

Kukn–Tuker optimality condition. That is, there exist some vectors *r ∈ Rm+ and +r ∈ Rl
such that (5) is reduced to the following:

f(xr) + (�r − 1)g(xr) + (1 + �r)h(xr)− �r(g+ h)(x̂)
−∇C(e(xr; �r))*r −∇E(e(xr; �r))+r = 0 (19)

and

C(e(xr; �r))T*r = 0: (20)
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Similarly, when K is given by (18), there exist *r ∈ Rn+ and +r ∈ Rl such that (13)
can be rewritten as

f(xr)− g(xr) + h(xr) + �r(xr − x̂)−∇C(w(xr; �r))*r
−∇E(w(xr; �r))+r = 0

and

C(w(xr; �r))T*r = 0:

Clearly, for VIP, the above relations can be written as

f(xr) + �r(xr − x̂)−∇C($(xr; �r))*r −∇E($(xr; �r)+r = 0 (21)

and

C($(xr; �r))T*r = 0; (22)

where $(xr; �r) is given by (16). This version of exceptional family was <rst introduced
by Zhao and Han [23] for VIP. Other versions of exceptional families for VIP can be
found in [21,24]. Furthermore, when K =Rn+ and x̂=0, it is easy to see that (21) and
(22) reduce to

fi(xr)

{
=− �rxri if xri ¿ 0;

≥ 0 if xri = 0;

which is the concept of exceptional family of elements for continuous f de<ned by
Isac et al. [8,9]. This concept includes the Smith concept [18] as a particular case.

3. Solvability of generalized complementarity problems

An important special case of NPE is that h(x)=g(x) and K=Rn+; i.e., the generalized
complementarity problem (GCP)

g(x) ≥ 0; f(x) ≥ 0; g(x)Tf(x) = 0:

In what follows, we establish several new existence results for this problem by using
Theorem 2.1. To show these results, we <rst tail the De<nition 2.1 and Theorem 2.1 to
our needs. Setting h(x)= g(x) and C(x)=−x in (19) and (20), we have the following
concept for GCP.

De�nition 3.1. Let f and g be two continuous functions from Rn into itself, and let x̂
be an arbitrary point in Rn: The sequence {xr}⊂Rn is said to be an exceptional family
(A) with respect to x̂ for GCP if ‖xr‖ → ∞ as r → ∞, and for each xr there exists a
positive scalar �r such that

e(xr; �r) := (1 + �r)g(xr)− �rg(x̂) ∈ Rn+
and

fi(xr) =−�r(gi(xr)− gi(x̂)) if ei(xr; �r)¿ 0; (23)
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fi(xr) ≥ −�r(gi(xr)− gi(x̂)) if e(xr; �r) = 0: (24)

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 3.1. Let f and g be two continuous functions and g be an injective map.
If there exists a point x̂ such that GCP has no exceptional family (A) with respect
to x̂; then there exists a solution to GCP.

The <rst existence result below is related to the so-called quasi-PM∗ -property of the
pair (f; g). The following de<nition makes this property precise.

De�nition 3.2. We say that the function f :Rn→Rn is a quasi-PM∗ -mapping with
respect to g :Rn → Rn if there exists a constant � ≥ 0 such that for any distinct
pair x; y in Rn,

f(y)T(g(x)− g(y))− � max
1≤i≤n

(gi(x)− gi(y))(fi(x)− fi(y))¿ 0

implies that

f(x)T(g(x)− g(y)) ≥ 0:

Clearly, when g is the identity mapping and � = 0, the above concept reduces to
the well-known notion of quasi-monotone map [11,6]. On the other hand, it is easy to
show that a P∗-map is a quasi-P∗-map. We recall that f is said to be a P∗-map if
there exists a constant � ≥ 0 such that

(f(x)− f(y))T(x − y) + �
∑

i∈I+(x;y)
(xi − yi)(fi(x)− fi(y)) ≥ 0;

where

I+(x; y) = {i : (xi − yi)(fi(x)− fi(y))¿ 0}:
The nonlinear P∗-map is the generalization of the concept of a P∗-matrix de<ned by
Kojima et al. [12]. The following notion is utilized to prove our main results.

De�nition 3.3 (Pang and Yao [17]). A function g :Rn → Rn is said to be proper with
respect to a set S if for every bounded subset S ′ of S, g−1(S ′) is bounded.

We now prove the following result.

Theorem 3.1. Let f and g be two continuous functions. Suppose that g is an injective
map; and g is proper with respect to K = Rn+. Suppose that f is a quasi-PM∗ -map. If
there exists some point x̂ such that g(x̂) ≥ 0 and f(x̂)¿ 0; then GCP has a solution.

Proof. By Corollary 3.1, it suOces to show that there is no exceptional family (A)
with respect to x̂: Assume the contrary that GCP has an exceptional family (A) with
respect to x̂; denoted by {xr}. We now derive a contradiction.
We <rst show that for each i ∈ {1; 2; : : : ; n} the following inequality holds:

(gi(xr)− gi(x̂))(fi(xr)− fi(x̂)) ≤ gi(x̂)fi(x̂): (25)
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Indeed, if ei(xr; �r) = (1 + �r)gi(xr)− �rgi(x̂)¿ 0; by using (23) we have

(gi(xr)− gi(x̂))(fi(xr)− fi(x̂))
= (gi(xr)− gi(x̂))(−�r(gi(xr)− gi(x̂))− fi(x̂))
=− �r(gi(xr)− gi(x̂))2 − (gi(xr)− gi(x̂))fi(x̂): (26)

Moreover, it follows from ei(xr; �r)¿ 0 that

(1 + �r)(gi(xr)− gi(x̂))¿− gi(x̂):
Thus, from (26) and the fact that f(x̂)¿ 0 we deduce that

(gi(xr)− gi(x̂))(fi(xr)− fi(x̂))≤−(gi(xr)− gi(x̂))fi(x̂)
≤ gi(x̂)fi(x̂)=(1 + �r)
≤ gi(x̂)fi(x̂):

If ei(xr; �r) = (1 + �r)gi(xr) − �rgi(x̂) = 0; then gi(xr) − gi(x̂) = −gi(x̂)=(1 + �r): For
this case, by (24) we have

(gi(xr)− gi(x̂))(fi(xr)− fi(x̂))
= [− gi(x̂)=(1 + �r)](fi(xr)− fi(x̂))
≤ [− gi(x̂)=(1 + �r)](−�r(gi(xr)− gi(x̂))− fi(x̂))

=− �r
(1 + �r)2

(gi(x̂))2 +
1

1 + �r
gi(x̂)fi(x̂)

≤ gi(x̂)fi(x̂):
Thus, the inequality (25) holds. Since ‖xr‖ → ∞ as r → ∞ and g is proper with
respect to Rn+, the sequence {‖g(xr)‖} must be unbounded as r → ∞. Without loss
of generality, we assume that ‖g(xr)‖ → ∞. Thus, ‖e(xr; �r)‖ → ∞ as r → ∞: Since
{e(xr; �r)}⊂Rn+; there is a component, denoted by eq(xr; �r), tends to ∞ as r → ∞,
and thus gq(xr)−gq(x̂) → ∞ as r → ∞. On the other hand, there exists a subsequence
of {xr}, denoted by {xrj} (j = 1; 2; : : :), such that for some <xed index m,

(gm(xrj)− gm(x̂))(fm(xrj)− fm(x̂))
= max

1≤i≤n
(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂)): (27)

Therefore, by (25) and (27), for all suOciently large j we have

f(x̂)T(g(xrj)− g(x̂))− � max
1≤i≤n

(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂))

=f(x̂)T(g(xrj)− g(x̂))− �(gm(xrj)− gm(x̂))(fm(xrj)− fm(x̂))
≥ f(x̂)T(g(xrj)− g(x̂))− �gm(x̂)fm(x̂)
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=fq(x̂)(gq(xrj)− gq(x̂))− �gm(x̂)fm(x̂) +
∑
i �=q
fi(x̂)(gi(xrj)− gi(x̂))

≥ fq(x̂)(gq(xrj)− gq(x̂))− �gm(x̂)fm(x̂) +
∑
i �=q

−fi(x̂)gi(x̂)=(1 + �r)

¿ 0: (28)

The last inequality follows from the facts that fq(x̂)¿ 0 and gq(xrj)− gq(x̂) → ∞ as
j → ∞. Since f(x) is a quasi-PM∗ -mapping, the above inequality implies that

f(xrj)T(g(xrj)− g(x̂)) ≥ 0 (29)

for all suOciently large j.
On the other hand, for each i such that ei(xrj ; �rj) = 0, we have from (24) that

fi(xrj) ≥ −�rj (gi(xrj)− gi(x̂)) ≥ �rjgi(x̂)=(1 + �rj):
Therefore,

f(xrj)T(g(xrj)− g(x̂))

=
∑

i∈{i : ei(xrj ;�rj )¿0}
−�rj (gi(xrj)− gi(x̂))2 +

∑
i∈{i : ei(xrj ;�rj )=0}

−gi(x̂)fi(xrj)
1 + �rj

≤
∑

i∈{i:ei(xrj ;�rj )¿0}
−�rj (gi(xrj)− gi(x̂))2 −

∑
i∈{i:ei(xrj ;�rj )=0}

�rj (gi(x̂))
2

1 + �rj

¡ 0: (30)

The last strict inequality follows from that gq(xrj)− gq(x̂) → ∞ as j → ∞. The above
inequality contradicts (29). The proof is complete.

The concept of quasi-PM∗ -map can be further extended to the following concept.

De�nition 3.4. A mapping f:Rn → Rn is said to be a quasi-P∗-mapping with respect
to g if there exists a constant 0 ≥ 0 such that for any distinct x; y in Rn

f(y)T(g(x)− g(y))− 0
∑

i∈I+(x;y)
(gi(x)− gi(y))(fi(x)− fi(y))¿ 0

implies that

f(x)T(g(x)− g(y)) ≥ 0;

where

I+(x; y) = {i : (gi(x)− gi(y))(fi(x)− fi(y))¿ 0}:
It is easy to see that a quasi-PM∗ -map must be a quasi-P∗-map, but the converse is

not true. For quasi-P∗-maps, we have the following result.
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Theorem 3.2. Let f and g be two continuous functions from Rn into itself. Suppose
that g is an injective mapping and proper with respect to the set Rn+; and f is
quasi-P∗-function with respect to g. If there is a point x̂ ∈ Rn such that g(x̂) ≥ 0 and
f(x̂)¿ 0; then GCP has a solution.

Proof. By the same argument as in the proof of Theorem 3.1, (25)–(27) remain valid.
If I+(xrj ; x̂) = ∅, then it is easy to show

f(x̂)T(g(xrj)− g(x̂)) ≥ fq(x̂)(gq(xrj)− gq(x̂)) +
∑
i �=q

−fi(x̂)gi(xrj)¿ 0 (31)

for all suOciently large j. If I+(xrj ; x̂) �= ∅, by noticing that∑
i∈I+(xrj ; x̂)

(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂))

≤ n max
1≤i≤n

(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂))

and by the same argument of (28), we have

f(x̂)T(g(xrj)− g(x̂))− �
∑

i∈I+(x;y)
(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂))

≥ f(x̂)T(g(xrj)− g(x̂))− (�n) max
1≤i≤n

(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂))

¿ 0: (32)

Since f is a quasi-P∗-map with respect to g, (31) and (32) imply that (28) holds.
Similarly, the inequality (30) remains valid. A contradiction.

The results of Theorems 3.1 and 3.2 are new even for NCPs. Notice that any
quasi-monotone maps and P∗-maps are quasi-PM∗ -maps, the following two corollaries
are immediate consequence of Theorems 3.1 or 3.2.

Corollary 3.2 (Hadjisavvas and Schaible [5]). If the strictly feasible condition holds
and f is a continuous quasi-monotone map; then NCP has a solution.

The above result includes the results on monotone maps [15] and pseudo-monotone
maps [10] as special cases.

Corollary 3.3 (Zhao and Han [23]). If the strictly feasible condition holds and f is
a continuous P∗-map; then NCP has a solution.

In what follows, we introduce a concept of nonlinear P(�; �; �)-mapping which is
also the generalization of a P∗-map.

De�nition 3.5. A mapping f is said to be a P(�; �; �)-map with respect to g, if there
exist constants � ≥ 0, � ≥ 0 and 1¿� ≥ 0 such that the following inequality
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(1 + �) max
1≤i≤n

(gi(x)− gi(y))(fi(x)− fi(y))

+ min
1≤i≤n

(gi(x)− gi(y))(fi(x)− fi(y)) ≥ −�‖x − y‖� (33)

holds for any x; y ∈ Rn.

Particularly, if �= 0, then (33) reduces to

(1 + �) max
1≤i≤n

(gi(x)− gi(y))(fi(x)− fi(y))

+ min
1≤i≤n

(gi(x)− gi(y))(fi(x)− fi(y)) ≥ 0: (34)

It is not diOcult to show that f is a P∗-mapping if and only if there exists some
scalar �≥0 such that (34) holds with g(x) = x. Thus, the class of P(�; �; �)-maps
include P∗-maps as special cases. We end this section by showing the following result.

Theorem 3.3. Let f and g be two continuous mappings from Rn to Rn. Suppose that
g is injective and proper with respect to Rn+; and f is a continuous P(�; �; �)-map
with respect to g. If there exists a point x̂ such that g(x̂) ≥ 0 and f(x̂)¿ 0; then
there is a solution to GCP.

Proof. By Corollary 3.1, it is suOcient to show that GCP has no exceptional family
(A) with respect to x̂. Assume the contrary that GCP has an exceptional family (A)
with respect to x̂; denoted by {xr}. By De<nition 3.1, ‖xr‖ → ∞ as r → ∞ and for
each xr there exists a positive scalar �r such that (23) and (24) hold. It is evident that
the inequality (25) remains valid.
Since

e(xr; �r) = (1 + �r)g(xr)− �rg(x̂) ∈ Rn+;
we have

g(xr) ≥ �r
1 + �r

g(x̂) ≥ 0;

i.e., {g(xr)}⊂Rn+. Since ‖xr‖ → ∞ and g is proper with respect to Rn+, the sequence
{g(xr)} must be unbounded, without loss of generality, we assume that ‖g(xr)‖ → ∞
as r → ∞. There exists a subsequence of {xr}, denoted by {xrj}(j = 1; 2; : : :), and a
<xed index m such that

em(xrj ; �rj) = max
1≤i≤n

ei(xrj ; �rj) → ∞ as j → ∞; (35)

i.e.,

(1 + �r)(gm(xrj)− gm(x̂)) + gm(x̂) → ∞
which implies that

gm(xrj)− gm(x̂) → ∞:
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Thus, by (26) we have

(gm(xrj)− gm(x̂))(fm(xrj)− fm(x̂)) → ∞ as j → ∞: (36)

There exists a subsequence of {xrj}, denoted also by {(xrj)}, such that for some <xed
index p we have

(gp(xrj)− gp(x̂))(fp(xrj)− fp(x̂))
= max

1≤i≤n
(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂)): (37)

Therefore, by using (33), (37) and (25), for all suOciently large j we have

(gm(xrj)− gm(x̂))(fm(xrj)− fm(x̂))
≥ min

1≤i≤n
(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂));

≥ −(1 + �) max
1≤i≤n

(gi(xrj)− gi(x̂))(fi(xrj)− fi(x̂))− �‖gi(xrj)− gi(x̂)‖�;

=− (1 + �)(gp(xrj)− gp(x̂))(fp(xrj)− fp(x̂))− �‖gi(xrj)− gi(x̂)‖�;

≥ −(1 + �)g(x̂)Tf(x̂)− �‖gi(xrj)− gi(x̂)‖�: (38)

It follows from (35) that em(xrj ; �rj)¿ 0, thus by (26), the inequality (38) can be
written as

−�rj (gm(xrj)− gm(x̂))2 − (gm(xrj)− gm(x̂))fm(x̂)

≥ −(1 + �)g(x̂)Tf(x̂)− �‖g(xrj)− g(x̂)‖�: (39)

Multiplying both sides of the above by 1=(gm(xrj)− gm(x̂)); and rearranging the terms,
we have

−�rj (gm(xrj)− gm(x̂))

≥ fm(x̂)− (1 + �)g(x̂)Tf(x̂)
gm(xrj)− gm(x̂) − �‖g(x

rj)− g(x̂)‖�
gm(xrj)− gm(x̂) : (40)

Notice that for each i ∈ {1; 2; : : : ; n};∣∣∣∣ gi(xrj)− gi(x̂)gm(xrj)− gm(x̂)
∣∣∣∣=

∣∣∣∣ (1 + �rj)(gi(xrj)− gi(x̂))(1 + �rj)(gm(xrj)− gm(x̂))
∣∣∣∣

=
|ei(xrj ; �rj)− gi(x̂)|

(1 + �rj)(gm(xrj)− gm(x̂))

≤ ei(xrj ; �rj) + gi(x̂)
(1 + �rj)(gm(xrj)− gm(x̂))

≤ 2gm(x̂)
(1 + �rj)(gm(xrj)− gm(x̂))

+ 1:
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Thus, for all suOciently large j, we have

−2 ≤ gi(xrj)− gi(x̂)
gm(xrj)− gm(x̂) ≤ 2:

Therefore, for all suOciently large j, we obtain

‖g(xrj)− g(x̂)‖�
gm(xrj)− gm(x̂) =

[ ‖g(xrj)− g(x̂)‖2
(gm(xrj)− gm(x̂))2

]�=2
1

(gm(xrj)− gm(x̂))1−�

=

[
n∑
i=1

(
gi(xrj)− gi(x̂)
gm(xrj)− gm(x̂)

)2
]�=2

1
(gm(xrj)− gm(x̂))1−�

≤ (4n)�=2

(gm(xrj)− gm(x̂))1−� → 0:

Hence, the right-hand side of (40) is a positive number for all suOciently large j;
however, the left-hand side of (40) is a negative number. This is a contradiction. The
proof is complete.

It is worth noting that in Theorems 3.1–3.3 the strictly feasible condition “g(x̂) ≥ 0
and f(x̂)¿ 0” cannot be replaced by the feasible condition “g(x̂) ≥ 0 and f(x̂) ≥ 0”
because the monotone maps are contained in the intersection of the class of quasi-P∗,
quasi-PM∗ and P(�; �; �)-maps. An example was given by Megiddo [14] to show that
a nonlinear monotone complementarity problem satisfying feasible condition may have
no solution.

4. Conclusions

In this paper, two new concepts of exceptional families with respect to certain points
for the NPE are introduced. Based on the concepts, two alternative theorems concern-
ing the existence of a solution to NPE are proved. The existence results on GCP pre-
sented here generalize several known existence theorems in the literature. From these
results, we conclude that the analysis method presented in this paper is a powerful
tool for the study of solvability of NPE and its various special cases. The nonlinear
quasi-P∗, P(�; �; �) and quasi-PM∗ -maps de<ned in the paper are important classes of
functions because they include several interesting particular cases such as P∗-maps and
quasi-monotone maps.
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