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Multi-block convex programming

min
x ,y

{
p1(x1) + f (x1, . . . , xm︸ ︷︷ ︸

x

) + q1(y1) + g(y1, . . . , yn︸ ︷︷ ︸
y

) | A∗x + B∗y = c
}
(P)

• X , Y, Z: finite-dim. real Hilbert spaces endowed with 〈·, ·〉 and ‖ · ‖

• p1 : X1 → (−∞,∞] and q1 : Y1 → (−∞,∞] are closed and proper

convex functions. Denote p(x) := p1(x1) and q(y) := q1(y1)

• f : X → (−∞,∞) and g : Y → (−∞,∞) are convex, continuously

differentiable with Lipschitz continuous gradients

• A∗ and B∗ are the adjoints of the linear mappings A : Z → X and

B : Z → Y, c ∈ Z



Notation

• Let U and V be two finite dimensional real Hilbert spaces. For any

given linear map H : U → V, we use ‖H‖ to denote its spectral norm

and H∗ : V → U to denote its adjoint linear operator

• If U = V and H is self-adjoint, for any u, v ∈ U , define

〈u, v〉H := 〈u,Hv〉 and ‖u‖2
H := 〈u,Hu〉; if H is also positive

semidefinite, there exists a unique self-adjoint positive semidefinite

linear operator H
1
2 : U → U such that H

1
2H

1
2 = H.

• For a closed proper convex function θ : U → (−∞,+∞], denote by

dom θ and ∂θ for the effective domain and the subdifferential

mapping of θ, respectively



Decomposition

Decompose U = U1 × U2 × . . .× Us , with each Ui being a finite

dimensional real Hilbert space endowed with 〈·, ·〉 and ‖ · ‖

Decompose the self-adjoint and positive semidefinite H as

H =



H11 H12 · · · H1s

H∗12 H22 · · · H2s

...
...

. . .
...

H∗1s H∗2s · · · Hss


, (1)

where Hij : Uj → Ui , i , j = 1, . . . , s are linear maps and Hii are self-adjoint

positive definite linear operators (Hii � 0), i = 1, . . . , s

We use Hd := Diag(H11, . . . ,Hss) to denote the block-diagonal part of H,

and denote the symbolically strictly upper triangular part of H by Hu.

Thus, H = Hd +Hu +H∗u



One cycle of the block symmetric Gauss-Seidel

Let θ1 : U1 → (−∞,∞] be a given closed and proper convex function,

b ∈ U be a given vector, and h : U → (−∞,∞) be defined by

h(u) :=
1

2
〈u,Hu〉 − 〈b, u〉

Suppose that u− ∈ U is a given vector. Define

u
1
2

i
:= arg min

ui

{
θ(u−1 ) + h(u−

<i
, ui , u

1
2

>i
)− 〈δ̃i , ui 〉

}
, i = s , . . . , 2

u+
1 := arg min

u1

{
θ(u1) + h(u1, u

1
2

>1)− 〈δ1, u1〉
}
,

u+
i

:= arg min
ui

{
θ(u+

1 ) + h(u+
<i
, ui , u

1
2

>i
)− 〈δi , ui 〉

}
, i = 2, . . . , s

(sGS)

where for any u = (u1, . . . , us) ∈ U and i ∈ {1, . . . , s}, we denote

u<i := {u1, . . . , ui−1}, u>i := {ui+1, . . . , us}



One cycle of the block sGS

Define

d(δ̃, δ) := δ +HuH−1
d

(δ− δ̃)

with δ̃1 = δ1, δ := (δ1, . . . , δs) and δ̃ := (δ̃1, . . . , δ̃s)

Define the self-adjoint positive semidefinite linear operator on U by

sGS(H) := HuH−1
d
H∗u (sGS Splitting Operator)

Consider the following convex composite quadratic programming:

min
u∈U

{
θ(u1) + h(u) +

1

2
‖u − u−‖2

sGS(H) − 〈d(δ̃, δ), u〉
}

(CQP)



Block sGS decomposition theorem

Theorem

Suppose that Hd = Diag(H11, . . . ,Hss) � 0. Then,

• (CQP) is well-defined and admits a unique solution, which is exactly

the vector u+ generated by the (sGS) procedure

•
Ĥ := H+ sGS(H) = (Hd +Hu)H−1

d
(Hd +H∗u) � 0

• the error vector d(δ̃, δ) satisfies

‖Ĥ−
1
2 d(δ̃, δ)‖ ≤ ‖H−

1
2

d
(δ− δ̃)‖+ ‖H

1
2

d
(Hd +Hu)−1δ̃‖



Majorization

Problem (P):

min
{
p1(x1) + f (x) + q1(y1) + g(y) | A∗x + B∗y = c

}
For the two smooth convex functions f and g in problem (P), there exist

two self-adjoint positive semidefinite linear operators Σ̂f : X → X and

Σ̂g : Y → Y such that
f (x) ≤ f̂ (x ; x ′) := f (x ′) + 〈∇f (x ′), x − x ′〉+

1

2
‖x − x ′‖2

Σ̂f

g(y) ≤ ĝ(y ; y ′) := g(y ′) + 〈∇g(y ′), y − y ′〉+
1

2
‖y − y ′‖2

Σ̂g

Quadratic on the RHS



Majorized proximal augmented Lagrangian function

For any given σ > 0, the majorized proximal augmented Lagrangian

function associated with problem (P) is defined by

L̃σ(x , y ; (x ′, y ′, z ′)) :

= p(x) + f̂ (x ; x ′) + q(y) + ĝ(y ; y ′) + 〈z ′,A∗x + B∗y − c〉

+
σ

2
‖A∗x + B∗y − c‖2 +

1

2
‖x − x ′‖2

S̃
+

1

2
‖y − y ′‖2

T̃
,

∀ (x , y) ∈ X × Y and ∀ (x ′, y ′, z ′) ∈ X × Y × Z ,

where S̃ : X → X and T̃ : Y → Y are self-adjoint (not necessarily positive

semidefinite) linear operators

Nonsmooth+Quadratic Terms on RHS



sGS-imiPADMM
An inexact sGS decomposition based majorized indefinite-proximal ADMM

Let τ ∈ (0, (1 +
√

5)/2) [e.g., τ = 1.618], {ε̃k}k≥0 be a summable

nonnegative sequence, (x0, y0, z0) ∈ dom p × dom q ×Z be the initial

point

For k = 0, 1, . . .,

1a. Compute for i = m, . . . , 2,

x
k+ 1

2

i
≈ arg min

xi∈Xi

{
L̃σ

(
(xk<i , xi , x

k+ 1
2

>i
), yk ; (xk , yk , zk)

)}
,

δ̃ki ∈ ∂xi L̃σ
(
(xk<i , x

k+ 1
2

i
, x

k+ 1
2

>i
), yk ; (xk , yk , zk)

)
with ‖δ̃ki ‖ ≤ ε̃k

1b. Compute for i = 1, . . . ,m,

xk+1
i
≈ arg min

xi∈Xi

{
L̃σ

(
(xk+1
<i

, xi , x
k+ 1

2

>i
), yk ; (xk , yk , zk)

)}
,

δki ∈ ∂xi L̃σ
(
(xk+1
<i

, xk+1
i

, x
k+ 1

2

>i
), yk ; (xk , yk , zk)

)
with ‖δki ‖ ≤ ε̃k



sGS-imiPADMM

2a. Compute for j = n, . . . , 2,

y
k+ 1

2

j
≈ arg min

yj∈Yj

{
L̃σ

(
xk+1, (yk<j , yj , y

k+ 1
2

>j
); (xk , yk , zk)

)}
,

γ̃kj ∈ ∂yj L̃σ
(
xk+1, (yk<j , y

k+ 1
2

j
, y

k+ 1
2

>j
); (xk , yk , zk)

)
with ‖γ̃kj ‖ ≤ ε̃k

2b. Compute for j = 1, . . . , n,

yk+1
j
≈ arg min

yj∈Yj

{
L̃σ

(
xk+1, (yk+1

<j
, yj , y

k+ 1
2

>j
); (xk , yk , zk)

)}
,

γkj ∈ ∂yj L̃σ
(
xk+1, (yk+1

<j
, yk+1

j
, y

k+ 1
2

>j
); (xk , yk , zk)

)
with ‖γkj ‖ ≤ ε̃k

3. Compute zk+1 := zk + τσ (A∗xk+1 + B∗yk+1 − c)



Decompositions

We symbolically decompose the positive semidefinite linear operators Σ̂f

into

Σ̂f =



Σ̂f
11 Σ̂f

12 · · · Σ̂f
1m

(Σ̂f
12)∗ Σ̂f

22 · · · Σ̂f
2m

...
...

. . .
...

(Σ̂f
1m)∗ (Σ̂f

2m)∗ · · · Σ̂f
mm


(2)

and decompose Σ̂g similarly, in consistent with the decompositions of X
and Y.

Define two linear operators M̃ : X → X and Ñ : Y → Y as follows:

M̃ := Σ̂f + σAA∗ + S̃ , Ñ := Σ̂g + σBB∗ + T̃

Just like the decomposition of Σ̂f and Σ̂g in (2), we can symbolically

decompose S̃, T̃ , M̃ and Ñ accordingly.



Decompositions

We use M̃d and Ñd to denote the corresponding diagonal parts, and M̃u

and Ñu to denote the strictly upper triangular parts, respectively. Then,

M̃ = M̃u + M̃d + M̃∗u , Ñ = Ñu + Ñd + Ñ ∗u

Decompose A and B as

Az = (A1z , . . . ,Amz) and Bz = (B1z , . . . ,Bnz)

where Aiz ∈ Xi and Bjz ∈ Yj , and z ∈ Z
Define

δ̃k := (δ̃k1 , . . . , δ̃
k
m), δk := (δk1 , . . . , δ

k
m)

γ̃k := (γ̃k1 , . . . , γ̃
k
n), and γk := (γk1 , . . . , γ

k
n)

with the convention that δ̃k1 := δk1 and γ̃k1 := γk1 .



Decompositions

To apply the block sGS decomposition theorem, we require

M̃ii ≡ Σ̂f
ii + σAiA∗i + S̃ii � 0, i = 1, . . . ,m

Ñjj ≡ Σ̂g
jj

+ σBjB∗j + T̃jj � 0, j = 1, . . . , n

Define the following linear operators: SsGS := S̃ + sGS(M̃) = S̃ + M̃uM̃−1
d
M̃∗u

TsGS := T̃ + sGS(Ñ ) = T̃ + ÑuÑ−1
d
Ñ ∗u

(3)



Theorem (via the sGS decomposition theorem)

• SsGS and TsGS defined in (3) are well-defined, and

MsGS := Σ̂f + σAA∗ + SsGS � 0, NsGS := Σ̂g + σBB∗ + TsGS � 0

(4)

• it holds that
dk
x ∈ ∂x

{
L̃σ

(
xk+1, yk ; (xk , yk , zk)

)
+ 1

2‖x
k+1 − xk‖2

sGS(M̃)

}
,

dk
y ∈ ∂y

{
L̃σ

(
xk+1, yk+1; (xk , yk , zk)

)
+ 1

2‖y
k+1 − yk‖2

sGS(Ñ )

}
,

dk
x := δk + M̃uM̃−1

d
(δk − δ̃k) and dk

y := γk + ÑuÑ−1
d

(γk − γ̃k)

• one has ‖M−
1
2

sGS
dk
x ‖ ≤ κε̃k and ‖N−

1
2

sGS
dk
y ‖ ≤ κ′ε̃k , where κ and κ′ are

some constants



Karush-Kuhn-Tucker (KKT)

Recall that the Karush-Kuhn-Tucker (KKT) system of problem (P) is

given by

0 ∈ ∂p(x) +∇f (x) +Az , 0 ∈ ∂q(y) +∇g(y) + Bz , A∗x + B∗y = c

Denote the solution set of the KKT system for problem (P) by W.

Stopping criterion: always use the (relative) KKT residual to stop an

algorithm. The (relative) distance of two consecutive iterates CANNOT

be used as a reliable stopping criterion.



Assumption

• The solution set W to the KKT system of (P) is nonempty

• S̃ and T̃ are chosen such that

S̃ � −1

2
Σ̂f & T̃ � −1

2
Σ̂g (5)

and

Σ̂f
ii + σAiA∗i + S̃ii � 0, i = 1, . . . ,m

Σ̂g
jj

+ σBjB∗j + T̃jj � 0, j = 1, . . . , n



Theorem (Convergence of sGS-imiPADMM)

Suppose that the Assumption holds, and the linear operators S̃ and T̃ are

chosen such that

1

2
Σ̂f + σAA∗ + SsGS � 0 &

1

2
Σ̂g + σBB∗ + TsGS � 0 (6)

Then the whole sequence {(xk , yk , zk)} converges to a solution of the

KKT system

Remark: The above convergence theorem is fairly general; it covers the

classic ADMM and the most recent developments for solving multi-block

convex optimization problems. Below we shall use a more specific example

to reveal the relations between ADMM and proxiaml ALM.



Convex Composite Quadratic Programming

min
x∈X

{
ψ(x) +

1

2
〈x ,Qx〉 − 〈c , x〉

∣∣∣∣ AEx = bE , AI x − bI ∈ K
}

(7)

• ψ : X → (−∞,+∞] is a closed proper convex function [simple]

• Q : X → X satisfying Q = Q∗, Q � 0

• AE : X → Z1 and AI : X → Z2, given linear mappings

• b = (bE ; bI ) ∈ Z := Z1 ×Z2, given vector

• K ⊆ Z2 is a closed convex set (cone) [simple]

Equivalently,

min
x∈X ,x ′∈Z2

{
ψ(x) + δK(x ′) +

1

2
〈x ,Qx〉 − 〈c , x〉

∣∣∣∣ (
AE 0

AI −I

) (
x

x ′

)
= b

}



CCQP

The dual of the above problem [or equivalently problem (7)] is

min
w ,y ,z

{
p(w) +

1

2
〈y ,Qy〉 − 〈b, z〉

∣∣∣∣ (
u

v

)
+

(
Q
0

)
y −

(
A∗E A∗I
0 −I

)
z =

(
c

0

)}

• w := (u, v) ∈ X × Z2

• p(w) := p(u, v) = ψ∗(u) + δ∗K(v)

• δK(·) is the indicator function over K

• The dual is about (w , y , z) – three or more blocks

• Nonsmoothness only exists in one block of variables, i.e., the w -block

• It covers many important classes of convex optimization problems

that are best solved in this (dual) form!



Deal with Convex Quadratic Constraints
Add additional convex quadratic constraints to problem (7):

〈x ,Qix〉 − 〈c ′i , x〉 ≤ b′i , i = 1, . . . , l

where Qi = LiL∗i � 0 for a certain linear operator Li
Write the above constraints as ‖L∗i x‖

2 − 〈c ′i , x〉 ≤ b′i , i = 1, . . . , l , or

equivalently∥∥∥∥∥∥
(

1− b′i − 〈c
′
i , x〉

2L∗i x

)∥∥∥∥∥∥
2

≤ 1 + b′i + 〈c ′i , x〉, i = 1, . . . , l

We can further rewrite the above as
1 + b′i + 〈c ′i , x〉
1− b′i − 〈c

′
i , x〉

2L∗i x

 ∈ Ki , i = 1, . . . , l

where Ki is the second-order-cone of a proper dimension, i = 1, . . . , l

Therefore, convex quadratic constraints can be added to problem (7)

without changing its structure



Penalized and Constrained Regression Models

The penalized and constrained (PAC) regression often arises in

high-dimensional generalized linear models with linear equality and

inequality constraints, e.g.,

min
x∈Rn

{
p(x) +

1

2λ
‖Φx − η‖2

∣∣∣∣ AEx = bE , AI x − bI ∈ K
}

• p(·) is a proper closed convex regularizer such as p(x) = ‖x‖1, ‖x‖∗
[Non-convex counterparts can be dealt with via proximal DC

(difference of convex functions) algorithm – another talk]

• λ > 0 is a parameter

• It is a special case of problem (7)



Multi-block convex composite optimization

min
y∈Y ,z∈Z

{
p(y1) + f (y1, y2, . . . , ys︸ ︷︷ ︸

y

)− 〈b, z〉

︸ ︷︷ ︸
Φ(w)

| F∗y + G∗z = c︸ ︷︷ ︸
A∗w=c

}

with w = (y , z) ∈ W := Y × Z
• X , Z and Y := Y1 × · · · × Ys : finite-dimensional real Hilbert spaces,

endowed with 〈·, ·〉 and ‖ · ‖

• p : Y1 → (−∞,+∞]: (nonsmooth) closed proper convex function

f : Y → (−∞,+∞) : continuously differentiable convex function

with Lipschitz gradient

• F∗ and G∗ : the adjoints of the given linear mappings F : X → Y
and G : X → Z; b ∈ Z and c ∈ X : the given data



The augmented Lagrangian function1

Recall the problem

min
y∈Y ,z∈Z

{p(y1) + f (y1, y2, . . . , ys)− 〈b, z〉 | F∗y + G∗z = c}

or

min
w∈W

{Φ(w) | A∗w = c}

Let σ > 0 be the penalty parameter. The augmented Lagrangian function:

Lσ(y , z ; x) := p(y1) + f (y1, y2, . . . , ys)− 〈b, z〉︸ ︷︷ ︸
Φ(w)

+ 〈x ,F∗y + G∗z − c〉︸ ︷︷ ︸
〈x ,A∗w−c〉

+σ
2 ‖F

∗y + G∗z − c‖2︸ ︷︷ ︸
‖A∗w−c‖2

,

∀w = (y , z) ∈ W := Y × Z , x ∈ X

1Arrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened

assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and

Nonlinear Programming. Stanford University Press, Stanford, pp. 165-176 (1958)



K. Arrow and R. Solow

Kenneth Joseph “Ken” Arrow

(23 August 1921 – 21 February 2017)

John Bates Clark Medal (1957); Nobel Prize in Eco-

nomics (1972); von Neumann Theory Prize (1986);

National Medal of Science (2004); ForMemRS (2006)

Robert Merton Solow

(August 23, 1924 – )

John Bates Clark Medal (1961); Nobel Memorial Prize

in Economic Sciences (1987); National Medal of Sci-

ence (1999); Presidential Medal of Freedom (2014);

ForMemRS (2006)



The augmented Lagrangian method2 (ALM)
Lσ(y , z ; x) = p(y1) + f (y)− 〈b, z〉+ 〈x ,F∗y + G∗z − c〉+ σ

2
‖F∗y + G∗z − c‖2

Starting from x0 ∈ X , performs for k = 0, 1, . . .

(1) (yk+1, zk+1)︸ ︷︷ ︸
wk+1

⇐ min
y ,z
Lσ( y , z︸︷︷︸

w

; xk) (approximately)

(2) xk+1 := xk + τσ(F∗yk+1 + G∗zk+1 − c) with τ ∈ (0, 2)

Magnus Rudolph Hestenes

(February 13 1906 – May 31 1991)

Michael James David Powell

(29 July 1936 – 19 April 2015)

2Also known as the method of multipliers



ALM to proximal ALM3 (PALM)

Minimize the augmented Lagrangian function plus

a quadratic proximal term:

wk+1 ≈ arg min
w
Lσ(w ; xk) +

1

2
‖w − wk‖2

D

• D = σ−1I in the seminal work of Rockafellar

(in which inequality constraints are

considered). Note that D → 0 as σ→∞,

which is critical for asymptotically superlinear

convergence (for τ = 1)

• It is a primal-dual type proximal point

algorithm (PPA)

3Also known as the proximal method of multipliers



“Decoupling” (or “splitting”) based ADMM
One the other hand, “decoupling” (or “splitting”) based approach is

available, i.e, yk+1 ≈ arg min
y
{Lσ(y , zk ; xk)}, zk+1 ≈ arg min

z
{Lσ(yk+1, z ; xk)};

xk+1 := xk + τσ(F∗yk+1 + G∗zk+1 − c), τ ∈ (0,∞)

• The two-block ADMM
• Allows τ ∈ (0, (1 +

√
5)/2) if the convergence of the full (primal &

dual) sequence is required (first proven by Glowinski in 1977 at Tata

Institute, India)

• The case with τ = 1 is a kind of PPA (Gabay + Bertsekas-Eckstein)



An inexact majorized indefinite proximal ALM

Consider

min
w∈W

Φ(w) := ϕ(w) + h(w) s.t. A∗w = c

• There exists a self-adjoint positive semidefinite linear operator

Σ̂h :W →W, such that for any w ,w ′ ∈ W,

h(w) ≤ ĥ(w ,w ′) := h(w ′) + 〈∇h(w ′),w − w ′〉+
1

2
‖w − w ′‖2

Σ̂h

which is called a majorization (or surrogate) of h at w ′



Prerequisites
One definition and one assumption

Let σ > 0. The majorized augmented Lagrangian function is defined, for

any (w , x ,w ′) ∈ W ×X ×W, by

L̂σ(w ; (x ,w ′)) := ϕ(w) + ĥ(w ,w ′) + 〈A∗w − c , x〉+
σ

2
‖A∗w − c‖2

Assumption

The solution set K to the KKT system is nonempty and D :W →W is a

given self-adjoint linear operator such that

1

2
Σ̂h +D � 0 &

1

2
Σ̂h +D + σAA∗ � 0 (8)

• D is not necessarily to be positive semidefinite!



Alg. an inexact majorized indefinite proximal ALM

Let {εk} be a summable sequence of nonnegative numbers. Choose an

initial point (x0,w0) ∈ X ×W. For k = 0, 1, . . .,

1 Compute

wk+1 ≈ arg min
w∈W

{
L̂σ(w ; (xk ,wk)) +

1

2
‖w − wk‖2

D

}
such that there exists dk satisfying ‖dk‖ ≤ εk and

dk ∈ ∂w L̂σ(wk+1; (xk ,wk)) +D(wk+1 − wk)

2 Update xk+1 := xk + τσ(A∗wk+1 − c) with τ ∈ (0, 2)

Theorem

The sequence {(xk ,wk)} generated by the above Algorithm converges to

a solution to the KKT system.



Multi-block: Majorization and Splitting

There exists a self-adjoint linear operator Σ̂f � 0 on Y such that for any

y , y ′ ∈ Y,

f (y) ≤ f̂ (y , y ′) := f (y ′) + 〈∇f (y ′), y − y ′〉+
1

2
‖y − y ′‖2

Σ̂f

• Denote y<i := (y1; . . . ; yi−1) and y>i := (yi+1; . . . ; ys)

• Decompose Σ̂f =


Σ̂f

11 Σ̂f
12 · · · Σ̂f

1s

(Σ̂f
12)∗ Σ̂f

22 · · · Σ̂f
2s

...
...

. . .
...

(Σ̂f
1s)∗ (Σ̂f

2s)∗ · · · Σ̂f
ss


with

Σ̂f
ij : Yj → Yi , ∀1 ≤ i ≤ j ≤ s



Basic Assumptions

(a) The self-adjoint linear operator S : Y → Y satisfies

Σ̂f
ii + σFiF∗i + Sii � 0 and S � −1

2 Σ̂f

(b) The linear operator G is surjective (always true if restricted to its

range space)

Let σ > 0. The majorized proximal augmented Lagrangian function:

L̃σ(y , z ; (x , y ′)) := p(y1) + f̂ (y , y ′)− 〈b, z〉

+〈F∗y + G∗z − c , x〉+
σ

2
‖F∗y + G∗z − c‖2

+
1

2
‖y − y ′‖2

S



The Algorithm: sGS-imPADMM

(x0, y0, z0) ∈ X × dom p × Y2 × · · · × Ys ×Z. {ε̃k} nonnegative and

summable. For k = 0, 1, . . . ,

1 Compute for i = s , . . . , 2,

y
k+ 1

2

i
≈ arg min

yi∈Yi
L̃σ

(
yk<i , yi , y

k+ 1
2

>i
, zk ; (xk , yk)

)
2 Compute for i = 1, . . . , s ,

yk+1
i
≈ arg min

yi∈Yi
L̃σ

(
yk+1
<i

, yi , y
k+1/2
>i

, zk ; (xk , yk)
)

3 Compute

zk+1 ≈ arg min
z∈Z

L̃σ(yk+1, z ; (xk , yk))

4 Compute xk+1 := xk + τσ(F∗yk+1 + G∗zk+1 − c), τ ∈ (0, 2)



Criteria for inexact solutions in sGS-imPADMM

1 For i = s , . . . , 2, the approximate solution y
k+ 1

2

i
is chosen such that

there exists δ̃ki satisfying ‖δ̃ki ‖ ≤ ε̃k and

δ̃ki ∈ ∂yi L̃σ
(
yk<i , y

k+ 1
2

i
, y

k+ 1
2

>i
, zk ; (xk , yk)

)
2 For i = 1, . . . , s, the approximate solution yk+1

i
is chosen such that

there exists δki satisfying ‖δki ‖ ≤ ε̃k and

δki ∈ ∂yi L̃σ
(
yk+1
<i

, yk+1
i

, yk+1/2
>i

, zk ; (xk , yk)
)

3 The approximate solution zk+1 is chosen such that ‖γk‖ ≤ ε̃k with

γk : = ∇z L̃σ
(
yk+1, zk+1; (xk , yk)

)
= Gxk − b + σG(F∗yk+1 + G∗zk+1 − c)



Inexact block sGS decomposition
Define H := Σ̂f + σFF∗ + S = Hu +Hd +H∗u with

Hd := Diag(H11, . . . ,Hss) and

Hu :=



0 H12 · · · H1s

0 0
. . .

...
...

...
. . . H(s−1)s

0 0 · · · 0


, Hij = Σ̂f

ij + σFiF∗j + Sij

For convenience, we denote for each k ≥ 0,

δ̃k1 := δk1 , δ̃k := (δ̃k1 , δ̃
k
2 . . . , δ̃

k
s ), δk := (δk1 , . . . , δ

k
s )

Define the sequence {∆k} ∈ Y by

∆k := δk +HuH−1
d

(δk − δ̃k)

Moreover, we can define the linear operator

Ĥ := HuH−1
d
H∗u (sGS Splitting Operator)



Result by the block sGS decomposition theorem 4

The iterate yk+1 in Step 2 of sGS-imPADMM is the unique solution to a

proximal minimization problem given by

yk+1 = arg min
y

{
L̂σ(y , zk ; (xk , yk)) +

1

2
‖y − yk‖2

S+Ĥ︸ ︷︷ ︸
strongly convex

−〈∆k , y〉
}

• Recall that H := Σ̂f + σFF∗ + S
• Linearly transported error: ∆k = δk +HuH−1

d
(δk − δ̃k)

4X.D. Li, D.F. Sun, and K.-C Toh, A block symmetric Gauss-Seidel decomposition

theorem for convex composite quadratic programming and its applications, Math Prog

(2019) [DOI: 10.1007/s10107-018-1247-7]



The equivalence property

Recall that W = Y × Z. Define Σ̂h :W →W by

Σ̂h :=

Σ̂f

0


For w = (y ; z) and w ′ = (y ′; z ′), denote

L̂σ(w ; (x ,w ′)) := L̂σ(y , z ; (x , y ′))

Define the error term

∆̂k := ∆k −FG∗(GG∗)−1(γk−1 − γk − G(xk−1 − xk)) ∈ Y

with the convention that x−1 := x0 − τσ(F∗y0 + G∗z0 − c),

γ−1 := −b + Gx−1 + σG(F∗y0 + G∗z0 − c)



The equivalence property
Define the block-diagonal linear operator

T :=

 S + Ĥ+ σFG∗(GG∗)−1GF∗

0

 W →W

Theorem
Let {(xk ,wk)} with wk := (yk ; zk) be the sequence generated by

sGS-imPADMM. Then, for any k ≥ 0, it holds that

(i) the linear operators T , A and Σ̂h satisfy

T +
1

2
Σ̂h � 0

(ii)

wk+1 ≈ arg min
w∈W

{
L̂σ

(
w ; (xk ,wk)

)
+

1

2
‖w − wk‖2

T

}
in the sense that (∆̂k ; γk) ∈ ∂w L̂σ((wk+1; (xk ,wk)) + T (wk+1 − wk) and

‖(∆̂k , γk)‖ ≤ ε̂k with {̂εk} being a summable sequence of nonnegative

numbers



sGS-imPADMM convergence

One can readily get the following convergence theorem

Theorem

Suppose that
1

2
Σ̂f + σFF∗ + S +HuH−1

d
H∗u � 0

Then,

T +
1

2
Σ̂h + σAA∗ � 0

Moreover, the sequence {(xk , yk , zk)} generated by the Algorithm

converges to a solution of the KKT system of the problem. Thus,

{(yk , zk)} converges to a solution to this problem and {xk} converges to

a solution of its dual



The two-block case

Let Y = Y1 and f be vacuous (e.g., the dual of linear conic

programming), i.e.,

min{p(y)− 〈b, z〉 | F∗y + G∗z = c} (9)

• The two-block ADMM originates from the ALM, but it actually

deviates substantially from the ALM!!!

• ADMM (decoupling) is NOT ALM (recoupling)

• Note that T has a term propositional to σ while in Rockafellar’s

proximal ALM, the corresponding proximal term is proportional to

σ−1. This is the price to pay︸ ︷︷ ︸ for “decoupling” — loss of the arbitrary

linear convergence rate [in the terminology of M.J.D. Powell]



Comments on the two-block case

• The assumptions we made for problem (9) are apparently much

weaker than those in original work of Gabay and Mercier5, where F is

assumed to be the identity operator and p is assumed to be strongly

convex

• In Gabay and Mercier (1976), Theorem 3.1, only the convergence of

the primal sequence {(yk , zk)} is obtained while the dual sequence

{xk} is only proven to be bounded

• In S., Toh and Yang et al.6, a similar result to ours has been derived

with the requirements that the initial multiplier x0 satisfies

Gx0 − b = 0 and all the subproblems are solved exactly

5Gabay, D. and Mercier, B.: A dual algorithm for the solution of nonlinear variational

problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
6Sun, D.F., Toh, K.-C. and Yang, L.Q.: A convergent proximal alternating direction

method of multipliers for conic programming with 4-type constraints. SIAM J. Optim.

25(2), 882–915 (2015)



Numerical Experiments

Solving dual linear SDP problems via the two-block ADMM with

step-length taking values beyond the classic restriction of (1 +
√

5)/2

• To know to what extent the numerical efficiency of the ADMM can

be improved if the equivalence proved in this paper is incorporated

• To see whether a step-length that is very close to 2 will lead to better

or worse numerical performance



Solving min
X
{〈C ,X 〉 | AX = b,X ∈ Sn+}

The dual is

min
Y ,z

{
δSn+(Y )− 〈b, z〉 | Y +A∗z = C

}
Here A : Sn → Rm is linear, b ∈ Rm and C ∈ Sn are given data

ADMM has been incorporated in solving dual SDP for more than a decade:

• ADMM with unit step-length was first employed in Povh et al.

[Comput. 78 (2006)] under the name of boundary point method for

solving the dual SDP (Later extended in Malick et al. [SIOPT 20

(2009)] with a convergence proof)

• ADMM was used in the software SDPNAL developed by Zhao et al.

[SIOPT 20 (2010)] to warm-start a semismooth Newton ALM for

dual SDP

• SDPAD by Wen et al. [MPC 2 (2010)]: ADMM solver on dual SDP

(used SDPNAL template)



Numerical Experiments: details

• Five choices of the step-length, i.e., τ = 1, τ = 1.618, τ = 1.90,

τ = 1.99 and τ = 1.999

• Running the Matlab package SDPNAL+ (version 1.0)7

• 6 categories of SDP problems

• In general it is a good idea to use a step-length larger than 1, e.g.,

τ = 1.618

• We can even set the step-length to be larger than 1.618, say τ = 1.9,

to get better numerical performance

• Stopping Criteria: DIMACS rule based on relative residuals of

primal/dual feasibility and complementarity

• maximum number of iterations: 105

7awarded the triennial Beale-Orchard–Hays Prize for Excellence in Computational

Mathematical Programming by the Mathematical Optimization Society in 2018



Numerical comparisons
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Conclusions

• A block sGS decomposition based (exact or inexact) multi-block

majorized (proximal or not) ADMM is equivalent to an inexact

majorized proximal ALM with τ ∈ (0, 2)

• ADMM can achieve better numerical performance if the step-length

is larger than the conventional upper bound of (1 +
√

5)/2 but not

too close to 2. It also justifies the safety and effectiveness of choosing

τ = 1.618

• The proximal ALM interpretation of the ADMM may explain why it

often converges slowly after the initial iterations [the automatically

generated proximal term (hidden) is too large]



“Recoupling”?

• ALM =⇒ ADMM ⇐⇒ “Coupling” =⇒ “Decoupling”

• For big challenging problems, it is time for “Recoupling”?

Any Reason?



天下大事 分久必合 合久必分 天下大事 分久必合 合久必分 

罗贯中 《三国演义》 

World under heaven, after a
long period of division, tends to
unite; after a long period of
union, tend to divide. This has
been so since antiquity.

From “Romance of the Three Kingdoms”

a 14th-century historical novel

by Guanzhong Luo (Author)

www.threekingdoms.com (Editor)

www.tresreinos.es (Editor)

C.H. Brewitt Taylor (Translator)

www.threekingdoms.com
www.tresreinos.es
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