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Multi-block convex programming

min{p10xa) + £ oxm) + G1(02) + 8o y) | Ax + By =
X,y —_— —
X y

(P)

X, Y, Z: finite-dim. real Hilbert spaces endowed with (-,-) and || - ||

p1: X1 — (—o00,00] and g1 : V1 — (—00, 0] are closed and proper
convex functions. Denote p(x) := p1(x1) and q(y) := q1()1)

f: X — (—o00,00) and g : Y — (—00,00) are convex, continuously
differentiable with Lipschitz continuous gradients

A* and B* are the adjoints of the linear mappings A : Z — X and
B:Z—Y ceZ



Notation

e Let U and V be two finite dimensional real Hilbert spaces. For any
given linear map H : U — V, we use ||H|| to denote its spectral norm
and H* : V — U to denote its adjoint linear operator

o If U/ =V and H is self-adjoint, for any u, v € U, define
(u,v)p = (u,Hv) and |[u]|3, := (u, Hu); if H is also positive
semidefinite, there exists a unique self-adjoint positive semidefinite
linear operator Hz U — U such that HaH> = H.

e For a closed proper convex function 6 : U/ — (—o0, +00], denote by
dom 8 and 90 for the effective domain and the subdifferential
mapping of 6, respectively



Decomposition

Decompose U = Uy X Up X ... X Us, with each U; being a finite
dimensional real Hilbert space endowed with (-,-) and || - ||

Decompose the self-adjoint and positive semidefinite H as

Hir Hiz -+ His
Hi, Hxn -+ Hos
My, M3 o Hes
where Hj; :U; — U;, i,j =1,...,s are linear maps and H;; are self-adjoint

positive definite linear operators (H;; = 0), i =1,...,s

We use H4 := Diag(H11, ..., Hss) to denote the block-diagonal part of H,
and denote the symbolically strictly upper triangular part of H by H,,.
Thus, H = Hqg + Hu + H,,



One cycle of the block symmetric Gauss-Seidel

Let 6; : Uy — (—o0, 00| be a given closed and proper convex function,
b € U be a given vector, and h: U — (—o0,00) be defined by

h(u) = %(u,?—lu) (b, u)

Suppose that u™ € U is a given vector. Define

1 1
u? = arg min{Q(u;) + h(u_;, i, u2) — (6;, u,)} i=s,...,2
u; 1
uy” = argmin {9(u1) + h(uy, u2)) — (61, u1>}, (sGS)

un
1

uI.Jr = arg min{@( )+ h( NN ) (6, u,-)}, i=2,...,s
uj
where for any u = (u1,...,us) €U and i € {1,...,s}, we denote

uei = {ur,...,ui—1}, Usp = {uig1,..., us}



One cycle of the block sGS

Define
d(8.6) =6+ H,H,' (5 - 9)

with 61 = 61, 6 := (61,...,0s) and 6 := (81,...,0s)
Define the self-adjoint positive semidefinite linear operator on U/ by

sGS(H) := ’Hu’H;l’HT, (sGS Splitting Operator)
Consider the following convex composite quadratic programming:

ue

mig{a(u1)+h(u>+§u 0Py — (d(5.0). u>} (CQP)



Block sGS decomposition theorem

Theorem
Suppose that Hy = Diag(H11,...,Hss) = 0. Then,

e (CQP) is well-defined and admits a unique solution, which is exactly
the vector ut generated by the (sGS) procedure

H =M +5GS(H) = (Ha + Hu)H, (Ha + H}) = 0
o the error vector d(8,6) satisfies

— 1 . 1 . 1 e
IH72d(5,8)|l < 7,2 (6 = 8)I + | H (Ha + Ha) '8



Majorization

Problem (P):

min{p1 (1) + () + q1(2) + g(y) | A’ + B'y = |
For the two smooth convex functions f and g in problem (P), there exist
two self-adjoint positive semidefinite linear operators Y7 X = X and
Y€ :) — Y such that
f(x) < F(x;x') == F(X) + (VF(X),x = xX) + =|x — x| %

gly) <&ly:y) =e(y)+(Vely).y —y) + %Hy -y

Quadratic on the RHS



Majorized proximal augmented Lagrangian function

For any given o > 0, the majorized proximal augmented Lagrangian
function associated with problem (P) is defined by

Lo(xy; (X, y.2))
= p(x) + Fx:x) +aly) + &(y;y) + (Z, A*x + B*y — ¢
g * * 2 1 1112 1 /12
+ S AX+ By — el + Slx = XlIg + Sy = ¥'lI%
V(ix,y) e X xY and V(xX,y,Z) e X xYxZ,

where S: X X and T :Y — Y are self-adjoint (not necessarily positive
semidefinite) linear operators

Nonsmooth+Quadratic Terms on RHS



sGS-imiPADMM

An inexact sGS decomposition based majorized indefinite-proximal ADMM
Let 7 € (0,(1 ++/5)/2) [e.g., T = 1.618], {Ek}x>0 be a summable
nonnegative sequence, (x°, y?,z%) € dom p x dom g x Z be the initial

point
For k=0,1,...,
1la. Compute for i =m,...,2,
1 — 1
Xik+2 A arg min {E ((Xf,,xi,xfﬁrz),yk; (Xk,yk,zk))} )
x;€X; ’
- ~ k+1 . ~ -
5f € 05 Lo (( XX 2ux 2),yk:(xk,yk,zk)) with [|5]| < &

1b. Compute for i =1,...,m

1

~ 1
A arg min {E‘T ((xf'"1 x,,xk+2),yk; (x*, y*, zk))} S
X;EX;

X1

k+1 . ~
ke Lo (( k+1,x.k+1,x>i+2),yk; (xk,yk,zk)) with [|6%]| < &k



sGS-imiPADMM

2a. Compute for j =n,...,2,

k41 (= k41
y; 2 arger;m {,CU (xk+1, (}/fj,yj,)@j 2); (xk,yk,zk))} )
Yi€Jdj

. ~ k+i Kkl TIPS =
7h € 0y Lo (X0 vy T ) (6K A 24 with (74 < &

2b. Compute for j =1,...,n,

[ k+3
yk1l ~ argmin{ L, xk“'l,(yk.*l,yj,y "2Y: (xK, R Z9) b,
J v.EY; <J >J
J J

~ k+3 . ~
yJ’.‘ €0y Ly (xk+1, (yf."rl,yjk"“l,y>j 2); (xk,yk,zk)) with HkaH < &

3. Compute zKt1 .= zK 4 70 (A*xKH1 4 Bryktl — ()



Decompositions

We symbolically decompose the positive semidefinite linear operators f
into

5 f S f S f
Z11 Z12 T z1m
SF \* S f S
= (212) Z22 e Z2m
X = (2)

and decompose T8 similarly, in consistent with the decompositions of X
and ).
Define two linear operators M : X — X and N : Y — Y as follows:

M=% +0AA* +S, N:=S6+oBB+T

Just like the decomposition of ' and ¥ in (2), we can symbolically
decompose S, T, M and N accordingly.



Decompositions

We use /Wd and Jvd to denote the corresponding diagonal parts, and M,
and N, to denote the strictly upper triangular parts, respectively. Then,

M=M,+ Mg+ M, N=N,+Ng+N;
Decompose A and B as

Az = (Ayz,...,Anz) and Bz = (Biz,...,B,2)

where A;z € X;and Bjiz€ )j,andz€ 2
Define
5K = (8%,...,6K), 6K = (s%,...,6%)

§E = (35, 75), and ¥F = (5, vE)

with the convention that 6'1‘ = 6’1( and 7"/’{ = yf.



Decompositions

To apply the block sGS decomposition theorem, we require
M;,- Effi+0'u4/¢47+g§/i =0, /i=1,....m

KGJEE§+O'BJBJ‘+E>O, j=1,...,n

Define the following linear operators:
Sias = S +5GS(M) = S + M MM,
Teas =T +sGS(N) =T



Theorem (via the sGS decomposition theorem)

o Sias and Tsas defined in (3) are well-defined, and

Mgs = 3 + 0 AA* + Sigs = 0, Nugs = L8 + oBB* + Tigs > 0
(4)
e |t holds that

T T R [l I

d}‘6c’)y{Z’j(;(x’““l,y’”“l;(X",yk,zk))Jr%Hyk+1 yeI2, 7\7)}
df = 65 + M MY (6" —8%) and db = F + NN 2K — 559)

e one has |M_, : dX|| < k&, and |, Qdk < K&y, where k and K are
sGS X sGS™Yy

some constants



Karush-Kuhn-Tucker (KKT)

Recall that the Karush-Kuhn-Tucker (KKT) system of problem (P) is
given by

0 € dp(x) + Vf(x)+ Az, 0 € dq(y) + Vg(y) + Bz, A*x+ By =c
Denote the solution set of the KKT system for problem (P) by W.

Stopping criterion: always use the (relative) KKT residual to stop an
algorithm. The (relative) distance of two consecutive iterates CANNOT
be used as a reliable stopping criterion.




Assumption

o The solution set WV to the KKT system of (P) is nonempty
e S and T are chosen such that

— 1~ — 1~
Sr-—-3f & Tr=-2%8
=5 T=—3

and

’il-fi-i-O'A,'Af-i-:STf,'%O, i

=1,....,m

Y4 oBB + T -0, j=1...n



Theorem (Convergence of sGS-imiPADMM)
Suppose that the Assumption holds, and the linear operators S and T are
chosen such that

1= 1~
Ezf +oAA +Sas -0 & SYE+0BB +Tas -0 (6)

Then the whole sequence {(x*, y*,z*)} converges to a solution of the
KKT system

Remark: The above convergence theorem is fairly general; it covers the
classic ADMM and the most recent developments for solving multi-block
convex optimization problems. Below we shall use a more specific example
to reveal the relations between ADMM and proxiaml ALM.



Convex Composite Quadratic Programming

min {w(x) + %(x, Ox) — (¢, x) | Aex = bg, Ajx — by € IC} (7)

XEX

o y: X — (—00,+0] is a closed proper convex function [simple]
Q: X — X satisfying Q = Q*, Q=0
A : X — Z1 and A; : X — 25, given linear mappings

b= (bg; b)) € Z := 21 X Z,, given vector

e K C 25 is a closed convex set (cone) [simple]

Equivalently,

min {v,l/(x)—l—é;g(x')—i—%(x, 0x) — {e.x) | (i‘f _OI)(X,): b)

XEX,X’EZQ



CCQP
The dual of the above problem [or equivalently problem (7)] is

min {p(W) + %(y, Qy) — (b.2) ‘ (5) + (%)y - (xgg :4;)2 - (g)}

o w:=(uv)e X X2
p(w) 1= p(u,v) = 4 (u) + 65.(v)

8xc(+) is the indicator function over K

The dual is about (w, y, z) — three or more blocks

Nonsmoothness only exists in one block of variables, i.e., the w-block

e It covers many important classes of convex optimization problems
that are best solved in this (dual) form!

THE HONG KONG
DEPARTMENT OF APPLIED MATHEMATICS q POLYTECHNIC UNIVERSITY
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Deal with Convex Quadratic Constraints
Add additional convex quadratic constraints to problem (7):

(x,Qix) — (cl,x) < b, i=1,...1

where Q; = L;L7 = 0 for a certain linear operator L;

Write the above constraints as [|[£ix||? — (c/,x) < b}, i=1,..

equivalently

1 — bl —{cl,x)
2£*

2
We can further rewrite the above as
1+ b+ (c,x)
1-b—(c.x) |€eKi, i=1...1
2E;3‘x

where K; is the second-order-cone of a proper dimension, i =1,...,

<14 b +(c,x), i=1,...,1

.1, or

/

Therefore, convex quadratic constraints can be added to problem (7)

without changing its structure



Penalized and Constrained Regression Models

The penalized and constrained (PAC) regression often arises in

high-dimensional generalized linear models with linear equality and
inequality constraints, e.g.,

. 1
min {p(x) + =[x ~ || Aex = be, Aix — by € K

e p(-) is a proper closed convex regularizer such as p(x) = ||x||1, ||x]|«
[Non-convex counterparts can be dealt with via proximal DC
(difference of convex functions) algorithm — another talk]

e 1> 0is a parameter

e It is a special case of problem (7)

THE HONG KON
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Multi-block convex composite optimization

min_{ (1) + Flyra . ove) — (b.2) | F'y +G7z = c|
yeV,zeZ —_— N A —
y A*w=c

®(w)

withw=(y,z) e W: =Y x Z
e X, Zand Y := )1 X --- x )s : finite-dimensional real Hilbert spaces,
endowed with (-,-) and || - ||

e p: Y1 — (—o0,+00]: (nonsmooth) closed proper convex function
f:) — (—o00,+00) : continuously differentiable convex function
with Lipschitz gradient

e F* and G* : the adjoints of the given linear mappings 7 : X — Y
and G: X — Z; b€ Z and c € X: the given data

THE HONG KONG
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The augmented Lagrangian function’

Recall the problem

yer;’lznez{p(yl) +f(y1, 2,5 ¥s) — (b, z) | F'y +G*z = c}

or
min {®(w) | A"w = ¢}

Let o > 0 be the penalty parameter. The augmented Lagrangian function:

Lo(y,zix):= ply1) + f(y1,y2,-...¥5) — (b, 2)

o (w)
+ (G Fy+ Gz — )+ | Fry+ Gz — |’
(xoA*w—c) A w—c]?

Vw=(y,z) e W:=YxZ, xeX

LArrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened
assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and
Nonlinear Programming. Stanford University Press, Stanford, pp. 165-176 (1958)



K. Arrow and R. Solow

[T TR

Kenneth Joseph “Ken” Arrow
(23 August 1921 — 21 February 2017)

John Bates Clark Medal (1957); Nobel Prize in Eco-
nomics (1972); von Neumann Theory Prize (1986);
National Medal of Science (2004); ForMemRS (2006)

Robert Merton Solow
(August 23, 1924 )

John Bates Clark Medal (1961); Nobel Memorial Prize
in Economic Sciences (1987); National Medal of Sci-
ence (1999); Presidential Medal of Freedom (2014);
ForMemRS (2006)



The augmented Lagrangian method? (ALM)
Lo(y.zix) = py) + f(y) = (b.2) + (X, F'y + G'z—c) + | F'y + G"z — c|?
Starting from x° € X, performs for k =0, 1,...
(1) (YL 25 = min £,( v,z ; x*) (approximately)

[ ——7 y.z ~—

wh+1 w

(2) xk1 = xk 4 ro(Fryktt + G*zk1 — ¢) with 7 € (0,2)

Magnus Rudolph Hestenes Michael James David Powell
(February 13 1906 — May 31 1991) (29 July 1936 — 19 April 2015)

2Also known as the method of multipliers



ALM to proximal ALM? (PALM)

Minimize the augmented Lagrangian function plus
a quadratic proximal term:

k+1

1
w zargminﬁa(w;xl‘)—i—EHW— wk|2
w

e D = o 'Z in the seminal work of Rockafellar
(in which inequality constraints are
considered). Note that D — 0 as o0 — o0,
which is critical for asymptotically superlinear
convergence (for T = 1)

e It is a primal-dual type proximal point
algorithm (PPA)

3Also known as the proximal method of multipliers



“Decoupling” (or “splitting”) based ADMM
One the other hand, "decoupling” (or “splitting” ) based approach is
available, i.e,
Yy =~ argmin{ L (y, 2%, x¥)}, ZK1 ~ argmin{L (v 1, z; x9)};
y z
xk = xk L ro(Fryktt + G zK1 —¢), 1€ (0,00)

e The two-block ADMM

o Allows 7 € (0, (1 ++/5)/2) if the convergence of the full (primal &
dual) sequence is required (first proven by Glowinski in 1977 at Tata
Institute, India)

e The case with 7 = 1 is a kind of PPA (Gabay + Bertsekas-Eckstein)




An inexact majorized indefinite proximal ALM

Consider
min ®(w) :=¢p(w) + h(w) st. A*w=c

wew

e There exists a self-adjoint positive semidefinite linear operator
YW — W, such that for any w, w’ € W,

h(w) < hw, w') = h(w') + (Th(w), w — w') + 3w — w2,

which is called a majorization (or surrogate) of h at w’

THE HONG KONG
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Prerequisites

One definition and one assumption

Let o > 0. The majorized augmented Lagrangian function is defined, for
any (w,x,w’) € W x X x W, by

— ~

Lo(w; (x, w')) i= o(w) + h(w, w') + (A*w — ¢, x) + %HA*W — |2

Assumption

The solution set K to the KKT system is nonempty and D : W — W is a
given self-adjoint linear operator such that

1= 1=
§z”+1>zo & §Zh—|—D+0'A.A*>O (8)

e D is not necessarily to be positive semldefmlte'

Ad THE HONG KONG
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Alg. an inexact majorized indefinite proximal ALM

Let {ex} be a summable sequence of nonnegative numbers. Choose an
initial point (x%, w%) € X x W. For k =0,1,...,

1 Compute
k+1 A F ok k) L k|2
w T & argmin{ Lo (w; (x5, w™)) + Z[|lw — w"||5
wew 2

such that there exists dj satisfying ||d*|| < &k and
d¥ € 8, Lo (W T (XK, W) + D(wF T — wk)

2 Update xk*1:= xk + 7o (A*wk*+! — ¢) with 7 € (0,2)

Theorem
The sequence {(x*, w¥)} generated by the above Algorithm converges to
a solution to the KKT system.

THE HONG KONG
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Multi-block: Majorization and Splitting

There exists a self-adjoint linear operator sf > 0 on Y such that for any
yv.y' ey,

N

) < ') = F) 4 (V70 )y =) + 5y = V2,

e Denote y.; := (y1;...;¥i—1) and y~; == (Vis1: ... ¥s)

’Z\{l ’Z\{Z . ’Z\{s

Sf <f =F

e Decompose Sf— (X1,) 5, oo b
(Z{s)* (ng)* . ng

with
LYo VL VI<i<j<s

Ad THE HONG KONG
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Basic Assumptions

(a) The self-adjoint linear operator S : J) — ) satisfies

Y4 oFF 4S8 =0 and Sx —1Tf

(b) The linear operator G is surjective (always true if restricted to its
range space)

Let o > 0. The majorized proximal augmented Lagrangian function:
Lo(y.zi(xy)) = pn)+F(y.y) = (b2)
HFYy + Gz — c.x) + %H}"*y 1 Gz — |
1 /112
+3lly =yls

THE HONG KONG
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The Algorithm: sGS-imPADMM

(x9,¥0,2%) € X x domp x Jp x -+ x Vs x Z. {8} nonnegative and
summable. For k =0,1,...,

1 Compute for m

k+1 .5 k k+3 k .k
y; * =~ argmin Ea(y<,-,yf,y>,- 2,25 (x y ))
Yi€Yi

2 Compute for

k+1 L E (k41 k+1/2 _k.( k k

.y,‘+ %argmln EO’(_y<,+ ’.yl'a.y>,'+ / ’Z ,(X ’.y ))

Yi€i
3 Compute
ZK ~ argmin EU(yk+1,z; (xk,yk))
zeZ

4 Compute xk*1 := xk + ro(F*yktl 4 G*zk1 — ¢), |7 € (0,2)



Criteria for inexact solutions in sGS-imPADMM

1

. . . k+5 .
1 Fori=s,...,2, the approximate solution y; * is chosen such that
there exists Sf.‘ satisfying ||5f‘|| < & and

~ ~ k+3  k+3
5k e c’)y,ﬁg(yf,-,y,- DA 2,zk;(xk,yk))

2 Fori=1,...,s, the approximate solution yl.k+1 is chosen such that
there exists 6¥ satisfying ||6%| < & and

5 k+1/2
6F € 0y, Loyt vy T2, 25 (K. y)

> >
3 The approximate solution zK*1 is chosen such that ||y*|| < & with
)/k - VZZU(yk-I—l’ zk—f—l; (Xk,yk))
= GxK — b+ oG(Fry tt + G2kt —¢)



Inexact block sGS decomposition
Define H := X + o FF* + 8 = H, + Ha + H?, with
7‘[(/ = Diag(’Hn, ey 7‘[55) and

0 Hiz -+ His
Hy = 0 0 : , HU:EZ+0F;.?}*+SU
: : H(s—l)s

For convenience, we denote for each k > 0,
Sko=ok, &K= (6%, 65...,6%), oF .= (55 ...,65
Define the sequence {AK} € Y by
A= 6+ HH (6 - 69)
Moreover, we can define the linear operator

H = HU’H;l’Hj (sGS Splitting Operator)



Result by the block sGS decomposition theorem *

The iterate y**1 in Step 2 of sGS-imPADMM is the unique solution to a
proximal minimization problem given by

. 1
k+1 _ . k.( k _k Lo k2 Ak
y —argymm{ﬁa(y,z Oy N Sl =yl 5 (A ,y>}

strongly convex

o Recall that H := X + o FF* + S
o Linearly transported error: Ak = ¢k + ’HU”H;l(ék — 8%)

“X.D. Li, D.F. Sun, and K.-C Toh, A block symmetric Gauss-Seidel decomposition
theorem for convex composite quadratic programming and its applications, Math Prog
(2019) [DOI: 10.1007/s10107-018-1247-7]



The equivalence property
Recall that W =) x Z. Define Thow W by

o
' 0

For w = (y; z) and w’ = (y’; Z’), denote

— —

Lo(w; (x,w")) == Lo(y, z: (x,¥"))

Define the error term
AF = AK— FGH (GG TR -y - G - xM)) e Y

with the convention that

x1i=x0 — 10 (F*y® + G*2° — ),
yli=—b4+Gx 1+ a'g(}"*yo +G*20 — c)



The equivalence property

Define the block-diagonal linear operator

— S+H +oFG (GG*)1GF*

Theorem
Let {(x*, w*)} with wk := (y*; z*) be the sequence generated by
sGS-imPADMM. Then, for any k > 0, it holds that

(i) the linear operators T, A and £" satisfy

1~
T+§Zh§0

k+1

— 1
w Tt 2 arg min {EO-(W;(X"’W’())—F §||W— Wk“%_}

wew
in the sense that (B¥%;y%) € By Lo ((WhHY; (x5, wh)) + T(wk+! — wk) and
(A%, y¥)|| <&k with {&x} being a summable sequence of nonnegative
numbers



sGS-imPADMM convergence

One can readily get the following convergence theorem
Theorem
Suppose that

1~

5T HOFF + S+ HH  H - 0

Then, )
T+ th +o0cAA* =0

Moreover, the sequence {(x*,y*,z*)} generated by the Algorithm
converges to a solution of the KKT system of the problem. Thus,
{(y*,z¥)} converges to a solution to this problem and {x*} converges to
a solution of its dual

THE HONG KONG
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The two-block case

Let Y = )4 and f be vacuous (e.g., the dual of linear conic
programming), i.e

min{p(y) — (b,2) | F'y + Gz = c} (9)

e The two-block ADMM originates from the ALM, but it actually
deviates substantially from the ALM!!!

e ADMM (decoupling) is NOT ALM (recoupling)

e Note that 7 has a term propositional to o~ while in Rockafellar's
proximal ALM, the corresponding proximal term is proportional to
o1 This is the price to pay for “decoupling’ — loss of the arbitrary

~—_———

linear convergence rate [in the terminology of M.J.D. Powell]

THE HONG KONG
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Comments on the two-block case

e The assumptions we made for problem (9) are apparently much
weaker than those in original work of Gabay and Mercier®, where F is
assumed to be the identity operator and p is assumed to be strongly
convex

e In Gabay and Mercier (1976), Theorem 3.1, only the convergence of
the primal sequence {(y*,z¥)} is obtained while the dual sequence
{xk} is only proven to be bounded

e In'S., Toh and Yang et al.%, a similar result to ours has been derived
with the requirements that the initial multiplier x° satisfies
Gx% — b =0 and all the subproblems are solved exactly

5Gabay, D. and Mercier, B.: A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40 (1976)

5Sun, D.F., Toh, K.-C. and Yang, L.Q.: A convergent proximal alternating direction
method of multipliers for conic programming with 4-type constraints. SIAM J. Optim.
25(2), 882-915 (2015)



Numerical Experiments

Solving dual linear SDP problems via the two-block ADMM with
step-length taking values beyond the classic restriction of (1 4 /5)/2

e To know to what extent the numerical efficiency of the ADMM can
be improved if the equivalence proved in this paper is incorporated

e To see whether a step-length that is very close to 2 will lead to better
or worse numerical performance

THE HONG KONG
DEPARTMENT OF APPLIED MATHEMATICS q POLYTECHNIC UNIVERSITY
& B B 2 R FHHTA



Solving mXin{<C,X> | AX =b,X €S"}

The dual is
min {0 (V) = (b,2) | Y + Az = (]

Here A :S™ — R™ is linear, b € R™ and C € S" are given data

ADMM has been incorporated in solving dual SDP for more than a decade:

e ADMM with unit step-length was first employed in Povh et al.
[Comput. 78 (2006)] under the name of boundary point method for
solving the dual SDP (Later extended in Malick et al. [SIOPT 20
(2009)] with a convergence proof)

o ADMM was used in the software SDPNAL developed by Zhao et al.
[SIOPT 20 (2010)] to warm-start a semismooth Newton ALM for
dual SDP

e SDPAD by Wen et al. [MPC 2 (2010)]: ADMM solver on dual SDP
(used SDPNAL template)



Numerical Experiments: details

e Five choices of the step-length, i.e.,, =1, 7 =1.618, 7 = 1.90,
7=1.99 and T = 1.999

e Running the Matlab package SDPNAL+ (version 1.0)7
e 6 categories of SDP problems

e In general it is a good idea to use a step-length larger than 1, e.g.,
7=1618

e We can even set the step-length to be larger than 1.618, say 7 = 1.9,
to get better numerical performance

e Stopping Criteria: DIMACS rule based on relative residuals of
primal/dual feasibility and complementarity

e maximum number of iterations: 10°

"awarded the triennial Beale-Orchard—Hays Prize for Excellence in Computational
Mathematical Programming by the Mathematical Optimization Society in 2018



Numerical comparisons

Iteration number ratio (compared to ADMM(1))

Efficiency: ratio of iteration numbers
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Conclusions

A block sGS decomposition based (exact or inexact) multi-block
majorized (proximal or not) ADMM is equivalent to an inexact
majorized proximal ALM with 7 € (0,2)

e ADMM can achieve better numerical performance if the step-length
is larger than the conventional upper bound of (1 + v/5)/2 but not
too close to 2. It also justifies the safety and effectiveness of choosing
7=1.618

e The proximal ALM interpretation of the ADMM may explain why it
often converges slowly after the initial iterations [the automatically
generated proximal term (hidden) is too large]
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“Recoupling”?

e ALM = ADMM = “Coupling” = “Decoupling”

e For big challenging problems, it is time for “Recoupling”?

Any Reason?
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K ERE g A GALT

Did «=FEELY

World under heaven, after a

long period of division, tends to

unite; after a long period of

g s Union, tend to divide. This has
Luo Guans been so since antiquity.

From “Romance of the Three Kingdoms”
a l4th-century historical novel

by Guanzhong Luo (Author)
www . threekingdoms . com (Editor

)
www.tresreinos.es (Editor)
C.H. Brewitt Taylor (Translator)
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