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The multi-block convex composite optimization problem

min
y∈Y,z∈Z︸ ︷︷ ︸
w∈W

{
p(y1) + f(y)− 〈b, z〉︸ ︷︷ ︸

Φ(w)

| F∗y + G∗z = c︸ ︷︷ ︸
A∗w=c

}

I X , Z and Yi (i = 1, . . . , s): finite-dimensional real Hilbert spaces
each endowed with 〈·, ·〉 and ‖ · ‖, Y := Y1 × · · · × Ys

I p : Y1 → (−∞,+∞]: a (possibly nonsmooth) closed proper convex
function; f : Y → (−∞,+∞): a continuously differentiable convex
function with Lipschitz gradient

I F∗ and G∗: the adjoints of the given linear mappings F : X → Y and
G : X → Z

I b ∈ Z, c ∈ X : the given data

Too simple? It covers many important classes of convex
optimization problems that are best solved in this (dual) form!
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A quintessential example

The convex composite quadratic programming (CCQP)

min
x

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣ Ax = b
}

(1)

I ψ : X → (−∞,+∞]: a closed proper convex function

I Q : X → X : a self-adjoint positive semidefinite linear operator

The dual (minimization form):

min
y1,y2,z

{
ψ∗(y1) +

1

2
〈y2,Qy2〉 − 〈b, z〉

∣∣ y1 +Qy2 −A∗z = c
}

(2)

ψ∗ is the conjugate of ψ, y1 ∈ X , y2 ∈ X , z ∈ Z
I Many problems are subsumed under the convex composite quadratic

programming model (1).

I E.g., the important classes of convex quadratic programming (QP),
the convex quadratic semidefinite programming (QSDP)...
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Convex QSDP

min
X∈Sn

{
1

2
〈X,QX〉 − 〈C,X〉

∣∣∣ AEX = bE , AIX ≥ bI , X ∈ Sn+
}

Sn is the space of n× n real symmetric matrices, Sn+ is the closed convex
cone of positive semidefinite matrices in Sn, Q : Sn → Sn is a positive
semidefinite linear operator, C ∈ Sn is the given data, and AE and AI are
linear maps from Sn to certain finite dimensional Euclidean spaces
containing bE and bI , respectively

I QSDPNAL1: a two-phase augmented Lagrangian method in which
the first phase is an inexact block sGS decomposition based
multi-block proximal ADMM

I The solution generated in the first phase is used as the initial point to
warm-start the second phase algorithm

1Li, Sun, Toh: QSDPNAL: A two-phase augmented Lagrangian method for convex
quadratic semidefinite programming. MPC online (2018)
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Penalized and Constrained Regression Models

The penalized and constrained (PAC) regression often arises in
high-dimensional generalized linear models with linear equality and
inequality constraints, e.g.,

min
x∈Rn

{
p(x) +

1

2λ
‖Φx− η‖2

∣∣∣ AEx = bE , AIx ≥ bI
}

(3)

I Φ ∈ Rm×n, AE ∈ RrE×n, AI ∈ RrI×n, η ∈ Rm, bE ∈ RrE and
bI ∈ RrI are the given data

I p is a proper closed convex regularizer such as p(x) = ‖x‖1
I λ > 0 is a parameter.

I Obviously, the dual of problem (3) is a particular case of CCQP
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The augmented Lagrangian function2

min
y∈Y,z∈Z

{p(y1) + f(y)− 〈b, z〉 | F∗y + G∗z = c} or min
w∈W

{Φ(w) | A∗w = c}

Let σ > 0 be the penalty parameter. The augmented Lagrangian function:

Lσ(y, z;x) := p(y1) + f(y)− 〈b, z〉︸ ︷︷ ︸
Φ(w)

+ 〈x,F∗y + G∗z − c〉︸ ︷︷ ︸
〈x,A∗w−c〉

+σ
2 ‖F

∗y + G∗z − c‖2︸ ︷︷ ︸
‖A∗w−c‖2

,

∀w = (y, z) ∈ W := Y × Z, x ∈ X

2Arrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened
assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and
Nonlinear Programming. Stanford University Press, Stanford, pp. 165-176 (1958)
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Robert Merton Solow
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John Bates Clark Medal (1961); Nobel Memorial Prize
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ence (1999); Presidential Medal of Freedom (2014);

ForMemRS (2006)

7



The augmented Lagrangian method3 (ALM)
Lσ(y, z;x) = p(y1) + f(y)− 〈b, z〉+ 〈x,F∗y + G∗z − c〉+ σ

2
‖F∗y + G∗z − c‖2

Starting from x0 ∈ X , performs for k = 0, 1, . . .

(1) (yk+1, zk+1)︸ ︷︷ ︸
wk+1

⇐ min
y,z
Lσ( y, z︸︷︷︸

w

;xk) (approximately)

(2) xk+1 := xk + τσ(F∗yk+1 + G∗zk+1 − c) with τ ∈ (0, 2)

Magnus Rudolph Hestenes
(February 13 1906 – May 31 1991)

Michael James David Powell
(29 July 1936 – 19 April 2015)

3Also known as the method of multipliers
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ALM and variants

I ALM has the desirable asymptotically superlinear convergence (or
linearly convergent of an arbitrary order) property.

I While one would really want to miny,z Lσ(y, z;xk) without modifying
the augmented Lagrangian, it can be expensive due to the coupled
quadratic term in y and z.

I In practice, unless the ALM subproblems can be solved efficiently, one
would generally want to replace the augmented Lagrangian
subproblem with an easier-to-solve surrogate by modifying the
augmented Lagrangian function to decouple the minimization with
respect to y and z.

I Such a modification is especially desirable during the initial phase of
the ALM when the local superlinear convergence phase of ALM has
yet to kick in.
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ALM to proximal ALM4 (PALM)

Minimize the augmented Lagrangian function plus
a quadratic proximal term:

wk+1 ≈ arg min
w

Lσ(w;xk) +
1

2
‖w − wk‖2D

I D = σ−1I in the seminal work of Rockafellar
(in which inequality constraints are
considered). Note that D → 0 as σ →∞,
which is critical for superlinear convergence.

I It is a primal-dual type proximal point
algorithm (PPA).

4Also known as the proximal method of multipliers
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Modification and decomposition

The obvious modification with D = σ(λ2I −AA∗) is generally too drastic
and has the undesirable effect of significantly slowing down the
convergence of the proximal ALM.

I D could be positive semidefinite (a kind of PPAs), i.e., the obvious
approach:

D = σ(λ2I − AA∗) = σ(λ2I − (F ;G)(F ;G)∗)

with λ being the largest singular value of (F ;G)

I D can be indefinite (typically used together with the majorization
technique)

I What is an appropriate proximal term to add so that

I The PALM subproblem is easier to solve

I Less drastic than the obvious choice
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Decomposition based ADMM

One the other hand, decomposition based approach is available, i.e,

yk+1 ≈ arg min
y
{Lσ(y, zk;xk)}, zk+1 ≈ arg min

z
{Lσ(yk+1, z;xk)}

I The two-block ADMM
I Allows τ ∈ (0, (1 +

√
5)/2) if the convergence of the full (primal &

dual) sequence is required (Glowinski)

I The case with τ = 1 is a kind of PPA (Gabay + Bertsekas-Eckstein)

I Many variants (proximal/inexact/generalized/parallel etc.)
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A part of the result

An equivalent property:

Add an appropriately designed proximal term to Lσ(y, z;xk), we
reduce the computation of the modified ALM subproblem to
sequentially updating y and z without adding a proximal term, which
is exactly the same as the two-block ADMM

I A difference: one can prove convergence for the step-length τ
in the range (0, 2) whereas the classic two-block ADMM only
admits (0, (1 +

√
5)/2).
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For multi-block problems

Turn back to the multi-block problem, the subproblem to y can still be
difficult due to the coupling of y1, . . . , ys

I A successful multi-block ADMM-type algorithm must not only
possess convergence guarantee but also should numerically perform
at least as fast as the directly extended ADMM (the Gauss-Seidel
iterative fashion) when it does converge.
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Algorithmic design

I Majorize the function f(y) at yk with a quadratic function

I Add an extra proximal term that is derived based on the symmetric
Gauss-Seidel (sGS) decomposition theorem to update the sub-blocks
in y individually and successively in an sGS fashion

I The resulting algorithm:
A block sGS decomposition based (inexact) majorized multi-block
indefinite proximal ADMM with τ ∈ (0, 2), which is equivalent to an
inexact majorized proximal ALM
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An inexact majorized indefinite proximal ALM

Consider
min
w∈W

Φ(w) := ϕ(w) + h(w) s.t. A∗w = c,

I The Karush-Kuhn-Tucker (KKT) system:

0 ∈ ∂ϕ(w) +∇h(w) +Ax, A∗w − c = 0

I The gradient of h is Lipschitz continuous, which implies a self-adjoint
positive semidefinite linear operator Σ̂h :W →W, such that for any
w,w′ ∈ W,

h(w) ≤ ĥ(w,w′) := h(w′) + 〈∇h(w′), w − w′〉+
1

2
‖w − w′‖2

Σ̂h
,

which is called a majorization of h at w′.
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Prerequisites
One definition and one assumption

Let σ > 0. The majorized augmented Lagrangian function is defined, for
any (w, x,w′) ∈ W ×X ×W, by

L̂σ(w; (x,w′)) := ϕ(w) + ĥ(w,w′) + 〈A∗w − c, x〉+
σ

2
‖A∗w − c‖2.

Assumption

The solution set to the KKT system is nonempty and D :W →W is a
given self-adjoint (not necessarily positive semidefinite) linear operator
such that

D � −1

2
Σ̂h and

1

2
Σ̂h + σAA∗ +D � 0. (4)

I D is not necessarily to be positive semidefinite!
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Algorithm: an inexact majorized indefinite proximal ALM

Let {εk} be a summable sequence of nonnegative numbers. Choose an
initial point (x0, w0) ∈ X ×W. For k = 0, 1, . . .,

1 Compute

wk+1 ≈ arg min
w∈W

{
L̂σ(w; (xk, wk)) +

1

2
‖w − wk‖2D

}
such that there exists dk satisfying ‖dk‖ ≤ εk and

dk ∈ ∂wL̂σ(wk+1; (xk, wk)) +D(wk+1 − wk)

2 Update xk+1 := xk + τσ(A∗wk+1 − c) with τ ∈ (0, 2)

Theorem
The sequence {(xk, wk)} generated by the above Algorithm converges to
a solution to the KKT system.
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Multi-block: Majorization and decomposition

The gradient of f is Lipschitz continuous ⇒ there exists a self-adjoint
linear operator Σ̂f : Y → Y such that Σ̂f � 0 and for any y, y′ ∈ Y,

f(y) ≤ f̂(y, y′) := f(y′) + 〈∇f(y′), y − y′〉+ 1
2‖y − y

′‖2
Σ̂f

I Denote for any y ∈ Y,

y<i := (y1; . . . ; yi−1) and y>i := (yi+1; . . . ; ys)

I Decompose Σ̂f as

Σ̂f =


Σ̂f

11 Σ̂f
12 · · · Σ̂f

1s

(Σ̂f
12)∗ Σ̂f

22 · · · Σ̂f
2s

...
...

. . .
...

(Σ̂f
1s)
∗ (Σ̂f

2s)
∗ · · · Σ̂f

ss


with Σ̂f

ij : Yj → Yi, ∀1 ≤ i ≤ j ≤ s
19



Basic assumptions / Majorized augmented Lagrangian

(a) The self-adjoint linear operators Si : Yi → Yi, i = 1, . . . , s, are chosen
such that

1
2 Σ̂f

ii + σFiF∗i + Si � 0 and S := Diag(S1, . . . ,Ss) � −1
2 Σ̂f

(b) The linear operator G is surjective;

(c) A nonempty solution set to the KKT system:

0 ∈
(
∂p(y1)

0

)
+∇f(y) + Fx, Gx− b = 0, F∗y + G∗z = c

(d) {ε̃k} is a summable sequence of nonnegative real numbers

Let σ > 0. The majorized augmented Lagrangian function:

L̂σ(y, z; (x, y′)) := p(y1) + f̂(y, y′)− 〈b, z〉
+〈F∗y + G∗z − c, x〉+ σ

2 ‖F
∗y + G∗z − c‖2
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The algorithm sGS-imPADMM
An inexact block sGS based indefinite Proximal ADMM

(x0, y0, z0) ∈ X × dom p× Y2 × · · · × Ys ×Z. For k = 0, 1, . . . ,

1 Compute for i = s, . . . , 2

y
k+ 1

2
i ≈ arg min

yi∈Yi

{
L̂σ
(
yk≤i−1, yi, y

k+ 1
2

≥i+1, z
k; (xk, yk)

)
+

1

2
‖yi − yki ‖2Si

}
2 Compute for i = 1, . . . , s

yk+1
i ≈ arg min

yi∈Yi

{
L̂σ
(
yk+1
≤i−1, yi, y

k+1/2
≥i+1 , z

k; (xk, yk)
)

+
1

2
‖yi − yki ‖2Si

}
3 Compute

zk+1 ≈ arg min
z∈Z

{
L̂σ(yk+1, z; (xk, yk))

}
4 Compute xk+1 := xk + τσ(F∗yk+1 + G∗zk+1 − c), τ ∈ (0, 2)

21



Criteria for inexact solutions in sGS-imPADMM

1 For i = s, . . . , 2, the approximate solution y
k+ 1

2
i is chosen such that

there exists δ̃ki satisfying ‖δ̃ki ‖ ≤ ε̃k and

δ̃ki ∈ ∂yiL̂σ
(
yk≤i−1, y

k+ 1
2

i , y
k+ 1

2
≥i+1, z

k; (xk, yk)
)

+ Si(y
k+ 1

2
i − yki )

2 For i = 1, . . . , s, the approximate solution yk+1
i is chosen such that

there exists δki satisfying ‖δki ‖ ≤ ε̃k and

δki ∈ ∂yiL̂σ
(
yk+1
≤i−1, y

k+1
i , y

k+1/2
≥i+1 , z

k; (xk, yk)
)

+ Si(yk+1
i − yki )

3 The approximate solution zk+1 is chosen such that ‖γk‖ ≤ ε̃k with

γk : = ∇zL̂σ
(
yk+1, zk+1; (xk, yk)

)
= Gxk − b+ σG(F∗yk+1 + G∗zk+1 − c)
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Comments on the sGS-imPADMM algorithm

I The sGS-imPADMM is a versatile framework, one can implement it in
different routines

I We are more interested in the previous iteration scheme:
I The theoretical improvement
I The practical merit it features for solving large scale problems

(especially when the dominating computational cost is in performing
the evaluations associated with the linear mappings G and G∗)

A particular case in point is the following problem:

min
x∈X

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ A1x = b1, A2x ≥ b2
}
,

Q, ψ, and c are as the previous; A1 : X → Z1 and A2 : X → Z2 are the
given linear mappings, and b = (b1; b2) ∈ Z := Z1 ×Z2 is a given vector.

23



Details

By introducing a slack variable x′ ∈ Z2, one gets

min
x∈X ,x′∈Z2

{
ψ(x) +

1

2
〈x,Qx〉 − 〈c, x〉

∣∣∣ (A1 0
A2 I

)(
x
x′

)
= b, x′ ≤ 0

}
,

The corresponding dual problem in the minimization form:

min
y,y′,z

{
p(y) +

1

2
〈y′,Qy′〉 − 〈b, z〉

∣∣∣ y +

(
Q
0

)
y′ −

(
A∗1 A∗2
0 I

)
z =

(
c
0

)}
with y := (u, v) ∈ X × Z2, p(y) = p(u, v) = ψ∗1(u) + δ+(v), and δ+ is the
indicator function of the nonnegative orthant in Z2.

I It is clear that with a large number of inequality constraints, the
dimension of z can be much larger than that of y′.

I For such a scenario, the adopted iteration scheme is more preferable
since the more difficult subproblem involving z is solved only once in
each iteration.
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inexact block sGS decomposition

Define H := Σ̂f + σFF∗ + S = Hd +Hu +H∗u with
Hd := Diag(H11, . . . ,Hss), Hii := Σ̂f

ii + σFiF∗i + Si and

Hu :=


0 H12 · · · H1s

0 0
. . .

...
...

...
. . . H(s−1)s

0 0 · · · 0

 , Hij = Σ̂f
ij + σFiF∗j

For convenience, we denote for each k ≥ 0, δ̃1
k := δ1

k, δ̃k := (δ̃k1 , δ̃
2
k . . . , δ̃

k
s )

and δk := (δk1 , . . . , δ
k
s )

Define the sequence {∆k} ∈ Y by

∆k := δk +HuH−1
d (δk − δ̃k)

Moreover, we can define the linear operator

Ĥ := HuH−1
d H

∗
u
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Result by the block sGS decomposition theorem 5

The iterate yk+1 in Step 2 of sGS-imPADMM is the unique solution to a
proximal minimization problem given by

yk+1 = arg min
y

{
L̂σ(y, zk; (xk, yk)) +

1

2
‖y − yk‖2S+Ĥ︸ ︷︷ ︸

strongly convex

−〈∆k, y〉
}
.

Moreover, it holds that

H+ Ĥ = (Hd +Hu)H−1
d (Hd +H∗u) � 0.

I Recall that H := Σ̂f + σFF∗ + S
I Linearly transported error: ∆k = δk +HuH−1

d (δk − δ̃k)

5X.D. Li, D.F. Sun, and K.-C Toh, A block symmetric Gauss-Seidel decomposition
theorem for convex composite quadratic programming and its applications, MP online
[DOI: 10.1007/s10107-018-1247-7]
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The equivalence property

Recall that W = Y × Z. Define Σ̂h :W →W by

Σ̂h :=

(
Σ̂f

0

)
For w = (y; z) and w′ = (y′; z′), denote

L̂σ(w; (x,w′)) := L̂σ(y, z; (x, y′))

Define the error term

∆̂k := ∆k −FG∗(GG∗)−1(γk−1 − γk − G(xk−1 − xk)) ∈ Y

with the convention that{
x−1 := x0 − τσ(F∗y0 + G∗z0 − c),
γ−1 = −b+ Gx−1 + σG(F∗y0 + G∗z0 − c)
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The equivalence property

Define the block-diagonal linear operator

T :=

(
S + Ĥ+ σFG∗(GG∗)−1GF∗

0

)
W →W

Theorem
Let {(xk, wk)} with wk := (yk; zk) be the sequence generated by
sGS-imPADMM. Then, for any k ≥ 0, it holds that

(i) the linear operators T , A and Σ̂h satisfy

T � − 1
2 Σ̂h and 1

2 Σ̂h + σAA∗ + T � 0;

(ii)

wk+1 ≈ arg min
w∈W

{
L̂σ
(
w; (xk, wk)

)
+

1

2
‖w − wk‖2T

}
in the sense that (∆̂k; γk) ∈ ∂wL̂σ((wk+1; (xk, wk)) + T (wk+1 − wk) and

‖(∆̂k, γk)‖ ≤ ε̂k with {ε̂k} being a summable sequence of nonnegative
numbers.
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sGS-imPADMM convergence

One can readily get the following convergence theorem

Theorem
The sequence {(xk, yk, zk)} generated by the Algorithm converges to a
solution to the KKT system of the problem. Thus, {(yk, zk)} converges to
a solution to this problem and {xk} converges to a solution of its dual.
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Two-block case

Let Y = Y1 and f be vacuous, i.e.,

min{p(y)− 〈b, z〉 | F∗y + G∗z = c} (5)

I sGS-imPADMM without proximal terms is reduced to a two-block
ADMM

I Assume that G is surjective and that the KKT system of this problem
admits a nonempty solution set K

I This two-block ADMM or its inexact variants with τ ∈ (0, 2) (in the
order that the y-subproblem is solved before the z-subproblem)
converges to K if either F is surjective or p is strongly convex
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Comments on the two-block case

I The assumptions we made for problem (5) are apparently weaker than
those in original work of Gabay and Mercier6, where F is assumed to
be the identity operator and p is assumed to be strongly convex

I In Gabay and Mercier (1976), Theorem 3.1, only the convergence of
the primal sequence {(yk, zk)} is obtained while the dual sequence
{xk} is only proven to be bounded

I In Sun et al.7, a similar result to ours has been derived with the
requirements that the initial multiplier x0 satisfies Gx0 − b = 0 and
all the subproblems are solved exactly

6Gabay, D. and Mercier, B.: A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

7Sun, D.F., Toh, K.-C. and Yang, L.Q.: A convergent proximal alternating direction
method of multipliers for conic programming with 4-block constraints. SIAM J. Optim.
25(2), 882–915 (2015)
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Numerical Experiments

Solving dual linear SDP problems via the two-block ADMM with
step-length taking values beyond the standard restriction of (1 +

√
5)/2.

The aim is two-fold.

I As ADMM is among the useful first-order algorithms for solving SDP
problems, it is of importance to know to what extent can the
numerical efficiency be improved if the equivalence proved in this
paper is incorporated.

I As the upper bound of the step-length has been enlarged, it is also
important to see whether a step-length that is very close to the upper
bound will lead to better or worse numerical performance.
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Solving min
X
{〈C,X〉 | AX = b,X ∈ Sn+},

The dual of the above linear SDP is given by

min
Y,z

{
δSn+(Y )− 〈b, z〉 | Y +A∗z = C

}
,

A : Sn → Rm is linear map, b ∈ Rm and C ∈ Sn are given data.

ADMM has been incorporated in solving dual SDP for a few years

I ADMM with unit step-length was first employed in Povh et al.
[Comput. 78 (2006)] under the name of boundary point method for
solving the dual SDP (Later extended in Malick et al. [SIOPT 20
(2009)] with a convergence proof)

I ADMM was used in the software SDPNAL developed by Zhao et al.
[SIOPT 20 (2010)] to warm-start a semismooth Newton ALM for
dual SDP

I SDPAD by Wen et al.[MPC 2 (2010)]: ADMM solver on dual SDP
(used SDPNAL template)
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ADMM for dual SDP

Let σ > 0. The augmented Lagrangian function:

Lσ(S, z;X) = δSn+(S)− 〈b, z〉+ 〈X,S +A∗z − C〉+
σ

2
‖S +A∗z − C‖2

At the k-th step of the two-block ADMM:
Sk+1 = ΠSn+(C −A∗zk −Xk/σ),

zk+1 = (AA∗)−1(A(C − Sk+1)− (AXk − b)/σ),

Xk+1 = Xk + τσ(Sk+1 +A∗zk+1 − C),

where τ ∈ (0, 2). We emphasize again that this is in contrast to the usual
interval of (0, (1 +

√
5)/2).

34



Stopping Criteria: DIMACS8 rule
Based on relative residuals of priam/dual feasibility and complementarity

We terminate all the tested algorithms if

ηSDP := max{ηD, ηP , ηS} ≤ 10−6,

where

ηD = ‖A∗z+S−C‖
1+‖C‖ , ηP = ‖AX−b‖

1+‖b‖ , ηS = max
{‖X−ΠSn+

(X)‖
1+‖X‖ , |〈X,S〉|

1+‖X‖+‖S‖

}
with the maximum number of iterations set at 106

In addition, we also measure the duality gap:

ηgap :=
〈C,X〉 − 〈b, z〉

1 + |〈C,X〉|+ |〈b, z〉|

8http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/

error_report.html

http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/error_report.html
http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/error_report.html


Numerical Experiment: details

I Only consider the cases where τ ≥ 1

I We tested five choices of the step-length, i.e., τ = 1, τ = 1.618,
τ = 1.90, τ = 1.99 and τ = 1.999

I All these algorithms are tested by running the Matlab package
SDPNAL+ (version 1.0)9

I We test 6 categories of SDP problems

I In general it is a good idea to use a step-length that is larger than 1,
e.g., τ = 1.618, when solving linear SDP problems

I We can even set the step-length to be larger than 1.618, say τ = 1.9,
to get better numerical performance

9http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html
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Numerical result
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Conclusions

I For a class of convex composite programming problems, a block sGS
decomposition based (inexact) multi-block majorized (proximal)
ADMM is equivalent to an inexact proximal ALM.

I An inexact majorized indefinite proximal ALM framework.

I Provide a very general answer to the question on whether the whole
sequence generated by the two-block classic ADMM with τ ∈ (0, 2),
with one linear part, is convergent.

I One can achieve even better numerical performance of the ADMM if
the step-length is chosen to be larger than the conventional upper
bound of (1 +

√
5)/2.

I More insightful theoretical studies on the ADMM-type algorithms are
needed for achieving better numerical performance.

I The proximal ALM (with a large proximal term) interpretation of the
ADMM may explain why it often converges slow after some iterations.
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