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The multi-block convex composite optimization problem

» X, Zand Y; (i =1,...,s): finite-dimensional real Hilbert spaces
each endowed with (-,-) and || - ||, VV := )1 x -+ x Vs

» p: Y1 — (—00,400]: a (possibly nonsmooth) closed proper convex
function; f: Y — (—o00,+00): a continuously differentiable convex
function with Lipschitz gradient

» F* and G*: the adjoints of the given linear mappings F : X — ) and
g: X —=Z
> be Z, ce€ X: the given data

Too simple? It covers many important classes of convex
optimization problems that are best solved in this (dual) form!



A quintessential example

The convex composite quadratic programming (CCQP)

min {(z) + %@;, Qr) — {e,) | Az =1} (1)

» 1 : X — (—o0,+00]: a closed proper convex function
» Q: X — X: a self-adjoint positive semidefinite linear operator
The dual (minimization form):
nin_ {w*(yl) + %(yz, Qua) — (b,2) | y1 + Quo — A'z = C} (2)
1¥* is the conjugate of ¥, y1 € X, o € X, 2 € Z

» Many problems are subsumed under the convex composite quadratic
programming model (1).

» E.g., the important classes of convex quadratic programming (QP),
the convex quadratic semidefinite programming (QSDP)...



Convex QSDP

min {%(X, QX) ~ (€, X) | ApX = b, AX 2 by, X ¢ Si}
S™ is the space of n x n real symmetric matrices, S" is the closed convex
cone of positive semidefinite matrices in S, Q : S — S™ is a positive
semidefinite linear operator, C' € S™ is the given data, and Ag and A; are
linear maps from S™ to certain finite dimensional Euclidean spaces
containing bg and by, respectively

» QSDPNAL!: a two-phase augmented Lagrangian method in which
the first phase is an inexact block sGS decomposition based
multi-block proximal ADMM

» The solution generated in the first phase is used as the initial point to
warm-start the second phase algorithm

1Li, Sun, Toh: QSDPNAL: A two-phase augmented Lagrangian method for convex
quadratic semidefinite programming. MPC online (2018)



Penalized and Constrained Regression Models

The penalized and constrained (PAC) regression often arises in
high-dimensional generalized linear models with linear equality and
inequality constraints, e.g.,

. 1 2
— >

> & e R™" Ap e R"BX" A e R"T7*™ n e R™, bp € R"F and
br € R™ are the given data

> pis a proper closed convex regularizer such as p(x) = ||z||1
» A > (0 is a parameter.
» Obviously, the dual of problem (3) is a particular case of CCQP



The augmented Lagrangian function?

mm {p(yl) + fly) —(b,z) | Fr'y+ G z=c} or .néi% {®(w) | A"w = ¢}

yEY

Let o > 0 be the penalty parameter. The augmented Lagrangian function:

Lo(y,z;7) = ply1) + f(y) — (b, 2)

o (w)
+Sx,f*y + g*Z - C> +c_2r ||]:*y + g*Z - C||27
(2, A% w—c) I A*w—c|?

Vw=(y,2) EW:=YxZ, zeX

2Arrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened
assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and
Nonlinear Programming. Stanford University Press, Stanford, pp. 165-176 (1958)
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The augmented Lagrangian method® (ALM)

Lo(y,zz) =plyr) + fly) — (b, 2) + (&, F'y+ Gz — )+ S| Fy+G"z— |

Starting from z° € X, performs for k = 0,1, ...
(1) (¥, 25 < min £, (y, 2 ;%) (approximately)
S Y,z ~—

wk +1 w

(2) b= 2k + 7o (Fryhtt + G 2R — ¢) with 7 € (0,2)

Magnus Rudolph Hestenes Michael James David Powell
(February 13 1906 — May 31 1991) (29 July 1936 — 19 April 2015)

3Also known as the method of multipliers



ALM and variants

» ALM has the desirable asymptotically superlinear convergence (or
linearly convergent of an arbitrary order) property.

» While one would really want to min, . £, (y, ; z*) without modifying
the augmented Lagrangian, it can be expensive due to the coupled
quadratic term in y and z.

» In practice, unless the ALM subproblems can be solved efficiently, one
would generally want to replace the augmented Lagrangian
subproblem with an easier-to-solve surrogate by modifying the
augmented Lagrangian function to decouple the minimization with
respect to y and z.

» Such a modification is especially desirable during the initial phase of
the ALM when the local superlinear convergence phase of ALM has
yet to kick in.



ALM to proximal ALM* (PALM)

Minimize the augmented Lagrangian function plus
a quadratic proximal term:

k+1

1 ‘
wh !~ arg min £, (w; z*) + §||w—wk||%

w

» D = o' in the seminal work of Rockafellar
(in which inequality constraints are
considered). Note that D — 0 as 0 — oo,
which is critical for superlinear convergence.

> It is a primal-dual type proximal point
algorithm (PPA).

*Also known as the proximal method of multipliers
10



Modification and decomposition

The obvious modification with D = (\?Z — AA*) is generally too drastic
and has the undesirable effect of significantly slowing down the
convergence of the proximal ALM.

» D could be positive semidefinite (a kind of PPAs), i.e., the obvious
approach:

D =o(NT — AA*) = o(\2T — (F;G)(F;G)")

with A being the largest singular value of (F;G)

» D can be indefinite (typically used together with the majorization
technique)

» What is an appropriate proximal term to add so that

» The PALM subproblem is easier to solve

» Less drastic than the obvious choice

11



Decomposition based ADMM

One the other hand, decomposition based approach is available, i.e,

Y~ argmin{ L, (y, 2% 2%)}, 2~ argmin{L, (v, z; 2%)}
z

Y

The two-block ADMM

Allows 7 € (0, (14 1/5)/2) if the convergence of the full (primal &
dual) sequence is required (Glowinski)

The case with 7 =1 is a kind of PPA (Gabay + Bertsekas-Eckstein)
Many variants (proximal/inexact/generalized/parallel etc.)

v

v

v

v
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A part of the result

An equivalent property:
Add an appropriately designed proximal term to L, (y, z; z%), we
reduce the computation of the modified ALM subproblem to

sequentially updating y and z without adding a proximal term, which
is exactly the same as the two-block ADMM

» A difference: one can prove convergence for the step-length 7
in the range (0, 2) whereas the classic two-block ADMM only
admits (0, (1 +v/5)/2).

13



For multi-block problems

Turn back to the multi-block problem, the subproblem to y can still be
difficult due to the coupling of y1,...,ys

» A successful multi-block ADMM-type algorithm must not only
possess convergence guarantee but also should numerically perform
at least as fast as the directly extended ADMM (the Gauss-Seidel
iterative fashion) when it does converge.

14



Algorithmic design

» Majorize the function f(y) at y* with a quadratic function

> Add an extra proximal term that is derived based on the symmetric
Gauss-Seidel (sGS) decomposition theorem to update the sub-blocks
in y individually and successively in an sGS fashion

» The resulting algorithm:
A block sGS decomposition based (inexact) majorized multi-block
indefinite proximal ADMM with 7 € (0,2), which is equivalent to an
inexact majorized proximal ALM

15



An inexact majorized indefinite proximal ALM

Consider

min, O(w) == p(w) + h(w) st. A'w=c,

» The Karush-Kuhn-Tucker (KKT) system:
0 € dp(w) + Vh(w) + Az, A'w—c=0
> The gradient of & is Lipschitz continuous, which implies a self-adjoint
positive semidefinite linear operator 3j : W — W, such that for any
w,w €W,

h(w) < h(w,w') := h(w") + (Vh(w'),w — w') + %Hw - U/H%h?

which is called a majorization of h at w'.
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Prerequisites

One definition and one assumption

Let 0 > 0. The majorized augmented Lagrangian function is defined, for
any (w,z,w') € Wx X x W, by

~ ~

Lo (ws (. 0)) = p(w) + hw, o) + (A'w = e.2) + 2| A4"w = c||”.

Assumption

The solution set to the KKT system is nonempty and D : W — W is a
given self-adjoint (not necessarily positive semidefinite) linear operator
such that

1~ 1~
» D is not necessarily to be positive semidefinite!
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Algorithm: an inexact majorized indefinite proximal ALM

Let {er} be a summable sequence of nonnegative numbers. Choose an
initial point (2% w®) € X x W. For k=0,1,...,
1 Compute

—~ 1
wht! ~ arg min {ﬁa(w; (", w*)) + = [lw — wk”%}
wew 2

such that there exists dj, satisfying ||d*| < e and
d* € 0Ly (W (%, wh)) + DT — wh)
2 Update 2F*t! := zF 4 7o (A* w1 — ¢) with 7 € (0,2)

Theorem
The sequence {(z*,w")} generated by the above Algorithm converges to
a solution to the KKT system.

18



Multi-block: Majorization and decomposition

The gradient of [ is Lipschitz continuous =- there exists a self—adJomt
linear operator S/ : Y — Y such that £/ = 0 and for any v,y € Y,

F) < F,) = F@) +(VFW)y =) + Sy = V12,

» Denote for any y € ),
Y<i = (Y15--5¥i-1)  and  ys; = (Yiy15---5Ys)

» Decompose S/ as

2, = 1,
sr_ | Gl = - S
&) &) - 2

Withi{j:yj%yz‘, VI<i<j<s

10



Basic assumptions / Majorized augmented Lagrangian

(a) The self-adjoint linear operators S; : V; — V;,i =1, ..., s, are chosen
such that

1SS 4 o FiF;f +8; = 0 and S := Diag(Sy,...,Ss) = —1%/
(b) The linear operator G is surjective;

(c) A nonempty solution set to the KKT system:

0€ (8p£)y1)> +Vf(y)+Fz, Gr—b=0, F'y+Gz=c

(d) {ér} is a summable sequence of nonnegative real numbers

Let o > 0. The majorized augmented Lagrangian function:

Lo(y, 2 (z,9) = plw) + fy,y) — (b, 2)
HFy+G* 2 —c,z) + 5| Fy+ Gz — c|?

20



The algorithm sGS-imPADMM

An inexact block sGS based indefinite Proximal ADMM

(29,4°,20) € X xdomp x Yo x ---x Vs x Z. For k=0,1,...,

1 Compute for

1 N 1

k+3 : k+3 1
v~ argmin{ o (v e vy 2 ) + Gl — I

Yyi€Yi
2 Compute for
k Ak k+1/2 1
yt & argnynn{ﬁa(ygﬂl, R AL CLR T S Sl = yf\liy}
Yi€Vi
3 Compute

! x arg Igin {Lo ("t 25 (2%, 47)) )
z€

4 Compute zF ! .= 2F 4 ro(Fryktl 4 G2kl —¢), |1 € (0,2)

21



Criteria for inexact solutions in sGS-imPADMM

. . . k+3 .
1 Fori=s,...,2, the approximate solution y; ?* is chosen such that
there exists 0F satisfying ||6¥| < & and

< ~ k+i  k+3 k+3%
0f €0y Lo(vhi 1,y iusicr 25 @5 0M) + Sily; 2 — o)

2 Fori=1,...,s, the approximate solution yf“ is chosen such that
there exists 0¥ satisfying ||0¥|| < & and

k Aokl k12 koo kK k+1 _  k
o; €3yi£a(y§_1vyi+ ’?JZH{ 20 (2 y )) +Si(yi+ - )
3 The approximate solution z¥*! is chosen such that ||v*|| < & with

PR = VLo (yh M 2k, yF)
= GaF — b4 oG(FryFtl + g+ —¢)
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Comments on the sGS-imPADMM algorithm

» The sGS-imPADMM is a versatile framework, one can implement it in
different routines
» We are more interested in the previous iteration scheme:

» The theoretical improvement

» The practical merit it features for solving large scale problems
(especially when the dominating computational cost is in performing
the evaluations associated with the linear mappings G and G*)

A particular case in point is the following problem:

min { () + %(m, Qr) — {e,3) | Avz = by, Aoz > b},

reX

Q, ¥, and c are as the previous; Ay : X — Z; and Ay : X — 25 are the
given linear mappings, and b = (by;by) € Z := Z; X 25 is a given vector.
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By introducing a slack variable 2’ € Z5, one gets

. 1 Al 0 T\ ’
e {ve e geon —en | (3 7) (7) =v # <0},

The corresponding dual problem in the minimization form:

min {p(y) + %(y’, Q') — (b, 2) ‘ y+ <%> v- (J‘(l)’{ AI2> T ((C))}

with y := (u,v) € X x 23, p(y) = p(u,v) = ¥ (u) + d+(v), and J5 is the
indicator function of the nonnegative orthant in Z,.
> It is clear that with a large number of inequality constraints, the
dimension of z can be much larger than that of ¢/.

» For such a scenario, the adopted iteration scheme is more preferable
since the more difficult subproblem involving z is solved only once in
each iteration.

24



inexact block sGS decomposition

Define H := S/ + o FF* + 8 = Hd+7-t + M7 with
Hgq := Diag(Hi1, ..., Hss), Hii : Z , +oFiFF+S; and

0 Hiz -+ His
Hu = 0 0 : , ’HU:i\:{]—FO’EI“;
: : H(s—l)s

For convenience, we denote for each k > 0, 5; =41, ok = (oF 5,% .
and 6% := (6F,... o)
Define the sequence {A*} € ) by

-3 Ug

AP =6+ H, Hy (0% - %)
Moreover, we can define the linear operator
H = H,H H,

25



Result by the block sGS decomposition theorem °

The iterate **1 in Step 2 of sGS-imPADMM is the unique solution to a
proximal minimization problem given by

~ 1
k41 _ . k. k .k Dl k2 Ak
! = axgmin { Zo(y, 5 (40 + 5l — 013 (A% )

strongly convex

Moreover, it holds that
H+H = (Ha+ Ha)H  (Ha+HE) = 0.

> Recall that # := S/ + 6 FF* + 8
» Linearly transported error: A*F = §F 4 Huﬂgl(ék — %)

5X.D. Li, D.F. Sun, and K.-C Toh, A block symmetric Gauss-Seidel decomposition

theorem for convex composite quadratic programming and its applications, MP online
[DOI: 10.1007/s10107-018-1247-7]
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The equivalence property

Recall that W =) x Z. Define &, : W — W by

~

~ »f
Y =
= (7o)

For w = (y; 2z) and w’ = (v/; 2’), denote

Lo(w; (x,w) = Lo (y, 2 (x,9/))
Define the error term

Ak .— AF _ FGHGG) LA — Ak —GaF L —aF)) e Y
with the convention that

=20 — 1o (F*y° + G20 —¢),
Y= —b+Gr ! +0G(Fy +G*2" —¢)

27



The equivalence property

Define the block-diagonal linear operator

77 * *\—1 *
T::<S+’H+J}"Q(Qg) GF O) YTy

Theorem
Let {(x* w*)} with w* := (y*; 2*) be the sequence generated by
sGS-imPADMM. Then, for any k > 0, it holds that

(i) the linear operators T, A and ), satisfy
T=-1%, and 35,4+ 0AA*+T = 0;
(i)
~ 1
w*t &~ arg min {L’g (w; (2%, w*)) + S [jw — wk||%—}
weWw 2
in the sense that (AF;~v%) € 0, Ly ((w*; (2%, w*)) + T (w* — wk) and
(A%, ~%)|| < &k with {&}.} being a summable sequence of nonnegative
numbers.

28



sGS-imPADMM convergence

One can readily get the following convergence theorem

Theorem

The sequence {(z*,y*, 2¥)} generated by the Algorithm converges to a
solution to the KKT system of the problem. Thus, {(y*,2*)} converges to
a solution to this problem and {x*} converges to a solution of its dual.

209



Two-block case

Let Y = )4 and f be vacuous, i.e.,
min{p(y) — (b,2) | F'y + G 2 = c} (5)

» sGS-imPADMM without proximal terms is reduced to a two-block
ADMM

> Assume that G is surjective and that the KKT system of this problem
admits a nonempty solution set K

» This two-block ADMM or its inexact variants with 7 € (0,2) (in the
order that the y-subproblem is solved before the z-subproblem)
converges to K if either F is surjective or p is strongly convex

20



Comments on the two-block case

» The assumptions we made for problem (5) are apparently weaker than
those in original work of Gabay and Mercier®, where F is assumed to
be the identity operator and p is assumed to be strongly convex

» In Gabay and Mercier (1976), Theorem 3.1, only the convergence of
the primal sequence {(¢*, 2¥)} is obtained while the dual sequence
{z*} is only proven to be bounded

» In Sun et al.”, a similar result to ours has been derived with the
requirements that the initial multiplier 2V satisfies Gz — b = 0 and
all the subproblems are solved exactly

Gabay, D. and Mercier, B.: A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Comput. Math. Appl. 2(1), 17-40 (1976)

"Sun, D.F., Toh, K.-C. and Yang, L.Q.: A convergent proximal alternating direction
method of multipliers for conic programming with 4-block constraints. SIAM J. Optim.
25(2), 882-915 (2015)
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Numerical Experiments

Solving dual linear SDP problems via the two-block ADMM with

step-length taking values beyond the standard restriction of (1 + 1/5)/2.
The aim is two-fold.

» As ADMM is among the useful first-order algorithms for solving SDP
problems, it is of importance to know to what extent can the
numerical efficiency be improved if the equivalence proved in this
paper is incorporated.

> As the upper bound of the step-length has been enlarged, it is also
important to see whether a step-length that is very close to the upper
bound will lead to better or worse numerical performance.

k¥l



Solving m%n{(C,X) | AX =0, X €S},

The dual of the above linear SDP is given by

19}3{581(5/) —(b,2) | Y + A"z = C},

A :S" — R™ is linear map, b € R™ and C € S™ are given data.
ADMM has been incorporated in solving dual SDP for a few years

» ADMM with unit step-length was first employed in Povh et al.
[Comput. 78 (2006)] under the name of boundary point method for
solving the dual SDP (Later extended in Malick et al. [SIOPT 20
(2009)] with a convergence proof)

» ADMM was used in the software SDPNAL developed by Zhao et al.
[SIOPT 20 (2010)] to warm-start a semismooth Newton ALM for
dual SDP

» SDPAD by Wen et al.[MPC 2 (2010)]: ADMM solver on dual SDP
(used SDPNAL template)
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ADMM for dual SDP

Let 0 > 0. The augmented Lagrangian function:
Lo(8.2X) = 833(S) = (b,2) + (X, S + A"z = C) + Z||S + A"z = C|”
At the k-th step of the two-block ADMM:

SHH = Tlgn (C — A*2F — XF/0),
= (AAT)THAC - S — (AXF —b) /o),
Xkl = XF 4 ro(SFH 4 A A - O),

where 7 € (0,2). We emphasize again that this is in contrast to the usual
interval of (0, (1 ++/5)/2).
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Stopping Criteria: DIMACS? rule

Based on relative residuals of priam/dual feasibility and complementarity

We terminate all the tested algorithms if

nspp = max{np,np,ns} < 107°
where

_ lAtz4s—cl | |AX-b] :max{“X‘HS’i(X”' |(X.5)] }
"D rer P T T oS THIXT 2 TRIX+IST

with the maximum number of iterations set at 10°
In addition, we also measure the duality gap:

CX) — (b,2)
e T [(CL XD + 15, 2)]

®http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/
error_report.html


http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/error_report.html
http://dimacs.rutgers.edu/archive/Challenges/Seventh/Instances/error_report.html

Numerical Experiment: details

» Only consider the cases where 7 > 1

» We tested five choices of the step-length, i.e., 7 =1, 7 = 1.618,
7=1.90, 7=1.99 and 7 = 1.999

> All these algorithms are tested by running the Matlab package
SDPNAL+ (version 1.0)°

» We test 6 categories of SDP problems

> In general it is a good idea to use a step-length that is larger than 1,
e.g., 7 = 1.618, when solving linear SDP problems

> We can even set the step-length to be larger than 1.618, say 7 = 1.9,
to get better numerical performance

*http://www.math.nus.edu.sg/~mattohkc/SDPNALplus.html
26
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Numerical result

Iteration number ratio (compared to ADMM(1))

Efficien

cy: ratio of iteration numbers
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Conclusions

» For a class of convex composite programming problems, a block sGS
decomposition based (inexact) multi-block majorized (proximal)
ADMM is equivalent to an inexact proximal ALM.

» An inexact majorized indefinite proximal ALM framework.

» Provide a very general answer to the question on whether the whole
sequence generated by the two-block classic ADMM with 7 € (0, 2),
with one linear part, is convergent.

» One can achieve even better numerical performance of the ADMM if
the step-length is chosen to be larger than the conventional upper
bound of (1 ++/5)/2.

> More insightful theoretical studies on the ADMM-type algorithms are
needed for achieving better numerical performance.

» The proximal ALM (with a large proximal term) interpretation of the
ADMM may explain why it often converges slow after some iterations.
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