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SDP and least squares SDP
Main ingredients
m A Danskin-type theorem
m Inexact APG
m Inexact block symmetric Gauss-Seidel iteration with a non-smooth
block
Inexact accelerated block coordinate gradient descent method
for composite problem with 2 non-smooth terms and a multi-
block coupled smooth term
Inexact accelerated block coordinate descent (ABCD) method
for dual SDP
Numerical experiments for LSSDP



SDP

SDP with an additional polyhedral set and inequalities:

min (C, X)

st. Ap(X)=bp, AIX-5=0,XeS8S!, XeP,seck
P={WeS": L<W<<U})K={weR™ : [ <w<u}
Applying a proximal point algorithm (PPA) to solve above SDP:

(XFHL 841 = argmin (C, X) + 51(|1X = XF|2 + [|s — 5[2)

s.t. AE(X) =bg, A;I X —s=0, X € S_T,f,
XeP, sek.



Least squares semidefinite programming (LSSDP)

LSSDP includes PPA subproblem as a particular case: Given G, g,

(P) min X —GI? + Lls — gl

s.t. .AE(X):bE, A]X—SZO,XES_?_,XE’P,SEIC.
The dual of (P) is given by
(D) min F(Z,v,S,yE,yr)

1= 0p(—Z) + 0 (—v) + ds7.(5)

—(bg, yr) + 3 Aye + Aiyr + S+ Z+ G2 + Lo — v + g2

+constant

d¢(+) = indicator function over C; d¢(u) = 0 if u € C; oo otherwise

0¢(+) is the conjugate function of dc defined by

d¢(+) = stuepc<-, w).



Existing first-order methods for (D)

m Block coordinate descent (BCD) type method [Luo,Tseng,...]
with iteration complexity of O(1/k).

m Accelerated proximal gradient (APG) method [Nesterov, Beck-
Teboulle] with iteration complexity of O(1/k?).

m Accelerated randomized BCD-type method [Beck, Nesterov,
Richtarik,...] with iteration complexity of O(1/k?).



Elimination of a block via a Danskin-type theorem

Consider block vectors © = (x1,x2,...,25) € X := X1 x Xy - - x X,
and

min{p(z1) + ¢(2) + ¢(z,z) | z € Z, x € X}

— [min{p(z1) + /(x) | @ € X} |

where p(+), ¢(+) are convex functions (possibly nonsmooth), and
f(z) = min{p(2) + ¢(z,2) | z € Z}
z(x) = argmin{. ..}

Assume that ¢, ¢ satisfy the conditions in the next theorem, then
f has Lipschitz continuous gradient V f(z) = V,¢(z(x), x).



A Danskin-type theorem

¢ : Z — (—00,00] is a closed proper convex function;

¢(-,+) : Z x X — R is a convex function;

¢(z,-) : 2 — R is continuously differentiable on © for each z;
V:é(z,x) is continuous on dom(p) x €.

Consider f : Q — [—00, +00) defined by

f@) = i {e(:) + 6(z,2)}, v e 1)

Condition: The minimizer z(x) is unique for each z and is bounded
on a compact set.



A Danskin-type theorem

(i) If 3 an open neighborhood N, of x such that z(-) is bounded
on any compact subset of N, then the convex function f is
differentiable on N, and

Vi) =Vep(z(2)),2) Va' € N,.

(i) Suppose that z(-) is bounded on any nonempty compact subset
of Z. Assume that for any z € dom(p), Vz¢(z,-) is Lipschitz
continuous on Z and 3 X = 0 such that for all x € X and
z € dom(yp),

Y=H VHE P oz 1)

Then, V f(-) is Lipschitz continuous on X with the Lipschitz
constant ||X||2 (the spectral norm of ¥) and for any x € X,

2= VGed;,f(a),

where 02 f(x) denotes the generalized Hessian of f at x. .



An inexact APG (accelerated proximal gradient)

Consider
min{F(z) :==p(z) + f(z) |z € X'}

with [V f(z) = Vf(y)| < Lz -yl Vaz,yeX.

Algorithm. Input y! = 2° € dom(p), t1 = 1. Iterate
1. Find an approximate minimizer

aFmargmin{p(y) + £ (") + (VI ("), y— o) + %<y—y’“, Hily—v") }
yeX

where H. > 0 is an a priori given linear operator.

I4+4/1+422 _
2. Compute tg41 = % Yt =2k + (M) (zk — 2F=1).




An inexact APG

Consider the following admissible conditions
F(z*) < p(a®) + f(y*) + (VYY) a* = y*) + 5" — ¥, Hk(w’“ ~y")

VI*) + Hj(ah — yF) +4F = 6% with |H, ~125k) <
(") (z* —y¥) | | \ftk

where v* € Op(x*) = the set of subgradients of p at z¥,
{er} is a nonnegative summable sequence. Note t;, ~ k/2 for k
large.

Theorem 2 (Jiang-Sun-Toh)

Suppose the above conditions hold and Hj,_1 = H = 0 for all k.
Then

0 < F(a") — F(a") < (V7 + &)’

4
(k+1)2

where T = §||z° — z*||3, , & = Z?:l €j



An inexact APG

Apply inexact APG to
min{F(z) := p(z1) + f(x) | x € X'}.

Since V f(-) is Lipschitz continuous, 3 an symmetric and PSD linear
operator @ : X — X such that

Q= M, YMedf(z),VreX

and Q;; = 0 for all 3.
Given yk, we have forall z €¢ X

F(@) < ale) = FGN) +(VFGR), o =) + o — o, O — ).

APG subproblem: need to solve a nonsmooth QP of the form
min{p(z1) + qx(x)}, == (z1,22,...,25)
TeX

which is not easy to solve!

Idea: add an additional proximal term to make it easier!
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An inexact block symmetric Gauss-Seidel (SGS) iteration

Given positive semidefinite linear operator Q such that

Qi1 Q2 -+ Qi T

0 Qly Q2 -+ Qo x2
xr = . . . . .

Ts Q;s s Qs Ts

where Q;; > 0. Consider the following block decomposition:

0 Q2 -+ Qi z1
) . 2
Ur =
Qs—l,s
0 Ts

Then Q =U*"+D + U, where Dz = (Qq121,. .., QssTs).
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An inexact block symmetric Gauss-Seidel (sGS) iteration

Consider the convex quadratic function:
1
Q(:L') = 5(1" Q:L'>—<’I“, l'), IL‘:(ﬂfl,...,lL‘s)EX.

Let p: X1 — (—o00,+0o0] be a given closed proper convex function.
Define

T = UD'u*

Let y € X be given. Define

‘ 1
T ;= arg min {p(:cl) +q(z)+ ||z — ?JH%’} (2)
TeEX 2

The quadratic term has H := Q+ 7 = (D +U)D~Y(D +U*) = 0.
(2) is easier to solve!
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An inexact block symmetric Gauss-Seidel (sGS) iteration

Theorem 3 (Li-Sun-Toh)
2, define

Giveny. Fori=s,...,

= argmin{ p(y1) + ¢(y<i—1, Zi, T>i41)

~
xXr; =
Zs

_ = i—1 ~
= Qiil(ri + 0; — 23:1 Q;fwj - ijiﬂ Qijxj)

~

— (di, zi) }

computed in the backward GS cycle. The optimal solution x™ in

(2) can be obtained exactly via

af = argming {p(z1) +q(z1,T>2) — (3], 1)}
af = argmin, {p(z7) +Q($Z- 1’1’i>/$\2i+1) — (0, zi)}

i
Q'El(ri + 5+ Z ]Z ] - Zj:z’—&-l QU/'T\])

where LIZ‘:_ i=1,2,...,s, is computed in the forward GS cycle.

Very useful for multi-block ADMM! Reduces to classical block sGS
if p()=0 "



An Inexact accelerated block coordi

min{p(z1) + ¢(2) + ¢(z,z) | z € Z, z € X}

Algorithm 2. Input y' = 2% € dom(p) x Xy x -+ x X, t1 = 1.
Let {ex} be a nonnegative summable sequence. lterate
1. Suppose 55, 371“ e X, 1 =1,...,s, with ;57f = 5]1“, are error
vectors such that

maxc{ | 6° |, 19%]|} < ex/(V2).
2¥ = arg min {SO(Z) + gb(z,yk)} (elimination via Danskin)

. 1 5
2" = argmin {p(z1) + au(@) + 5llz = ¥I% — (AG" %), ) }

T

(inexact sGS)

1+4/1+4¢2 — -
2. Compute ty = —5—=, " = ok + (—i‘;;)(wk — k1),
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An Inexact accelerated block coordi

Theorem 4

Let H=Q+ T and B =2|[D~Y2|| + |H'/2||. The sequence
{(2*,2*)} generated by Algorithm 2 satisfies

4
(k+1)2

0 < F(a*) — F(a*) < (V7 + &)’

where 7 = L[a® — 2*|3, & = X5 ¢;.
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Inexact ABCD for (D): version 1

Step 1. Suppose5 5 € R™E, 5’“ 5 € R™ satisfy

(Zk,vk)

03

Ui
Sk

k
Yr

vk

Step 2. Set ty 1 =

\/_t

. Sk ~k ~k —
argman’U{F(Z,U,S U5, 1)} (Projection onto P, K)
argminyE{F(Zk,Uk, Sy, k) — <SZ yr)} (Chol or CG)
argminyI{F(Zk,vk,gk,g//\%,y[) - (3’; yr)} (Chol or CG)
argming{ F(Z*,v*, 5,95, 9F)}  (Projection onto S%)
argminyI{F(Zk,vk, Sk gk yr) — (oF, yr)} (Chol or CG)
argminyE{F(Zkﬂvka SkayE7yII€) - <5AE' yE>} (ChOI or CG)

14+/11422
; nd B, = J“— Compute

(SEHLGEFL G = (14 B) (S%, yh b)) — Br(SE 1 gk L yh ).

17



Inexact ABCD for (D): version 2

We can also treat (S,yg,yr) as a single block and use a semis-
mooth Newton-CG (SNCG) algorithm introduced in [Zhao-Sun-Toh]
to solve it inexactly. Choose 7 = 1075,

Step 1. Suppose 6’“ € RME, (5’1€ € R™ are error vectors such that

max{[|5 ], 7} <

\/_t

Compute

(ZF k) = argmin{F(Z,v,gk,yj%,ﬂ’f)} (Projection onto P, K)

0
F Z’“,vk,S,yE,yz 4z yE_@vk 2
(Skay%7y§) - argmin ( . ) . 2 H EH
Sy 1 _<6Ea yE> - <5I’ y1>
(SNCG)

2
Step 2. Set tj 1y = —V Mk 5 —

tk+1 Compute

(Sk+1 ~k+17g5€+1) (1+/8k)(sk7yEvyI) _Bk(sk 1’y§ 17yl]€ 1)‘
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Numerical experiments

m We compare the performance of ABCD against BCD, APG and
eARBCG (an enhanced accelerated randomized block coordi-
nate gradient method) for solving LSSDP.

m We test the algorithms on LSSDP problem (P) by taking
G = —C, g = 0 for the data arising from various classes of
SDP of the form (SDP).

10



SDP problem sets

Let P = {X € 8" | X > 0}.
m SDP relaxation of a binary integer nonconvex quadratic (BIQ)

programming:

min  3(Q,Y) + (¢, z)
st. diag(Y)—2=0, a=1,

X:[Y x]esz;, XeP
xr «

m SDP relaxation 0 (G) of the maximum stable set problem of
a graph GG with edge set &:

max{(ee’, X) | X;; =0,(i,5) €&, (I, X) =1, X € ST, X € P}
m SDP relaxation of clustering problems (RCPs):

min{<W, I-X)|Xe=e (I, X)= K, X eS”,XEP}
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SDP problem sets

m SDP arising from computing lower bounds for quadratic assign-
ment problems (QAPs):

v:=min (BRAY)
st YL Yi=I ([LYU)y=¢; V1I<i<j<n,
(B,YU)=1 V1<i<j<mn,
YeS’ YeP
where P = {X € 8" | X > 0}.

m SDP relaxation of frequency assignment problems (FAPs):

21



SDP problem sets

m In order to get tighter bound for BIQ, we may add some valid
inequalities to get the following problems:

min  1(Q, Y) + (¢, z)
: Y x n
s.t. d1ag(Y)—ft—0,a—1,X—[ng a]ESJr,XEP

0<-Yj+x, <1, 0<-Y,;+z;<1
OSIL‘Z'—ij—}/i]’Sl, Vi<i<yj, j<n-1

We call the above problem an extended BIQ (exBIQ).
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Numerical results

Stop the algorithms after 25,000 iterations, or

n= ma’X{Tlla’r]Q?T/?)} < 10_67

where 77 = ||bf;|ﬁgﬁ(“’ Ny = lgﬁﬁ))(/\l\lv N3 = ||51—+«‘|‘|Isﬁ(||
X = HSQ(AE?JE+A?:UI+Z+G), Y =p(Apye+Ajyr+S+G),
s = Ilx(g — 1)
problem set (No.) \ solver | ABCD | APG | eARBCG | BCD
6. (64) 64 | 64 64 11
FAP ( 7) 7 7 7 7
QAP (95) 9%5 | 95 24
BIQ (165) 165 | 165 | 165 65
RCP (120) 120 | 120 | 120 | 108
exBIQ (165) 165 | 141 | 165 10
Total (616) 616 | 592 | 545 | 201
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Detailed numerical results

Problem | 'E MM n time (hour:minute)
P.K
ABCD | APG | eARBCG | ABCD | APG | eARBCG
18945, 0;
1tc.2048 " 1987987 ]9.47 | 7:35 | 22:18 | 31:38
2048
2118, 05
fap25 1927 181719.07 | 0:03]0:11 ] 0:13
2118
1393, 0;
nug30 9.67]9.9.7| 146 | 0:10 | 1:12 | 7:21
900
1393, 0;
tho30 9.9-79.9-7| 1.6:6 | 0:13 | 1:17 | 3:51
900
501,0.37M;
exghasl | 1087166997 | 0:24]2:26 | 4:00
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Performance profiles

Performance Profile (64 8,, 7 FAP, 95 QAP, 165 BIQ, 120 RCP, 165 exBIQ problems) tol = 1e-06

1 P - — : - - -
.-

(100y)% of problems

f I I I 1 I I
1 2 3 4 5 6 7 8 9 10
at most x times of the best

Figure: Performance profiles of ABCD, APG, eARBCG and BCD on [1, 10]
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Higher accuracy results for ABCD

Number of problems which are solved to the accuracy of 1076, 107,
10~8 by the ABCD method.

problem set (No.) | 1076 | 1077 | 10~8

6. (64) 64 | 58 | 52
FAP ( 7) 7 7 7
QAP (95) 9% | 95 | 95
BIQ (165) 165 | 165 | 165
RCP (120) 120 | 120 | 118

exBIQ (165) | 165 | 165 | 165
Total (616) 616 | 610 | 602
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Tolerance profiles of the ABCD

Tolerance Profile (648,, 7 FAP, 95 QAP, 165 BIQ, 120 RCP, 165 exBIQ problems)
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at most x times of tol = 1e-6

Figure: Tolerance profiles of ABCD on [1,10]
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Thank you for your attention!
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