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Abstract This note serves two purposes. Firstly, we construct a counterexample to
show that the statement on the convergence of the alternating direction method of
multipliers (ADMM) for solving linearly constrained convex optimization problems in
a highly influential paper by Boyd et al. (Found TrendsMach Learn 3(1):1–122, 2011)
can be false if no prior condition on the existence of solutions to all the subproblems
involved is assumed to hold. Secondly, we present fairly mild conditions to guarantee
the existence of solutions to all the subproblems of the ADMM and provide a rigorous
convergence analysis on theADMMwith a computationallymore attractive large step-
length that can even exceed the practically much preferred golden ratio of (1+√

5)/2.
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1 Introduction

Let X , Y and Z be three finite-dimensional real Euclidean spaces each endowed with
an inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let f : Y → (−∞,+∞] and
g : Z → (−∞,+∞] be two closed proper convex functions and A : X → Y and
B : X → Z be two linear maps. The effective domains of f and g are denoted by
dom f and dom g, respectively. Consider the following 2-block separable convex
optimization problem:

min
y∈Y,z∈Z

{
f (y) + g(z) s.t. A∗y + B∗z = c

}
, (1)

where c ∈ X is the given data and the linear maps A∗ and B∗ are the adjoints of A
and B, respectively.

Let σ > 0 be a given penalty parameter. The augmented Lagrangian function of
problem (1) is defined by, for any (x, y, z) ∈ X × Y × Z ,

Lσ (y, z; x) := f (y) + g(z) + 〈x,A∗y + B∗z − c〉 + σ
2 ‖A∗y + B∗z − c‖2 . (2)

Choose an initial point (x0, y0, z0) ∈ X × dom f × dom g and a step-length
τ ∈ (0,+∞). The classical alternating direction method of multipliers (ADMM)
of Glowinski and Marroco [9] and Gabay and Mercier [6] then takes the following
scheme for k = 0, 1, . . .,

⎧
⎪⎪⎨

⎪⎪⎩

yk+1 = argmin
y

Lσ (y, zk; xk),

zk+1 = argmin
z

Lσ (yk+1, z; xk),

xk+1 = xk + τσ (A∗yk+1 + B∗zk+1 − c).

(3)

The convergence analysis for the ADMM scheme (3) under certain settings was
first conducted by Gabay and Mercier [6], Glowinski [7] and Fortin and Glowinski
[5]. One may refer to [1] and [3] for recent surveys on this topic and to [8] for a note
on the historical development of the ADMM.

In a highly influential paper1 written by Boyd et al. [1], it was asserted [Section
3.2.1, Page 17] that if f and g are closed proper convex functions [1, Assumption 1]
and the Lagrangian function of problem (1) has a saddle point [1, Assumption 2],
then the ADMM scheme (3) converges for τ = 1. This, however, turns to be false
without imposing the prior condition that all the subproblems involved have solutions.

1 It has been cited 2,229 times as captured by Google Scholar as of July 8, 2015.
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To demonstrate our claim, in this note we shall provide a simple example (see Sect.
3) with the following four nice properties:

(P1) Both f and g are closed proper convex functions;
(P2) The Lagrangian function has infinitely many saddle points;
(P3) The Slater constraint qualification (CQ) holds; and
(P4) The linear operator B is nonsingular.

Note that our example to be constructed satisfies the two assumptions made in [1],
i.e., (P1) and (P2), and the two additional favorable properties (P3) and (P4). Yet, the
ADMM scheme (3) even with τ = 1 may not be well-defined for solving problem
(1). A closer examination of the proofs given in [1] reveals that the authors mistakenly
took for granted the existence of solutions to all the subproblems in (3) under (P1) and
(P2) only. Here we will fix this gap by presenting fairly mild conditions to guarantee
the existence of solutions to all the subproblems in (3). Moreover we shall analyze the
convergence of the ADMM with a computationally more attractive large step-length
that can even be bigger than the golden ratio of (1 + √

5)/2.
The remaining parts of this note are organized as follows. In Sect. 2, we first present

some necessary preliminary results from convex analysis for later discussions and
then provide conditions under which the subproblems in the ADMM scheme (3) are
solvable, or even admit bounded solution sets, so that this scheme is well-defined. In
Sect. 3, based on several results established in Sect. 2, we construct a counterexample
that satisfies (P1)–(P4) to show that the conclusion on the convergence of ADMM
scheme (3) in [1, Section 3.2.1] can be false without making further assumptions. In
Sect. 4, we establish some satisfactory convergence properties for the ADMM scheme
(3) with a computationally more attractive large step-length that can even exceed the
golden ratio of (1+ √

5)/2, under fairly weak assumptions. We conclude this note in
Sect. 5.

2 Preliminaries

LetU be a finite dimensional real Euclidean space endowedwith an inner product 〈·, ·〉
and its induced norm ‖·‖. LetO : U → U be any self-adjoint positive semidefinite lin-
ear operator. For any u, u′ ∈ U , define 〈u, u′〉O := 〈u,Ou′〉 and ‖u‖O := √〈u,Ou〉
so that

〈u, u′〉O = 1
2

(‖u‖2O + ‖u′‖2O − ‖u − u′‖2O
) = 1

2

(‖u + u′‖2O − ‖u‖2O − ‖u′‖2O
)
.

(4)
For any given setU ⊆ U , we denote its relative interior by ri(U ) and define its indicator
function δU : U → (−∞,+∞] by

δU (u) :=
{
0, if u ∈ U,

+∞, if u /∈ U.

Let θ : U → (−∞,+∞] be a closed proper convex function. We use dom θ and
epi(θ) to denote its effective domain and its epigraph, respectively. Moreover, we use
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∂θ(·) to denote the subdifferential mapping [11, Section 23] of θ(·), which is defined
by

∂θ(u) := {v ∈ U | θ(u′) ≥ θ(u) + 〈v, u′ − u〉 ∀ u′ ∈ U}, ∀ u ∈ U . (5)

It holds that there exists a self-adjoint positive semidefinite linear operator Σθ : U →
U such that for any u, u′ with v ∈ ∂θ(u) and v′ ∈ ∂θ(u′),

〈v − v′, u − u′〉 ≥ ‖u − u′‖2Σθ
. (6)

Since θ is closed, proper and convex, by [11, Theorem 8.5] we know that the recession
function [11, Section 8] of θ , denoted by θ0+, is a positively homogeneous closed
proper convex function that can be written as, for an arbitrary u′ ∈ dom θ ,

θ0+(u) = lim
ρ→+∞

θ(u′ + ρu) − θ(u′)
ρ

, ∀ u ∈ U .

The Fenchel conjugate θ∗(·) of θ is a closed proper convex function defined by

θ∗(v) := sup
u∈U

{〈u, v〉 − θ(u)
}
, ∀ v ∈ U .

Since θ is closed, by [11, Theorem 23.5] we know that

v ∈ ∂θ(u) ⇔ u ∈ ∂θ∗(v). (7)

The dual of problem (1) takes the form of

max
x∈X

{
h(x) := − f ∗(−Ax) − g∗(−Bx) − 〈c, x〉}. (8)

The Lagrangian function of problem (1) is defined by

L(y, z; x) := f (y) + g(z) + 〈x,A∗y + B∗z − c〉, ∀ (y, z, x) ∈ Y × Z × X ,

(9)
which is convex in (y, z) ∈ Y ×Z and concave in x ∈ X . Recall that we say that the
Slater CQ for problem (1) holds if

{
(y, z) | y ∈ ri(dom f ), z ∈ ri(dom g), A∗y + B∗z = c

} �= ∅.

Under the above Slater CQ, from [11, Corollaries 28.2.2 and 28.3.1] we know that
(ȳ, z̄) ∈ dom f × dom g is a solution to problem (1) if and only if there exists a
Lagrangian multiplier x̄ ∈ X such that (x̄, ȳ, z̄) is a saddle point to the Lagrangian
function (9), or, equivalently, (x̄, ȳ, z̄) is a solution to the following Karush-Kuhn-
Tucker (KKT) system

− Ax ∈ ∂ f (y), −Bx ∈ ∂g(z) and A∗y + B∗z = c. (10)
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Furthermore, if the solution set to the KKT system (10) is nonempty, by [11, Theo-
rem 30.4 and Corollary 30.5.1] we know that a vector (x̄, ȳ, z̄) ∈ X × Y × Z is a
solution to (10) if and only if (ȳ, z̄) is an optimal solution to problem (1) and x̄ is an
optimal solution to problem (8).

In the following, we shall conduct discussions on the existence of solutions to the
subproblems in the ADMM scheme (3). Let the augmented Lagrangian function Lσ

be defined by (2) and (x ′, y′, z′) ∈ X × dom f × dom g be an arbitrarily given point.
Consider the following two auxiliary optimization problems:

min
y∈Y

{
F(y) := Lσ (y, z′; x ′)

}
(11)

and
min
z∈Z

{
G(z) := Lσ (y′, z; x ′)

}
. (12)

Note that since z′ ∈ dom g, problem (11) is equivalent to

min
y∈Y

{
F̂(y) := f (y) + σ

2 ‖A∗y + (B∗z′ − c + x ′/σ)‖2}. (13)

We now study under what conditions the problems (11) and (12) are solvable or
have bounded solution sets. For this purpose, we consider the following assumptions:

Assumption 1 f 0+(y) > 0 for any y ∈ M, where

M := {y ∈ Y |A∗y = 0}\{y ∈ Y | f 0+(−y) = − f 0+(y) = 0}.

Assumption 2 g0+(z) > 0 for any z ∈ N , where

N := {z ∈ Z |B∗z = 0}\{z ∈ Z | g0+(−z) = −g0+(z) = 0}.

Assumption 3 f 0+(y) > 0 for any 0 �= y ∈ {y ∈ Y |A∗y = 0}.
Assumption 4 g0+(z) > 0 for any 0 �= z ∈ {z ∈ Z |B∗z = 0}.

Note that Assumptions 1–4 are not very restrictive. For example, if both f and g
are coercive, in particular if they are norm functions, all the four assumptions hold
automatically without any other conditions.

Proposition 2.1 It holds that

(a) Problem (11) is solvable if Assumption 1 holds, and problem (12) is solvable if
Assumption 2 holds.

(b) The solution set to problem (11) is nonempty and bounded if and only if Assump-
tion 3 holds, and the solution set to problem (12) is nonempty and bounded if and
only if Assumption 4 holds.
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Proof (a) We first show that when Assumption 1 holds, the solution set to problem
(13) is not empty. Consider the recession function F̂0+ of F̂ . On the one hand, by
using [11, Theorem 9.3] and the second example given in [11, Pages 67–68], we know
that for any y ∈ Y such that A∗y �= 0, one must have F̂0+(y) = +∞. On the other
hand, for any y ∈ Y such that A∗y = 0, by the definition of F̂(y) in (13) we have

F̂0+(y) = f 0+(y) + σ 〈A(B∗z′ − c + x ′/σ), y〉 = f 0+(y).

Hence, by Assumption 1 we know that F̂0+(y) > 0 for all y ∈ Y except for those
satisfying F̂0+(−y) = −F̂0+(y) = 0. Then, by [11, part (b) in Corollary 13.3.4] and
the closedness of F̂ , it holds that 0 ∈ ri(dom F̂∗). Furthermore, by [11, Theorem 23.4]
we know that ∂ F̂∗(0) is a nonempty set, i.e., there exists a ŷ ∈ Y such that ŷ ∈ ∂ F̂∗(0).
By noting that F̂ is closed and using (7), we then have 0 ∈ ∂ F̂(ŷ), which implies that
ŷ is an optimal solution to problem (13) and hence to problem (11).

By repeating the above discussions we know that problem (12) is also solvable if
Assumption 2 holds.

(b) By reorganizing the proofs for part (a), we can see that Assumption 3 holds
if and only if F̂0+(y) > 0 for all 0 �= y ∈ Y . As a result, if Assumption 3 holds,
from [11, Theorem 27.2] we know that problem (13) has a nonempty and bounded
solution set. Conversely, if the solution set to problem (13) is nonempty and bounded,
by [11, Corollary 8.7.1] we know that there does not exist any 0 �= y ∈ Y such that
F̂0+(y) ≤ 0, so that Assumption 3 holds. Similarly, we can prove the remaining
results of part (b). This completes the proof of the proposition. ��

Based on Proposition 2.1 and its proof, we have the following result.

Corollary 2.1 If problem (1) has a nonempty and bounded solution set, then both
problems (11) and (12) have nonempty and bounded solution sets.

Proof Since problem (1) has a nonempty and bounded solution set, there does not
exist any 0 �= y ∈ Y with A∗y = 0 such that f 0+(y) ≤ 0, or 0 �= z ∈ Z with
B∗z = 0 such that g0+(z) ≤ 0. Thus, Assumptions 3 and 4 hold. Then, by part (b) in
Proposition 2.1 we know that the conclusion of Corollary 2.1 holds. ��

A function ϕ : U → (−∞,+∞] is called piecewise linear-quadratic [12, Defin-
ition 10.20] if its effective domain can be represented as the union of finitely many
polyhedral sets, relative to each of which this function is given by an expression of
1
2 〈u,Qu〉 + 〈a, u〉 + α for some scalar α ∈ �, vector a ∈ U , and symmetric linear
operator Q : U → U .

Proposition 2.2 If f (or g) is a closed proper piecewise linear-quadratic convex func-
tion, especially a polyhedral convex function, we can replace the “>” in Assumption 1
( or 2) by “≥” and the corresponding sufficient condition in part (a ) of Proposition
2.1 is also necessary.

Proof Note that when f is a closed piecewise linear-quadratic convex function, the
function F̂ defined in problem (13) is a piecewise linear-quadratic convex function
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with dom F̂ = dom f being a closed convex polyhedral set. Then by [12, Theo-
rem 11.14 (b)] we know that F̂∗ is also a piecewise linear-quadratic convex function
whose effective domain is a closed convex polyhedral set. By repeating the discussions
for proving part (a) of Proposition 2.1 and using [11, part (a) in Corollary 13.3.4] we
can obtain that Assumption 1 with “>” being replaced by “≥” holds if and only if
0 ∈ dom F̂∗, or ∂ F̂∗(0) is a nonempty set [12, Proposition 10.21], which is equivalent
to saying that argmin F̂ is a nonempty set. If g is piecewise linear-quadratic we can
get a similar result. ��

Finally, we need the following easy-to-verify result on the convergence of quasi-
Fejér monotone sequences.

Lemma 2.1 Let {ak}k≥0 be a nonnegative sequence of real numbers satisfying ak+1 ≤
ak + εk for all k ≥ 0, where {εk}k≥0 is a nonnegative and summable sequence of real
numbers. Then the quasi-Fejér monotone sequence {ak} converges to a unique limit
point.

3 A Counterexample

In this section, we shall provide an example that satisfies all the properties (P1)-
(P4) stated in Sect. 1 to show that the solution set to a certain subproblem in the
ADMM scheme (3) can be empty if no further assumptions on f , g or A are made.
This means that the convergence analysis for the ADMM stated in [1] can be false.
The construction of this example relies on Proposition 2.1. The parameter σ and the
initial point (x0, y0, z0) in the counterexample are just selected for the convenience of
computations and one can construct similar examples for arbitrary penalty parameters
and initial points.

Wenowpresent this example,which is a 3-dimensional 2-block convexoptimization
problem.

Example 3.1 Let δ≥0(·) be the indicator function of the nonnegative real numbers.
Consider problem (1) with f (y1, y2) := max(e−y1 + y2, y22 ), g(z) := δ≥0(z),
A∗ = (0, 1), B∗ = −1, and c = 2, i.e.,

min
(y1,y2,z)∈�3

{
max(e−y1 + y2, y22 ) + δ≥0(z) | 0y1 + y2 − z = 2

}
. (14)

In this example, f and g are closed proper convex functions with ri(dom f ) =
dom f = �2 and ri(dom g) = {z | z > 0} ⊂ dom g. The vector (0, 3, 1) ∈ �3

lies in ri(dom f ) × ri(dom g) and satisfies the constraint in problem (14). Hence, for
problem (14), the Slater CQ holds. It is easy to check that the optimal solution set to
problem (14) is given by

{(y1, y2, z) ∈ �3 | y1 ≥ − loge 2, y2 = 2, z = 0}
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and the corresponding optimal objective value is 4. The Lagrangian function of prob-
lem (14) is given by

L(y1, y2, z; x) = max(e−y1 + y2, y22 ) + δ≥0(z) + x(y2 − z − 2),

∀ (y1, y2, z, x) ∈ �4 .

We now compute the dual of problem (14) based on this Lagrangian function.

Lemma 3.1 The objective function of the dual of problem (14) is given by

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−x2/4 − 2x, if x ∈ (−∞,−2),
1 − x, if x ∈ [−2,−1),
−2x, if x ∈ [−1, 0],
−∞, if x ∈ (0 + ∞).

Proof By the definition of the dual objective function, we have

h(x) = inf
y1,y2,z

L(y1, y2, z; x)

= inf
z≥0,y2

{
inf
y1

(max(e−y1 + y2, y22 ) + (y2 − z − 2)x)
}

= inf
z≥0,y2

{max(y2, y22 ) + y2x − zx − 2x}

= min
y2

(
inf

y2∈[0,1],z≥0

{
y2+y2x−zx−2x

}
, inf

y2 /∈[0,1],z≥0
{

y22 + y2x − zx − 2x
})

.

For any given x ∈ �, we have

inf
y2∈[0,1],z≥0

{
y2 + y2x − zx − 2x

}

= inf
y2∈[0,1]

{
y2(1 + x)

} + inf
z≥0

{ − zx
} − 2x =

⎧
⎨

⎩

1 − x, if x < −1,
−2x, if x ∈ [−1, 0],
−∞, if x > 0.

Moreover, for any x ∈ �, it holds that

inf
y2 /∈[0,1],z≥0

{
y22 + y2x − zx − 2x

}

= inf
y2 /∈[0,1]

{
y22 + y2x + x2/4 − x2/4 − 2x

} + inf
z≥0

{ − zx
}

= inf
y2 /∈[0,1]

{
(y2 + x/2)2

} + inf
z≥0

{ − zx
} − x2/4 − 2x

=

⎧
⎪⎪⎨

⎪⎪⎩

−x2/4 − 2x, if x < −2,
1 − x, if x ∈ [−2,−1],
−2x, if x ∈ [−1, 0],
−∞, if x > 0.

Then by combining the above discussions on the two cases we obtain the conclusion
of this lemma. ��
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Fig. 1 Graphs of the dual objective function h(x) (left) and the function I (y2) (right)

By Lemma 3.1, one can see that the optimal solution to the dual of problem (14) is
x̄ = −4 and the optimal value of the dual of problem (14) is h(−4) = 4 (see Fig. 1).
Moreover, the set of solutions to the KKT system (10) for problem (14) is given by

{
(y1, y2, z, x) ∈ �4 | y1 ≥ − loge 2, y2 = 2, z = 0, x = −4

}
.

Next, we consider solving problem (14) by using the ADMM scheme (3). For con-
venience, let σ = 1 and set the initial point (x0, y01 , y02 , z0) = (0, 0, 0, 0). Now, one
should compute (y11 , y12) by solving

min
y1,y2

Lσ (y1, y2, z0; x0).

Define the function I (·) : � → [−∞,+∞] by

I (y2) : = inf
y1

Lσ (y1, y2, z0; x0)

= inf
y1

{
max

(
e−y1 + y2, y22

) + (y2 − 2)2/2
}

=
⎧
⎨

⎩

3
2 y22 − 2y2 + 2 if y2 /∈ [0, 1],
1
2 y22 − y2 + 2 if y2 ∈ [0, 1].

By direct calculations we can see that the above infimum is attained at ȳ2 = 1 with
I (ȳ2) = 1.5 (see Fig. 1). However, we have for any y1 ∈ �,

Lσ (y1, 1, 0; 0) = max(e−y1 + 1, 1) + 0.5 = e−y1 + 1.5 > inf
y1,y2

Lσ (y1, y2, z0; x0).

This means that although inf y1,y2 Lσ (y1, y2, z0; x0) = 1.5 is finite, it cannot be
attained at any (y1, y2) ∈ �2. Then the subproblem for computing (y11 , y12) is not
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solvable and hence the ADMM scheme (3) is not well-defined. Note that for problem
(14), Assumption 1 fails to hold since the direction y = (1, 0) satisfies A∗y = 0 and
f 0+(y) = 0 but f 0+(−y) = +∞.

Remark 3.1 The counterexample constructed here is very simple. Yet, one may still
ask if the objective function f about (y1, y2) in problem (14) can be replaced by an
even simpler quadratic function. Actually, this is not possible as Assumption 1 holds if
f is a quadratic function and the original problem has a solution. Specifically, suppose
that α ∈ � is a given number,Q : Y → Y is a self-adjoint positive semidefinite linear
operator and a ∈ Y is a given vector while f takes the following form

f (y) = 1
2 〈y,Qy〉 + 〈a, y〉 + α, ∀ y ∈ Y .

From [11, Pages 67–68] we know that

f 0+(y) =
{ 〈a, y〉, if Qy = 0,

+∞, if Qy �= 0.
(15)

If problem (1) has a solution, one must have f 0+(y) ≥ 0 whenever A∗y = 0. This,
together with (15), clearly implies that Assumption 1 holds.

4 Convergence properties of ADMM

The example presented in the previous section motivates us to reconsider the conver-
gence of the ADMM scheme (3). In the following, we will revisit the convergence
properties of the ADMM, with a computationally more attractive large step-length.

For convenience, we introduce some notations, which will be used throughout this
section. We use Σ f and Σg to denote the two self-adjoint positive semidefinite linear
operators whose definitions, corresponding to the two functions f and g in problem
(1), can be drawn from (6). Let (x̄, ȳ, z̄) ∈ X × Y × Z be a given vector, whose
definition will be specified latter. We denote xe := x − x̄ , ye := y − ȳ and ze := z − z̄
for any (x, y, z) ∈ X × Y × Z . If additionally the ADMM scheme (3) generates an
infinite sequence {(xk, yk, zk)}, for k ≥ 0 we denote xk

e := xk − x̄ , yk
e := yk − ȳ and

zk
e := zk − z̄, and define the following auxiliary notations

⎧
⎪⎪⎨

⎪⎪⎩

uk := −A[xk + (1 − τ)σ (A∗yk
e + B∗zk

e) + σB∗(zk−1 − zk)],
vk := −B[xk + (1 − τ)σ (A∗yk

e + B∗zk
e)],

Ψk := 1
τσ

‖xk
e ‖2 + ‖zk

e‖2σBB∗ ,
Φk := Ψk + max(1 − τ, 1 − τ−1)σ‖A∗yk

e + B∗zk
e‖2

(16)

with the convention z−1 ≡ z0. Based on these notations, we have the following result.

Proposition 4.1 Suppose that (x̄, ȳ, z̄) ∈ X ×Y ×Z is a solution to the KKT system
(10), and that the ADMM scheme (3) generates an infinite sequence {(xk, yk, zk)}
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(which is guaranteed to be true if Assumptions 1 and 2 hold, cf. Proposition 2.1).
Then, for any k ≥ 1,

uk ∈ ∂ f (yk), vk ∈ ∂g(zk), (17)

Φk − Φk+1 ≥ 2‖yk+1
e ‖2Σ f

+ min(τ, 1 + τ − τ 2)σ‖B∗(zk+1 − zk)‖2
+ 2‖zk+1

e ‖2Σg
+ min(1, 1 − τ + τ−1)σ‖A∗yk+1

e + B∗zk+1
e ‖2 (18)

and

Ψk − Ψk+1 ≥ 2‖yk+1
e ‖2Σ f

+ 2‖zk+1
e ‖2Σg

+ σ‖A∗yk+1
e + B∗zk

e‖2
+ (1 − τ)σ‖A∗yk+1

e + B∗zk+1
e ‖2. (19)

Proof For any k ≥ 1, the inclusions in (17) directly follow from the first-order opti-
mality condition of the subproblems in the ADMM scheme (3). The inequality (18)
has been proved in Fazel et al.2 [4, parts (a) and (b) in Theorem B.1]. Meanwhile, by
using (B.12) in [4, Theorem B.1] and (4) we can get

1

2τσ
(‖xk

e ‖2 − ‖xk+1
e ‖2) − σ

2
‖B∗(zk+1 − zk)‖2 − σ

2
‖B∗zk+1

e ‖2 + σ

2
‖B∗zk

e‖2

−2 − τ

2
σ‖A∗yk+1

e + B∗zk+1
e ‖2 + σ 〈B∗(zk+1 − zk),A∗yk+1

e + B∗zk+1
e 〉

≥ ‖yk+1
e ‖2Σ f

+ ‖zk+1
e ‖2Σg

,

which, together with the definition of Ψk in (16), implies (19). This completes the
proof. ��

Now, we are ready to present several convergence properties of the ADMM scheme
(3).

Theorem 4.1 Assume that the solution set to the KKT system (10) for problem (1)
is nonempty. Suppose that the ADMM scheme (3) generates an infinite sequence
{(xk, yk, zk)}, which is guaranteed to be true if Assumptions 1 and 2 hold. Then,
if τ ∈ (

0, (1 + √
5 )/2

)
, one has the following results:

(a) the sequence {xk} converges to an optimal solution to the dual problem (8), and
the primal objective function value sequence { f (yk) + g(zk)} converges to the
optimal value;

(b) the sequences { f (yk)} and {g(zk)} are bounded, and if Assumptions 3 and 4 hold,
the sequences {yk} and {zk} are also bounded;

(c) any accumulation point of the sequence {(xk, yk, zk)} is a solution to the KKT
system (10), and if (x∞, y∞, z∞) is one of its accumulation points, then A∗yk →
A∗y∞, Σ f yk → Σ f y∞, B∗zk → B∗z∞ and Σgzk → Σgz∞ as k → ∞;

2 In [4] the authors studied a much general ADMM-type scheme where positive semidefinite proximal
terms were added to the subproblems. The convergence properties studied in this paper can be extended to
that setting with no difficulty, but in order to make this note as concise as possible we focus on ADMM
only.

123



338 L. Chen et al.

(d) if Σ f +AA∗ � 0 and Σg +BB∗ � 0, then each of the subproblems in the ADMM
scheme (3) has a unique optimal solution and the whole sequence {(xk, yk, zk)}
converges to a solution to the KKT system (10).

Proof Let (x̄, ȳ, z̄) ∈ X ×Y ×Z be an arbitrary solution to the KKT system (10) of
problem (1). We first establish some basic results and then prove (a)–(d) one by one.
In the following, the notations provided at the beginning of this section are used.

Note that ‖A∗yk
e ‖ ≤ ‖A∗yk

e + B∗zk
e‖ + ‖B∗zk

e‖ for any k ≥ 0. Since τ ∈ (0, (1 +√
5)/2), by using (16) and (18) we obtain that the sequences

{‖xk‖}, {‖yk‖σAA∗} and {‖zk‖σBB∗} (20)

are all bounded, and

∞∑

k=0

‖yk
e ‖2Σ f

,

∞∑

k=0

‖zk
e‖2Σg

,

∞∑

k=0

‖A∗yk
e +B∗zk

e‖2,
∞∑

k=0

‖B∗(zk+1 − zk)‖2 < +∞.

(21)
This, consequently, implies that {uk} and {vk} are bounded sequences. In the following,
we prove (a)–(d) separately.
(a) Since {xk} is a bounded sequence, for any one of its accumulation points, e.g.
x∞ ∈ X , it admits a subsequence, say, {xk j } j≥0, such that lim

j→∞ xk j = x∞. By using

the definitions of {uk} and {vk} in (16) we obtain that

u∞ := lim
j→∞ uk j = −Ax∞ and v∞ := lim

j→∞ vk j = −Bx∞. (22)

From (7) and (17) we know that for any k ≥ 1, yk ∈ ∂ f ∗(uk) and zk ∈ ∂g∗(vk).
Hence, we can get A∗yk ∈ A∗∂ f ∗(uk) and B∗zk ∈ B∗∂g∗(vk) so that

A∗yk j + B∗zk j ∈ A∗∂ f ∗(uk j ) + B∗∂g∗(vk j ), ∀ j ≥ 0. (23)

Then, by using (21), (22), (23) and the outer semi-continuity of subdifferential map-
pings of closed proper convex functions we know that

c ∈ A∗∂ f ∗(−Ax∞) + B∗∂g∗(−Bx∞),

which implies that x∞ is a solution to the dual problem (8). Therefore, we can conclude
that any accumulation of {xk} is a solution to the dual problem (8). To finish the proof
of part (a), we need to show that {xk} is a convergent sequence. This will be done in
the following.

We define the sequence {φk}k≥1 by

φk := σ‖zk
e‖2BB∗ + max(1 − τ, 1 − τ−1)σ‖A∗yk

e + B∗zk
e‖2.

Since τ ∈ (0, (1 + √
5)/2), from (18) in Proposition 4.1 and the fact that Φk ≥

φk , we know that {φk} is a nonnegative and bounded sequence. Thus, there exists a
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subsequence of {φk}, say {φkl }, such that liml→∞ φkl = lim inf
k→∞ φk . Since {xkl } is bounded,

it must have a convergent subsequence, say, {xkli }, such that x̃ := lim
i→∞ xkli exists.

Note that (x̃, ȳ, z̄) is a solution to the KKT system (10). Therefore, without loss of
generality, we can reset x̄ = x̃ from now on. By using (18) in Proposition 4.1 we know
that the nonnegative sequence {Φk} is monotonically nonincreasing, and

lim
k→∞ Φk = lim

i→∞ Φkli
= lim

i→∞
( 1

τσ
‖x

kli
e ‖2 + φkli

) = lim inf
k→∞ φk . (24)

Since 1
τσ

‖xk
e ‖2 = Φk − φk , we have

lim sup
k→∞

1

τσ
‖xk

e ‖2 = lim sup
k→∞

{Φk − φk} ≤ lim sup
k→∞

Φk − lim inf
k→∞ φk = 0, (25)

which indicates that {xk} is a convergent sequence.
Now we study the convergence of the primal objective function values. On the one

hand, since (x̄, ȳ, z̄) is a saddle point to the Lagrangian function L(·) defined by (9),
we have for any k ≥ 1,L(ȳ, z̄; x̄) ≤ L(yk, zk; x̄). This, together withA∗ ȳ +B∗ z̄ = c,
implies that for any k ≥ 1,

f (ȳ) + g(z̄) − 〈x̄,A∗yk
e + B∗zk

e〉 ≤ f (yk) + g(zk). (26)

On the other hand, from (17) and (5) we know that

f (yk) + 〈uk, ȳ − yk〉 ≤ f (ȳ) and g(zk) + 〈vk, z̄ − zk〉 ≤ g(z̄).

By combining the above two inequalities together and using (16) we can get

f (ȳ) + g(z̄) − 〈xk,A∗yk
e + B∗zk

e〉 − σ 〈B∗(zk−1 − zk),A∗yk
e 〉

−(1 − τ)σ‖A∗yk
e + B∗zk

e‖2 ≥ f (yk) + g(zk). (27)

Since the sequences in (20) are bounded, by using (21) and the fact that any nonnegative
summable sequence should converge to zero we know that the left-hand-sides of both
(26) and (27) converge to f (ȳ) + g(z̄) when k → ∞. Consequently, lim

k→∞{ f (yk) +
g(zk)} = f (ȳ) + g(z̄) by the squeeze theorem. Thus, part (a) is proved.
(b) From (17) we konw that for any k ≥ 1,

f (yk) ≤ f (ȳ) − 〈uk, ȳ − yk〉 = f (ȳ) − 〈uk, ȳ〉 + 〈uk, yk〉. (28)

On the one hand, from the boundedness of {uk}we know that the sequence {−〈uk, ȳ〉}
is bounded. On the other hand, from (21) and the boundedness of the sequences in
(20) we can use
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〈uk, yk〉 = −〈xk,A∗yk〉 − (1 − τ)σ 〈A∗yk
e + B∗zk

e ,A∗yk〉
−σ 〈B∗(zk−1 − zk),A∗yk〉

to get the boundedness of the sequence {〈uk, yk〉}. Hence, from (28) we know the
sequence { f (yk)} is bounded from above. From (10) we know

f (yk) ≥ f (ȳ) + 〈−Ax̄, yk − ȳ〉 = f (ȳ) − 〈x̄,A∗yk
e 〉,

which, together with the fact that the sequences in (20) are bounded, implies that
{ f (yk)} is bounded from below. Consequently, { f (yk)} is a bounded sequence. By
using similar approach, we can obtain that {g(zk)} is also a bounded sequence.

Next, we prove the remaining part of (b) by contradiction. Suppose that Assump-
tion 3 holds and the sequence {yk} is unbounded. Note that the sequence {yk/(1 +
‖yk‖)} is always bounded. Thus itmust have a subsequence {yk j /(1+‖yk j ‖)} j≥0, with
{‖yk j ‖} being unbounded and non-decreasing, converging to a certain point ξ ∈ Y .
From the boundedness of the sequences in (20) we know that {A∗yk} is bounded.
Then we have

A∗ξ = A∗
(

lim
j→∞

yk j

1 + ‖yk j ‖
)

= lim
j→∞

A∗yk j

1 + ‖yk j ‖ = 0.

By noting that ‖ξ‖ = 1, one has ξ ∈ {y ∈ Y | y �= 0,A∗y = 0}. On the other hand,
define the sequence {dk j } j≥0 by

dk j :=
(

yk j /(1 + ‖yk j ‖) , f (yk j )/(1 + ‖yk j ‖)
)

.

From the boundedness of the sequence { f (yk j )} and the definition of ξ we know
that lim j→∞ dk j = (ξ, 0). Since (yk j , f (yk j )) ∈ epi( f ), by [11, Theorem 8.2]
we know that (ξ, 0) is a recession direction of epi( f ). Then from the fact that
epi( f 0+) = 0+(epi f ) we know that f 0+(ξ) ≤ 0, which contradicts Assumption
3. The boundedness of {zk} under Assumption 4 can be similarly proved. Thus, part
(b) is proved.
(c) Suppose that (x∞, y∞, z∞) is an accumulation point of {(xk, yk, zk)}. Let
{(xk j , yk j , zk j )} j≥0 be a subsequence of {(xk, yk, zk)} which converges to (x∞, y∞,

z∞). By taking limits in (17) along k j for j → ∞ and using (16) and (21) we can see
that

−Ax∞ ∈ ∂ f (y∞), −Bx∞ ∈ ∂g(z∞) and A∗y∞ + B∗z∞ = c,

and this implies that (x∞, y∞, z∞) is a solution to the KKT system (10). Now, without
lose of generality we reset (x̄, ȳ, z̄) = (x∞, y∞, z∞). Then, by part (a) we know that
the sequence {Φk} defined in (16) converges to zero if τ ∈ (0, (1+ √

5)/2). Thus, we
always have

lim
k→∞ ‖yk

e ‖Σ f = 0 and lim
k→∞ ‖zk

e‖σBB∗+Σg = 0. (29)
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As a result, it holds that B∗zk → B∗z∞, Σ f yk → Σ f y∞ and Σgzk → Σgz∞
as k → ∞. Moreover, by using the fact that A∗yk = (A∗yk + B∗zk) − B∗zk and
A∗yk + B∗zk → A∗y∞ + B∗z∞ = c as k → ∞, we can get A∗yk → A∗y∞ as
k → ∞. This completes the proof of part (c).
(d) IfΣ f +AA∗ � 0 andΣg +BB∗ � 0, then the subproblems in the ADMMscheme
(3) are strongly convex, and hence each of them has a unique optimal solution. Then,
by part (c) we know that {yk} and {zk} are convergent. Note that the sequence {xk} is
convergent by part (a). Therefore, by part (c) we know that {(xk, yk, zk)} converges
to a solution to the KKT system (10). Hence, part (d) is proved and this completes the
proof of the theorem. ��

Before concluding this note, we make the following remarks on the convergence
results presented in Theorem 4.1.

Remark 4.1 The corresponding results in part (a) of Theorem 4.1 for the ADMM
scheme (3) with τ = 1 have been stated in Boyd et al. [1]. However, as indicated by
the counterexample constructed in Sect. 3, the proofs in [1] need to be revised with
proper additional assumptions. Actually, no proof on the convergence of {xk} has been
given in [1] at all. Nevertheless, one may view the results in part (a) as extensions of
those in Boyd et al. [1] for the ADMM scheme (3) with τ = 1 to a computationally
more attractive ADMM scheme (3) with a rigorous proof.

Remark 4.2 Note that, numerically, the boundedness of the sequences generated by
a certain algorithm is a desirable property and Assumptions 3 and 4 can fulfill this
purpose. Assumption 3 is rather mild in the sense that it holds automatically for many
practical problems where f has bounded level sets. Of course, the same comment can
also be applied to Assumption 4.

Remark 4.3 All the results of Theorem 4.1 are also valid if the step-length τ and the
sequence generated by the ADMM scheme (3) satisfy the condition that

τ ≥ (1 + √
5)/2 but

∞∑

k=1

‖xk+1 − xk‖2 < +∞. (30)

To prove this argument, one can first use xk+1 − xk = τσ (A∗yk+1
e + B∗zk+1

e ) to
get

∑∞
k=0 ‖A∗yk

e + B∗zk
e‖2 < +∞. Then, by using (19) and the fact that ‖A∗yk

e ‖ ≤
‖A∗yk

e + B∗zk
e‖ + ‖B∗zk

e‖ we know the sequences in (20) are bounded. Note that
‖B∗(zk+1 − zk)‖2 ≤ 2‖A∗yk+1

e + B∗zk+1
e ‖2 + 2‖A∗yk+1

e + B∗zk
e‖2. This, together

with (19), implies that (21) holds. The remaining procedure is similar to that for
Theorem 4.1 except the following two key steps.

The first one is to show that {xk} is convergent. To do this, we define the nonnegative
sequence {ψk} by ψk := σ‖zk

e‖2BB∗ . By using (19), (21), Lemma 2.1 and fact that
1 − τ < 0 one can show that the sequence {Ψk} is convergent. Hence, the sequence
{ψk} is nonnegative and bounded. Then, by similar discussions for getting (24) and
(25) with φk and Φk being replaced by ψk and Ψk , one can get lim

k→∞ Ψk = lim inf
k→∞ ψk .

Hence, {xk} is convergent.
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The second one is to show that (29) still holds for this case. This can be done by
verifying that the sequence {Ψk} defined in (16) converges to zero if τ ≥ (1+ √

5)/2
but

∑∞
k=0 ‖xk+1 − xk‖2 < +∞.

The condition (30) simplifies the condition proposedbySun et al. [13, Theorem2.2],
in which one need

∑∞
k=1{‖B∗(zk+1 − zk)‖2 + σ‖xk+1 − xk‖2} < +∞ if τ ≥ (1 +√

5)/2. This was used for the purpose of achieving better numerical performance. The
advantage of taking the step-length τ ≥ (1 + √

5)/2 has been observed in [2,10,13]
for solving high-dimensional linear and convex quadratic semidefinite programming
problems. In numerical computations, one can start with a larger τ , e.g. τ = 1.95,
and reset it as τ := max(γ τ, 1.618) for some γ ∈ (0, 1), e.g. γ = 0.95, if at the
k-th iteration one observes that ‖xk+1 − xk‖2 > c0/k1.2, where c0 is a given positive
constant. Since τ can be reset atmost a finite number of times, our convergence analysis
is valid for such a strategy. One may refer to [13, Remark 2.3] for more discussions
on this computational issue.

5 Conclusions

In this note, we have constructed a simple example possessing several nice properties
to illustrate that the convergence theorem of the ADMM scheme (3) with the unit step-
length stated in Boyd et al. [1] can be false if no prior condition that guarantees the
existence of solutions to all the subproblems involved is made. In order to correct this
mistake we have presented fairly mild conditions under which all the subproblems are
solvable by using standard knowledge in convex analysis. Based on these conditions,
we have further established some satisfactory convergence properties of the ADMM
with a computationally more attractive large step-length that can even exceed the
golden ratio of (1+√

5)/2. In conclusion, this note has (i) clarified some confusions on
the convergence results of the popular ADMM; (ii) opened the potential for designing
computationally more efficient ADMM based solvers in the future.
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