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Abstract

Let H : Rm×Rn → Rn be a locally Lipschitz function in a neighborhood of ( +y; +x) and H ( +y; +x) = 0 for some +y∈Rm and
+x∈Rn. The implicit function theorem in the sense of Clarke (Paci1c J. Math. 64 (1976) 97; Optimization and Nonsmooth
Analysis, Wiley, New York, 1983) says that if �x@H ( +y; +x) is of maximal rank, then there exist a neighborhood Y of
+y and a Lipschitz function G(·) : Y → Rn such that G( +y) = +x and for every y in Y , H (y; G(y)) = 0. In this paper,
we shall further show that if H has a superlinear (quadratic) approximate property at ( +y; +x), then G has a superlinear
(quadratic) approximate property at +y. This result is useful in designing Newton’s methods for nonsmooth equations.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let F : Rn → Rp be a locally Lipschitz function in a neighborhood of some x∈Rn. Then by Rademacher’s
theorem, F is almost everywhere diCerentiable near x. Let DF be the set where F is diCerentiable. In order
to study the convergence of generalized Newton’s methods, Qi [8] de1nes

@BF(x):=
{
V ∈Rp×n |V = lim

xk→x
F ′(xk); F is diCerentiable at xk for all k

}
:

Hence, the generalized Jacobian @F(x) in the sense of Clarke [1,2] is the convex hull of @BF(x), i.e.,

@F(x) = conv{@BF(x)}:
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Suppose that p= n and thus F maps Rn into itself. Both @F(x) and @BF(x) are used in developing Newton’s
methods for solving nonsmooth equations, e.g., Qi and Sun [11,8] and Pang and Qi [7]:

F(x) = 0: (1.1)

For a given starting point x0 ∈Rn, (nonsmooth) Newton’s methods for solving (1.1) can be stated as follows:

xk+1 = xk − V−1
k F(xk); k = 0; 1; 2; : : : ; (1.2)

where Vk ∈ @F(xk) (or @BF(xk) or a variant). Assume that x∈Rn is a solution of (1.1). For the superlinear
(quadratic) convergence of methods (1.2), apart from assuming that @F(x) (or @BF(x) or a variant) is of
maximal rank, one needs an additional suMcient condition (see Kummer [3] for an example on the necessity).
One such suMcient condition proposed in [11,8] is called semismoothness.

Semismoothness was originally introduced by MiOin [6] for functionals. Convex functions, smooth func-
tions, and piecewise smooth functions are examples of semismooth functions. The composition of semismooth
functions is still a semismooth function (see [6]). In [11], Qi and Sun extended the de1nition of semismooth
functions to F : Rn → Rp. A vector valued function F : Rn → Rp, which is Lipschitz continuous in a
neighborhood of x∈Rn, is said to be semismooth at x, if

lim
V∈@F(x+th′)
h′→h; t↓0

{Vh′};

exists for any h∈Rn. It has been proved in [11] that F is semismooth at x if and only if all its component
functions are. Also F ′(x; h), the directional derivative of F at x in the direction h, exists for any h∈Rn and
is equal to the above limit if F is semismooth at x.

Lemma 1.1 (Qi and Sun [11], Qi [8]). Suppose that F : Rn → Rp is a locally Lipschitz function in a
neighborhood of x∈Rn. If F is semismooth at x; then for any h→ 0 and V ∈ @F(x + h);

F(x + h) − F(x) − Vh= o(‖h‖): (1.3)

Condition (1.3) and the nonsingularity of any matrix in @F(x) (or @BF(x) or a variant) are two key
conditions for the superlinear convergence of nonsmooth Newton’s methods, e.g., Kummer [4] and [7,8,11].

In this paper, we say F : Rn → Rp has a superlinear approximate property at x∈Rn if F is a locally
Lipschitz function in a neighborhood of x and for any h→ 0 and V ∈ @H (x + h), it holds that

F(x + h) − F(x) − Vh= o(‖h‖): (1.4)

Apparently, according to Lemma 1.1, if F is a locally Lipschitz function in a neighborhood of x and semis-
mooth at x, then it has a superlinear approximate property at x.

A stronger notion than semismoothness is strong semismoothness. F is said to be strongly semismooth at
x [11,8] if F is semismooth at x and for any V ∈ @F(x + h), h→ 0,

F(x + h) − F(x) − Vh=O(‖h‖2): (1.5)

Analogously, we say F : Rn → Rp has a quadratic approximate property at x∈Rn if F is a locally
Lipschitz function in a neighborhood of x and for any h → 0 and V ∈ @H (x + h), (1.5) holds. It is obvious
that F : Rn → Rp has a quadratic approximate property at x if F is strongly semismooth at x.

In the study of smoothing Newton’s methods (see, e.g., Qi and Sun [9] and Qi et al. [10]) one often 1nds
that x in (1.1) is an implicit function of y∈Rm de1ned by

H (y; x) = 0; (1.6)
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where H is a locally Lipschitz function mapping Rm×Rn → Rn and y lies in Rm and x∈Rn. Let �x@H (y; x)
be the set of all n× n matrices M such that, for some n×m matrix N , the n× (n+m) matrix [N;M ] belongs
to @H (y; x). Let �y@H (y; x) be such that [�y@H (y; x); �x@H (y; x)] = @H (y; x).

Next, we state an implicit function theorem due to Clarke [1,2].

Theorem 1.1 (Clarke [1,2]). Suppose that H : Rm×Rn → Rn is a locally Lipschitz function in a neighbor-
hood of ( +y; +x), which is a solution of (1:6); i.e.; H ( +y; +x) = 0: If �x@H ( +y; +x) is of maximal rank; then there
exist an open neighborhood Y of +y and a function G(·) : Y → Rn such that G is locally Lipschitz in Y;
G( +y) = +x and for every y in Y;

H (y;G(y)) = 0: (1.7)

As we have pointed out, the superlinear (quadratic) approximate property for locally Lipschitz functions
is one of two key conditions for achieving the high order convergence for nonsmooth Newton’s methods.
Hence, one natural question arises: if H has a superlinear (quadratic) approximate property at ( +y; +x), does G
have the same property at +y? We will address this question in an aMrmative way in Section 2.

2. Main result

Throughout this section, we assume that H : Rm×Rn → Rn is a locally Lipschitz function in a neighborhood
of ( +y; +x), which is a solution of (1.6). We also assume that �x@H ( +y; +x) is of maximal rank. Then, by Theorem
1.1, there exist an open neighborhood Y of +y and a locally Lipschitz function G(·) : Y → Rn such that
G( +y) = +x and for every y in Y , H (y;G(y)) = 0:

The next theorem is our main result.

Theorem 2.1. Suppose that all conditions in Theorem 1:1 hold. If H has a superlinear (quadratic) approx-
imate property at ( +y; +x); then G has a superlinear (quadratic) approximate property at +y:

To prove the above theorem, we need two lemmas.

Lemma 2.1. Let F : Rn → Rp be a locally Lipschitz function in a neighborhood of x∈Rn. Then the
following two statements are equivalent:
(i) for any V ∈ @F(x + h); h→ 0;

F(x + h) − F(x) − Vh= o(‖h‖);

(ii) for any x + h∈DF; h→ 0;

F(x + h) − F(x) − F ′(x + h)h= o(‖h‖):

Proof. (i) → (ii) is obvious.
Next we prove (ii) → (i): Assume by contradiction that (ii) holds while (i) does not hold. Then, there exist

a positive number c, a sequence {hi}∞i=1 (hi 
= 0) converging to 0 and a corresponding generalized Jacobian
sequence Vi ∈ @F(x + hi) such that

lim sup
i→∞

‖F(x + hi) − F(x) − Vihi‖
‖hi‖ ¿ c¿ 0: (2.1)
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According to the CarathQeodory theorem, any Vi ∈ @F(x + hi) can be expressed as

Vi =
np+1∑
j=1

�ijVij ; (2.2)

where Vij ∈ @BF(x + hi) and

�ij ∈ [0; 1];
np+1∑
j=1

�ij = 1: (2.3)

For each Vij ∈ @BF(x + hi), by the de1nition of @BF(x + hi), there exists yij ∈DF such that

‖yij − (x + hi)‖6 ‖hi‖2 (2.4)

and

‖Vij − F ′(yij)‖6 ‖hi‖: (2.5)

By (2.2)–(2.5), we obtain

‖F(x + hi) − F(x) − Vihi‖

6
np+1∑
j=1

�ij‖F(x + hi) − F(x) − F ′(yij)hi‖ +
np+1∑
j=1

�ij‖[Vi − F ′(yij)]hi‖

6
np+1∑
j=1

�ij‖F(x + hi) − F(x) − F ′(yij)hi‖ + O(‖hi‖2)

=
np+1∑
j=1

�ij‖F(x + hi) − F(x) − F ′(yij)[(yij − x) + (x + hi − yij)]‖ + O(‖hi‖2)

6
np+1∑
j=1

�ij‖F(x + hi) − F(x) − F ′(yij)(yij − x)‖ +
np+1∑
j=1

�ij‖F ′(yij)(x + hi − yij)‖ + O(‖hi‖2);

which, together with (2.4) and the fact that {F ′(yij)} are uniformly bounded because of the local Lipschitz
property of F [2, Proposition 2:6:2], implies that

‖F(x + hi) − F(x) − Vihi‖6
np+1∑
j=1

�ij‖F(x + hi) − F(x) − F ′(yij)(yij − x)‖ + O(‖hi‖2): (2.6)

Relations (2.6), (2.3) and (2.4), together with the Lipschitz continuity of F , imply that

‖F(x + hi) − F(x) − Vihi‖6
np+1∑
j=1

�ij‖F(yij) − F(x) − F ′(yij)(yij − x)‖ + O(‖hi‖2): (2.7)

Thus, by (ii), (2.1) and (2.4), from (2.7) we obtain

lim sup
i→∞

‖F(x + hi) − F(x) − Vihi‖
‖hi‖ = 0;

which contradicts (2.1). This contradiction shows that (ii) → (i):

The following lemma is included in the proof of Sun and Sun [12, Theorem 3:6].
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Lemma 2.2. Let F : Rn → Rp be a locally Lipschitz function in a neighborhood of x∈Rn. Then the following
two statements are equivalent:
(i) for any V ∈ @F(x + h); h→ 0;

F(x + h) − F(x) − Vh=O(‖h‖2);

(ii) for any x + h∈DF; h→ 0;

F(x + h) − F(x) − F ′(x + h)h=O(‖h‖2):

Proof of Theorem 2.1. First, we prove that for any y∈Y ∩ DG, y → +y,

G(y) − G( +y) − G′(y)(y − +y) = o(‖y − +y‖): (2.8)

For y∈Y ∩ DG, let h=y − +y. Then for any |t| suMciently small,

H (y + th; G(y + th)) − H (y;G(y)) = 0 − 0 = 0: (2.9)

According to the Mean Value Theorem [2, Proposition 2:6:5], for y∈Y ∩ DG,

H (y + th; G(y) + tG′(y)h) − H (y;G(y))∈ tM; (2.10)

where

M= conv
{
@H [(y;G(y)); (y + th; G(y) + tG′(y)h)]

(
h

G′(y)h

)}
:

Hence, by [2, Proposition 2:6:2] there exists a W ∈ @H (y;G(y)) such that for t → 0; t 
= 0,

[H (y + th; G(y) + tG′(y)h) − H (y;G(y))]=t → W
(

h
G′(y)h

)
: (2.11)

Note that for any 1xed y∈Y ∩ DG and t → 0, we have

G(y + th) =G(y) + tG′(y)h+ o(t);

which, together with the Lipschitz continuity of H , (2.9) and (2.11), implies that

W
(

h
G′(y)h

)
= 0:

Let �yW ∈ �y@H (y;G(y)) and �xW ∈ �x@H (y;G(y)) be such that

W = [�yW; �xW ]:

Hence, we have

(�yW )(y − +y) + (�xW )G′(y)(y − +y) = 0: (2.12)

On the other hand, since H has a superlinear approximate property at ( +y; +x) and G is Lipschitz continuous
in Y , we have

H (y;G(y)) − H ( +y;G( +y)) − (�yW )(y − +y) − (�xW )[G(y) − G( +y)]
= o(‖y − +y‖) + o(‖G(y) − G( +y)‖)
= o(‖y − +y‖): (2.13)

The fact that H (y;G(y)) =H ( +y;G( +y)) = 0, together with equation (2.13), implies that

(�yW )(y − +y) + (�xW )[G(y) − G( +y)] = o(‖y − +y‖);
which, together with (2.12) and the fact that ‖(�xW )−1‖ is uniformly bounded [11], proves (2.8). Hence, by
Lemma 2.1, we conclude that G has a superlinear approximate property at +y.
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If H has a quadratic approximate property at ( +y; +x), then by the above argument and Lemma 2.2 one can
easily prove that G has a quadratic approximate property at +y. We omit the details here.

Corollary 2.1. Suppose that all conditions in Theorem 1:1 hold. If H is (strongly) semismooth at ( +y; +x);
then G has a superlinear (quadratic) approximate property at +y:

The superlinear (quadratic) approximate property of the implicit function G at +y is very useful in analyzing
the higher order convergence of smoothing Newton’s methods for solving complementarity problems and
variational inequalities [9,10]. We also believe it is useful in other subjects like bi-level programs, or generally,
mathematical programs with equilibrium constrains, e.g., Luo et al. [5], where implicit functions are widely
used.
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