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In this paper, we present a semi-proximal alternating direction method of multipliers
(sPADMM) for solving 3-block separable convex minimization problems with the second
block in the objective being a strongly convex function and one coupled linear equa-
tion constraint. By choosing the semi-proximal terms properly, we establish the global
convergence of the proposed sSPADMM for the step-length 7 € (0, (1 + v/5)/2) and
the penalty parameter o € (0,+400). In particular, if o > 0 is smaller than a certain
threshold and the first and third linear operators in the linear equation constraint are
injective, then all the three added semi-proximal terms can be dropped and consequently,
the convergent 3-block sSPADMM reduces to the directly extended 3-block ADMM with
7€ (0,(1+5)/2).
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1. Introduction

We consider the following separable convex minimization problem whose objective
function is the sum of three functions without coupled variables:

min {91(x1) + 92(:52) + 93(!E3) |AT{E1 + A;$2 + A§x3 =c,

T1,T2,T3
mieXiai:17273}a (1)
where X; (i = 1,2,3) and Z are real finite-dimensional Euclidean spaces each
equipped with an inner product (-, -) and its induced norm ||-||, 6; : X; — (—o0, +00]

(1 = 1,2,3) are closed proper convex functions, A :X; — Z is the adjoint of the
linear operator A;:Z — X;,i = 1,2,3, and ¢ € Z. Since 6;,i = 1,2,3, are closed
proper convex functions, there exist self-adjoint and positive semi-definite operators
3,1 =1,2,3, such that

(Ti — x4, Wi —wi) > (; — 24, 8i(Ti — 3)), Vi, 2; € dom(6;),
W; € 00;(%), w; € 00;(x;), (2)

where 90; is the sub-differential mapping of 6;,7 = 1,2, 3. The solution set of prob-
lem (1) is assumed to be nonempty throughout our discussions in this paper.

Let 0 > 0 be a given penalty parameter and z € Z be the Lagrange multiplier
associated with the linear equality constraint in problem (1). For any (x1,29,x3) €
X1 x Xy x A5, write x = (21,22, 23),0(x) = 61(x1) + 02(x2) + 03(x3) and A*z =
Ajxy + ASxo + Afxs. Then the augmented Lagrangian function for problem (1) is
defined by

Lo(wr,a2,25:2) = 0(x) + (2, A0 — ) + 2| A"z — | 3)

for any (z1, x2, x5, 2) € X1 x Xo x X3 x Z. The direct extension of the classical alter-
nating direction method of multipliers (ADMM) for solving problem (1) consists of
the following iterations for £ =0,1,...

V= argmin{ L, (1, 25, 25; 2F)},
T1E€EX
ot = argmin{ L, (281, 29, 2k 29},
T2EX> (4)
b= argmin{ L, (VT 2b T 23; 2F)),
z3E€EX3
L= 2k 4 ro(Arak Tt — o),

where 7 > 0 is the step-length. Different from the 2-block ADMM whose conver-
gence has been established for a long time (Glowinski and Marrocco, 1975; Gabay
and Mercier, 1976; Glowinski, 1980; Fortin and Glowinski, 1983; Gabay, 1983; Eck-
stein and Bertsekas, 1992), the 3-block ADMM may not converge in general, which
was demonstrated by Chen et al. (2014) using counterexamples. Nevertheless, if all
the functions 6;,i = 1,2, 3, are strongly convex, Han and Yuan (2012) proved the
global convergence of the 3-block ADMM scheme (4) with 7 = 1 (Han and Yuan
actually considered the general m-block case for any m > 3. Here and below we
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focus on the 3-block case only) under the condition that
o, - in 4 Hi
Yi=mwl =0, 1=1,23 0<o0< igﬁgi’»{?)/\max(x‘liz‘l;‘)}’
where Apax(S) is the largest eigenvalue of a given self-adjoint linear operator S.
Hong and Luo (2013) proposed to adopt a small step-length 7 when updating the
Lagrange multiplier 21 in (4). Chen et al. (2013) proposed the following sufficient
condition

A7 is injective, ¥; =p;l =0, i=2,3 and
B S
Amax(AQAg)’ o /\max (ASA;;)
for the global convergence of the directly extended 3-block ADMM with 7 = 1 for
solving problem (1). Closely related to the work of Chen et al. (2013), Lin et al.

(2014a) provided an analysis on the iteration complexity for the same method under
the condition

O0<o<

' . 12 M3
Y= il s =2, d < 7 .
il =0, i=2,3 and 0 <o < min { 2Amax (A245) " 20 max (A3 A3) }

In Lin et al. (2014b), under additional assumptions including some smoothness
conditions, the same group of authors further proved the global linear convergence
of the mentioned method.

The purpose of this work is to extend the 2-block semi-proximal ADMM
(sPADMM) studied in Fazel et al. (2013) to deal with problem (1) by only assum-
ing 0y to be strongly convex, i.e., ¥5 > 0. Note that the sSPADMM with 7 > 1
often works better in practice than its counterpart with 7 < 1. So it is desirable
to establish the convergence of the proposed SPADMM that allows 7 to stay in the
larger region (0, (1 +v/5)/2).

One of our motivating examples is the following convex quadratic conic pro-
gramming

min (X, 0X) + (C, X)
2 (5)
st. AX >b, X ek,

where K is a nonempty closed convex cone in a finite-dimensional real Euclidean
space X endowed with an inner product (-,-) and its induced norm ||, @: X — X
is a self-adjoint and positive semi-definite linear operator, A: X — R™ is a linear
map, C' € X and b € R™ are given data. The dual of problem (5) takes the form of

1
max —= (X', QX") + (b,y)
’ (6)
st. Ay—-0X'+S=C, y>0, Sek*,
where £* := {v € X:(v,w) > 0, Vw € K} is the dual cone of K. Since Q is

self-adjoint and positive semi-definite, Q can be decomposed as Q@ = L*L for some
linear map £. By introducing a new variable Z = —£X’, we can re-write problem (6)
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equivalently as

. 1
min  dgn (y) = (b, y) + SIZI° + k- (5) o
st. AY+LE+S=C,

where dgpr (1) and dxc-(-) are the indicator functions of R and K*, respectively.
As one can see, problem (7) has only one strongly convex block, i.e., the block
with respect to =Z. Consequently, the results in the aforementioned papers for the
convergence analysis of the directly extended 3-block ADMM applied to solving
problem (7) are no longer valid. We shall show in the next section that our proposed
3-block sSPADMM can exactly solve this kind of problems. When K = S, the cone
of symmetric and positive semi-definite matrices in the space 8™ of n X n symmetric
matrices, problem (7) is a convex quadratic semi-definite programming problem that
has been extensively studied both theoretically and numerically in Li et al. (2014);
Nie and Yuan (2001); Qi (2009); Qi and Sun (2011); Sun (2006); Sun et al. (2008);
Sun and Zhang (2010); Toh (2008); Toh et al. (2007); Zhao (2009), to name only
a few.

The remaining parts of this paper are organized as follows. In Sec. 2, we first
present our 3-block sSPADMM and then provide the main convergence results. We
give some concluding remarks in Sec. 3.

Notation.

e The effective domain of a function f : X — (—o00,400] is defined as dom(f) :=
{z € X| f(x) < +00}. The set of all relative interior points of a given nonempty
convex set C is denoted by ri(C).

e For convenience, for any given z, we use ||z||% to denote (z, Gz) if G is a self-
adjoint linear operator in a given finite-dimensional Euclidean space X. If ¥: X —
X is a self-adjoint and positive semi-definite linear operator, we use Y2 to denote
the unique self-adjoint and positive semi-definite square root of 3.

e Denote
A
T 2 1 A,
r:= |z |, u:= , A=A, B:= )
T3 As 3

3
e Let a € (0,1] be given. Denote

M= <(1 mom T 0 ) + 0 BB, 8)

0 Y3+ T3
—5(1;a) Yo+ 15 0
H = )
0 235+ Ts — 22 (A A%)* S5 1 (A2 A%)
+min(r, 1 + 7 — 7%)0 BB*. 9)
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2. A 3-Block SPADMM

Based on our previous introduction and motivation, we propose our 3-block
sPADMM for solving problem (1) in the following:

Algorithm sPADMM: A 3-block sSPADMM for solving problem (1).

Let o € (0,+00) and 7 € (0,400) be given parameters. Let T}, i = 1,2, 3, be given
self-adjoint and positive semi-definite linear operators defined on X;, i = 1,2, 3,
respectively. Choose (29,29, 29, 2") € dom(61) x dom(fs) x dom(f3) x Z and set

k=0.

Step 1. Compute

. 1
x’f+1 = argmln{ﬁg 2101,302,:103, k)+§|\x1 —xﬂ%},
T1EX]
. 1
x’;-&-l = argmln{ﬁg k+1 x2’x/§, k)_’_—Hﬁtg —£C]2€|%2},
roEXo 2 (10)

. 1
a:g'H 1= argmin {Eo k+1 k+1 y L35 Zk) + §Hx3 - xéﬂ%&}v
r3EX3

2= 2k 4 oro (APt —¢).

Step 2. If a termination criterion is not met, set k := k+1 and then go to Step 1.

In order to analyze the convergence properties of Algorithm sPADMM, we make
the following assumptions.

Assumption 2.1. The convex function 0y satisfies (2) with 3o > 0.

Assumption 2.2. The self-adjoint and positive semi-definite operators T;,i =
2,3, are chosen such that the sequence {(x%, x5 2% 2*)} generated by Algorithm
sPADMM is well defined.

Assumption 2.3. There exists ¢/ = (2f,25,2%) € ri(dom(6y) x dom(f2) x
dom(f3)) N P, where
P = {$ = ($1,$2,$3) € X x Xy x Xs |A*$ = C}.

Under Assumption 2.3, it follows from Corollaries 28.2.2 and 28.3.1 of Rockafel-
lar (1970) that & = (Z1, Z2, T3) € X1 x A x X3 is an optimal solution to problem (1)
if and only if there exists a Lagrange multiplier Z € Z such that

—A;zZ € 591(fl), 1=1,2,3 and A*Z —c=0. (11)

Moreover, any z € Z satisfying (11) is an optimal solution to the dual of problem (1).

Let & = (Z1,Z2,73) € X1 X Xo x X3 and z € Z satisfy (11). For the sake of
convenience, define for (z1,u,2) := (x1, (v2,23),2) € X1 X (X2 x X3) x Z,a € (0,1]
and £k =0,1,..., the following quantities

Sn(w1,u,2) = (07) M2 =2l + [} — a1|%, oy + [lW® — wlly
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and

I c_ ko, k _ & E._
T i=xy — T, 1=1,2,3 wui=u"—-u, z;:=2z"-2

Ak =M gk =123, AuF = uFtl —ub ARk = 2R Gk

K2

51@ = ¢r(Z1,0,2) = (‘77')_1”'35”2 + HxleHE1+T1 + ”ukH
L k12 k|2
o1 = [ Awsl7, + Az, 492 (A343) 251 (Ar A7)
sk+1 1= || Az isitm T 1Az5]3 Tt T -
+ HAZU3||1E +T5— 22 (A2 A3)* S5 (A2 AZ)
+ ol A7t +B*uk —f?,

lpt1 = HA{E ||121+T1 + ”AukH%I?

k.= A*gh — ¢

To prove the convergence of Algorithm sPADMM for solving problem (1), we
first present some useful lemmas.

Lemma 2.1. Assume that Assumptions 2.1-2.3 hold. Let {(z%, 25 2% 2¥)} be gen-
erated by Algorithm sPADMM. Then, for any 7 € (0,+00) and integer k > 0, we
have

b = P12 (L= 7)allr" P + spa, (13)

where ¢y, sk+1 and r*T1 are defined as in (12).

Proof. The sequence {(z¥, 25 2%, 2¥)} is well defined under Assumption 2.2. Notice
that the iteration scheme (10) of Algorithm sPADMM can be re-written as for
k=0,1,... that

—Ay |2F o [ Apah T 4 ZA* k_ — Ty (2t — 2k € 96, (),
_ , -
—Ay |2 o ZA;x;?H + Ak — || = Tu(ab™ — 2b) € 90, (b1,
j=1

—As [zk + U(A*xk*'1 —0o)] — Tp,(a,’]?f+1 - 333) € 005(x k+1),

A= 2k ro(A L — o).
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Combining (2) with (11) and (14), and using the definitions of z¥ and Az¥, for
1 =1,2,3, we have

i 3
<x’fj1,Aiz — A2 — o4, ZA;‘x?“ + Z A;xf —c| - TzAxf>

j=1 j=i+1

> ka+1

2 (15)

For any vectors a, b, d in the same Euclidean vector space and any self-adjoint linear
operator GG, we have the identity

1
(@ =b,G(d—a)) = 5(lld = b]]& — lla = bl[& = [la — d|[&).

Taking a = xkﬂ b = 7;,d = 2F and G = T} in the above identity, and using the
definitions of z¥ and Az¥, we get
1 .
(i, ~Tida}) = 5 Uiz, - 25 N7, — Aak)z,), i=1,2,3. (16)
Let
R = 2P L g(A* 2P —¢) = 2 4 o(AaN T + BrubT — ¢, (17)

Substituting (16) and (17) into (15) and using the definition of Ax?, fori=1,2,
we have

) 1
< W AZ = AT oA Z Aj A > 5 Utz = 1)

Jj=1i+1

—_

> SllAzf |7, + 2, (18)

\]

and
_ . 1 1
(w5, Az — AgZTh) + S (laBell, — o5 1T) > AT, + llasd 1%,
(19)
Adding (18) for i = 1,2 to (19), we get

3 3
D@l Az — A 4o <a:’f:1, Yy A;Am§> +o(aht Ay A Ak

i=1 j=2

k+1
+ +

Qi)

— =i

3
2 (Il
i=1

N =

(20)

3

3
Z |AZF 7, + Z [

1550024-7

N)Ir—l



AsiaPac. J. Oper. Res. Downloaded from www.worldscientific.com
by NATIONAL UNIVERSITY OF SINGAPORE on 05/10/15. For personal use only.

M. Li, D. Sun & K.-C. Toh

By simple manipulations and using A*l‘xlfjl A*{x’f“ Az, = B* u—l—(A*{x’f“ c),
we get

o <x’f€+1 A i A;Ax§>
j=2
= o (=2t — A B*Auk)
= J(—Afx’fjl B*uF — B*ukH)
= o((=B*a) — (Ajzf™" = ¢), (=B*u") — (=B*u")). (21)
For any vectors a, b, d, e in the same Euclidean vector space, we have the identity

1 1
(a=b,d—e)=(la—el=lla—d*)+ 5= dI* = b e]*). (22)

In the above identity, by taking a = —B*a,b = A%zt — ¢ d = —B*u*! and
= —B*uF, and applying it to the right-hand side of (21), we obtain from the
definitions of u¥ and Z*+! that

3
% o * %
a<m’f:%A12AjAm§> = S(IBuf|* — | B uE|P)
j=2
o % k41 *, k41 2
+ 5 (AT} + Bt e

— A+ Bt )

o * *
o (1B we|? = 1B ug %)

1
+ 2—||Zk _ 2k+1||2 ||A* k+1 B*uk _ C||2.
o
(23)
Using the Cauchy—Schwarz inequality, for the parameter a € (0, 1], we get

o (2, AQA*AJ;3>_2<(@22)23;2€ ,g(aEQ) %AQAgAa;§>

k+1 k12
< allz5 g, + E||Ax3”(A2A§)*E;1(AQA§)- (24)
It follows from (17) that
3
Z<$§;1,Ai5— Ai§k+1> — <Z ~k+1 ZA* k+1>
i=1
Lis_ skt1 shn k
o

1550024-8
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Substituting (23)-(25) into (20), we obtain

1, % ~k k e g x k x k
Gl HLE >+5H2 —Z +1||2+§(IIB ug||? = | B*uf %)

3
1 k
SEDI(CA LR EALES)

i=1

3 3
1

—HA* k+1+B*uk—CII2+§ZIIAw¢ D e,

i=1 i=1,i#2

2
g
+ (1= )l 3, — = llAws

(A2A45)* 55 (A2 A3) (26)

k
From the elementary inequality ||a||? + [|b]|? > |ja — b[|?/2 and 25T — 2k = Axk it
follows that

3
k
Sl R+ (1 - o)l g,
i=1,i£2
1< L1 2
=3 S U3, + +3 S U3, = b l13,)
i=1,i#2 i=1,i#2
k k
Sk 1z, + ok 3,) + —— (|25 12, — b ]13,)
o1 3 1< 1—a
A _
z 4 Z IAx?II%nLg > (= “Ilzi—Hx’felli)ﬂLTlle’Slli
i=1,i i=1,i£2
k+1 k
(25, — N3y, (27)

By simple manipulations and using the definition of z¥, we get

Lo k1 skl ok Lok skt
—{(z—zZ"TH M — 2 —z" -2
4 )+ 5l ||
1 1 1
_ _<2 _ Zk72k+1 _ Zk> + _<Zk _ 2k+172k+1 _ Zk> + _sz _ 2k+1”2
o o 20
1 k sk k Lok sk
L e P
= (12 — 12k 4 (e = )+ Tk 2 (28)
2077 ¢ 20 '
By using (14), (17) and the definitions of 2* and r*+!, we have
zfﬂ = zf + 7(2“1 — zk) and 2P — ZFH = _gpktl

1550024-9
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which, together with (28), imply

1 1
—<Z o Zk—H, 2k+1 _ Zk> + _”zk o 2k+1||2
o 20
1 (r—1)o
= oo (1 — 18+ + T2 e (29)
Substituting (27) and (29) into (26), and using the definitions of ¢, si+1 and r*+1,
we get the assertion (13). The proof is complete. O

Lemma 2.2. Assume that Assumptions 2.1 and 2.2 hold. Let {(x%, x5, 2% 2¥)} be
generated by Algorithm sPADMM. Then, for any T € (0,+00) and integer k > 1,
we have

—o(B*AuF rHY > (1 — 7)o (B* AuF, rF)

+

DN | =

3
=2
+o(AjAxs, Aj(Aay! — Axf)), (30)
where Au¥, Az¥ (i = 2,3) and r**1 are defined as in (12).
Proof. Let

2
M= o g A;fa:]?"'l + Ajzk — ¢
J
=1

By using (14) and the definition of Az}, we have
—ApvF L — o Axk € 005(2b™)  and  —Agv® — To Az € 96, (2h).
Thus, we obtain from (2) that
(Azh, (A" 4+ Ty Azh™1) — (ATt + ThAzh)) > HA(E’;”QEQ

By using the Cauchy—Schwarz inequality, we obtain

(Azg, To(Axs — Awy™")) = | Aak|F, — (Aaf, TpAz3™")

> A, - 3 1AzE 3,

Adding up the above two inequalities, we get

(AT, 0 —o*) > 1| ATKIR, am, — 51005 3, (31)
Using 2F=1 — 2 = —7or* and the definitions of v* and r*, we have

oF — " = (1 = 7)ork — orF L — o A5 (AZE™! — Azk).

1550024-10
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Substituting the above equation into (31), we get
o(—A3AzE Y > (1 — 1)o (A5 Azh F)
+ o (A5 Ak, A5 (AT — Axh))

1 -
+ 5 (1805117, 105, — 18257 |17,). (32)

Similarly as for deriving (32), we can obtain that

U(—A§Ax§,rk+1> >—(1- T)O'<A§A3}§,’I"k>

1 -
+ 5 (185117 105, — 18257 |17,).

Adding up the above inequality and (32), and using the definitions of B* and u, we
get the assertion (30). The proof is complete. O

Lemma 2.3. Assume that Assumptions 2.1 and 2.2 hold. Let {(x%, x5, 2% 2%)} be
generated by Algorithm sPADMM. For any 7 € (0,400) and integer k > 1, we
have

(L =7)ollr™ > + s
>ty +max(l— 7,1 — 7 o ([[r 12 — |l7]%)
+min(r, 147 = 7%)o7 PP 4 (G — &), (33)
where Sgi1,thr1,Exr1 and r*1 are defined as in (12).

k+1

Proof. By simple manipulations and using the definition of 7", we obtain

| Atz 4+ Bk — ¢f|? = ||rF Tt — B*AuP|?
_ ||rk+1||2 _ 2<B*Auk’ rk+1>
+ || B* Au®|2. (34)
It follows from (30) and (34) that
(1 =7)ollr* 2 + o Aj2i ™t + Bk — ¢f)?
> 0| B*AY*|? + (2 — 7)ol T2 — 2(1 — 7)o (B* A, rF)
+ 20 (A5 AZE A5 (Axk™ — Axk))
3

+>(laaf

=2

1550024-11
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By the Cauchy—Schwarz inequality, for the parameter a € (0, 1], we have
20 (A5 Axk, A5 (Axk™1 — Azk))

= 2((aXy)? Azk, o (%) "2 (A2 A5) Axk™)

—2((aXs)? Axk, o(a%y) 7 (A2 A%) Axk)

2
k2 g k—1)2
Z —OéHA$2||22 - EHAQ:B ||(A2A§)*E;1(A2A§)
k2 o’ k2
—afladblz, - Zjad]

(AzA3)*%; " (A2 Af)

2
k|2 g k—1)|2
= _2a||Ax2||Eg - E(”AxS ||(A2A§)*22_1(A2A§)

k|2
ALy a5) 051 (a25))
Substituting the above inequality into (35), we get
(1= 7)allr*? + ol Ajaf ™ + B*u* — ¢f?
> o|| B*AuF|]? + (2 — 7)o ||rF Y% — 2(1 — 7)o (B* Auk, r*)

k2 k=12 k|2
+(||Ax2||T2 HA:'U2 ||T2) + (”Ax?)||T3+%3(A2A§)*E;1(A2A§)

— [l Az 2, ) +2(1 - )| Azt

b4 22 (A2 A%)* T3 L (A2 AZ)

202
+2||Azf|3, - 7||Ax§||?A2A§)*22_1(A2A§)' (36)

By using the definitions of sx41 and tx41, and the fact that
k2 _ k|2 k|2
||AU ||H - ”AxQH 5(1;a) S0 Th + ||Ax3”323+T37%(A2A§)*E;1(A2A§)

. 2 * k|2

+min(r,1 4+ 7 — 7°)0|| B*Au”||7,

we have

20
k k k
2(1 - Oé)HAQI2||%2 + 2||A333||%3 - T”AxBH?AQA;)*E;l(AQA;)
= —Sp1 4 tpp1r —min(r, 1 + 7 — 72)0|| B* A |
+ || Az 4 Bk — |2
Substituting the above equation into (36) and using the definition of £x4+1, we get

(1=7)o "2 + sky1 — trgr + min(r, 1+ 7 — 72)o| B*Au¥||?
> 0| B*Au||? + (2 — 7)o ||rF Y2 — 2(1 — 7)o (B* AuF, r¥)
+ (Ert1 — &k)- (37)
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By using the Cauchy—Schwarz inequality, we get
—2(1 — 7)o(B*AuF,7F) > —(1 — 7)o || B*AuF||? — (1 — 7)o |7*||?
if 7€ (0,1],

(1-7)o (38)

~2(1 — ) (B Auk,r%) > (1~ 7)o B Au|? + I+
if 7€ (1,+00).
Substituting (38) into (37), we obtain from simple manipulations that
(1 — 7)o ||r* Y2 + spp1 — teyr +min(r, 1 + 7 — 72)0 || B* Au¥|?

> max(1 = 7,17 o (|r* ] - [IrF]|?)

+min(r, 1 + 7 — 7)o (772 + || B*AuF||?) + (Erpr — &)

The assertion (33) is proved immediately. m|

Now, we are ready to prove the convergence of the sequence {(z¥, x5, 2% 2%}
generated by Algorithm sPADMM.

Theorem 2.1. Assume that Assumptions 2.1-2.3 hold. Let {(x%, x5, 25, 2%)} be
generated by Algorithm sPADMM. Then, for any T € (0,+00) and integer k > 1,
we have

(¢ + max(1 — 7,1 — 77 Ho|r¥|* + &)
— (Ppgy + max(l — 7,1 — 77 H)o||r" 12 + Gyr)
> tpy1 +min(r, 1 +7 — 7)o ! ||7"kle %, (39)

where ¢y, Epy1, tes1 and 7% are defined as in (12). Assume that 7 € (0, (14++/5)/2).
If for some « € (0,1] it holds that

1
551+ T+ 0AA] =0, H=0 and M -0, (40)

then the whole sequence {(z¥, 25 2%)} converges to an optimal solution to prob-
lem (1) and {z*} converges to an optimal solution to the dual of problem (1).

Proof. By substituting (33) into (13), we can easily get (39).

Assume that 7 € (0, (14 1/5)/2). Since (40) holds for some « € (0, 1], we have
min(r,1 +7—72) > 0,H = 0 and M = 0. From (39), we see immediately that the
sequence {¢; } is bounded, limy_.cc tg41 = 0 and limg_.o [P 1| = 0, ie.,

Jim A}y, 0 =0, lim Ad¥|E =0,

(41)
Jim [P = lim (7o) 7 [|AZY] = 0.
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Since H = 0, we also have that
Jim |AzE|| =0, Jim |AzE| =0 (42)

and thus

3
A Ak]| = ||lrFHE — ok — | S A ALk H

3
< N D A5 A — 0 (43)
j=2
as k — oo. Now from (41) and (43), we obtain

kh_{n ||A581||( 1S+ T+ A AY) = hm (HAxl” iy +1 + U”ATACCT”?) =0. (44)

Recall that 5, 4+ 71 + 0 A1 A7 = 0. Thus it follows from (44) that
Jim |Az¥|| = 0. (45)

By the definition of @, 1, we see that the three sequences { |25+, {[|2¥F |5, 47 1
and {||u**!]|5s} are all bounded. Since M > 0, the sequences {||z5™!||} and

{||zE+1||} are also bounded. Furthermore, by using
AT = | AT — AT — Br | < (I (B ug (46)

we also know that the sequence {||Aiz¥F1|} is bounded, and so is the sequence
{Ilzy 1 £, 4Ty 404, A7) - This shows that the sequence {J]2%F|} is also bounded
as the operator X1 + 11 + 0 A1 AT = %El + Ty + 0A; A7 > 0. Thus, the sequence
{(f, 2%, 2% 2¥)} is bounded.

Since the sequence {(z¥ zk 25 2%)} is bounded, there is a subsequence
{(ah, 2k 2kt 2F)} which converges to a cluster point, say {(25°, 2%, 23, 2°°)}.
Taking limits on both sides of (14) along the subsequence {(z¥, x5 2k 2ki)},
using (41), (42) and (45), we obtain that

—A;2%* € 00;(27°), j=1,2,3 and A"z> —c=0,
e, (23°,25°,25°, 2°) satisfies (11). Thus {(x5°,23°,25°)} is an optimal solution
to (1) and 2 is an optimal solution to the dual of problem (1).

To complete the proof, we show next that (29°,23°,25°,2%°) is actually
the unique limit of {(2F, %, 2%, 2¥)}. Replacing (1,4, 2) := (1, (Z2,73),2) by
(25°,u™®, 2°) := (25°, (25°,25°), 2°°) in (39), for any integer k > k;, we have

Op+1 (27, u™>, 2%°) + max(l — 7,1 — 7~ )(7||rk+1||2 + &pr1
< ¢, (23°,u, 2%°) + max(l — 7,1 — 7~ Vo||r"||* + &, (47)
Note that
lim (¢, (27°,u, 2%°) + max(1 — 7,1 — 77 Vo ||r¥ || + &,) =
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Therefore, from (47) we get
i Gpn (277, 4™, 2%) = 0,
i.e.,
Jim ((o7) 7[5 = 22 + et = 22013, o + [0 = u)3) = 0.

k= u°°, that is limy_ .~ 3315 = 25° and

k+1 _

Since M > 0, we also have that limy_ .. u
limy, o 25 = 23°. Using the fact that limy ... ||[P**|| = 0 and limy . ||u
u®| =0, we get from (46) that limy, . || A% (25T — 25°)| = 0. Thus

: k

klggo H%-H - x(fo||221+T1+oA1A; = 0.

Since X1 + Ty + 0 A1 A} = 0, we also obtain that limy_. 2§ = 2$°. Therefore,
we have shown that the sequence {(z¥, 2%, 25)} converges to an optimal solution
to (1) and {z*} converges to an optimal solution to the dual of problem (1) for any
7 € (0, (1 4+ v/5)/2). The proof is complete. |

Remark 2.1. Assume that (1 — a)Xy + 0A2AS is invertible for some « € (0,1].
Set 7 = 1 (the case that 1 # 7 € (0, (1 4+ /5)/2) can be discussed in a similar but
slightly more complicated manner) and To = 0 in (8) and (9). Then the assumptions
H > 0 and M > 0 in (40) reduce to

M), oAy A oAy A i,
oAz A} 3% + Ty + 0 Az A} — 3 (A A3)* S5 (Ae A7)
and
(1 — )X+ oAy AS oAy Aj
( oAz A} N3+ Ty + JA3A§> -
which are, respectively, equivalent to
5 * 50° *y sk g—1 *
o2+ 15+ oAz A5 — g(l‘bAg) ¥y (A243)
9 o [l —a) y ! y
—0°(A3A3) (TEQ + JA2A2) (A243) =0 (48)
and
N3+ T3+ 0A3As — 0 (A345)((1 — @)X + 0 Az A3) "1 (A245) = 0 (49)

in terms of the Schur-complement format. The conditions (48) and (49) can be
satisfied easily by choosing a proper T3 for given a € (0,1] and o € (0,+400).
Evidently, with a fixed «, T3 can take a smaller value with a smaller ¢ and T3 can
even take the zero operator for any o > 0 smaller than a certain threshold if X5 +
(1 — a)ocAs A5 = 0. To see this, let us consider the following example constructed
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in Chen et al. (2014):

min 1x2+ 1;102—1— 1952
2071 T 2077 T 2073
1 1 1 T (50)
s.t. 1 1 2 T = 07
1 2 2 T3

which is a convex minimization problem with three strongly convex functions. In
Chen et al. (2014) showed that the directly extended 3-block ADMM scheme (4)
with 7 = o = 1 applied to problem (50) is divergent. For problem (50), ¥; = Yo =
S5 = 45,41 = (1,1,1), A, = (1,1,2) and A3 = (1,2,2). From (48) and (49), by
taking o = 1, we have that T3 and o should satisfy the following conditions

1 5 1 5
Z+T3—122502+60>0 and E+T3+60>0,

which hold true, in particular, if 75 = 0 and o < £ ~ 0.015 or if o = 1 and
T3 > 1857 ~ 1223.92.

Remark 2.2. If A} is vacuous, then for any integer £ > 0, we have that xé“ =
x3 = Z, the 3-block SPADMM is just a 2-block sSPADMM, and condition (40)
reduces to

1
521+T1+0’A1A1‘ =0, 23+T3+0'A3A§ =0 and

5
5Us+ T3+ min(r, 1 +7 — 7%)0 Az A} = 0,
which is equivalent to
21+T1+0'A1AT =0 and Zg—FTg—i—O’AgAg =0 (51)

since 31 = 0,71 = 0,33 = 0 and T3 > 0. Condition (51) is exactly the same as the
one used in Theorem B.1 in Fazel et al. (2013).

3. Conclusions

In this paper, we provided a convergence analysis about a 3-block sSPADMM for
solving separable convex minimization problems with the condition that the sec-
ond block in the objective is strongly convex.® The step-length 7 in our proposed
sPADMM is allowed to stay in the desirable region (0, (1++/5)/2). From Remark 2.1,
we know that with a fixed parameter @ € (0, 1], the added semi-proximal terms
can be chosen to be small if the penalty parameter o is small. If A} and A3 are
both injective and o > 0 is taken to be smaller than a certain threshold, then the
convergent 3-block sSPADMM includes the directly extended 3-block ADMM with

20mne can prove similar results if the third instead of the second block is strongly convex.
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7 € (0,(1 4 +/5)/2) by taking Tj,7 = 1,2,3, to be zero operators. With no much
difficulty, one could extend our 3-block sSPADMM to deal with the m-block (m > 4)
separable convex minimization problems possessing m — 2 strongly convex blocks
and provide the iteration complexity analysis for the corresponding algorithm in
the sense of He and Yuan (2012). In this work, we choose not to do the extension
because we are not aware of interesting applications of the m-block (m > 4) sepa-
rable convex minimization problems with m — 2 strongly convex blocks. While our
sufficient condition bounding the range of values for ¢ and T3 is quite flexible, it
may have one potential limitation: T3 can be very large if o is not small as shown in
Remark 2.1. Since a larger T3 can potentially make the algorithm converge slower,
in our future research we shall first study how this limitation can be circumvented
before we study other important issues such as the iteration complexity.P
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