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Abstract

Rank-constrained matrix problems appear frequently across science and engi-
neering. The convergence analysis of iterative algorithms developed for these
problems often hinges on local error bounds, which correlate the distance to
the feasible set with a measure of how much the constraints are violated.
Foundational results in semi-algebraic geometry guarantee that such bounds
exist, yet the associated exponents are generally not explicitly determined.
This paper establishes a local Hölderian error bound with an explicit ex-
ponent for the canonical rank-constrained affine feasibility set. This paper
proves that, on any compact set, the distance to the feasible set is bounded
by a power of a natural residual function capturing violations in both the
rank and affine constraints. The exponent in this bound is given explicitly
in terms of the problem’s dimensions. This provides a fundamental quan-
titative result on the geometry of the solution set, paving the way for the
convergence analysis of a broad class of numerical methods.
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1. Introduction

The set of rank-constrained matrices satisfying a system of linear equa-
tions,

S = {X ∈ Rm×n | A(X) = b, rank(X) ≤ r}, (1)

forms the feasibility region for a vast number of problems in modern data
analysis and engineering. Applications include signal and image processing
[3], system identification and control [5], and collaborative filtering, where it
appears in the well-known matrix completion problem [1]. Despite its impor-
tance, the set S is notoriously challenging from a computational standpoint.
The rank constraint introduces a non-convex, combinatorial structure, ren-
dering the general feasibility problem NP-hard [13].

A central question in the analysis of optimization algorithms is the rate
of convergence to a solution set. The theory of error bounds provides a pow-
erful framework for addressing this question by relating the distance from
an arbitrary point to the solution set (i.e., dist(X,S)) to the value of a
residual function that measures constraint violation [8, 10]. For an itera-
tive algorithm that generates a sequence {Xk}, an error bound of the form
dist(Xk,S) ≤ κ · residual(Xk)τ can provide a direct path to establishing con-
vergence rates, showing that driving the residual to zero forces the iterates
to approach the feasible set S.

The study of error bounds for problems involving low-rank matrices has
primarily proceeded along algorithmic lines. A significant body of work has
analyzed convex relaxations, where the rank constraint is replaced by a con-
straint on the nuclear norm [9]. For solutions derived from such methods,
error bounds have been established, often under statistical assumptions on
the data or structural properties of the linear map A, such as the Restricted
Isometry Property (RIP) [9]. These results, however, characterize the prop-
erties of solutions to an auxiliary problem rather than providing a direct
geometric property of the original non-convex set (1).

For non-convex methods that operate directly on low-rank factorizations
(i.e., X = UV T ), local error bounds and related geometric properties like the
quadratic growth condition or the Polyak- Lojasiewicz (PL) inequality have
been established. These results typically demonstrate that, near a solution,
the objective landscape is well-behaved, which guarantees linear convergence
for methods like gradient descent [6, 11]. This line of inquiry provides crucial
insight into algorithmic performance but couches the analysis in terms of
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a surrogate optimization landscape, not the geometry of the fundamental
constraint set (1).

Our work departs from this algorithmic focus to study the intrinsic geom-
etry of the set (1) itself. Since S is a semi-algebraic set (defined by polynomial
equalities and inequalities), the foundational work of  Lojasiewicz guarantees
the existence of a Hölderian error bound, often called a  Lojasiewicz inequal-
ity [7]. This classic result ensures that for a point X0 ∈ S and a residual
function f , there exists a neighborhood of X0, a constant c, and an exponent
τ ∈ (0, 1] such that dist(X,S) ≤ c · f(X)τ for all X in that neighborhood.
While this establishes existence, the exponent τ is generally non-constructive
and can be arbitrarily close to zero, providing a weak guarantee.

The primary contribution of this paper is to establish an explicit, local
Hölderian error bound for the set (1). We consider a natural residual function
that combines the affine and rank constraint violations:

f(X) :=
n∑

i=n−r+1

σ2
i (X) +

1

2
∥A(X) − b∥2,

where σi(X) denotes the i-th singular value of X. Our main result, Proposi-
tion 3.6, shows that for any compact set K, there exist constants c > 0 and
τ > 0, with τ explicitly given in terms of the problem dimensions, such that

c · dist(X,S) ≤ f(X)τ for all X ∈ K.

This result provides a concrete, quantitative measure of the geometric regu-
larity of the rank-constrained affine set. By providing an explicit exponent,
our work moves beyond the abstract existence guarantees of classical semi-
algebraic geometry and provides a foundational tool that can be used for the
convergence analysis of any iterative method aiming to find a point in (1).

2. Notation and Preliminaries

Throughout this paper, we let Rm×n denote the space of m × n real
matrices. This space is equipped with the trace inner product ⟨X, Y ⟩ :=
trace(XTY ) and its induced norm, the Frobenius norm, denoted by ∥ · ∥.
The singular values of a matrix X ∈ Rm×n are denoted by σ1(X) ≥ σ2(X) ≥
· · · ≥ σmin{m,n}(X) in non-increasing order. The distance from a point X to
a set A ⊂ Rm×n is defined as dist(X,A) := infY ∈A ∥X − Y ∥. The open ball
centered at X with radius ϵ is denoted by B(X, ϵ), and its closure is B̄(X, ϵ).
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The open (closed) unit ball centered at the origin is denoted by B (B̄). We
use Ik to denote the k× k identity matrix. For a linear map A : Rm×n → Rl,
its adjoint is denoted by A∗.

Our analysis relies on tools from variational analysis [10]. For a lower
semicontinuous function ϕ : Rl → R, the Fréchet subdifferential at x ∈ Rl is
defined by

∂̂ϕ(x) :=

{
v ∈ Rl | lim inf

y→x,y ̸=x

ϕ(y) − ϕ(x) − ⟨v, y − x⟩
∥y − x∥

≥ 0

}
.

The limiting (or Mordukhovich) subdifferential, denoted by ∂ϕ(x), is defined
as

∂ϕ(x) :=
{
v ∈ Rl | ∃xk

ϕ→ x, vk → v with vk ∈ ∂̂ϕ(xk) for all k
}
,

where xk
ϕ→ x means xk → x and ϕ(xk) → ϕ(x). If x̄ ∈ Rl is a local

minimum of ϕ, then 0 ∈ ∂̂ϕ(x̄) by definition. For our nonsmooth resid-
ual function f(X), we define its minimal norm subgradient (or slope) as
mf (X) := dist(0, ∂f(X)).

A key concept is that of semi-algebraic sets and functions. A set A ⊂ Rd

is called semi-algebraic if it can be represented as a finite union of sets defined
by a finite number of polynomial equalities and inequalities. A function is
semi-algebraic if its graph is a semi-algebraic set. The semi-algebraic prop-
erty is fundamental because it guarantees the existence of a local error bound
via the  Lojasiewicz inequality. Our primary tool is an effective version of this
inequality for polynomials, which provides an explicit exponent.

Lemma 2.1 ([2, Theorem 4.2]). Let P : Rl → R be a polynomial of degree
deg(P ) ≤ d. Let x̄ ∈ Rl be a critical point, i.e., ∇P (x̄) = 0. Then for any
r0 > 0 there exists ϵ > 0 and c > 0 such that

∥∇P (x)∥ ≥ c|P (x) − P (x̄)|1−τ

for any x ∈ B(x̄, r0) with |f(x)| < ϵ, where the  Lojasiewicz exponent τ is
given by τ = R(l, d)−1, with R(l, d) := d(3d− 3)l−1.

For a polynomial of degree d = 4 in l variables, this exponent is τ =
(4 · 9l−1)−1.
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3. Deriving the Error Bound

Without loss of generality, assume that S ̸= ∅, X̄ ∈ S and m ≥ n. The
following analysis mainly follows the analysis in [4]. Consider the function
g : Rm×n × Rn×(n−r), defined by

g(X, V ) = ⟨XV,XV ⟩ +
1

2
∥A(X) − b∥2F .

Then g is a polynomial in n(m + n− r) variables of degree 4. Moreover, we
have

min
V :V ⊤V=In−r

g(X, V ) =
n∑

i=n−r+1

σ2
i (X) +

1

2
∥A(X) − b∥2 = f(X),

where σ1(X) ≥ σ2(X) ≥ · · · ≥ σn(X) are the singular values ofX. Therefore,
it is easy to know both f and g are semi-algebraic functions and S is a semi-
algebraic set. For each X ∈ Rm×n, denote

E(X) = {V ∈ Rn×(n−r) | g(X,V ) = f(X), V ⊤V = In−r},

which is a nonempty and compact set. For simplicity, denote On,r = {V ∈
Rn×(n−r) | V ⊤V = In−r}. Then, we have the following lemma.

Lemma 3.1. The set-valued mapping E : Rm×n ⇒ Rn×(n−r), X 7→ E(X) is
locally Hölder stable, i.e., for any fixed X̄ ∈ Rm×n and ϵ > 0, there exist
c, α > 0 such that

E(X) ⊂ E(X̄) + c∥X − X̄∥αB̄ for all X ∈ B(X̄, ϵ).

Proof. We set the function H(X,V ) := |g(X, V ) − f(X)| + ∥V ⊤V − In−r∥2F .
Then the function H is semi-algebraic and locally Lipschitz. Additionally,
we have E(X) = {V | H(X, V ) = 0}. Since On,r is a compact set, it follows
from the  Lojasiewicz inequality that there exist constants c, α > 0 such that

c · dist(V,E(X̄)) ≤ H(X̄, V )α for all V ∈ On,r.

On the other hand, since H is locally Lipschitz, it is therefore globally L-
Lipschitz on the compact set B̄(X̄, ϵ) × On,r for some L > 0. Thus, for
X ∈ B(X̄, ϵ) and V ∈ E(X), we have

c · dist(V,E(X̄)) ≤ H(X̄, V )α = |H(X̄, V ) −H(X,V )|α

≤ (L∥X − X̄∥)α = Lα∥X − X̄∥α.

This completes the proof.
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From Lemma 3.1, the following proposition is obvious.

Proposition 3.2. For each ϵ′ > 0 and fixed X̄, there exists a ϵ < ϵ′ such
that for all X ∈ B(X̄, ϵ) and all V ∈ E(X), we have

dist(V,E(X̄)) < ϵ′.

Next, we investigate the relationship between the generalized differentials
of g(X, V ) and f(X). Since g is a continuously differentiable polynomial, it
is natural to expect that certain structural properties of g(X,V ) can be
transferred to f(X).

Lemma 3.3. For all X ∈ Rm×n and V ∈ E(X), the following statements
hold:

(i) ∂̂f(X) ⊂ {∇Xg(X, V )}. Moreover,

∅ ̸= ∂f(X) ⊂
⋃

U∈E(X)

{∇Xg(X,U)} and mf (X) ≥ inf
U∈E(X)

∥∇Xg(X,U)∥.

(ii) ∥∇V g(X, V )∥ ≤ 2f(X).

Proof. (i) Take arbitrary Z ∈ ∂̂f(X). By definition, for any ϵ > 0 there
exists a δ > 0 such that

f(X + H) − f(X) − ⟨H,Z⟩ ≥ −ϵ∥H∥ for all H ∈ B(0, δ).

We define the function

ϕ(H) := g(X + H, V ) − ⟨Z,H⟩ + ϵ∥H∥.

Then for all H ∈ B(0, δ), we have

ϕ(H) ≥ f(X + H) − ⟨Z,H⟩ + ϵ∥H∥
≥ f(X) = g(X,V ) = ϕ(0).

That is to say, 0 is the local minima of ϕ, therefore we have

0 ∈ ∂̂ϕ(0) ⊆ ∇Xg(X, V ) − Z + ϵB̄.

Thus, we have ∥∇Xg(X, V ) − Z∥ ≤ ϵ, this holds for any ϵ > 0. Then
Z = ∇Xg(X, V ), this holds for any Z ∈ ∂̂f(X), then ∂̂f(X) ∈ {∇Xg(X, V )}.
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On the other hand, since f is semi-algebraic, it is therefore continuously
differentiable on a semi-algebraic dense open set U ⊂ Rm×n from the Cell
Decomposition Theorem [12, Theorem 4.2]. Then for all X ∈ U , we have

∂̂f(X) = ∂f(X) = {∇Xg(X, V )}.

Since U is dense, the function g is C∞, the multi-function E(X) is compact-
valued and is locally Hölder stable (Lemma 3.1), we conclude that

∅ ̸= ∂f(X) ⊂
⋃

U∈E(X)

{∇Xg(X,U)},

and the last inequality in (i) follows immediately.
(ii) We have g(X, V ) = f(X) = minU⊤U=In−r

g(X,U). Then there exists
a multiplier Y ∈ In−r such that X⊤XV = V Y . Multiplying both sides of
the equation on the left by V ⊤, we obtain Y = (XV )⊤XV . Therefore,

∥∇V g(X, V )∥ = ∥2X⊤XV ∥ = 2∥V Y ∥
≤ ∥V ∥2∥Y ∥F = ∥Y ∥.

(2)

Additionally, we have

2f(X) ≥ 2⟨XV,XV ⟩ = 2⟨V Y, V ⟩ = 2 trace(Y ). (3)

Since Y = (XV )⊤XV is a positive semidefinite matrix, we have

∥Y ∥ =
√
trace(Y 2) ≤ trace(Y ).

Combined with (2) and (3), the proof is completed.

Having established a clear linkage between f(X) and g(X, V ), our focus
now shifts to deriving the error bound for g since it is a polynomial.

Proposition 3.4. There exist constants c > 0 and ϵ′ > 0 such that

∥∇g(X, V )∥ ≥ c · g(X, V )1−τ

for all X ∈ B(X̄, ϵ′) and V ∈ Rn×(n−r) with dist(V,E(X̄)) < ϵ′, where

τ :=
1

R(n(m + n− r), 4)
:=

1

4 · 9n(m+n−r)−1
.
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Proof. We know f(X̄) = 0, and E(X̄) is a compact set. For any V̄ ∈ E(X̄),
we have g(X̄, V̄ ) = 0 and ∇g(X̄, V̄ ) = 0 by simple observation. Recall that
g is a polynomial in n(m + n − r) variables of degree d = 4. From the
 Lojasiewicz inequality (Lemma 2.1), we have constants c > 0, ϵ′ > 0 such
that

∥∇g(X, V )∥ ≥ c · g(X, V )1−τ

for all X ∈ B(X̄, ϵ′) and V ∈ B(V̄ , ϵ′). The conclusion then follows easily
from the compactness of E(X̄).

Now we are ready for the  Lojasiewicz inequality of the nonsmooth func-
tion f . Specifically, we have the following result.

Theorem 3.5. There exist constants c > 0 and ϵ > 0 such that

mf (X) ≥ c · f(X)1−τ

for all X ∈ B(X̄, ϵ), where τ := 1
R(n(m+n−r),4)

.

Proof. Let c, ϵ′, and ϵ < ϵ′ be the positive constants such that Propositions
3.2 and 3.4 hold. Take arbitrary X ∈ B(X̄, ϵ), we have dist(E(X), E(X̄)) ≤
ϵ′. Since E(X) is compact, there exists a V ∈ E(X) such that

∥∇Xg(X, V )∥ = inf
U∈E(X)

∥∇Xg(X,U)∥.

It follows from Lemma 3.3 that

mf (X) ≥ ∥∇Xg(X, V )∥ and ∥∇V g(X, V )∥ ≤ 2f(X).

Since all norms on finitely dimensional normed vector spaces are equivalent,
we have

mf (X) + 2f(X) ≥ ∥∇Xg(X, V )∥ + ∥∇V g(X, V )∥
≥ c1∥∇g(X, V )∥
(a)

≥ c1c · g(X, V )1−τ = c1c · f(X)1−τ

for some c1 only determined bym,n, r, and (a) comes from dist(V,E(X̄)) < ϵ′

and Proposition 3.4. Note that f(X̄) = 0, we can diminish ϵ until we may
assume

f(X)τ <
c1c

4
, ∀X ∈ B(X̄, ϵ)
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if necessary. Consequently, we obtain

mf (X) ≥ (c1c− 2f(X)τ )f(X)1−τ ≥ c1c

2
f(X)1−τ , ∀X ∈ B(X̄, ϵ).

This completes the proof.

The above  Lojasiewicz inequality leads to an error bound of S.

Proposition 3.6. For any compact set K ⊂ Rm×n, there exists a constant
c > 0 such that for all X ∈ K, the inequality

c · dist(X,S) ≤ f(X)τ

holds with τ := 1
R(n(m+n−r),4)

.

Proof. This can be derived by Theorem 3.5, [4, Lemma 2.2], and the com-
pactness of K.

The potential looseness of the error bound in Proposition 3.6 is a di-
rect consequence of its reliance on the  Lojasiewicz exponent for polynomials,
whose tightness still remains unknown. When the function f satisfies certain
regularity condition, a global bound can be established in the following. The
proof of Theorem 3.8 is omitted as it follows the same arguments used for [4,
Proposition 6.1].

Assumption 3.7. For the function f, there exist constants c > 0 and R > 0
such that for all ∥X∥ ≥ R, the inequality

mf (X) ≥ c

holds.

Theorem 3.8. If Assumption 3.7 holds, then the set S is compact and there
exists a constant c > 0 such that for any X ∈ Rm×n, the inequality

c · dist(X,S) ≤ f(X)τ + f(X)

holds with τ := 1
R(n(m+n−r),4)

.
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4. Conclusion

In this paper, we constructed a concrete error bound for rank-constrained
affine matrix sets. Our approach involved first defining a polynomial auxil-
iary function and establishing a key relationship between it and the problem’s
residual function. By applying the  Lojasiewicz inequality and its known ex-
ponent for polynomials, we then derived an explicit form for the error bound.
We acknowledge that a limitation of this current result is its looseness. There-
fore, future work will focus on identifying and verifying sufficient conditions
under which a tighter, more practical error bound can be obtained. This
remains a primary direction for our further research.
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