
ON THE RELATIONSHIPS AMONG GPU-ACCELERATED
FIRST-ORDER METHODS FOR SOLVING LINEAR

PROGRAMMING∗

KAIHUANG CHEN† , DEFENG SUN‡ , YANCHENG YUAN§ , GUOJUN ZHANG¶, AND

XINYUAN ZHAO∥

Abstract. This paper aims to understand the relationships among recently developed GPU-
accelerated first-order methods (FOMs) for linear programming (LP), with particular emphasis on
HPR-LP—a Halpern Peaceman–Rachford (HPR) method for LP. Our findings can be summarized
as follows: (i) the base algorithm of cuPDLPx, a recently released GPU solver, is a special case of
the base algorithm of HPR-LP, thereby showing that cuPDLPx is another concrete implementation
instance of HPR-LP; (ii) once the active sets have been identified, HPR-LP and EPR-LP—an ergodic
PR method for LP—become equivalent under the same initialization; and (iii) extensive numerical
experiments on benchmark datasets demonstrate that HPR-LP achieves the best overall performance
among current GPU-accelerated LP solvers. These findings provide a strong motivation for using
the HPR method as a baseline to further develop GPU-accelerated LP solvers and beyond.

Key words. GPU acceleration, Linear programming, Halpern Peaceman–Rachford, Proximal
alternating direction method of multipliers

MSC codes. 90C05 · 90C06 · 90C25 · 65Y20

1. Introduction. In this paper, we focus on GPU-accelerated first-order meth-
ods (FOMs) for solving large-scale linear programming (LP) problems. Our aim is to
develop a deep understanding of the connections among recent algorithmic develop-
ments and to provide insights that will guide the design of future high-performance
LP solvers. Specifically, we consider the following general form of LP:

(1.1)

min
x∈Rn

⟨c, x⟩

s.t. Ax ∈ K,

x ∈ C,

where c ∈ Rn is the objective vector, A ∈ Rm×n is the constraint matrix, K := {s ∈
Rm : lc ≤ s ≤ uc} with bounds lc ∈ (R ∪ {−∞})m and uc ∈ (R ∪ {∞})m, and
C := {x ∈ Rn : lv ≤ x ≤ uv} with bounds lv ∈ (R ∪ {−∞})n and uv ∈ (R ∪ {∞})n.

∗September 30, 2025
Funding: The work of Defeng Sun was supported by the Research Center for Intelligent Oper-

ations Research, RGC Senior Research Fellow Scheme No. SRFS2223-5S02, and GRF Project No.
15307822. The work of Yancheng Yuan was supported by the RGC Early Career Scheme (Project
No. 25305424) and the Research Center for Intelligent Operations Research. The work of Xinyuan
Zhao was supported in part by the National Natural Science Foundation of China under Project No.
12271015.

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong, (kaihuang.chen@connect.polyu.hk).

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong, (defeng.sun@polyu.edu.hk).

§Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong, (yancheng.yuan@polyu.edu.hk).

¶Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong, (guojun.zhang@connect.polyu.hk).

∥Department of Mathematics, Beijing University of Technology, Beijing, P.R. China,
(xyzhao@bjut.edu.cn).

1

ar
X

iv
:2

50
9.

23
90

3v
2

 [
m

at
h.

O
C

]
 1

 O
ct

 2
02

5

mailto:kaihuang.chen@connect.polyu.hk
mailto:defeng.sun@polyu.edu.hk
mailto:yancheng.yuan@polyu.edu.hk
mailto:guojun.zhang@connect.polyu.hk
mailto:xyzhao@bjut.edu.cn
https://arxiv.org/abs/2509.23903v2

The corresponding dual problem is:

(1.2)
min

y∈Rm, z∈Rn
δ∗K(−y) + δ∗C(−z)

s.t. A∗y + z = c,

where δ∗S(·) denotes the convex conjugate of the indicator function δS(·) associated
with a closed convex set S.

Classical LP algorithms such as the simplex method [13] and interior-point meth-
ods [28] relied on factorization-based approaches. Commercial solvers like CPLEX [26]
and Gurobi [22] combined simplex and interior-point methods with highly optimized
sparse linear algebra, delivering state-of-the-art CPU performance. Yet their re-
liance on inherently sequential matrix factorizations makes it difficult to fully exploit
massively parallel GPUs with high memory bandwidth [37]. Even GPU-accelerated
interior-point solvers like CuClarabel [21, 11], which leverage mixed precision, still
depend on direct factorizations and thus face scalability challenges on large-scale
problems.

In recent years, first-order methods (FOMs) have attracted growing attention for
large-scale LPs due to their low per-iteration cost and high parallelizability. Repre-
sentative solvers include PDLP [1, 3], ECLIPSE [4], ABIP [31, 15], and HPR-LP [8],
with related convex conic or quadratic solvers such as SCS [42, 41], OSQP [46],
PDQP [38], PDHCG [25], PDCS [32], and HPR-QP [9]. A milestone in this line
is PDLP [1, 2], based on the primal dual hybrid gradient (PDHG) method [54, 17, 6],
which is equivalent to linearized ADMM with unit stepsize (or linearized Douglas–
Rachford) [17, 6]. Its main computational advantage is that it relies only on sparse
matrix-vector multiplications and simple projections, avoiding matrix factorizations.
Practical enhancements such as restarts with ergodic sequences, adaptive penalty up-
dates, and heuristic line search further improve robustness and efficiency. Notably,
PDLP received the 2024 Beale–Orchard-Hays Prize for Excellence in Computational
Mathematical Programming. Its GPU implementations, including cuPDLP.jl [35],
cuPDLP-C [39], and NVIDIA’s cuOpt1, have demonstrated competitive performance
against commercial solvers on large-scale LP benchmarks. Furthermore, instead of
relying on costly heuristic line search as in PDLP, Chen et al. [10] established the
ergodic convergence of the semi-proximal Peaceman–Rachford (PR) method, which
admits larger effective stepsizes at low cost. Building on this foundation, a preliminary
implementation of ergodic PR for LP with practical enhancements, termed EPR-LP,
has already demonstrated superior empirical performance over cuPDLP.jl [51].

From a theoretical standpoint, ergodic sequences of semi-proximal ADMM, in-
cluding PDHG, achieve an O(1/k) iteration complexity for objective error and fea-
sibility violation [14, 12]. Recently, building on the ergodic O(1/k) complexity of
PDHG established by Chambolle and Pock [6, 7], Applegate et al. [3] proved that
PDHG achieves the ergodic O(1/k) complexity for LP problems when measured by
primal-dual feasibility violation and the primal-dual gap, both of which can be in-
ferred from the Karush–Kuhn–Tucker (KKT) residual. For the KKT residual itself,
Monteiro and Svaiter [40] established an ergodic O(1/k) rate for ADMM (with unit
dual stepsize) in terms of the ε-subdifferential. This result was later extended to
sPADMM by Shen and Pan [45], and further to the semi-proximal PR method by
Chen et al. [10], implying an ergodic O(1/

√
k) complexity for the KKT residual.

1https://developer.nvidia.com/blog/accelerate-large-linear-programming-problems-with-nvidia-cuopt

2

https://developer.nvidia.com/blog/accelerate-large-linear-programming-problems-with-nvidia-cuopt

In contrast, HPR-LP [8], a Halpern Peaceman–Rachford (HPR) method for LP,
achieves a nonergodic O(1/k) rate directly in terms of the KKT residual. It is derived
by accelerating the preconditioned (semi-proximal) PR method [53, 50, 47] through
the Halpern iteration [23, 30, 44]. Specifically, Zhang et al. [53] applied the Halpern
iteration to the classical PR method [16, 33], obtaining the HPR method without
proximal terms and establishing an O(1/k) rate for both the KKT residual and the
objective error. Subsequently, Sun et al. [47] reformulated the semi-proximal PR
method as a degenerate proximal point method (dPPM) [5] with a positive semidef-
inite preconditioner, and applied the Halpern iteration to obtain the HPR method
with semi-proximal terms, which also achieves an O(1/k) rate. Building on these
advances, Chen et al. [8] developed HPR-LP, a GPU-accelerated solver for large-scale
LP that significantly outperformed the award-winning PDLP [1, 3, 35]. Inspired by
the work of HPR-LP, Lu and Yang [36] proposed the reflected restarted Halpern
PDHG (r2HPDHG), a special case of the HPR method [47]. Building on this, Lu et
al. [34] released an efficient GPU implementation, cuPDLPx, which exhibits superior
performance compared to cuPDLP.jl [35].

Despite significant progress in GPU-accelerated FOMs for LP, their interrelation-
ships remain unclear. This paper addresses this gap by investigating the connections
among recent approaches, with a focus on HPR-LP and its links to other solvers. The
main contributions can be summarized as follows:

1. We prove that the base algorithm of cuPDLPx (r2HPDHG) is a special case
of the base algorithm of HPR-LP, implying that cuPDLPx is another concrete
implementation instance of HPR-LP.

2. We show that, under the strict complementarity condition, the PR update in
the HPR method for LP becomes affine after finitely many iterations. Conse-
quently, after active sets are identified, HPR-LP and EPR-LP are equivalent
under consistent initialization based on the equivalence between Halpern it-
eration and ergodic iteration for affine fixed-point maps.

3. We present extensive experiments on LP benchmark datasets, evaluating
the impact of algorithmic enhancements and demonstrating that HPR-LP
achieves the best overall performance among current GPU-accelerated LP
solvers.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
HPR method for solving LP. Section 3 discusses the relationship between cuPDLPx
and HPR-LP as well as the connection between HPR-LP and EPR-LP. Section 4
presents extensive numerical results on recent GPU-accelerated FOMs for LP across
different benchmark sets. Finally, Section 5 concludes the paper.

Notation. Let Rn be the n-dimensional Euclidean space with inner product ⟨·, ·⟩
and norm ∥ · ∥. For A ∈ Rm×n, let A∗ be its transpose and ∥A∥ :=

√
λ1(AA∗) its

spectral norm, where λ1(·) denotes the largest eigenvalue. For any self-adjoint positive
semidefinite operator M : Rn → Rn, define the seminorm ∥x∥M :=

√
⟨x,Mx⟩.

For a convex function f : Rn → (−∞,+∞], let ∂f(·) be its subdifferential and
Proxf (x) := argminz∈Rn

{
f(z) + 1

2∥z − x∥2
}
its proximal mapping. For a convex set

C ⊆ Rn, we use the following notations: the indicator function δC(x) := 0 if x ∈ C
and +∞ otherwise; the distance under ∥ · ∥M, distM(x,C) := infz∈C ∥x − z∥M; the
Euclidean projection ΠC(x) := argminz∈C ∥x − z∥; and the normal cone at x ∈ C,
denoted by NC(x).

2. HPR-LP: An HPR method for solving LP. In this section, we begin
by presenting the base algorithm of HPR-LP [8], followed by a discussion of its con-

3

vergence guarantees and complexity results, which motivate subsequent algorithmic
enhancements.

2.1. Base algorithm. For any (y, z, x) ∈ Rm × Rn × Rn, the augmented La-
grangian of the dual problem (1.2) is

Lσ(y, z;x) := δ∗K(−y) + δ∗C(−z) + ⟨x,A∗y + z − c⟩+ σ

2
∥A∗y + z − c∥2,

where σ > 0 is a penalty parameter. For notational convenience, let w := (y, z, x) ∈
W := Rm × Rn × Rn. Then, an HPR method with semi-proximal terms [47, 8] for
solving problems (1.1) and (1.2) is summarized in Algorithm 2.1.

Algorithm 2.1 An HPR method with semi-proximal terms for the problem (1.2)

1: Input: Set the penalty parameter σ > 0. Let T1 : Rm → Rm be a self-adjoint
positive semidefinite linear operator such that T1+AA∗ is positive definite. Denote
w = (y, z, x) and w̄ = (ȳ, z̄, x̄). Choose an initial point w0 = (y0, z0, x0) ∈
Rm × Rn × Rn.

2: for k = 0, 1, ..., do

3: Step 1. z̄k+1 = argmin
z∈Rn

{
Lσ

(
yk, z;xk

)}
;

4: Step 2. x̄k+1 = xk + σ(A∗yk + z̄k+1 − c);

5: Step 3. ȳk+1 = argmin
y∈Rm

{
Lσ

(
y, z̄k+1; x̄k+1

)
+

σ

2
∥y − yk∥2T1

}
;

6: Step 4. ŵk+1 = 2w̄k+1 − wk;

7: Step 5. wk+1 =
1

k + 2
w0 +

k + 1

k + 2
ŵk+1;

8: end for

9: Output: Iteration sequence {w̄k}.

Remark 2.1. Steps 1–3 correspond to the semi-proximal DR method [20, 18].
Adding Step 4 (relaxation) yields the semi-proximal PR method, and Step 5 introduces
Halpern iteration with stepsize 1/(k + 2) [23, 30]. Together, Algorithm 2.1 is an
accelerated preconditioned ADMM (pADMM) with parameters α = 2 and ρ = 2 [47].

According to [43, Corollary 28.3.1], a pair (y∗, z∗) ∈ Rm × Rn is an optimal
solution to problem (1.2) if there exists x∗ ∈ Rn such that (y∗, z∗, x∗) satisfies the
following KKT system:

(2.1) 0 ∈ Ax∗ − ∂δ∗K(−y∗), 0 ∈ x∗ − ∂δ∗C(−z∗), A∗y∗ + z∗ − c = 0.

We make the following assumption:

Assumption 2.2. There exists a vector (y∗, z∗, x∗) ∈ Rm × Rn × Rn satisfying
the KKT system (2.1).

Under Assumption 2.2, solving the primal–dual pair (1.1)–(1.2) is equivalent to finding
a point w∗ ∈ Rm×Rn×Rn such that 0 ∈ T w∗, where the maximal monotone operator
T is defined as

(2.2) T w =

−∂δ∗K(−y) +Ax
−∂δ∗C(−z) + x
c−A∗y − z

 ∀w = (y, z, x) ∈ Rm × Rn × Rn.

The global convergence of Algorithm 2.1 is established in the following proposition.

4

Proposition 2.3 (Corollary 3.5 in [47]). Suppose that Assumption 2.2 holds.
Then the sequence {w̄k} = {(ȳk, z̄k, x̄k)} generated by the HPR method with semi-
proximal terms in Algorithm 2.1 converges to a point w∗ = (y∗, z∗, x∗), where (y∗, z∗)
solves the dual problem (1.2) and x∗ solves the primal problem (1.1).

Next, consider the self-adjoint positive semidefinite linear operator M : Rm ×
Rn × Rn → Rm × Rn × Rn defined by

(2.3) M =

σAA∗ + σT1 0 A
0 0 0
A∗ 0 1

σ In

 ,

where In denotes the n × n identity matrix. To analyze the complexity of the HPR
method with semi-proximal terms, we consider the KKT residual and the objective
error. The residual mapping associated with the KKT system (2.1), as introduced in
[24], is given by

(2.4) R(w) =

Ax−ΠK(Ax− y)
x−ΠC(x− z)
c−A∗y − z

 ∀w = (y, z, x) ∈ Rm × Rn × Rn.

Furthermore, let {(ȳk, z̄k)} be the sequence generated by Algorithm 2.1. We define
the objective error as

h(ȳk+1, z̄k+1) := δ∗K(−ȳk+1) + δ∗C(−z̄k+1)− δ∗K(−y∗)− δ∗C(−z∗) ∀k ≥ 0,

where (y∗, z∗) is the limit point of the sequence {(ȳk, z̄k)}. The complexity of the
HPR method with semi-proximal terms is summarized in Theorem 2.4.

Theorem 2.4 (Proposition 2.9 and Theorem 3.7 in [47]). Suppose that Assump-
tion 2.2 holds. Let {wk} = {(yk, zk, xk)} and {w̄k} = {(ȳk, z̄k, x̄k)} be two sequences
generated by the HPR method with semi-proximal terms in Algorithm 2.1, and let
w∗ = (y∗, z∗, x∗) be its limit point. Define R0 = ∥w0 − w∗∥M. Then for all k ≥ 0,
the following iteration complexity bounds hold:

∥w̄k+1 − wk∥M ≤ R0

k + 1
,(2.5a)

∥R(w̄k+1)∥ ≤
(
σ(∥A∥+ ∥

√
T1∥) + 1√

σ

)
R0

k + 1
,(2.5b) (

− 1√
σ
∥x∗∥

)
R0

k + 1
≤ h(ȳk+1, z̄k+1) ≤

(
3R0 +

1√
σ
∥x∗∥

)
R0

k + 1
.(2.5c)

The results above establish that the HPR method (Algorithm 2.1) enjoys an O(1/k)
complexity rate in terms of the KKT residual and the objective error. These properties
motivate the use of restart strategies and adaptive parameter updates, which will be
discussed in the next subsection.

2.2. Algorithmic enhancements. Several enhancements have been proposed
to improve the performance of the HPR method for solving LP [8] and convex compos-
ite quadratic programming (CCQP) [9]. In particular, restart strategies and adaptive
updates of the penalty parameter σ, motivated by the O(1/k) complexity results in
Theorem 2.4, have proven effective. For completeness, we summarize the HPR-LP
framework with these enhancements in Algorithm 2.2.

5

Algorithm 2.2 HPR-LP: A Halpern Peaceman–Rachford method for the LP problem
(1.2) (cf. [8])

1: Input: Let T1 : Rm → Rm be a self-adjoint positive semidefinite linear operator
such that T1 + AA∗ is positive definite. Denote w = (y, z, x) and w̄ = (ȳ, z̄, x̄).
Choose an initial point w0,0 = (y0,0, z0,0, x0,0) ∈ Rm × Rn × Rn.

2: Initialization: Set the outer loop counter r = 0, the total loop counter k = 0,
and the initial penalty parameter σ0 > 0.

3: repeat

4: initialize the inner loop: set inner loop counter t = 0;

5: repeat

6: z̄r,t+1 = argmin
z∈Rn

{
Lσr

(
yr,t, z;xr,t

)}
;

7: x̄r,t+1 = xr,t + σr(A
∗yr,t + z̄r,t+1 − c);

8: ȳr,t+1 = argmin
y∈Rm

{
Lσr

(
y, z̄r,t+1; x̄r,t+1

)
+

σr

2
∥y − yr,t∥2T1

}
;

9: ŵr,t+1 = 2w̄r,t+1 − wr,t;

10: wr,t+1 =
1

t+ 2
wr,0 +

t+ 1

t+ 2
ŵr,t+1;

11: t = t+ 1, k = k + 1;
12: until one of the restart criteria holds or all termination criteria hold

13: restart the inner loop: τr = t, wr+1,0 = w̄r,τr ,

14: σr+1 = SigmaUpdate(w̄r,τr , wr,0, T1, A), r = r + 1;

15: until termination criteria hold

16: Output: {w̄r,t}.

2.2.1. Restart strategy. Restarting has been recognized as particularly impor-
tant for Halpern iterations. As noted in Theorem 2.4, the complexity bound depends
on the weighted distance R0 between the initial point and the optimal solution. Con-
sequently, as the iterates approach optimality, continuing to reference a distant initial
anchor becomes counterproductive, whereas resetting the anchor to the current iterate
helps reduce the bound and refocus the iteration near the solution. This observation
motivates the merit function

Rr,t := ∥wr,t − w∗∥M, ∀r ≥ 0, t ≥ 0,

where w∗ is any solution of the KKT system (2.1). Since w∗ is unknown, the practical
surrogate

R̃r,t := ∥wr,t − ŵr,t+1∥M

is employed in defining restart rules. The following criteria are commonly adopted:
1. Sufficient decay:

(2.6) R̃r,t+1 ≤ α1R̃r,0;

2. Necessary decay + no local progress:

(2.7) R̃r,t+1 ≤ α2R̃r,0, and R̃r,t+1 > R̃r,t;

6

3. Long inner loop:

(2.8) t ≥ α3k;

where 0 < α1 < α2 < 1 and 0 < α3 < 1. When any criterion is met, the inner loop is
restarted at iteration (r + 1) with wr+1,0 = w̄r,τr and an updated σr+1.

Remark 2.5. Restart strategies are commonly used in first-order methods for
LP [1, 35, 39, 36]. For instance, PDLP adopts a normalized duality gap as the merit
function [1], while subsequent works by Lu et al. [35, 39] introduced variants based
on weighted KKT residuals.

2.2.2. Update rules for σ. Another important enhancement of HPR methods
concerns the update of the penalty parameter σ. The update strategy is motivated
by the complexity results of the HPR method in Algorithm 2.1 (see Theorem 2.4).
At a high level, the goal is to select σ at each restart to tighten the complexity bound
and thereby reduce the KKT residuals in subsequent iterations. Specifically, the ideal
update is defined as the minimizer of the weighted distance to the optimal solution:

(2.9) σr+1 := argmin
σ

∥∥wr+1,0 − w∗∥∥2
M ,

where w∗ is any solution of the KKT system (2.1). Substituting the definition of M
from (2.3) leads to the closed-form expression

(2.10) σr+1 =

√
∥xr+1,0 − x∗∥2

∥yr+1,0 − y∗∥2T1
+ ∥A∗(yr+1,0 − y∗)∥2

.

Since the optimal solution (x∗, y∗) is unknown, practical implementations approximate
these terms using the observed progress within each outer loop:

(2.11) ∆x := ∥x̄r,τr − xr,0∥, ∆y :=
√

∥ȳr,τr − yr,0∥2T1
+ ∥A∗(ȳr,τr − yr,0)∥2,

which yields the implementable update rule

(2.12) σr+1 =
∆x

∆y
.

Several special cases of T1 have been investigated in the literature [8]:
1. Case T1 = 0. This case occurs when b := lc = uc, which arises in applications

with special structure in A, such as optimal transport [52] and Wasserstein
barycenter problem [53]. The y-update then reduces to solving the linear
system

(2.13) AA∗ȳr,t+1 =
1

σr

(
b−A(x̄r,t+1 + σr(z̄

r,t+1 − c))
)
,

which is computationally affordable in practice. In this case, the update
rule (2.12) simplifies to

(2.14) σr+1 =
∥x̄r,τr − xr,0∥

∥A∗(ȳr,τr − yr,0)∥
.

7

2. Case T1 = λAIm − AA∗ with λA ≥ ∥A∥2. Proposed in [17, 6, 49], this
choice applies when lc ̸= uc or when solving (2.13) directly is expensive. The
y-update takes the form

(2.15) ȳr,t+1 =
1

σrλA

(
ΠK(Ry)−Ry

)
,

where Ry := A(2x̄r,t+1 − xr,t) − σrλAy
r,t. In this setting, the update for σ

becomes

(2.16) σr+1 =
1√
λA

∥x̄r,τr − xr,0∥
∥ȳr,τr − yr,0∥

.

Remark 2.6. The update formula (2.16) is closely related to the primal weight
update in PDLP [1, Algorithm 3], differing mainly by the presence of the factor λA.

It is worth noting that the approximations ∆x and ∆y may deviate significantly
from the true quantities. To address this, various smoothing schemes [1, 35, 39, 9] and
safeguards [8] have been proposed to stabilize the update. Moreover, the rule (2.12)
is not specific to LP; it extends directly to the HPR method for more general convex
optimization problems [47], including CCQP [9].

3. Relationships among GPU-accelerated LP solvers. Fig. 3.1 summa-
rizes the connections among several popular FOMs for solving LP. Two relationships
are of particular interest in this paper. First, we demonstrate that the base algorithm
of cuPDLPx (r2HPDHG) [34] is a special case of HPR-LP under suitable parameter
choices. Second, we examine the relationship between HPR-LP and EPR-LP, focus-
ing on the interplay between the Halpern iteration and the ergodic iteration. The
following subsections elaborate on these two relationships in detail.

8

Fig. 3.1: Relationships among GPU-accelerated FOMs for solving LP.

9

3.1. The relationship between cuPDLPx and HPR-LP. Lu et al. [34]
recently released cuPDLPx, a GPU-accelerated solver that enhances PDLP [1] by
incorporating the Halpern iteration [23, 30]. The key observation is that the base it-
eration of cuPDLPx (r2HPDHG) is a special case of the HPR method (Algorithm 2.1).
Specifically, starting from an initial point u0 = (y0, x0) ∈ Rm×Rn, the base iteration
of cuPDLPx with reflection parameter γ ∈ [0, 1] is given by

(3.1)


PDHG(uk) =


x̄k+1 = ΠC

(
xk − η

ω (c−A∗yk)
)
,

ȳk+1 = yk − ηωA(2x̄k+1 − xk)

−ηωΠ−K

(
1
ηωy

k −A(2x̄k+1 − xk)
)
,

uk+1 = k+1
k+2

(
(1 + γ) PDHG(uk)− γuk

)
+ 1

k+2u
0,

where η is the stepsize and ω is the primal weight. The relationship between cuPDLPx
and the HPR method is stated below.

Proposition 3.1. The sequence {(xk, yk)} generated by cuPDLPx in (3.1) with
γ = 1 coincides with the sequence produced by the HPR method (Algorithm 2.1) with
T1 = λAIm −AA∗, provided that

σ =
η

ω
, λA =

1

η2
≥ ∥A∥2,

and both algorithms are initialized at the same point.

Proof. Taking T1 = λAIm −AA∗ with λA ≥ ∥A∥22, Algorithm 2.1 simplifies to:
(3.2)

z̄k+1 =
1

σ

(
ΠC
(
xk + σ(A∗yk − c)

)
−
(
xk + σ(A∗yk − c)

))
,

x̄k+1 = xk + σ(A∗yk + z̄k+1 − c) = ΠC
(
xk + σ(A∗yk − c)

)
,

ȳk+1 =
1

σλA

(
ΠK
(
A(2x̄k+1 − xk)− σλAy

k
)
−
(
A(2x̄k+1 − xk)− σλAy

k
))

,

ŵk+1 = 2w̄k+1 − wk,

wk+1 =
1

k + 2
w0 +

k + 1

k + 2
ŵk+1.

Comparing the update schemes (3.1) with γ = 1 and (3.2), we observe that the two
methods produce identical iterates when the parameters satisfy the relations

η

ω
= σ, ηω =

1

λAσ
,

and both are initialized from the same point. That is, if

(3.3) σ =
η

ω
, λA =

1

η2
≥ ∥A∥2,

then the sequence {uk = (yk, xk)} generated by (3.1) with γ = 1 coincides with the
sequence {(yk, xk)} produced by (3.2).

10

Remark 3.2. In [34], the stepsize is chosen as η = 0.998/∥A∥. By the above
equivalence, one may instead take η = 1/∥A∥ to obtain a larger stepsize, thereby
improving performance while preserving theoretical guarantees established in [47].
Furthermore, for γ ∈ [0, 1), the scheme (3.1) can be viewed as a special case of the
Halpern-accelerated pADMM with parameter ρ = γ + 1 [47].

3.2. The relationship between HPR-LP and EPR-LP. In this subsection,
we establish the connection between the base algorithms of HPR-LP and EPR-LP
through the relationship between ergodic and Halpern iterations. To this end, we
first recall the EPR method proposed in [10] for solving the dual problem (1.2),
summarized in Algorithm 3.1.

Algorithm 3.1 An EPR method for the LP problem (1.2) [10]

1: Input: Set σ > 0 and choose a self-adjoint positive semidefinite operator T1 :
Rm → Rm such that T1+AA∗ is positive definite. Let w = (y, z, x), w̄ = (ȳ, z̄, x̄),
and initialize w0 = (y0, z0, x0) ∈ Rm × Rn × Rn.

2: for k = 0, 1, . . . do
3: Step 1: z̄k+1 = arg min

z∈Rn
Lσ(y

k, z;xk);

4: Step 2: x̄k+1 = xk + σ(A∗yk + z̄k+1 − c);
5: Step 3: ȳk+1 = arg min

y∈Rm
{Lσ(y, z̄

k+1; x̄k+1) + σ
2 ∥y − yk∥2T1

};

6: Step 4: wk+1 = 2w̄k+1 − wk;
7: end for
8: Output: {w̄k+1

a = 1
k+2

∑k+1
j=0 w̄

j+1} and {wk+1
a = 1

k+2

∑k+1
j=0 w

j+1}.

Remark 3.3. Chen et al. [10] proved that the ergodic sequence {w̄k+1
a } generated

by the EPR method converges for convex optimization problems with linear con-
straints. They also provided an example showing that the ergodic sequence {wk+1

a }
fails to converge while the sequence {wk} is unbounded.

We now formalize the identity that the Halpern iteration with stepsize 1/(k +
2) coincides with uniform ergodic averages of Picard iterates when the underlying
mapping is affine. This observation goes back to the analysis of Halpern iteration [48]
and has been made explicit in, e.g., [29].

Proposition 3.4. Let F : W → W be an affine map of the form

F(w) = Rw + b,

where R : W → W is linear and b ∈ W is fixed. Given w0 ∈ W, consider the Halpern
iteration

wk+1 =
1

k + 2
w0 +

k + 1

k + 2
F(wk) ∀k ≥ 0.

Then, for every k ≥ 0,

wk+1 =
1

k + 2

k+1∑
j=0

F j(w0),

i.e., wk+1 equals the ergodic average of the affine Picard iterates {F j(w0)}k+1
j=0 .

11

Proof. Let pj := F j(w0) for j ≥ 0. We prove by induction on k that

(3.4) wk+1 =
1

k + 2

k+1∑
j=0

pj .

For case k = 0, we have w1 = 1
2w

0 + 1
2F(w0) = 1

2 (p0 + p1), which is (3.4). Assume
(3.4) holds for some k ≥ 0, i.e.,

wk =
1

k + 1

k∑
j=0

pj .

Using the Halpern update and the affinity of F on convex combinations,

wk+1 =
1

k + 2
w0 +

k + 1

k + 2
F(wk) =

1

k + 2
p0 +

k + 1

k + 2
F
(1

k + 1

k∑
j=0

pj

)

=
1

k + 2
p0 +

k + 1

k + 2

(1

k + 1

k∑
j=0

F(pj)
)
=

1

k + 2

(
p0 +

k∑
j=0

pj+1

)
=

1

k + 2

k+1∑
j=0

pj ,

which is (3.4). Hence, the identity holds for all k ≥ 0.

We next state a sufficient condition under which the PR updates for LP in Algo-
rithm 2.1 reduce to an affine fixed-point map. We adopt the following strict comple-
mentarity notion for a KKT point (x∗, y∗, z∗): for each i,

(3.5) x∗
i ∈ {(lv)i, (uv)i} ⇒ |z∗i | > 0, x∗

i ∈ ((lv)i, (uv)i) ⇒ z∗i = 0,

and for each j,

(3.6) (Ax∗)j ∈ {(lc)j , (uc)j} ⇒ |y∗j | > 0, (Ax∗)j ∈ ((lc)j , (uc)j) ⇒ y∗j = 0.

The associated optimal active index sets are defined as

I∗C := { i : x∗
i ∈ {(lv)i, (uv)i} }, I∗K := { j : (Ax∗)j ∈ {(lc)j , (uc)j} }.

In the x̄–update of Algorithm 2.1, we set for any k ≥ 0,

(3.7) ξk := xk + σ(A∗yk − c), x̄k+1 = ΠC(ξ
k),

and define the projection–active indices

IkC := { i : [ΠC(ξ
k)]i ∈ {(lv)i, (uv)i} } ∀k ≥ 0.

Similarly, in the ȳ–update of Algorithm 2.1 with T1 = λAIm − AA∗ and λA ≥ ∥A∥2,
for any k ≥ 0, we let

(3.8) ζk := A(2x̄k+1 − xk)− σλAy
k, ȳk+1 = 1

σλA

(
ΠK(ζ

k)− ζk
)
,

and define

IkK := { j : [ΠK(ζ
k)]j ∈ {(lc)j , (uc)j} } ∀k ≥ 0.

We now show that under the strict complementarity condition, the active sets
can be identified in finitely many steps, after which the PR map reduces to an affine
operator on the corresponding face.

12

Proposition 3.5 (Finite identification of projection-active sets). Suppose As-
sumption 2.2 holds. Let T1 = λAIm − AA∗ with λA ≥ ∥A∥2. Assume the sequence
{(x̄k, ȳk, z̄k)} generated by Algorithm 2.1 converges to a solution (x∗, y∗, z∗) satisfying
strict complementarity conditions in (3.5) and (3.6). Then there exists K < ∞ such
that for all k ≥ K,

IkC = I∗C , IkK = I∗K .

Proof. Step 1 (margins). Strict complementarity ensures separation from degen-
eracy, which implies

γC := min
i∈I∗

C

|z∗i |, γK := min
j∈I∗

K

|y∗j |, γ := min{γC , γK} > 0.

For interior components, define{
βC := mini/∈I∗

C
min{x∗

i − (lv)i, (uv)i − x∗
i } > 0,

βK := minj /∈I∗
K
min{ (Ax∗)j − (lc)j , (uc)j − (Ax∗)j } > 0.

Step 2 (identification for ΠC). Using A∗y∗ + z∗ = c, set

ξ∗ := x∗ + σ(A∗y∗ − c) = x∗ − σz∗.

From (3.7) and Algorithm 2.1, we have ξk = x̄k+1 − σz̄k+1 → ξ∗. If i ∈ I∗C , then:
- if x∗

i = (lv)i with z∗i ≥ γ, we have ξ∗i ≤ (lv)i − σγ, hence [ΠC(ξ
∗)]i = (lv)i; - if

x∗
i = (uv)i with z∗i ≤ −γ, we have ξ∗i ≥ (uv)i + σγ, hence [ΠC(ξ

∗)]i = (uv)i. By
continuity of ΠC , there exists K1,a < ∞ such that for all k ≥ K1,a, [ΠC(ξ

k)]i remains
at the corresponding bound, i.e., i ∈ IkC . If i /∈ I∗C , then x∗

i lies at least βC away
from the bounds, so [ΠC(ξ

∗)]i = x∗
i is strictly interior. Since ξk → ξ∗, there exists

K1,b < ∞ such that for all k ≥ K1,b, [ΠC(ξ
k)]i also stays strictly interior, i.e., i /∈ IkC .

Taking K1 = max{K1,a,K1,b} gives IkC = I∗C for all k ≥ K1.
Step 3 (identification for ΠK). Define ζ∗ := Ax∗ − σλAy

∗. From (3.8) and
Algorithm 2.1, we have

ζk = Ax̄k+1 + σAz̄k+1 + σ(AA∗ − λAIm)yk − σAc ∀k ≥ 0.

Since (x̄k+1, z̄k+1) → (x∗, z∗) and ȳk → y∗, and Theorem 2.4 ensures that ∥ȳk+1 −
yk∥λAIm−AA∗ → 0, it follows that (AA∗ − λAIm)yk → (AA∗ − λAIm)y∗ and hence
ζk → ζ∗. If j ∈ I∗K , then (Ax∗)j = (lc)j with y∗j ≥ γ implies ζ∗j ≤ (lc)j − σλAγ and
thus [ΠK(ζ

∗)]j = (lc)j ; the upper-bound case is analogous. By continuity of ΠK, there
exists K2,a < ∞ such that j ∈ IkK for all k ≥ K2,a. If j /∈ I∗K , then (Ax∗)j lies at least
βK away from the bounds, so [ΠK(ζ

∗)]j = (Ax∗)j is interior; since ζk → ζ∗, there
exists K2,b < ∞ such that j /∈ IkK for all k ≥ K2,b. Taking K2 = max{K2,a,K2,b}
yields IkK = I∗K for all k ≥ K2.

Step 4 (conclusion). Taking K = max{K1,K2} completes the proof.

The next corollary shows that after active sets have been identified, the base
algorithms of HPR-LP (Algorithm 2.1) and EPR-LP (Algorithm 3.1) coincide.

Corollary 3.6 (HPR–EPR equivalence under fixed active sets). Suppose As-
sumption 2.2 holds and let T1 = λAIm −AA∗ with λA ≥ ∥A∥2. Assume that IkC = I∗C
and IkK = I∗K for all k ≥ 0. Suppose the HPR method (Algorithm 2.1) and the EPR
method (Algorithm 3.1) use the same parameters (σ, λA) and are initialized at the

13

same point w0. Then the sequence {wk+1} generated by the HPR method coincides
with the ergodic sequence {wk+1

a } generated by the EPR method.

Proof. Since IkC = I∗C and IkK = I∗K for all k ≥ 0, the projections ΠC and ΠK
act on fixed faces. Each projection is affine on these faces, so the one-step PR map
wk 7→ ŵ k+1 in Algorithm 2.1 is affine. By Proposition 3.4, the Halpern iteration
(HPR) coincides with the ergodic average of the Picard iterates (EPR), hence the
sequences coincide.

Remark 3.7. Proposition 3.5 shows that under the strict complementarity condi-
tion, there exists K < ∞ such that IkC = I∗C and IkK = I∗K for all k ≥ K. If both the
HPR method (Algorithm 2.1) and the EPR method (Algorithm 3.1) are initialized at
w̄K and this initialization does not change the active sets (I∗C , I

∗
K), then from that

point onward the iterates evolve on the fixed affine face determined by these sets.
Thus, the assumption on active sets in Corollary 3.6 can be realized after finitely
many iterations by shifting the time index, which justifies the equivalence result in
practice.

Remark 3.8. A related observation was made by Lu et al. [36], who proved that
in unconstrained bilinear problems the ergodic sequence of PDHG is identical to that
of its Halpern-accelerated variant.

4. Numerical experiments. In this section, we present extensive numerical
results on standard LP benchmark datasets. We begin with evaluating the impact
of individual algorithmic components, followed by comparisons with state-of-the-art
GPU-accelerated solvers.

4.1. Experimental setup.
Computing environment. All solvers are benchmarked on a SuperServer SYS-

420GP-TNR equipped with an NVIDIA A100-SXM4-80GB GPU, an Intel Xeon Plat-
inum 8338C CPU @ 2.60 GHz, and 256 GB RAM.

Datasets. We evaluate the solvers on two standard LP benchmark datasets. (i)
The Mittelmann LP benchmark2, which is widely used for testing both commercial
and open-source LP solvers. (ii) A subset of 18 large-scale instances from MIPLIB
2017 [19], where the number of nonzeros in A exceeds 107, and we solve their LP
relaxations.

Shifted geometric mean. To evaluate solver performance across instances, we re-
port the shifted geometric mean (SGM) with shift ∆ = 10, as in the Mittelmann

benchmarks. For a shift ∆ = 10, the SGM10 is defined as (
∏n

i=1(ti +∆))
1/n − ∆,

where ti denotes the solve time in seconds for the i-th instance. Unsolved instances
are assigned a time limit.

Termination criteria. In HPR-LP, the sequence {w̄r,t} is used to check the stop-
ping criteria. We terminate HPR-LP when the following stopping criteria are satisfied
for the tolerance ε ∈ (0,∞):

(4.1)

|−δ∗K(−y)− δ∗C(−z)− ⟨c, x⟩| ≤ ε (1 + |δ∗K(−y) + δ∗C(−z)|+ |⟨c, x⟩|) ,
∥Ax−ΠK(Ax)∥ ≤ ε

(
1 + ∥b̄∥

)
,

∥c−A∗y − z∥ ≤ ε (1 + ∥c∥) ,

where b̄ := max(|lc|, |uc|) is taken componentwise, treating any infinite entries in lc
or uc as zero when computing the norm. Other solvers are run with their default

2https://plato.asu.edu/ftp/lpfeas.html

14

https://plato.asu.edu/ftp/lpfeas.html

stopping rules, which are comparable to (4.1). In Subsection 4.2, we refer to the
relative KKT residual and duality gap in (4.1) collectively as the Optimality to assess
the effect of algorithmic enhancements.

4.2. Impact of algorithmic enhancements. We evaluate the impact of adap-
tive restarts, penalty parameter updates, and the relaxation step on two representative
Mittelmann LP instances (datt256 and nug08-3rd). We consider these components
incrementally: starting from the baseline PR method (Algorithm 2.1 without the
Halpern step), then HPR (Algorithm 2.1), HPR with adaptive restarts, HPR with
adaptive restarts plus adaptive penalties (Algorithm 2.2), and finally an HDR variant
(obtained by replacing Step 4 in Algorithm 2.1 with ŵk+1 = w̄k+1), combined with
the similar restart and adaptive penalty updates as in HPR-LP (Algorithm 2.2). The
results are reported in Fig. 4.1, and the main observations are as follows:

1. The plain PR method fails to converge. In contrast, HPR without restart
converges, albeit slowly. Incorporating adaptive restarts upgrades the rate to
linear convergence, and adaptive penalty updates further accelerate conver-
gence.

2. When both restart and adaptive penalty updates are employed, HPR consis-
tently outperforms HDR, underscoring the critical role of the relaxation step
(Step 4 in Algorithm 2.1) in enhancing performance.

(a) datt256 (b) nug08-3rd

Fig. 4.1: Performance of HPR methods with different enhancements.

Restart. We next compare the adaptive restart strategy with fixed-frequency
restart. Fig. 4.2 reports the performance of the HPR method in Algorithm 2.1 (with σ
fixed at 1) under three settings: no restart, fixed-frequency restart (with the frequency
tuned for each instance), and adaptive restart as described in Subsection 2.2. When
a restart strategy is applied, the HPR method exhibits linear convergence, with the
rate depending on the restart schedule. Overall, adaptive restart consistently achieves
slightly better performance than the best fixed-frequency choice.

15

(a) datt256 (b) nug08-3rd

Fig. 4.2: Performance of HPR methods under different restart strategies.

Penalty parameter σ. We next evaluate the effect of the penalty parameter in
the HPR method with adaptive restart. Fig. 4.3 reports the performance of HPR
with different fixed values of σ as well as with adaptive updates. We observe that for
certain fixed choices of σ (e.g., σ = 100 for datt256 and σ = 0.1 or 1 for nug08-3rd),
the HPR method often exhibits a two-phase behavior: an initial slow progress phase
(phase I), followed by linear convergence (phase II). The choice of σ significantly
affects the length of phase I, while adaptive σ selection consistently shortens this
phase and yields the best overall performance.

(a) datt256 (b) nug08-3rd

Fig. 4.3: Performance of HPR methods under different penalty parameter strategies.

4.3. Performance comparison on benchmark datasets. We compare the
performance of several state-of-the-art solvers on two benchmark datasets, includ-
ing 49 instances from the Mittelmann LP benchmark and a subset of 18 large-scale
instances from MIPLIB 2017. The tested solvers include HPR-LP (Julia implemen-
tation)3 [8], EPR-LP (Julia implementation, incorporating restart and penalty pa-

3https://github.com/PolyU-IOR/HPR-LP, v0.1.2

16

https://github.com/PolyU-IOR/HPR-LP

rameter update techniques similar to HPR-LP) [10], cuPDLPx (C implementation)4

[34], and the GPU-accelerated PDLP family: cuPDLP.jl (Julia implementation)5 [35],
cuPDLP-C (C implementation)6 [39], and NVIDIA cuOpt (C implementation)7. For
comparison with the commercial solver, we also include Gurobi8 [22], run with its
barrier method. To ensure fairness, the presolve option is disabled for all solvers.

We first compare two implementations of the HPRmethod for LP (Algorithm 2.1):
HPR-LP and cuPDLPx. The results on the Mittelmann LP benchmark and the
MIPLIB 2017 relaxations are reported in Tables 4.1 and 4.2, respectively. On the
Mittelmann benchmark, cuPDLPx performs comparably to HPR-LP, with both solv-
ing 44/49 instances, while HPR-LP is about 1.1× faster in terms of SGM10. On
the MIPLIB relaxations, HPR-LP shows a clearer advantage, solving two additional
instances and achieving a 1.8× speedup. These results confirm that both solvers
are effective realizations of the HPR method, with our HPR-LP implementation ex-
hibiting greater robustness and efficiency. Therefore, we do not include cuPDLPx in
subsequent comparisons with other solvers.

Table 4.1: Comparison between HPR-LP and cuPDLPx on the Mittelmann LP bench-
mark (49 instances). Accuracy = 10−8, time limit 15,000s.

Solvers HPR-LP cuPDLPx

SGM10 (s) 82.1 90.7

Solved 44 44

Table 4.2: Comparison between HPR-LP and cuPDLPx on MIPLIB 2017 LP relax-
ations (18 instances). Accuracy = 10−8, time limit 18,000s.

Solvers HPR-LP cuPDLPx

SGM10 (s) 204.2 368.0

Solved 17 15

Table 4.3 summarizes the SGM10 runtimes and number of solved instances for
HPR-LP and other tested solvers on the Mittelmann LP benchmark (49 instances).
Detailed runtimes for each instance are provided in Table 5.1. Specifically, HPR-LP
delivers the best overall performance, attaining both the lowest SGM10 and the largest
number of solved instances. EPR-LP is slower than HPR-LP but still outperforms
all GPU-accelerated PDLP variants. In terms of speedup, HPR-LP is approximately
3.4× faster than cuPDLP.jl, 2.1× faster than cuPDLP-C, 2.1× faster than NVIDIA
cuOpt, and 1.4× faster than Gurobi. Moreover, HPR-LP solves more instances than
cuOpt and Gurobi, underscoring both its efficiency and robustness on large-scale LP
problems.

4https://github.com/MIT-Lu-Lab/cuPDLPx, v0.1.0
5https://github.com/jinwen-yang/cuPDLP.jl, downloaded on July 24, 2024
6https://github.com/COPT-Public/cuPDLP-C, v0.4.1
7https://github.com/NVIDIA/cuopt, v25.08.00
8Version 12.0.2, academic license

17

https://github.com/MIT-Lu-Lab/cuPDLPx
https://github.com/jinwen-yang/cuPDLP.jl
https://github.com/COPT-Public/cuPDLP-C
https://github.com/NVIDIA/cuopt

Table 4.3: Performance summary of solvers on the Mittelmann LP benchmark (49
instances). Accuracy 10−8, time limit 15,000s.

Solvers HPR-LP EPR-LP cuPDLP.jl cuPDLP-C cuOpt Gurobi

SGM10 (s) 82.1 109.8 277.9 176.5 174.5 119.0

Solved 44 43 40 40 40 41

Table 4.4 reports the SGM10 runtimes and the number of solved instances on 18
large-scale MIP relaxations from MIPLIB 2017. Detailed runtimes for each instance
are provided in Table 5.2. Specifically, HPR-LP achieves the best overall performance,
with the lowest SGM10 and the largest number of solved instances (17/18). EPR-LP
ranks second: it is slower than HPR-LP but still faster than all PDLP variants and
Gurobi. In terms of speedup, HPR-LP is approximately 2.1× faster than cuPDLP.jl,
1.6× faster than cuPDLP-C, 1.4× faster than NVIDIA cuOpt, and 1.9× faster than
Gurobi. Moreover, HPR-LP solves three more instances than cuPDLP.jl, cuPDLP-C,
and Gurobi (17 vs. 14), demonstrating its robustness on large-scale LP relaxations of
MIPs.

Table 4.4: Performance summary of solvers on 18 MIP relaxations from MIPLIB 2017.
Accuracy 10−8, time limit 18,000s.

Solvers HPR-LP EPR-LP cuPDLP.jl cuPDLP-C cuOpt Gurobi

SGM10 (s) 204.2 289.4 428.6 321.6 294.9 396.1

Solved 17 16 14 14 16 14

Overall, the numerical experiments demonstrate that HPR-LP consistently achieves
the best performance across different benchmark datasets. It not only attains the low-
est SGM10 runtimes but also solves the largest number of instances, confirming both
its efficiency and robustness.

5. Conclusions and future directions. In this paper, we studied the rela-
tionships among GPU-accelerated FOMs for LP, focusing on HPR-LP and its links to
other recent solvers. Specifically, we showed that the base algorithm of cuPDLPx is
a special case of the base algorithm of HPR-LP and proved that, once active sets are
identified, HPR-LP and EPR-LP become equivalent through the correspondence be-
tween Halpern iteration and ergodic iteration. Numerical experiments on benchmark
datasets confirmed the efficiency and robustness of HPR-LP. These results motivate
the HPR framework as a solid foundation for advancing GPU-accelerated solvers for
LP and related optimization problems. Several promising directions remain for de-
veloping the next generation of high-performance solvers based on HPR methods for
LP and beyond:

1. First, recent progress highlights the broader potential of HPR methods: Chen
et al. [9] proposed a dual HPR method for CCQP, termed HPR-QP, which
significantly outperforms existing solvers such as PDQP [38] and SCS [42,
41]. Building on the connections established in this paper, one may consider
combining the implementation strategies of different solvers to produce more
efficient realizations of the HPR method for solving large-scale LP problems
and beyond.

18

2. Second, an important theoretical direction is to establish linear convergence
guarantees for restarted variants of the HPR method, as empirically observed
in Fig. 4.2. In [36], Lu and Yang proved that the restarted r2HPDHG method
with η < 1/∥A∥ achieves a linear rate at the restart points:

distPη

(
ur+1,0,U∗) ≤

(
1
e

)r+1
distPη

(
u0,0,U∗) ∀r ≥ 0,

where U∗ denotes the optimal solution set, and

Pη =

(
1
η Im A

A∗ 1
η In

)

is positive definite whenever η < 1/∥A∥. At the critical parameter η =
1/∥A∥, however, Pη becomes merely positive semidefinite, so distPη is no
longer a valid distance and the above linear rate guarantee breaks down.
Given the equivalence between the base algorithm of HPR-LP and cuPDLPx
(r2HPDHG) in Proposition 3.1, it would be interesting to combine this equiv-
alence with the theoretical framework of HPR developed in [47] to investigate
whether linear convergence guarantees can be extended to the degenerate case
η = 1/∥A∥.

3. Third, on the practical side, integrating AI and machine learning into HPR
methods—for instance, using reinforcement learning to design restart rules or
adapt penalty parameters [27]—offers a promising avenue to further enhance
their robustness and efficiency.

REFERENCES

[1] D. Applegate, M. Dı́az, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and W. Schudy. Practical
large-scale linear programming using primal-dual hybrid gradient. Advances in Neural
Information Processing Systems, 34:20243–20257, 2021.

[2] D. Applegate, M. Dı́az, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and W. Schudy.
PDLP: A practical first-order method for large-scale linear programming. arXiv preprint
arXiv:2501.07018, 2025.

[3] D. Applegate, O. Hinder, H. Lu, and M. Lubin. Faster first-order primal-dual methods for
linear programming using restarts and sharpness. Math. Program., 201(1):133–184, 2023.

[4] K. Basu, A. Ghoting, R. Mazumder, and Y. Pan. ECLIPSE: An extreme-scale linear program
solver for web-applications. In International Conference on Machine Learning, pages 704–
714. PMLR, 2020.

[5] K. Bredies, E. Chenchene, D. A. Lorenz, and E. Naldi. Degenerate preconditioned proximal
point algorithms. SIAM J. Optim., 32(3):2376–2401, 2022.

[6] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vision, 40:120–145, 2011.

[7] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Math. Program., 159(1):253–287, 2016.

[8] K. Chen, D. F. Sun, Y. Yuan, G. Zhang, and X. Zhao. HPR-LP: An implementation of an HPR
method for solving linear programming. arXiv preprint arXiv:2408.12179, 2024. Math.
Program. Comput. (2025) XXX, in print.

[9] K. Chen, D. F. Sun, Y. Yuan, G. Zhang, and X. Zhao. HPR-QP: A dual Halpern Peaceman–
Rachford method for solving large-scale convex composite quadratic programming. arXiv
preprint arXiv:2507.02470, 2025.

[10] K. Chen, D. F. Sun, Y. Yuan, G. Zhang, and X. Zhao. Peaceman–Rachford splitting
method converges ergodically for solving convex optimization problems. arXiv preprint
arXiv:2501.07807, 2025.

[11] Y. Chen, D. Tse, P. Nobel, P. Goulart, and S. Boyd. CuClarabel: GPU acceleration for a conic
optimization solver. arXiv preprint arXiv:2412.19027, 2024.

[12] Y. Cui, X. Li, D. F. Sun, and K.-C. Toh. On the convergence properties of a majorized

19

alternating direction method of multipliers for linearly constrained convex optimization
problems with coupled objective functions. J. Optim. Theory Appl., 169:1013–1041, 2016.

[13] G. B. Dantzig. Linear Programming and Extensions. Princeton university press, 1963.
[14] D. Davis and W. Yin. Convergence rate analysis of several splitting schemes. In Splitting

Methods in Communication, Imaging, Science, and Engineering, pages 115–163. Springer,
2016.

[15] Q. Deng, Q. Feng, W. Gao, D. Ge, B. Jiang, Y. Jiang, J. Liu, T. Liu, C. Xue, Y. Ye, and
C. Zhang. An enhanced alternating direction method of multipliers-based interior point
method for linear and conic optimization. INFORMS J. Comput, 37(2):338–359, 2025.

[16] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Math. Program., 55(1):293–318, 1992.

[17] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order primal-dual
algorithms for convex optimization in imaging science. SIAM J. Imaging Sci., 3(4):1015–
1046, 2010.

[18] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Comput. Math. Appl., 2(1):17–40, 1976.

[19] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. Christophel,
K. Jarck, T. Koch, J. Linderoth, et al. MIPLIB 2017: data-driven compilation of the 6th
mixed-integer programming library. Math. Program. Comput., 13(3):443–490, 2021.

[20] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non
linéaires. Revue Française D’automatique, Informatique, Recherche Opérationnelle. Ana-
lyse Numérique, 9(R2):41–76, 1975.

[21] P. J. Goulart and Y. Chen. Clarabel: An interior-point solver for conic programs with quadratic
objectives. arXiv preprint arXiv:2405.12762, 2024.

[22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025.
[23] B. Halpern. Fixed points of nonexpanding maps. Bull. Amer. Math. Soc., 73(6):957–961, 1967.
[24] D. Han, D. F. Sun, and L. Zhang. Linear rate convergence of the alternating direction method

of multipliers for convex composite programming. Math. Oper. Res., 43(2):622–637, 2018.
[25] Y. Huang, W. Zhang, H. Li, D. Ge, H. Liu, and Y. Ye. Restarted primal-dual hybrid conjugate

gradient method for large-scale quadratic programming. arXiv preprint arXiv:2405.16160,
2024.

[26] IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, 1987.
[27] J. Ichnowski, P. Jain, B. Stellato, G. Banjac, M. Luo, F. Borrelli, J. E. Gonzalez, I. Stoica, and

K. Goldberg. Accelerating quadratic optimization with reinforcement learning. Advances
in Neural Information Processing Systems, 34:21043–21055, 2021.

[28] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pages 302–311, 1984.

[29] D. Körnlein. Quantitative results for Halpern iterations of nonexpansive mappings. J. Math.
Anal. Appl., 428(2):1161–1172, 2015.

[30] F. Lieder. On the convergence rate of the Halpern-iteration. Optim. Lett., 15(2):405–418, 2021.
[31] T. Lin, S. Ma, Y. Ye, and S. Zhang. An ADMM-based interior-point method for large-scale

linear programming. Optim. Methods Softw., 36(2-3):389–424, 2021.
[32] Z. Lin, Z. Xiong, D. Ge, and Y. Ye. PDCS: A primal-dual large-scale conic programming solver

with GPU enhancements. arXiv preprint arXiv:2505.00311, 2025.
[33] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM

J. Numer. Anal., 16(6):964–979, 1979.
[34] H. Lu, Z. Peng, and J. Yang. cuPDLPx: A further enhanced GPU-based first-order solver for

linear programming. arXiv preprint arXiv:2507.14051, 2025.
[35] H. Lu and J. Yang. cuPDLP.jl: A GPU implementation of restarted primal-dual hybrid gradient

for linear programming in julia. arXiv preprint arXiv:2311.12180, 2023.
[36] H. Lu and J. Yang. Restarted Halpern PDHG for linear programming. arXiv preprint

arXiv:2407.16144, 2024.
[37] H. Lu and J. Yang. An overview of GPU-based first-order methods for linear programming and

extensions. arXiv preprint arXiv:2506.02174, 2025.
[38] H. Lu and J. Yang. A practical and optimal first-order method for large-scale convex quadratic

programming. Math. Program., pages 1–38, 2025.
[39] H. Lu, J. Yang, H. Hu, Q. Huangfu, J. Liu, T. Liu, Y. Ye, C. Zhang, and D. Ge. cuPDLP-C:

A strengthened implementation of cuPDLP for linear programming by C language. arXiv
preprint arXiv:2312.14832, 2023.

[40] R. D. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition algorithms and
the alternating direction method of multipliers. SIAM J. Optim., 23(1):475–507, 2013.

20

[41] B. O’Donoghue. Operator splitting for a homogeneous embedding of the linear complementarity
problem. SIAM J. Optim., 31(3):1999–2023, 2021.

[42] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. J. Optim. Theory Appl., 169:1042–1068, 2016.

[43] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
[44] S. Sabach and S. Shtern. A first order method for solving convex bilevel optimization problems.

SIAM J. Optim., 27(2):640–660, 2017.
[45] L. Shen and S. Pan. Weighted iteration complexity of the sPADMM on the KKT residuals for

convex composite optimization. arXiv preprint arXiv:1611.03167, 2016.
[46] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An operator splitting

solver for quadratic programs. Math. Program. Comput., 12(4):637–672, 2020.
[47] D. F. Sun, Y. Yuan, G. Zhang, and X. Zhao. Accelerating preconditioned ADMM via degenerate

proximal point mappings. SIAM J. Optim., 35(2):1165–1193, 2025.
[48] R. Wittmann. Approximation of fixed points of nonexpansive mappings. Arch. Math.,

58(5):486–491, 1992.
[49] M. Xu and T. Wu. A class of linearized proximal alternating direction methods. J. Optim.

Theory Appl., 151:321–337, 2011.
[50] B. Yang, X. Zhao, X. Li, and D. F. Sun. An accelerated proximal alternating direction method

of multipliers for optimal decentralized control of uncertain systems. J. Optim. Theory
Appl., 204(1):9, 2025.

[51] G. Zhang, K. Chen, Y. Yuan, X. Zhao, and D. F. Sun. On the ergodic convergence properties
of the Peaceman–Rachford method and their applications in solving linear programming.
OpenReview preprint, 2024.

[52] G. Zhang, Z. Gu, Y. Yuan, and D. F. Sun. HOT: An efficient Halpern accelerating algorithm for
optimal transport problems. IEEE Trans. Pattern Anal. Mach. Intell., 47(8):6703–6714,
2025.

[53] G. Zhang, Y. Yuan, and D. F. Sun. An efficient HPR algorithm for the Wasserstein barycenter
problem with O(Dim(P)/ε) computational complexity. arXiv preprint arXiv:2211.14881,
2022.

[54] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total variation
image restoration. UCLA Cam Report, 34(2), 2008.

Appendix. In this appendix, we provide detailed solver results for the Mittel-
mann LP benchmark (49 instances) and for the MIP relaxations (18 instances) from
MIPLIB 2017, reported in Table 5.1 and Table 5.2, respectively.

21

Table 5.1: Results on the Mittelmann LP benchmark (49 instances). Accuracy 10−8,
time limit 15,000s. “T” indicates reaching the time limit, “M” indicates out-of-
memory, and “F” indicates solver failure.

Instance HPR-LP EPR-LP cuPDLP.jl cuPDLP-C cuOpt Gurobi

a2864 5.0 5.8 2.7 1.3 1.3 F

bdry2 3950.2 9367.0 T T T 10.7

cont1 56.2 92.2 1871.5 389.2 361.0 1.0

cont11 429.4 282.0 5373.9 1947.8 968.0 4.2

datt256 lp 0.4 0.4 2.1 0.2 0.2 1.1

degme 40.2 45.9 85.8 60.1 64.7 17.4

dlr1 12947.4 T T T T 411.6

dlr2 T T T T T 7103.3

Dual2 5000 72.8 54.7 9441.1 3310.1 747.6 M

ex10 0.5 0.5 1.5 0.1 0.2 F

fhnw-bin1 106.3 307.2 526.7 74.0 244.2 101.1

FOME13 1.5 3.3 20.3 5.4 3.5 3.5

graph40-40 lp 0.4 0.3 1.5 0.1 0.2 24.9

irish-electricity T T T T T F

L1 sixm1000obs 13.9 20.4 38.6 37.5 74.4 M

L1 sixm250obs 2.5 5.4 11.3 11.9 9.7 228.6

L2CTA3D 43.3 49.5 16.3 9.3 12.0 542.1

Linf five20c 3.7 30.8 T T T 10.7

neos 27.9 83.9 396.0 199.4 162.5 212.0

neos-3025225 lp 5.4 11.5 9.7 3.9 3.3 24.1

neos-5052403-cygnet 10.6 10.2 16.3 8.6 6.7 11.3

neos-5251015 lp 1.1 3.8 3.4 1.2 1.2 5.7

neos3 0.4 0.3 2.0 0.6 0.4 321.3

ns168703 T T T T T 4.4

ns168892 T T T T T F

nug08-3rd 0.1 0.2 1.7 0.1 0.1 4.8

pds-100 3.0 4.5 21.2 8.7 7.8 19.5

physiciansched3-3 T T T T T 89.3

Primal2 1000 214.2 402.9 2105.8 1556.6 1069.0 F

qap15 1.8 2.7 14.3 5.4 2.9 1.2

rail02 47.6 75.6 852.4 145.6 168.0 9.8

rail4284 137.3 397.6 578.7 362.4 482.1 13.2

rmine15 lp 3.5 6.3 24.3 10.0 9.8 156.3

s100 148.5 319.8 1631.4 571.4 499.4 6.7

s250r10 18.3 37.1 192.6 105.4 35.6 3.4

s82 1157.1 3803.6 3390.7 4686.7 6204.9 75.0

savsched1 0.2 0.3 1.9 0.3 0.2 6.1

scpm1 lp 31.7 53.4 41.9 27.5 19.6 9.2

set-cover 287.5 383.7 515.3 290.1 385.5 60.5

shs1023 110.5 144.5 T T T 32.8

square41 384.3 326.6 234.9 138.3 89.3 79.5

stat96v2 459.9 1234.5 1705.9 1290.1 9740.8 F

stormG2 1000 10.6 11.9 41.0 30.5 30.5 23.1

stp3d 15.6 24.9 157.0 34.4 27.4 5.3

supportcase10 5.3 6.1 20.9 6.9 5.2 19.5

thk 48 572.2 489.3 2839.6 1164.5 755.9 7581.2

thk 63 28.0 47.8 101.4 49.2 54.3 270.5

tpl-tub-ws1617 38.6 66.2 554.3 151.1 220.2 51.7

woodlands09 0.7 0.6 2.3 0.7 0.5 7.4

SGM10 82.1 109.8 277.9 176.5 174.5 119.0

solved 44 43 40 40 40 41

22

Table 5.2: Results on MIP relaxations (18 instances) from MIPLIB 2017. Accuracy
10−8, time limit 18,000s. “T” indicates reaching the time limit, “M” indicates out-
of-memory, and “F” indicates solver failure.

Instance HPR-LP EPR-LP cuPDLP.jl cuPDLP-C cuOpt Gurobi

a2864-99blp 4.9 5.8 8.1 1.3 1.3 F

dlr1 12934.8 T T T T 412.6

ivu06-big 624.5 905.3 4203.3 763.7 1347.3 24.8

ivu59 929.3 1061.7 3500.5 368.3 401.7 30.9

kottenpark09 80.4 52.0 60.9 74.6 59.5 278.2

neos-2991472-kalu 0.4 0.9 0.5 0.1 0.1 91.1

neos-3208254-reiu 35.3 72.3 43.0 116.0 170.0 640.6

neos-3740487-motru 1.5 2.4 1.6 3.4 3.1 M

neos-4332801-seret 301.0 1229.0 T T 9260.0 419.2

neos-4332810-sesia 272.8 785.0 T T 2575.2 F

neos-4535459-waipa T T T T T F

neos-4545615-waita 297.6 394.1 393.4 2915.2 3069.1 39.3

nucorsav 3.2 5.6 3.5 4.9 3.7 1862.0

scpn2 173.5 121.5 321.8 44.6 37.8 17.5

square41 383.0 327.7 328.0 138.0 89.6 79.0

square47 548.1 697.7 571.8 133.8 153.8 57.3

t11nonreg 1498.1 1683.9 1821.7 2136.0 2514.5 104.2

usafa 30.6 318.0 33.3 33.2 66.5 90.6

SGM10 204.2 289.4 428.6 321.6 294.9 396.1

solved 17 16 14 14 16 14

23

	Introduction
	HPR-LP: An HPR method for solving LP
	Base algorithm
	Algorithmic enhancements
	Restart strategy
	Update rules for Sigma

	Relationships among GPU-accelerated LP solvers
	The relationship between cuPDLPx and HPR-LP
	The relationship between HPR-LP and EPR-LP

	Numerical experiments
	Experimental setup
	Impact of algorithmic enhancements
	Performance comparison on benchmark datasets

	Conclusions and future directions
	References

