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Abstract The metric projection onto the positive semidefinite (PSD) cone is
strongly semismooth, a property that guarantees local quadratic convergence
for many powerful algorithms in semidefinite programming. In this paper, we
investigate whether this essential property holds for the metric projection onto
an affine slice of the PSD cone, which is the operator implicitly used by many
algorithms that handle linear constraints directly. Although this property is
known to be preserved for the second-order cone, we conclusively demonstrate
that this is not the case for the PSD cone. Specifically, we provide a con-
structive example that for any p > 0, there exists an affine slice of a PSD
cone for which the metric projection operator fails to be p-order semismooth.
This finding establishes a fundamental difference between the geometry of the
second-order cone and the PSD cone and necessitates new approaches for both
analysis and algorithm design for linear semidefinite programming problems.
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1 Introduction

Semidefinite programming (SDP) has emerged as a powerful framework for
modeling a wide range of problems across engineering, control theory, and
combinatorial optimization [17]. A central challenge in the field is the de-
velopment of robust and efficient numerical methods capable of solving these
problems with high precision. For this purpose, Newton-type methods are par-
ticularly desirable because of their characteristically rapid local convergence.
However, key operators in SDP, such as the metric projection onto the feasi-
ble set [20], are nonsmooth, which prevents the direct application of classical
Newton-based approaches. This challenge has spurred the development of a
broader analytical framework based on generalized derivatives, giving rise to
the powerful class of nonsmooth Newton methods [7,10].

The development of semismooth Newton methods, in particular, has demon-
strated that establishing the semismoothness of operators involved can lead
to proofs of local superlinear or even quadratic convergence [10]. For a given
positive integer n, let Sn

+ be the cone of n by n real symmetric and positive
semidefinite (PSD) matrices. A PSD cone refers to Sn

+ for some integer n ≥ 1.
In the context of SDP, a foundational result is that the metric projection op-
erator onto Sn

+, denoted by ΠSn
+
, is strongly semismooth [15]. This favorable

property has become the basis for many solvers such as the Newton-CG aug-
mented Lagrangian methods based solvers for solving large-scale SDPs [19,
21].

However, the feasible set of a standard SDP problem is not the entire PSD
cone, but rather a slice of it, i.e., the intersection of the PSD cone with an affine
subspace L. The practical performance of many algorithms therefore depends
not on ΠSn

+
but on the metric projection operator onto this constrained set

ΠSn
+∩L. This naturally leads to a central and consequential question: Does the

strong semismoothness of the metric projection onto the PSD cone carry over
to the metric projection onto its affine slices?

An affirmative answer to this question would have significant implications,
suggesting that a broad class of algorithms enjoys local quadratic convergence
when applied directly to linear SDPs, without moving the affine constraint
A(x) = b from the feasible set into a penalty term in the objective function.
Support for such a conjecture can be drawn from the analogous situation for
the second-order cone (SOC). It is a well-established result that the metric pro-
jection onto the SOC is strongly semismooth [2]. Crucially, this property has
been shown to be preserved for its affine slices; that is, the metric projection
onto the intersection of an SOC and an affine subspace also remains strongly
semismooth [18]. Therefore, it is natural to conjecture that an analogous result
may hold in the SDP setting.

However, the geometric structure of the PSD cone is known to be sub-
stantially more complex than that of the SOC. The facial structure is more
intricate, and the boundary exhibits a higher degree of algebraic complexity,
which often complicates the extension of results from the SOC setting [9]. On
the other hand, the metric projection onto a slice of PSD cone can be written
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in a constraint convex quadratic SDP problem. When the constraint nonde-
generacy holds at the desired point y, the KKT solution mapping (x(·), λ(·))
is strongly semismooth at y [14,13,8] and thus, the metric projection part x(·)
is strongly semismooth at y. Apart from this ideal nondegenerate case, what
happens outside is far less understood.

In this paper, we provide a definitive but negative answer to this question.
We demonstrate that, unlike the second-order cone case, the metric projec-
tion onto an affine slice of the PSD cone can suffer a dramatic loss of strong
semismoothness. Specifically, for any p > 0, we construct an explicit example
where the metric projection operator ΠSn

+∩L fails to be p-order semismooth.
This finding reveals a fundamental geometric disparity between the second-
order cone and the positive semidefinite cone and implies that the analyti-
cal foundation for rapid superlinear convergence (when p near 1) of standard
semismooth Newton methods does not hold universally for linear SDPs. Our
result therefore clarifies a key theoretical boundary in conic optimization and
underscores the need for more nuanced approaches to both the analysis and
design of algorithms for this subclass of semidefinite programs.

2 Notation and preliminaries

Let E and F be two finite-dimensional real Hilbert spaces each endowed with
an inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. For a vector z ∈ E (or a
subspace E0 ⊆ E), z⊥ (or E⊥

0 ) denotes its orthogonal complement in E . Given
a cone C ⊆ E , C◦ := {v ∈ E | ⟨v, z⟩ ≤ 0 ∀ z ∈ C} is the polar cone of C. For a
linear operator A : E → F , we use A∗, rge(A) and ker(A) to denote its adjoint,
range space, and null space, respectively. Note that rge(A) = (ker(A∗))⊥.
Given a set C ⊆ E , we use bdry(C) to denote the strong topological boundary
of C.

Given a matrix A ∈ Rl×q, we use Aik or Ai,k to denote the entry at the
i-th row and the k-th column of A. Given two matrices A,B ∈ Rl×q, the inner
product of A,B is defined by ⟨A,B⟩ = trace(A⊤B), and ∥A∥ =

√
⟨A,A⟩ is

the Frobenius norm. The set of all symmetric matrices in Rl×l is denoted by
Sl. The direct sum of two matrices A and B, denoted as A ⊕ B, is the block
diagonal matrix defined as:

A⊕B :=

(
A 0
0 B

)
.

Let C ⊂ E be a closed convex set. For a given x ∈ E , its metric projection
onto C, denoted by ΠC(x), is the unique point in C that has the minimum
distance from x. It is well known [20] that for x ∈ E , it holds that

x̄ := ΠC(x) ⇐⇒ ⟨x− x̄, u− x̄⟩ ≤ 0 ∀u ∈ C.

The normal cone of C at z̄ [11] is defined by

NC(z̄) =

{
{v ∈ E | ⟨v, z − z̄⟩ ≤ 0 ∀z ∈ C}, if z̄ ∈ C,

∅, otherwise.
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Note that NC◦(z) = (C◦)◦ ∩ z⊥ = C ∩ z⊥ when C is also a cone. To facilitate
the analysis in Section 3, we state the following well-known Hölder’s inequality
and its equality condition.

Lemma 2.1 (Hölder’s Inequality [5]) Let p, q ∈ (1,∞) satisfy 1
p + 1

q = 1.
For any vectors x, y ∈ Rn, it holds that

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

,

where the equality holds if and only if there exists a constant c ≥ 0 such that
|xi|p = c|yi|q for all i ∈ {1, . . . , n}.

2.1 Generalized differentials

Suppose that a function f : E → F is locally Lipschitz continuous around some
point x̄ ∈ E . Then, by Rademacher’s theorem [12, Theorem 9.60], f is almost
everywhere differentiable in a neighborhood V of x̄. We use Df ⊆ V to denote
the set of points at which f is differentiable. The Bouligand subdifferential of
f at x̄ is defined by

∂Bf(x̄) := {v ∈ Rm×n | ∃xk
Df−→ x̄ with f ′(xk) → v}.

Moreover, the Clarke generalized Jacobian of f at x̄ is the convex hull of
∂Bf(x̄), i.e.,

∂f(x̄) := conv(∂Bf(x̄)).

With this preparation, we can present the definition of p-order semismoothness
[10].

Definition 2.1 Let f : E → F be a locally Lipschitz continuous function, and
let ∂F (x) denote the Clarke generalized Jacobian of F at x ∈ E . Let p > 0.
We say that F is p-order semismooth at x if:

1. f is directionally differentiable at x.
2. for any V ∈ ∂F (x+ h), as h → 0,

∥f(x+ h)− f(x)− V h∥ = O(∥h∥1+p). (2.1)

We say that the function f is strongly semismooth at x if it is 1-order semis-
mooth at x.

According to [10, Theorem 2.3], we know that (2.1) in Definition 2.1 can
be replaced by

f(x+ h)− f(x)− f ′(x+ h;h) = O(∥h∥1+p), (2.2)

where f ′(x + h;h) means the directional derivative of f at x + h along the
direction h. Note that a function ϕ(t) is O(t) if there exists a constant c such
that ∥ϕ(t)∥ ≤ c|t| for all sufficiently small |t|; it is Θ(t) if there exist constants
c1, c2 > 0 such that c1|t| ≤ ∥ϕ(t)∥ ≤ c2|t| for all sufficiently small |t|.
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2.2 LMI-representable sets

Following [6, Equation (1.3)], we introduce the definition of LMI-representable
set, which is the core tool of this research.

Definition 2.2 (LMI-representable set/Spectrahedron) A set K ⊆ Rn

is said to be LMI (Linear Matrix Inequality) representable or is a spectrahe-
dron if there exist m > 0 and A0, . . . , An ∈ Sm such that

K = {(x1, . . . , xn) ∈ Rn | A0 +A1x1 + · · ·+Anxn ∈ Sm
+ }.

LMI-representable sets are closely related to the slices of PSD cone. To illus-
trate this, consider the spectrahedron K1 = {x ∈ Rn | A(x) +A0 ∈ Sm

+ } for a
linear operator A : Rn → Sm. If A is injective, then K1 is linearly isomorphic
to the set K2 = Sm

+ ∩ {z ∈ Sm | Bz = b} for some linear operator B and
vector b. The set K2 is a slice of Sm

+ . We have already known that the met-
ric projection onto the PSD cone ΠSm

+
is strongly semismooth [15, Corollary

4.15]. It is of our interest to study the strong semismoothness of ΠK2
, the

metric projection onto a slice of PSD cone. This operator ΠK2
is apparently

a semi-algebraic Lipschitz function. Thus, for any fixed x̄ we have a rational
number γx̄ > 0 such that ΠK2(·) is γx̄-order semismooth at x̄ [1, Proposition
1]. Therefore, it is of curiosity for a given p > 0, whether there exist m > 0,B
and b such that ΠK2

fails to be p-order semismooth at some point. To answer
this, we first study the semismoothness of ΠK1

for an injective A, and take
advantage of the linear isomorphism between K1 and K2. For this purpose,
we first introduce the following lemma.

Lemma 2.2 Let A : E → F be an injective linear operator, and K ⊆ E be a
closed convex set. For any given p > 0, the p-order semismoothness of ΠK is
equivalent to the p-order semismoothness of ΠAK .

Proof Since A is an injective linear operator between finite-dimensional spaces
and K is a closed convex set, its image AK is also closed and convex. This
ensures that the metric projection ΠAK is well-defined.

Next, we show that the p-order semismoothness of ΠAK on F is equivalent
to that of its restriction to rge(A). Since AK ⊆ rge(A), we have ΠAK(x) =
ΠAK(Bx) for any x ∈ F , where B := ΠrgeA is a linear operator. From the
definition of the directional derivative, we know that for any x, h ∈ F ,

Π ′
AK(x;h) = Π ′

AK(Bx;Bh)

and
ΠAK(x+ h)−ΠAK(x)−Π ′

AK(x;h)

=ΠAK(Bx+ Bh)−ΠAK(Bx)−Π ′
AK(Bx;Bh),

which demonstrates that the expression depends only on the components
within rge(A). Therefore, ΠAK is p-order semismooth on F if and only if its
restriction to rge(A) is p-order semismooth. This allows us to assume, without
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loss of generality, that rge(A) = F , which implies that A is an invertible linear
operator.

For x ∈ F , let y = ΠAK(x). By definition, y is the unique point in AK
satisfying the following inequality:

⟨x− y, c− y⟩ ≤ 0 ∀ c ∈ AK.

Since y ∈ AK and A is a bijection, there exists a unique z ∈ K such that
y = Az. Similarly, any c ∈ AK can be written as c = Aw for some w ∈ K.
Substituting these into the above inequality gives:

⟨x−Az,Aw −Az⟩ ≤ 0 ∀w ∈ K.

Using the linearity ofA and the property of the adjoint operatorA∗, we obtain:

⟨A∗Az −A∗x,w − z⟩ ≥ 0 ∀w ∈ K,

which is the first-order optimality condition of the strongly convex program

min
u∈K

1

2
⟨A∗Au, u⟩ − ⟨A∗x, u⟩,

whose unique solution is denoted by z(x), and we have ΠAK(x) = A(z(x)).
Let 0 < λmin ≤ · · · ≤ λmax be the eigenvalues of A∗A and 0 < γ < 1/λmax.

Consider the function F : E × F → E :

F (z, x) := z −ΠK [z − γ(A∗Az −A∗x)] .

It is clear that F (z(x), x) = 0 for any x ∈ F . First suppose that ΠK is p-
order semismooth. Since F is a composition of affine operators and ΠK , it is
p-order semismooth with respect to the joint variable (z, x). Let πz∂F (z, x)
be the canonical projection of ∂F (z, x) onto the z-part. Since I − γA∗A is
invertible, an element V ∈ πz∂F (z, x) has the form V = I − W (I − γA∗A),
where W ∈ ∂ΠK [z − γ(A∗Az − A∗x)]. Since ΠK is non-expansive, we have
∥W∥ ≤ 1. Thus, we have

∥W (I − γA∗A)∥ ≤ ∥W∥∥I − γA∗A∥ ≤ max(|1− γλmin|, |1− γλmax|) < 1,

which implies that V is invertible.
By noting that the implicit function theorem for the (strongly) semismooth

function [13, Theorem 2.1] can easily be extended to the p-order case, as
pointed out at the end of its proof, we know that F satisfies the conditions of
the implicit function theorem and F (z(x), x) = 0 for any x ∈ F . Therefore,
z(x) is p-order semismooth. Recall that ΠAK(x) = A(z(x)). We have that
ΠAK is p-order semismooth. Since A is invertible, the p-order semismoothness
of ΠAK also implies the p-order semismoothness of ΠK . This completes the
proof. ⊓⊔
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3 A p-order semismooth example

In this section, we first present that for any p > 0, there exists an LMI-
representable set K such that ΠK fails to be p-order semismooth. Then com-
bined with Lemma 2.2, we extend this result to the slices of the PSD cone.

Let n ≥ 2 be an integer. Consider the closed convex cone

Kn :=

{
(x1, x2, x3, y1, . . . , yn−1, z1, . . . , zn−1) | x2

3 ≥ y21 + z21 , x3 ≥ 0,

x3yi ≥ y2i+1 for i = 1, . . . , n− 2, x3yn−1 ≥ x2
1,

x3zi ≥ z2i+1 for i = 1, . . . , n− 2, x3zn−1 ≥ x2
2

}
.

Define the following linear operators from R2n+1 to S2:

M0(p) =

(
x3 + y1 z1

z1 x3 − y1

)
,

My
i (p) =

(
x3 yi+1

yi+1 yi

)
for i = 1, . . . , n− 2, My

n−1(p) =

(
x3 yn−1

yn−1 x1

)
,

Mz
i (p) =

(
x3 zi+1

zi+1 zi

)
for i = 1, . . . , n− 2, Mz

n−1(p) =

(
x3 zn−1

zn−1 x2

)
,

where p := (x1, x2, x3, y1, . . . , yn−1, z1, . . . , zn−1) ∈ R2n+1. It is easy to check
that Kn can be written in the following form:

Kn =

{
p ∈ R2n+1 | M0(p)⊕

(
n−1⊕
i=1

My
i (p)

)
⊕

(
n−1⊕
i=1

Mz
i (p)

)
∈ S4n−2

+

}
.

(3.1)
One can see that Kn is an LMI-representable set. For notational simplicity,
we denote κn := 2n. Consider the closed convex cone Sn that represents the
projection of Kn onto the space of the first three variables, i.e.,

Sn ={(x1, x2, x3) | xκn
1 + xκn

2 ≤ xκn
3 , x3 ≥ 0}

={(x1, x2, x3) | ∃yi, zi for i = 1, . . . , n− 1,

s.t. (x1, x2, x3, y1, . . . , yn−1, z1, . . . , zn−1) ∈ Kn}.
(3.2)

Let λn := 2n/(2n − 1). Since κn-norm and λn-norm are dual norms, we have

S◦
n = {(u1, u2, u3) | uλn

1 + uλn
2 ≤ uλn

3 , u3 ≤ 0}.

With (3.2), it is easy to know

S◦
n = {(u1, u2, u3) | (u1, u2, u3, 0, . . . , 0) ∈ K◦

n}.

We have the following lemma about NK◦
n
.
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Lemma 3.1 Let u1, u2 ≥ 0 and v := (u1, u2,−1, 0, . . . , 0) ∈ bdry(K◦
n). Then

NK◦
n
(v) = cone(w),

where w := (u
λn/2

n

1 , u
λn/2

n

2 , 1, u
λn/2

1

1 , . . . , u
λn/2

n−1

1 , u
λn/2

1

2 , . . . , u
λn/2

n−1

2 ).

Proof Since Kn and K◦
n are closed convex cones, we have

NK◦
n
(v) = (K◦

n)
◦ ∩ v⊥ = Kn ∩ v⊥.

Let (x1, x2, x3, y1, . . . , yn−1, z1, . . . , zn−1) ∈ NK◦
n
(v). If x3 = 0, by the defini-

tion of Kn, we have x1 = x2 = 0, yi = 0 and zi = 0. So, we can assume that
x3 = 1 since x3 ≥ 0. Then

x1u1 + x2u2 = 1.

Note that 1/κn + 1/λn = 1. By Hölder’s inequality in Lemma 2.1, we have

x1u1 + x2u2 ≤ (xκn
1 + xκn

2 )1/κn(uλn
1 + uλn

2 )1/λn ≤ 1.

From the equality condition of Hölder’s inequality in Lemma 2.1, we have

xκn
1 = uλn

1 and xκn
2 = uλn

2 . So x1 = u
λn/2

n

1 and x2 = u
λn/2

n

2 since u1, u2 ≥ 0
and x1u1+x2u2 = 1. By using the definition ofKn and noting that xκn

1 +xκn
2 =

1, we have yi = u
λn/2

i

1 and zi = u
λn/2

i

2 . This completes the proof. ⊓⊔

Now, we are ready to state our main result as in the following theorem.

Theorem 3.1 For any p > 0, there exists an LMI-representable set K such
that ΠK fails to be p-order semismooth.

Proof Consider the following curve:

v(t) := (t, (1− tλn)1/λn ,−1, 0, . . . , 0) ∈ K◦
n, t ∈ [0, 1]. (3.3)

Let

w(t) := (tλn/κn , (1− tλn)1/κn , 1, y1(t), . . . yn−1(t), z1(t), . . . zn−1(t)), (3.4)

where yi(t) = tλn/2
i

and zi(t) = (1 − tλn)1/2
i

. So NK◦
n
(v(t)) = cone(w(t)) by

Lemma 3.1. Letting t → 0, we evaluate the semismoothness as follows:

v(t)− v(0)−Π ′
K◦

n
(v(t); v(t)− v(0))

(a)
=v(t)− v(0)−ΠTK◦

n
(v(t))(v(t)− v(0))

=v(t)− v(0)−
(
v(t)− v(0)− ⟨v(t)− v(0), w(t)⟩

∥w(t)∥2
w(t)

)
=
⟨v(t)− v(0), w(t)⟩

∥w(t)∥2
w(t)

(b)
=Θ(tλn + (1− tλn)1/κn − 1)w(t)

(c)
=Θ(tλn),
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where (a) follows from [20, Equation (1.2)], (b) follows from (3.3) and (3.4),
and (c) comes from (1 + x)a − 1 = Θ(x) when x → 0 and a > 0. Note that
∥v(t)− v(0)∥ = Θ(t), we have that ΠK◦

n
is at most (λn − 1)-order semismooth

from (2.2). So, ΠKn
is also at most (λn − 1)-order semismooth. Therefore,

Theorem 3.1 holds following by λn → 1 as n → ∞. ⊓⊔

Recall that Kn in (3.1) can be written in the form {x ∈ R2n+1 | Ax ∈
S4n−2
+ } where A : R2n+1 → S4n−2 is a linear operator. It is directly to check

that A is injective. Let Tn := AKn ⊂ S4n−2
+ . So Tn = S4n−2

+ ∩ rge(A). Thus,

there exists a linear operator B : S4n−2 → Rm such that Tn = {X ∈ S4n−2
+ |

BX = 0}. So, by Lemma 2.2, we have that ΠTn is at most (λn − 1)-order
semismooth.

Note that Tn = S4n−2
+ ∩ ker(B) is the intersection of the strongly semis-

mooth closed convex cone [15] and a linear subspace. Therefore, we have

T ◦
n

(a)
=S4n−2

− + ker(B)◦

(b)
=S4n−2

− + rge(B∗),
(3.5)

where (a) comes from [12, Theorem 6.42] and (b) comes from (ker(B))⊥ =
rge(B∗). From (3.5), T ◦

n is the Minkowski sum of a subspace in S4n−2 and
a strongly semismooth convex closed cone. However, ΠT◦

n
shares the same

semismooth order with ΠTn
, and thus is at most (λn − 1)-order semismooth.

Therefore, we have the following corollaries.

Corollary 3.1 For any p > 0, there exists a slice K of PSD cone such that
ΠK fails to be p-order semismooth.

Corollary 3.2 For any p > 0, there exists a set K such that K is the
Minkowski sum of a nonpolyhedral strongly semismooth set and a polyhedral
convex set but ΠK fails to be p-order semismooth.

4 Conclusion

In this paper, we have demonstrated that the metric projection onto a slice
of the PSD cone may fail to be p-semismooth for any p > 0. Building on
this finding, we conclude our paper by raising the following two natural open
questions:

Question 1. According to [16], the metric projection onto a symmetric
cone (i.e., a self-dual homogeneous cone) is strongly semismooth. Moreover,
every homogeneous cone or symmetric cone is linearly isomorphic to a slice of
the PSD cone [3,4]. By Lemma 2.2, this implies that there exist many special
slices of the PSD cone for which the metric projection is strongly semismooth.
A fundamental open problem is to identify sufficient (and necessary) condi-
tions under which the metric projection onto a slice of the PSD cone is strongly
semismooth. For instance, is the metric projection onto an arbitrary homoge-
neous cone always strongly semismooth?
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Question 2. In our constructions, we need a higher-dimensional PSD cone
to get lower-order semismoothness. On the other hand, the metric projection
onto any slice of S2

+ (which is linearly isomorphic to an SOC) must be strongly
semismooth. This raises the possibility that the order of semismoothness is
intrinsically linked to the dimension of the underlying PSD cone. An important
question is therefore to establish the lower bound on the attainable order of
semismoothness as a function of the dimension of the PSD cone.

Declarations

Conflict of interest The authors have no relevant financial or non-financial
interests to disclose.

References

1. Bolte, J., Daniilidis, A., Lewis, A.: Tame functions are semismooth. Math. Program.
117, 5–19 (2009)

2. Chen, X.D., Sun, D.F., Sun, J.: Complementarity functions and numerical experiments
for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56
(2003)

3. Chua, C. B.: Relating homogeneous cones and positive definite cones via T-algebras.
SIAM J. Optim. 14, 500–506 (2004)

4. Faybusovich, L.: On Nesterov’s approach to semi-definite programming. Acta Appl.
Math. 74, 195–215 (2002).
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