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Approximation Bounds for Transformer Networks with

Application to Regression

Yuling Jiao, Yanming Lai, Defeng Sun, Yang Wang, Bokai Yan

Abstract

We explore the approximation capabilities of Transformer networks for Hölder and

Sobolev functions, and apply these results to address nonparametric regression estimation

with dependent observations. First, we establish novel upper bounds for standard Trans-

former networks approximating sequence-to-sequence mappings whose component functions

are Hölder continuous with smoothness index γ P p0, 1s. To achieve an approximation error

ε under the Lp-norm for p P r1,8s, it suffices to use a fixed-depth Transformer network

whose total number of parameters scales as ε´dxn{γ . This result not only extends exist-

ing findings to include the case p “ 8, but also matches the best known upper bounds

on number of parameters previously obtained for fixed-depth FNNs and RNNs. Similar

bounds are also derived for Sobolev functions. Second, we derive explicit convergence rates

for the nonparametric regression problem under various β-mixing data assumptions, which

allow the dependence between observations to weaken over time. Our bounds on the sample

complexity impose no constraints on weight magnitudes. Lastly, we propose a novel proof

strategy to establish approximation bounds, inspired by the Kolmogorov-Arnold representa-

tion theorem. We show that if the self-attention layer in a Transformer can perform column

averaging, the network can approximate sequence-to-sequence Hölder functions, offering new

insights into the interpretability of self-attention mechanisms.

1 Introduction

Transformers [60] have become the cornerstone of modern deep learning, driving breakthroughs
across multiple domains, including natural language processing [10], large language models [44],
computer vision [15], and generative models [46]. Although their high performance has led to
widespread use in practice, significant theoretical efforts are still underway to explain exactly
what contributes to their success.

An important aspect of Transformers is their expressive capacity, which refers to their ability
to effectively approximate target functions. As early as the 1980s, researchers established the
universal approximation property for neural networks (e.g., [8, 25]), demonstrating that feed-
forward neural networks (FNNs) can approximate any continuous function to any precision.
With the rise of deep neural networks in recent years, many works have focused on the approxi-
mation theory of neural networks. For example, [31,39,66] studied approximation rates of deep
ReLU FNNs for smooth functions, while [64,65] and [32] examined, respectively, shallow ReLU
FNNs and ReLU recurrent neural networks (RNNs). However, analyses based on Transformer
architectures have rarely been observed. For a representative example, [69] showed the universal
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approximation of Transformers, which can approximate sequence-to-sequence continuous func-
tions under the Lp-norm with p P r1,8q. [33] revealed that even a Transformer with a single
attention layer is a universal approximator. [58] investigated a special class of Transformers
with infinite dimensional inputs. [63] established the approximation rates of looped Transform-
ers, which reuse the same Transformer layer iteratively, by defining the modulus of continuity
for sequence-to-sequence functions. [28] derived approximation rate estimates for continuous
Transformers by defining novel complexity measures for nonlinear sequence relationships. Most
recently, [59] showed that Transformers can approximate column-symmetric polynomials. An-
other line of research has explored replacing the softmax function in the attention mechanism
with more tractable alternatives [21, 22, 30]. Despite these advances, the approximation rates
for general functions and the performance under the L8-norm using the standard Transformer
architecture still remain unclear.

Another significant concern pertains to Transformer performance in sequence modeling,
specifically regarding how Transformers capture relationships within sequential data. Recent
theoretical studies have provided diverse insights into this issue. For example, [16] analyzed the
inductive biases inherent in self-attention mechanisms, demonstrating that sample complexity
scales only logarithmically in the sequence length. [7] introduced architectural adjustments to
Transformers, enabling exact recognition of formal languages through enhanced long-range de-
pendency modeling. [5] offered an interpretation of Transformer weight matrices as associative
memory systems, distinguishing between long-term parametric storage and short-term contex-
tual memory. [48] proved that a pretrained Transformer, when appropriately prompted or prefix-
tuned, can approximate any sequence-to-sequence function. [27] showed that soft prompt tuning
yields a universal approximator for Lipschitz sequence-to-sequence mappings. Furthermore, [62]
conducted a rigorous analysis emphasizing how architectural components such as depth, at-
tention heads, and feed-forward layers influence performance in tasks necessitating extensive,
sparse memories. Recent developments in nonparametric regression estimation based on neural
networks have mainly relied on assumptions of independent and identically distributed (i.i.d.)
observations drawn from an unknown distribution [19, 31, 37, 43, 50, 57, 64]. However, sequen-
tial tasks typically exhibit temporal dependence, making the i.i.d. assumption too restrictive.
Some recent studies have relaxed this assumption by considering that observations are drawn
from a stationary mixing distribution, where the dependence between observations weakens over
time [20,29,32,49]. Despite these advancements, a gap remains regarding the capability of Trans-
formers, explicitly designed to handle sequential data and temporal dependencies, in regression
tasks involving dependent observations.

In this paper, we investigate the approximation of Hölder and Sobolev functions using Trans-
former networks and study nonparametric regression estimation under dependent observations.
Our main contributions are as follows:

• We derive novel upper bounds on the approximation of standard Transformer architectures for
Hölder and Sobolev functions. Specifically, to approximate a sequence-to-sequence mapping,
where each component function is Hölder continuous with smoothness index γ P p0, 1s, to
approximation error ε under the Lp-norm for p P r1,8s, it suffices to use a Transformer
network whose total number of parameters scales as ε´dxn{γ . Our result establishes explicit
approximation rates and extends existing findings to include the case p “ 8. Moreover,
the number of parameters matches the best known upper bounds previously established for
fixed-depth FNNs and RNNs. Similar results are also derived for Sobolev functions.

• We present a comprehensive error analysis for the nonparametric regression problem with

weakly dependent data. We achieve rates of m´ γ
γ`dxn , m

´ rγ
pr`2qγ`pr`1qdxn and m

´ γ
γ`dxn up

to logarithmic factors corresponding respectively to geometrically β-mixing, algebraically β-
mixing, and i.i.d. data assumptions, where m denotes the sample size and the parameter r
controls the strength of dependence. We also establish upper bounds on the sample complex-
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ity of Transformer networks, notably without imposing constraints on the weight size of the
network.

• We propose a novel proof strategy for establishing approximation bounds of Transformer
networks, inspired by the Kolmogorov-Arnold representation theorem. By observing that the
self-attention layers merely compute column-wise averages in our analysis, we demonstrate
that the softmax function can be generalized to broader alternatives. This viewpoint provides
new insights into the interpretability of self-attention mechanisms.

1.1 Organization

The rest of the paper is organized as follows. In Section 2, we define the Transformer architecture,
describe the setup of the nonparametric regression problem, and list our main results. In Section
3, we present discussions and related works. All proofs are provided in Section 4.

2 Summary of Results

Notation. We use bold lowercase letters to represent vectors and bold uppercase letters to
represent matrices. For any vector v P R

d, we denote by vi the i-the element of v. For any
matrix A P R

dˆn, we denote its i-th row by Ai,:, its j-th column by A:,j and the element at its i-
th row and j-th column by Ai,j . We denote the all-zero and all-one vectors of length n by 0n and
1n, respectively. The identity matrix of size n is denoted by In. The zero matrix of size m ˆ n

is denoted by Om,n. When the dimensions are clear from the context, we omit the subscripts
for brevity. For m P N, we write rms :“ 1, . . . ,m. We use N0 to denote the set of nonnegative
integers and N

d
0 “ tpα1, α2, . . . , αdq : αk P N0,@k P rdsu to denote the set of d-dimensional multi-

index. For a multi-index α P N
d
0, we denote }α}ℓ1 “ α1 ` α2 ` ¨ ¨ ¨ ` αd. For a finite set G, we

use |G| to denote its cardinality. For two sequences tanu and tbnu, we use the notation an À bn
and an Á bn to indicate an ď c1bn and an ě c2bn, respectively, for some constants c1, c2 ą 0

that are independent of n. Furthermore, an — bn means that both an À bn and an Á bn hold. In
our analysis, we use σS to represent the column-wise softmax function. Specifically, for a matrix
A P R

dˆn, σSrAs P R
dˆn is computed as σSrAsi,j :“ exppAi,jq{řd

k“1
exppAk,jq. The ReLU

activation function is denoted by σRrxs :“ maxtx, 0u. In contrast to σS , σR operates element-
wise, regardless of whether the input is a vector or a matrix. Let Ω Ď R

dˆn be a bounded domain.
For 1 ď p ă 8, the Lp-norm of a real-valued function f : Rdˆn Ñ R is defined as }f}LppΩq :“
p
ş
Ω

|fpXq|p dXq1{p, and for p “ 8, it is given by }f}L8pΩq :“ ess supXPΩ |fpXq|. For a matrix-

valued function F : Rdˆn Ñ R
mˆn, the Lp-norm is defined as }F }LppΩq :“ p

ş
Ω

}F pXq}pF dXq1{p

for 1 ď p ă 8, and for p “ 8, }F }L8pΩq :“ ess supXPΩ }F pXq}F .

2.1 Approximation Rates for Hölder and Sobolev Functions

We begin by introducing the architecture of Transformers, following the notations in [36] and
[34]. A Transformer network is a sequence-to-sequence function R

dxˆn Ñ R
dyˆn, comprising

three main components: the self-attention layer, the (token-wise) feed-forward layer, and the
embedding layer.

Embedding and projection layer: For embedding dimension D P N, the embedding
and projection layers connect the input, hidden, and output spaces. The embedding layer
Ein : Rdxˆn Ñ R

Dˆn is defined as

EinpXq :“ EinX ` P P R
Dˆn,

where Ein P R
Dˆdx is a learnable weight matrix, and P P R

Dˆn is a trainable positional
encoding matrix. Since self-attention and feed-forward layers are permutation equivariant, P is
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introduced to provide positional information and break this equivariance. The projection layer
Eout : R

Dˆn Ñ R
dxˆn is defined as

EoutpY q :“ EoutY P R
dyˆn,

where Eout P R
dyˆD maps the high-dimensional hidden representation onto the output space.

Self-attention layer: Given a sequence Z P R
Dˆn, composed of n tokens, each with an

embedding dimension D, the l-th self-attention layer F
pSAq
l : RDˆn Ñ R

Dˆn is defined as

F
pSAq
l pZq :“ Z `

Hÿ

h“1

W
pOq
h,l

´
W

pV q
h,l Z

¯
σS

„´
W

pKq
h,l Z

¯J ´
W

pQq
h,l Z

¯
P R

Dˆn,

where W
pV q
h,l ,W

pKq
h,l ,W

pQq
h,l P R

SˆD and W
pOq
h,l P R

DˆS are the value, key, query, and projection
matrices for head h P rHs with head size S, respectively.

Feed-forward layer: The output Z P R
Dˆn of the self-attention layer is then passed to the

feed-forward layer, given by

F
pFF q
l pZq :“ Z ` W

p2q
l σR

”
W

p1q
l Z ` b

p1q
l 1

J
n

ı
` b

p2q
l 1

J
n P R

Dˆn,

where W
p1q
l P R

WˆD and W
p2q
l P R

DˆW are weight matrices with hidden dimension W , and

b
p1q
l P R

W , b
p2q
l P R

D are bias terms.
The class of Transformer networks is then defined as

Tdx,dypD,H,S,W,Lq :“
!
Eout ˝ F

pFF q
L ˝ F

pSAq
L ˝ ¨ ¨ ¨ ˝ F

pFF q
1

˝ F
pSAq
1

˝ Ein

)
,

where D is the embedding dimension, H is the number of attention heads, S is the head size,
W is the hidden dimension in the feed-forward layer, and L is the number of Transformer layers,
each consisting of a self-attention and a feed-forward sublayer. When the dimensions are clear
from the context, we use the simplified notation T pD,H,S,W,Lq for convenience. We list some
basic properties of the Transformer class in Proposition 6. Let

N “ Ddx `Dn` dyD ` L p4HSD ` 2WD `W `Dq À pHS `W qDL (1)

be the total number of training parameters in the Transformer network.
The purpose of this paper is to study the approximation of Hölder and Sobolev functions by

Transformer networks. We recall the definitions of Hölder and Sobolev functions with bounded
norm as follows.

Definition 1 (Hölder functions). Let Ω be a bounded domain in R
dxˆn and γ P p0, 1s. Given

KH ą 0, we denote the Hölder class HγpΩ,KHq as

HγpΩ,KHq “
#
f : Ω Ñ R : }f}L8pΩq ` sup

X,Y PΩ,X‰Y

|fpXq ´ fpY q|
}X ´ Y }γF

ď KH

+
.

Definition 2 (Sobolev functions). Let Ω be a bounded domain in R
dxˆn. For p P r1,8q and

KW ą 0, we denote the Sobolev class W1,ppΩ,KWq as

W1,ppΩ,KWq “
#
f : Ω Ñ R :

ˆř
}α}

ℓ1
ď1

ż

Ω

|Dαf |p dX
˙1{p

ď KW

+
,

and for p “ 8, the Sobolev class W1,8pΩ,KWq is defined as

W1,8pΩ,KWq “
!
f : Ω Ñ R :

ř
}α}

ℓ1
ď1

ess supΩ |Dαf | ď KW

)
,

where α P N
dxˆn
0

is a multi-index and Dα is the weak derivative of order α.
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Hölder and Sobolev functions are central objects in approximation theory due to their close
connection with polynomial and spline approximations [11]. A variety of embedding and in-
terpolation results relate these spaces. For example, the Sobolev embedding W1,ppΩ,KWq ãÑ
H

1´ d
p pΩ,KHq holds with the Hölder exponent γ “ 1 ´ d

p
and an appropriate constant KH de-

pending on KW and the geometry of Ω. In the limiting case where p “ 8, the Sobolev space
W1,8pΩ,KW q consists of functions with essentially bounded first-order weak derivatives, which
directly implies that these functions are Lipschitz continuous. In other words, W1,8pΩ,KWq ãÑ
H1pΩ,KHq. For applications in machine learning, it is thus important to understand how effi-
ciently Transformer networks can approximate functions in both the Hölder and Sobolev spaces.

We now present our main results on the approximation capabilities of Transformer networks
for Hölder and Sobolev functions. We defer the proofs to Section 4.1.

Theorem 1. Given γ P p0, 1s and KH ą 0, assume that the target function F : r0, 1sdxˆn Ñ
R
dxˆn satisfies Fi,j P Hγpr0, 1sdxˆn,KHq for each i P rdxs, j P rns. For any ε P p0, 1q and

p P r1,8s, there exists a Transformer network

N P Tdx,dxpD “ C1,H “ C2, S “ C3,W “ C4 ¨ rε
´ dxn

γ s, L “ C5q

such that

}N ´ F }Lppr0,1sdxˆnq ď 4pdxnq2KHε,

where

1. C1 “ dx, C2 “ 1, C3 “ 1, C4 “ 5n and C5 “ 2 if p P r1,8q;
2. C1 “ 5dx3

dxn, C2 “ 3dxn, C3 “ 1, C4 “ 5n3dxn and C5 “ 2 ` 2dxn if p “ 8.

Theorem 2. Given p P r1,8q and KW ą 0, assume that the target function F : r0, 1sdxˆn Ñ
R
dxˆn satisfies Fi,j P W1,ppr0, 1sdxˆn,KWq for each i P rdxs, j P rns. For any ε P p0, 1q, there

exists a Transformer network

N P Tdx,dxpD “ dx,H “ 1, S “ 1,W “ 5n ¨ rε´dxns, L “ 2q

such that

}N ´ F }Lppr0,1sdxˆnq ď 4Cpdxnq2KWε,

where C is a constant depending only on dxn.

We make several remarks regarding our results. First, ever since [60] proposed the Trans-
former architecture, there have been various theoretical analyses on its expressive capacity. A
series of works established the universal approximation for sequence-to-sequence continuous func-
tions under the Lp-norm for 1 ď p ă 8. More precisely, [69] showed that

sup
F :Fi,jPCpΩq

inf
NPT pD,H,S,W,Lq

}N ´ F }LppΩq Ñ 0

for fixed and sufficiently large D,H,S,W and as L Ñ 8, where CpΩq denotes the space of
continuous functions on Ω, and subsequently [33] showed that

sup
F :Fi,jPCpΩq

inf
NPT pD,H,S,W,Lq

}N ´ F }LppΩq Ñ 0

for fixed and sufficiently large D,H,S,L and as W Ñ 8. We show that for 1 ď p ď 8,

sup
F :Fi,jPHγpΩ,KHq

inf
NPT pD,H,S,W,Lq

}N ´ F }LppΩq À KHW
´γ{pdxnq
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and

sup
F :Fi,jPW1,ppΩ,KWq

inf
NPT pD,H,S,W,Lq

}N ´ F }LppΩq À KWW
´1{pdxnq,

for fixed D,H,S,L and adjustable W . Our results not only provide the approximation rates for
general Hölder and Sobolev functions, but also extend to the case p “ 8, which previous works
were unable to address. These improvements are largely attributed to the use of the horizontal
shift technique, which was originally introduced in [39] and further developed in [53,71]. While
their technique was developed for ReLU FNNs, we find that the ideas can be applied to the
Transformer architecture. We summarize the related results in Table 1.

Second, We emphasize that our approximation results are established in a sequence-to-
sequence sense; that is, every entry of the Transformer network N simultaneously approximates
the corresponding entry of the matrix-valued target function F . It is not hard to extend the
target function F : r0, 1sdxˆn Ñ R

dyˆn to general dy P N in Theorem 1 and 2.
Our results further demonstrate that Transformer networks possess stronger expressive ca-

pabilities than RNNs in approximating sequence-to-sequence functions. As discussed in [24,32],
RNNs are inherently limited to approximating past-dependent sequence-to-sequence functions
because, at each time step, only the current and past tokens are utilized, leaving future to-
kens unprocessed. In contrast, Transformers have the advantage of accessing the entire input
sequence. In other words, even the first output token of a Transformer depends on the entire
input sequence, whereas in an RNN the first output token depends only on the first input to-
ken, the second on the first two, and so forth, owing to the sequential nature of RNNs. This
distinction underpins our assertion that Transformer architectures outperform RNNs in terms
of expressive power.

Third, we observe that to achieve an approximation error of ε, the total number of training
parameters required scales as ε´dxn{γ for Hölder functions and as ε´dxn for Sobolev functions,
matching the best known upper bounds previously established for fixed-depth FNNs and RNNs
with input dimension dxn [31, 32, 39, 53, 54, 66].

2.2 Nonparametric Regression

We then study the regression problem, which seeks to estimate an unknown target regression
function from finite observations. We consider the following n-step prediction model

Y “ f˚pX1,X2, . . . ,Xnq ` ε, (2)

where Y P R is a response, f˚px1, . . . ,xnq “ ErY |X1 “ x1, . . . ,Xn “ xns : r0, 1sdxˆn Ñ R is
an unknown regression function and ε is a sub-Gaussian noise, independent of Xi, i “ 1, . . . , n,
with Erεs “ 0 and

Erexppsεqs ď exp

ˆ
σ2s2

2

˙
for any s P R.

Our purpose is to estimate the unknown target regression function f˚ given observations Dm “
tpx1, y1q, . . . , pxm, ymqu which may not be i.i.d.

As observed in real sequence modeling applications, the sequential observations often exhibit
temporal dependence, rendering the usual i.i.d. assumption inapplicable. This motivates us to
consider dependent data. A frequently used alternative is to assume that observations are drawn
from a stationary mixing distribution, where the dependence between observations weakens
over time. This scenario has become standard and has been discussed extensively in previous
studies [1, 38, 40–42,49, 52, 55, 68]. We now introduce the relevant definitions.

Definition 3 (Stationarity). A sequence of random variables txtu8
t“´8 is said to be station-

ary if for any t and non-negative integers m and k, the random vectors pxt, . . . ,xt`mq and
pxt`k, . . . ,xt`m`kq have the same distribution.
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Table 1: Comparison of approximation rates.

Reference Type Target

Function1

Metric2 Activations in

Self-Attention

Layers3

Width4 Depth

[69] Universality C0 Lp σS with bias

[33] Universality C0 Lp σS

[18] Universality C0 L8 σH

[30] Rate
Hγ

Cm L8 X d σHpXq Opε´dxn{γq
Opε´dxn{mq

Oplog 1

ε
q

Oplog 1

ε
q

[22] Rate Hγ L8 σR Opε´dxn{γq Oplog 1

ε
q

Ours

(Theorem 1)
Rate Hγ L8 σS Opε´dxn{γq Op1q

Ours

(Theorem 2)
Rate W1,p Lp σS Opε´dxnq Op1q

1The space C
m consists of all functions whose first m derivatives exist and are continuous, and C

0 denotes the

space of continuous functions. 2p P r1,8q. 3Different Transformer architectures are obtained by replacing the
softmax function in the self-attention layer with various activation functions. The symbol d denotes the
Hadamard product. 4Following [36], the width of a Transformer network is defined as maxtD,HS,W u. We
omit constants independent of ε P p0, 1q.

Definition 4 (β-mixing). Let txtu8
t“´8 be a stationary sequence of random variables. For any

i, j P ZYt´8,`8u, let σji denote the σ-algebra generated by the random variables xk, i ď k ď j.
Then, for any positive integer k, the β-mixing coefficient of the stochastic process txtu8

t“´8 is
defined as

βpkq “ sup
n

EBPσn
´8

«
sup

APσ8
n`k

|PpA | Bq ´ PpAq|
ff
.

txtu8
t“´8 is said to be β-mixing if βpkq Ñ 0 as k Ñ 8. It is said to be algebraically β-mixing

if there exist real numbers β0 ą 0 and r ą 0 such that βpkq ď β0{kr for all k, and geometrically
β-mixing if there exist real numbers β0, β1 ą 0 and r ą 0 such that βpkq ď β0 exp p´β1krq for
all k.

In this work, we assume that the sequence of random variables X “ txtumt“1 is drawn from a
stationary β-mixing process. By Definition 3, the time index t does not affect the distribution of
xt in a stationary sequence. Moreover, any n consecutive observations, pxt´n`1, . . . ,xtq, share
the same joint distribution, which we denote by Π. We assume that Π is supported on r0, 1sdxˆn

and is absolutely continuous with respect to the Lebesgue measure, with its probability density
function uniformly bounded above by a finite constant on r0, 1sdxˆn.

Definition 4 states that a sequence of random variables is mixing if the influence of past events
on future events diminishes as the temporal gap increases. This definition provides a standard
measure of the dependence among the random variables txtu within a stationary sequence. We
note that in certain special cases, such as Markov chains, the mixing coefficients admit upper
bounds that can be estimated from data [26]. If txtumt“1 are i.i.d. random variables, then by
definition, βpkq “ 0 for all k ě 1.

A fundamental method for estimating f˚ is to minimize the mean squared error or the L2

risk, i.e., to solve

argmin
f

Rpfq :“ EpX1,...,Xnq„Π, Y rpfpX1, . . . ,Xnq ´ Y q2s.

7



Under the assumption that Erε|X1, . . . ,Xns “ 0, the underlying regression function f˚ is the
optimal solution, that is, the global minimizer of Rpfq. However, in practical applications
the joint distribution of ppX1, . . . ,Xnq, Y q is typically unknown, and only a random sample
Dm “ tpxi, yiqumi“1

with sample sizem is available. Given that each evaluation of the Transformer
requires a sequence of length n, we consider a sliding window training approach. Specifically,
we first group the observations into overlapping sequences, each of length n, to construct new
sequences

tppx1, . . . ,xnq, ynq, ppx2, . . . ,xn`1q, yn`1q, . . . , ppxm´n`1, . . . ,xmq, ymqu,
and then estimate the unknown target function f˚ using the empirical risk minimizer

f̂m P argmin
fPF

Rmpfq :“ 1

m´ n` 1

mÿ

t“n

pfpxt´n`1, . . . ,xtq ´ ytq2, (3)

where we choose the hypothesis class

F “ FpDm,Hm, Sm,Wm, Lmq “ txN pXq,Ey : N P Tdx,dxpDm,Hm, Sm,Wm, Lmqu.

Here, x¨, ¨y denotes the matrix inner product, and E P R
dxˆn is an arbitrary weight matrix. The

performance of the estimator is evaluated by the excess risk, defined as the difference between
the L2 risks of f̂m and f˚, given by

Rpf̂mq ´ Rpf˚q “ EpX1,...,Xnqrpf̂mpX1, . . . ,Xnq ´ f˚pX1, . . . ,Xnqq2s.
To control the sample complexity, we require that the hypothesis class is uniformly bounded.

We define the truncation operator CB with level B ą 0 for a real-valued function f as

CBfpxq :“
#
fpxq if |fpxq| ď B,

sgnpfpxqq ¨B if |fpxq| ą B.

For a class of real-valued functions F , we use the notation CBF :“ tCBf : f P Fu. Note
that the truncation can be implemented by a feed-forward layer that applies the operation
σRrxs´σRr´xs´σRrx´Bs`σRr´x´Bs element-wise. Our next theorem provides a convergence
rate for estimating the target function f˚ using the truncated empirical risk minimizer CBm f̂m.
We defer the proof to Section 4.2.

Theorem 3. Under model (2), assume that the regression function f˚ P Hγpr0, 1sdxˆn,KHq for
some γ P p0, 1s and KH ą 0, and that the probability measure of the covariate Π is supported
on r0, 1sdxˆn and is absolutely continuous with respect to the Lebesgue measure, with its density
function uniformly bounded by a finite constant. Let f̂m be the empirical risk minimizer defined
in (3) over a random sample Dm “ tpxi, yiqumi“1

. Then, the following excess risk bounds hold:

• If txiumi“1
is a geometrically β-mixing sequence, i.e., βpkq ď β0 exp p´β1krq for some r, β0, β1 ą

0, then by choosing Bm — logm and the hypothesis class

FpDm À 1,Hm À 1, Sm À 1,Wm À m
dxn

2γ`2dxn , Lm À 1q,
we have

EDmrRpCBm f̂mq ´ Rpf˚qs À m
´ γ

γ`dxn plogmq3`1{r.

• If txiumi“1
is an algebraically β-mixing sequence, i.e., βpkq ď β0{kr for some r, β0 ą 0, then

by choosing Bm — logm and the hypothesis class

FpDm À 1,Hm À 1, Sm À 1,Wm À m
rdxn

2pr`2qγ`2pr`1qdxn , Lm À 1q,
we have

EDmrRpCBm f̂mq ´ Rpf˚qs À m
´ rγ

pr`2qγ`pr`1qdxn plogmq3.
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Table 2: Comparison of convergence rates.

Reference Hypothesis Class Dependence Assumption Convergence Rate1

[20] FNN geometrically β-mixing rOpm´ γ
2γ`2d`2 q

[49] FNN geometrically β-mixing rOpm´ 2γ
2γ`d q

[32] RNN
geometrically β-mixing rOpm´ 2γ

2γ`dxn q
algebraically β-mixing rOpm´ 2rγ

p2r`4qγ`pr`1qdxn q
i.i.d. rOpm´ 2γ

2γ`dxn q

Ours

(Theorem 3)
Transformer

geometrically β-mixing rOpm´ γ
γ`dxn q

algebraically β-mixing rOpm´ rγ
pr`2qγ`pr`1qdxn q

i.i.d. rOpm´ γ
γ`dxn q

1We omit constants independent of m and logarithmic factors in m. d and dxn denote the input dimensions for
vector and sequence inputs, respectively.

• If txiumi“1
is a sequence of i.i.d. random variables, then by choosing Bm — logm and the

hypothesis class

FpDm À 1,Hm À 1, Sm À 1,Wm À m
dxn

2γ`2dxn , Lm À 1q,

we have

EDmrRpCBm f̂mq ´ Rpf˚qs À m
´ γ

γ`dxn plogmq3.

It is well known that the optimal convergence rate in nonparametric regression with squared
loss for i.i.d. data is m´2γ{pdxn`2γq [14, 56], and that the same rate remains optimal for certain
β-mixing sequences [61, 67]. Therefore, the rates in Theorem 3 are suboptimal. We attribute
this suboptimality to the loose upper bound on the VC-dimension (see Lemma 13). We consider
the i.i.d. case for an illustration. Classical empirical process techniques yield a decomposition
of the excess risk into an approximation error and a statistical error, and by trading off these
two errors one obtains the optimal convergence rate, as in [31]. For the approximation error,
to approximate a Hölder function with smoothness index γ up to accuracy ε, it suffices to use
a ReLU FNN with a total number of adjustable parameters N À ε´d{γ (up to logarithmic
factors), where d denotes the input dimension and in our setting d “ dxn. Meanwhile, the
VC-dimension, which governs the statistical error, grows linearly with N (assuming fixed depth)
due to the piecewise linear nature of ReLU FNNs. In fact, for FNNs with piecewise polynomial
activations (such as ReLUk, see [3, 13]), or for self-attention layers with piecewise polynomial
activation functions (e.g., by replacing the softmax σSrZs with the hardmax σHrZs [34] or
Z d σHrZs [21, 30]), the VC-dimension grows linearly in the total number of parameters N .
However, for function classes involving exponential operations, such as those defined by sigmoid
networks or radial basis function networks, the best known upper bounds on the VC-dimension
grow quadratically in N [2, 35]. We use the same method to establish an upper bound on the
VC-dimension of Transformer networks, and hence it also exhibits quadratic growth in N . As
noted in [4], there is a gap between the best known upper and lower bounds for function classes
that involve exponential operations, and it remains open whether these bounds are optimal. [35]
conjectured that the upper bounds could be improved. To prove Theorem 3, we decompose
the excess risk into the approximation error and the statistical error. By Theorem 1 and (1),
to achieve an approximation error of at most ε, it suffices to use a Transformer network with
total parameters N À ε´dxn{γ . However, since the VC-dimension scales as N2, it grows faster
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than in the ReLU FNN case, leading to the suboptimal rate after trade-off. We leave possible
improvements to this gap as an open problem for future study.

We observe that, ignoring logarithmic factors, the convergence rates for the geometrically
β-mixing and i.i.d. cases are identical. In addition, for the algebraically β-mixing case the

convergence rate is given by m
´ rγ

pr`2qγ`pr`1qdxn , which improves as the mixing parameter r in-

creases. When r is sufficiently large, this rate approaches m
´ γ

γ`dxn , matching that of the ge-
ometrically β-mixing and i.i.d. cases. This observation is consistent with the findings in [32].
We remark that a completely analogous theorem holds for estimating a Sobolev target function
f˚ P W1,ppr0, 1sdxˆn,KW q for some p ě 2 and KW ą 0. We summarize the related results in
Table 2.

2.3 Approximation by Generalized Transformer Networks

We begin by introducing generalized Transformer networks, which extend the original definitions
of Transformer layers to enable more flexible functional representations.

Generalized feed-forward layer: We define the generalized feed-forward layer as

F
pGFF q
l pZq :“ Z ` W

p2q
l σR

”
W

p1q
l Z ` B

p1q
l

ı
` B

p2q
l P R

Dˆn,

where W
p1q
l P R

WˆD and W
p2q
l P R

DˆW are weight matrices, and B
p1q
l P R

Wˆn, B
p2q
l P R

Dˆn

are bias matrices. In contrast to the standard feed-forward layer, we allow different bias terms
for each column, thereby generalizing the original formulation.

Generalized self-attention layer: We define the generalized self-attention layer as

F
pGSAq
l pZq :“ Z `

Hÿ

h“1

W
pOq
h,l σGrZs P R

Dˆn,

where W
pOq
h,l P R

DˆD is a weight matrix with rank at most S for all h and l, and σGrZs is
a general function (may vary across different h and l) with the only requirement that, for a
particular parameter choice, it computes the column average of Z, namely,

σGrZs “
˜
1

n

nÿ

j“1

Z:,j, . . . ,
1

n

nÿ

j“1

Z:,j

¸
.

Clearly, both softmax-based self-attention [60]

σGrZs “ Z ¨ σS
„´

W pKqZ
¯J ´

W pQqZ
¯

and (averaging) hardmax-based self-attention [47]

σGrZs “ Z ¨ σH
„´

W pKqZ
¯J ´

W pQqZ
¯

satisfy the above definition, since they compute the column average of Z when W pKq “ W pQq “
O.

The class of generalized Transformer networks is then defined as

GT dx,dypD,H,S,W,Lq :“
!
Eout ˝ F

pGFF q
L ˝ F

pGSAq
L ˝ ¨ ¨ ¨ ˝ F

pGFF q
1

˝ F
pGSAq
1

˝ Ein

)
.

A central challenge in understanding the expressivity of Transformers lies in explaining why
the self-attention layer effectively captures complex token-wise interactions. Indeed, the self-
attention mechanism is the only component within Transformer architectures explicitly designed
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to integrate token-level information, thus playing a central role in modeling dependencies across
sequences. However, the highly nonlinear softmax function commonly used in self-attention
presents significant analytical difficulties. Previous research has approached this problem from
several perspectives: some studies first analyzed the simpler hardmax function, viewing softmax
attention as a smoother approximation whose limiting behavior converges to hardmax [58, 70];
some restricted the analysis to finite discrete sequences and showed by construction that soft-
max function acts as a contextual mapping, sending distinct input sequences to distinct output
sequences [33, 36, 69]; yet another approach replaced softmax with more analytically tractable
functions, such as piecewise polynomial activation functions [21,22,30]. In contrast, we provide
a fundamentally different proof strategy inspired by the Kolmogorov-Arnold representation theo-
rem (see Proposition 14). Our key observation is that representing an arbitrary dxn-dimensional
function exactly requires only one inner and one outer function. The inner function in this con-
struction completely separates each entry of the input sequence, effectively simplifying complex
token interactions into structured summations. Consequently, we show that the essential role
of the self-attention layer can be simplified to performing column-wise summations, providing a
more direct and general theoretical justification for the expressive power of Transformer archi-
tectures.

The following theorem provides explicit approximation bounds for Hölder continuous func-
tions using generalized Transformer networks. We defer the proof to Section 4.3.

Theorem 4. Given γ P p0, 1s and KH ą 0, assume that the target function F : r0, 1sdxˆn Ñ
R
dxˆn satisfies Fi,j P Hγpr0, 1sdxˆn,KHq for each i P rdxs, j P rns. For any ε P p0, 1q and

p P r1,8q, there exists a generalized Transformer network

N P GT dx,dxpD “ 4dxn,H “ 1, S “ dx,W “ 3dxn ¨ rε
´ dxn

γ s, L “ 6r 1
γ
log2

1

ε
sq

such that

}N ´ F }Lppr0,1sdxˆnq ď 4pdxnq3KHε.

3 Discussions and Related Works

Nonparametric regression using neural networks. The convergence rates of neural net-
work regression estimators have been extensively analyzed in the literature. Minimax opti-
mal rates have been established across various neural network architectures, including under-
parameterized sparse deep FNNs [50,57], under-parameterized fully connected deep FNNs [31],
over-parameterized shallow FNNs [64, 65], and RNNs [32]. In contrast, convergence rates for
Transformer-based estimators have rarely been observed. [58] investigated the approximation and
estimation capabilities of Transformers as sequence-to-sequence functions operating on infinite-
dimensional inputs, where variable-length sliding window attention was considered. Additionally,
modifications to the Transformer architecture have been explored, such as replacing the stan-
dard softmax function σSrZs in the self-attention layer by Z d σHrZs [21] and by σRrZs [22].
Although these studies provide insightful constructions and analyses, their avoidance of the
standard softmax function does not fully explain the successes observed ever since the introduc-
tion of the Transformer mechanism [60]. Our result (Theorem 3) directly addresses this gap
by analyzing convergence rates for the standard Transformer architecture explicitly using the
original softmax attention mechanism. It has also been shown that neural networks are able to
circumvent the curse of dimensionality under certain conditions, for example, when the intrinsic
dimension of the regression function is low [6, 22, 31, 43], or the regression function has certain
hierarchical structures [37, 50]. Exploring the conditions under which Transformers similarly
mitigate the curse of dimensionality within our framework is an important direction for future
research.
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Assumptions on the smoothness of target function. In this work, we require the
target function to be either Hölder continuous with smoothness index γ P p0, 1s or a Sobolev
function with bounded first-order weak derivative. It remains an interesting problem whether our
methods are adaptive to higher regularity. In the proof of Theorems 1 and 2, we approximate the
target function by piecewise constant functions defined on a uniform partition of r0, 1sdxˆn into
Kdxn cells. The approximation orders K´γ in (4) and K´1 in (10) cannot be improved in general.
We refer to [11, Section 6.2] for a detailed discussion of saturation and inverse theorems, where
certain smoothness properties of a function are deduced from the order of its approximation by
multivariate piecewise polynomials. For example, consider a real-valued function f defined on a
bounded domain Ω Ď R

d, and let ∆ be a partition of Ω into a finite number of subsets. Suppose
f is approximated by a piecewise constant function

spxq “
ÿ

ωP∆

cω1ωpxq,

and assume that infs }f ´ s}L8pΩq “ opdiamp∆qq as diamp∆q :“ maxωP∆ diampωq Ñ 0 for
all partitions ∆. We can then easily show that f is a constant function. Indeed, for any
x,y P Ω, there exists a partition ∆ such that x and y belong to the same cell ω, where
diampωq “ diamp∆q ď 2}x ´ y}2. Let s̄ be a best piecewise constant approximation to f

under the L8-norm (the existence of which is ensured by a compactness argument). Then
|fpxq ´ fpyq| ď |fpxq ´ s̄pxq| ` |s̄pxq ´ s̄pyq| ` |s̄pyq ´ fpyq| ď 2 infs }f ´ s}L8pΩq since s̄ is
constant on ω. Hence, by assumption, |fpxq ´ fpyq| “ opdiamp∆qq “ op}x ´ y}2q as y Ñ x,
which implies that f has zero derivative at every point in Ω, i.e., f is constant. For the uniform
partition used in our proof, a more subtle analysis is required; see [12, Chapter 12.2].

In the proof of Theorem 4, we use the Kolmogorov-Arnold representation fpx1, . . . , xdq “
gp3

řd
p“1

3´pφpxpqq for any d-variate function f [51]. Although this representation allows the
transfer of smoothness properties of f to the function g for Hölder continuous f with smoothness
index γ P p0, 1s, it remains unclear whether this representation can be generalized to higher order
smoothness or anisotropic smoothness.

4 Proofs

Before proceeding, we clarify some simplifications used in the proof.

1. In a self-attention layer, if we set W pOq “ O, the layer behaves as an identity mapping due
to the presence of the skip connection. Similarly, in a feed-forward layer, setting W p2q “ O

causes the layer to degenerate into an identity mapping. Therefore, as long as identity
mappings are appropriately introduced, the composition of multiple self-attention layers or
feed-forward layers remains consistent with our definition of a Transformer.

2. Since a feed-forward layer applies the same operation to each column of the input matrix, we
do not distinguish between matrix and vector inputs when the context is clear, with a slight
abuse of notation. For example, given a feed-forward layer F pFF q : RDˆn Ñ R

Dˆn defined
as

F pFF qpHq “ H ` W p2qσR

”
W p1qH ` bp1q

1
J
n

ı
` bp2q

1
J
n ,

we also define F pFF q : RD Ñ R
D as

F pFF qpH:,iq “ H:,i ` W p2qσR

”
W p1qH:,i ` bp1q

ı
` bp2q

for each i, so that F pFF qpHq “ pF pFF qpH:,1q, . . . ,F pFF qpH:,nqq.
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If all self-attention layers degenerate into identity mappings, the resulting Transformer re-
duces to a token-wise ResNet [23]. We will demonstrate that any token-wise FNN can be
represented by a token-wise ResNet, thereby naturally extending existing results on FNNs to
Transformers. Specifically, an FNN N : Rdx Ñ R

dy is a function that can be parameterized in
the form

N0pxq “ x,

Nl`1pxq “ σRrAlNlpxq ` bls, l “ 0, . . . , L´ 1,

N pxq “ ALNLpxq ` bL,

where Al P R
Wl`1ˆWl, bl P R

Wl`1 with W0 “ dx, WL`1 “ dy and Wl “ W for l “ 1, . . . , L. The
parameters W and L are referred to as the width and depth of the neural network, respectively.
We denote by FNN dx,dypW,Lq the set of functions that can be parameterized in this form with
width W and depth L.

Lemma 5. Let dx, dy be positive integers. For any N P FNN dx,dypW,Lq with width W ě

maxtdx, dyu and depth L ě 2, there exist an embedding map Ein : X P R
dxˆn ÞÑ

ˆ
X
O

˙
P R

Wˆn,

a projection map Eout :

ˆ
Y
O

˙
P R

Wˆn ÞÑ Y P R
dyˆn, and L feed-forward layers with width at

most 3W , such that for any X P R
dxˆn,

Eout ˝ F
pFF q
L ˝ ¨ ¨ ¨ ˝ F

pFF q
1

˝ EinpXq “ pN pX:,1q, . . . ,N pX:,nqq P R
dyˆn.

Proof. The idea is to use the identity σRrxs ´σRr´xs “ x to eliminate the skip connection. For
any x P R

dx , direct computation yields

F
pFF q
1

ˆ
x
0

˙
“

ˆ
x
0

˙
`
ˆ
Idx O ´Idx Idx
O IW´dx O O

˙
σR

»
–
¨
˝

A0 O
Idx O

´Idx O

˛
‚
ˆ
x
0

˙
`

¨
˝
b0
0

0

˛
‚
fi
fl

“ σRrA0x ` b0s `
ˆ
x ` ´σRrxs ` σRr´xs

0

˙

“ N1pxq,

where we have used the identity σRrxs ´ σRr´xs “ x.

Now, assuming that F
pFF q
l ˝¨ ¨ ¨˝F pFF q

1
˝Einpxq “ Nlpxq, we define the pl`1q-th feed-forward

layer F
pFF q
l`1

as

F
pFF q
l`1

pNlpxqq “ Nlpxq `
`
IW ,´IW , IW

˘
σR

»
–
¨
˝

Al

IW
´IW

˛
‚Nlpxq `

¨
˝
bl
0

0

˛
‚
fi
fl

“ σR rAlNlpxq ` bls “ Nl`1pxq.

By induction, it follows that

F
pFF q
l`1

˝ F
pFF q
l ˝ ¨ ¨ ¨ ˝ F

pFF q
1

˝ Einpxq “ Nl`1pxq.

By the principle of induction, we establish that F
pFF q
L´1

˝ ¨ ¨ ¨ ˝F pFF q
1

˝ Einpxq “ NL´1pxq. For
the last feed-forward layer, we calculate that

F
pFF q
L pNL´1pxqq

“ NL´1pxq `
ˆ
AL ´Idy O Idy O

O O ´IW´dy O IW´dy

˙
σR

»
–
¨
˝
AL´1

IW
´IW

˛
‚NL´1pxq `

¨
˝
bL´1

0

0

˛
‚
fi
fl `

ˆ
bL
0

˙
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“
ˆ
ALσRrAL´1NL´1pxq ` bL´1s ` bL

0

˙

“
ˆ
N pxq
0

˙
.

Thus, we obtain

Eout ˝ F
pFF q
L ˝ ¨ ¨ ¨ ˝ F

pFF q
1

˝ Einpxq “ N pxq.

Since each feed-forward layer in our construction has width at most 3W , the proof is complete
by considering x “ X:,i for i P rns.

The following proposition gives basic properties of Transformer networks that enable the
recursive construction of complex architectures.

Proposition 6. Let Ni P Tdi,kipDi,Hi, Si,Wi, Liq for i “ 1, 2.

1. If d1 “ d2, k1 “ k2, and D1 ď D2,H1 ď H2, S1 ď S2,W1 ď W2, L1 ď L2, then

Td1,k1pD1,H1, S1,W1, L1q Ď Td2,k2pD2,H2, S2,W2, L2q.

2. (Concatenation) If define N

ˆ
X
Y

˙
“
ˆ
N1pXq
N2pY q

˙
, then

N P Td1`d2,k1`k2pD1 `D2,H1 `H2,maxtS1, S2u,W1 `W2,maxtL1, L2uq.

3. (Summation) If d1 “ d2 and k1 “ k2, then

N1 ` N2 P Td1,k1pD1 `D2,H1 `H2,maxtS1, S2u,W1 `W2,maxtL1, L2uq.

Proof. We provide the proof for (2), as the arguments for (1) and (3) follow analogously.
Let

Ni “ Ei,out ˝ F
pFF q
i,Li

˝ F
pSAq
i,Li

˝ ¨ ¨ ¨ ˝ F
pFF q
i,1 ˝ F

pSAq
i,1 ˝ Ei,in P Tdi,kipDi,Hi, Si,Wi, Liq, i “ 1, 2.

Without loss of generality, assume that L1 “ L2 “ L, since the identity mapping can be viewed
as a special self-attention layer or a feed-forward layer. We define the following components:

1. Input Embedding:

Ein

ˆ
X
Y

˙
“
ˆ
E1,in

E2,in

˙ˆ
X
Y

˙
`
ˆ
P1

P2

˙
“
ˆ
E1,inX ` P1

E2,inY ` P2

˙
“
ˆ
E1,inpXq
E2,inpY q

˙

2. Feed-forward Layer:

F
pFF q
l

ˆ
X
Y

˙

“
ˆ
X
Y

˙
`
˜
W

p2q
1,l

W
p2q
2,l

¸
σR

«˜
W

p1q
1,l

W
p1q
2,l

¸ˆ
X
Y

˙
`
˜
b

p1q
1,l

b
p1q
2,l

¸
1

J
n

ff
`
˜
b

p2q
1,l

b
p2q
2,l

¸
1

J
n

“
˜
X ` W

p2q
1,l σRrW p1q

1,l X ` b
p1q
1,l 1

J
n s ` b

p2q
1,l 1

J
n

Y ` W
p2q
2,l σRrW p1q

2,l Y ` b
p1q
2,l 1

J
n s ` b

p2q
2,l 1

J
n

¸

“
˜
F

pFF q
1,l pXq

F
pFF q
2,l pY q

¸
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3. Self-Attention Layer:

F
pSAq
l

ˆ
X
Y

˙

“
ˆ
X
Y

˙
`

H1ÿ

h“1

ˆ
W

pOq
1,h,l

O

˙´
W

pV q
1,h,l,O

¯ˆ
X
Y

˙
σS

«ˆ´
W

pKq
1,h,l,O

¯ˆ
X
Y

˙˙J ´
W

pQq
1,h,l,O

¯ˆ
X
Y

˙ff

`
H2ÿ

h“1

ˆ
O

W
pOq
2,h,l

˙´
O,W

pV q
2,h,l

¯ˆ
X
Y

˙
σS

«ˆ´
O,W

pKq
2,h,l

¯ˆ
X
Y

˙˙J ´
O,W

pQq
2,h,l

¯ˆ
X
Y

˙ff

“

¨
˚̊
˝
X ` řH1

h“1
W

pOq
1,h,l

´
W

pV q
1,h,lX

¯
σS

„´
W

pKq
1,h,lX

¯J ´
W

pQq
1,h,lX

¯

Y ` řH2

h“1
W

pOq
2,h,l

´
W

pV q
2,h,lY

¯
σS

„´
W

pKq
2,h,lY

¯J ´
W

pQq
2,h,lY

¯

˛
‹‹‚

“
˜
F

pSAq
1,l pXq

F
pSAq
2,l pY q

¸

4. Output Projection:

Eout

ˆ
X
Y

˙
“

ˆ
E1,out

E2,out

˙ˆ
X
Y

˙
“

ˆ
E1,outX
E2,outY

˙
“
ˆ
E1,outpXq
E2,outpY q

˙

By direct verification, we obtain

N

ˆ
X
Y

˙
:“ Eout ˝ F

pFF q
L ˝ F

pSAq
L ˝ ¨ ¨ ¨ ˝ F

pFF q
1

˝ F
pSAq
1

˝ Ein

ˆ
X
Y

˙
“
ˆ
N1pXq
N2pY q

˙
.

Furthermore, it follows that N P Td1`d2,k1`k2pD1 `D2,H1 `H2,maxtS1, S2u,W1 `W2, Lq, thus
completing the proof.

4.1 Proof of Theorems 1 and 2

Given K P N and δ P p0, 1

K
q, we define a trifling region Ωpr0, 1sDˆn,K, δq Ď r0, 1sDˆn as

Ωpr0, 1sDˆn,K, δq :“
!
X P r0, 1sDˆn : DXi,j P YK´1

t“1
p t
K
, t
K

` δq
)
.

The introduction of the trifling region serves to identify the "bad" areas where mismatches
occur when approximating a discontinuous multi-step function using continuous piecewise linear
functions, which can be implemented by a feed-forward layer. Since the trifling region has
arbitrarily small Lebesgue measure, we focus on function approximation in the "good" region,
namely, the complement domain r0, 1sDˆnzΩpr0, 1sDˆn,K, δq.

Proposition 7. Given γ P p0, 1s and KH ą 0, assume that F : r0, 1sdxˆn Ñ R
dxˆn satisfies

Fi,j P Hγpr0, 1sdxˆn,KHq for each i P rdxs, j P rns. For any K P N and δ P p0, 1

K
q, there exists a

Transformer network N P Tdx,dxpdx, 1, 1, 5nKdxn, 2q such that

1. |Ni,jpXq´Fi,jpXq| ď KHpdxnqγ{2K´γ for any i P rdxs, j P rns and X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq,
2. }N pXq}F ď

?
dxnKH for any X P R

dxˆn.

Proof. We basically follow the proof of [33, Proposition 1].
Step 1: We begin by uniformly partitioning the domain r0, 1sdxˆn into Kdxn subregions and

constructing a piecewise constant function F that approximates the target function F , with an
approximation error scales as K´γ . Specifically, let K P N denote the granularity of the grid

GK “
 

1

K
, 2

K
, . . . , 1

(dxˆn
.
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We define each subregion as

ωG :“
ź

iPrdxs,jPrns

"
rGi,j ´ 1

K
, Gi,js, if Gi,j “ 1

K

pGi,j ´ 1

K
, Gi,js, otherwise

associated with G P GK . Clearly, these subregions form a partition of the domain r0, 1sdxˆn “Ť
GPGK

ωG. Given a target function F with Fi,j P Hγpr0, 1sdxˆn,KHq, we define a piecewise
constant approximation of F as

F pXq “
ÿ

GPGK

F pGq1ωG
pXq,

where 1ω denotes the indicator function of set ω. That is, within each subregion ωG, we ap-
proximate F using its value at the grid point G. By the regularity of F , we have the error
estimate

|Fi,jpXq ´ F i,jpXq| “
ˇ̌
ˇ̌
ˇ
ÿ

GPGK

pFi,jpXq ´ F i,jpXqq1ωG
pXq

ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ
ÿ

GPGK

pFi,jpXq ´ Fi,jpGqq1ωG
pXq

ˇ̌
ˇ̌
ˇ

ď
ÿ

GPGK

|pFi,jpXq ´ Fi,jpGqq|1ωG
pXq

ď
ÿ

GPGK

KH}X ´ G}γF1ωG
pXq

ď KHpdxnqγ{2K´γ
ÿ

GPGK

1ωG
pXq

“ KHpdxnqγ{2K´γ ,

(4)

for any i P rdxs, j P rns and X P r0, 1sdxˆn.

Step 2: Given a positional encoding matrix P and a spatial discretization function F
pFF q
1

satisfying

F
pFF q
1 pX ` P q “ G ` P , for all X P ωG,

our objective is to construct a feed-forward layer F
pFF q
1

, with width at most 2ndxpK ` 1q, that

accurately represents F
pFF q
1 outside the trifling region Ωpr0, 1sdxˆn,K, δq, that is,

F
pFF q
1

pX ` P q “ F
pFF q
1 pX ` P q, for any X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq.

To achieve this goal, we first approximate a univariate multiple-step function using a piecewise
linear function, and then extend this function to matrix elements by stacking.

We define the embedding layer as

EinpXq “ X ` P P R
dxˆn,

where the positional encoding matrix P is chosen as

P “

¨
˝
0 2 ¨ ¨ ¨ 2pn ´ 1q
...

...
...

0 2 ¨ ¨ ¨ 2pn ´ 1q

˛
‚.
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Since X P r0, 1sdxˆn, the positional encoding ensures that the columns of X ` P are mapped
to distinct intervals, that is, rX ` P si,j P r2j ´ 2, 2j ´ 1s for each j P rns. Now, consider a
multiple-step function stepKpzq defined on r0, 1s as

stepKpzq “

$
’’’’’’’&
’’’’’’’%

1

K
, 0 ď z ď 1

K
2

K
, 1

K
ă z ď 2

K
3

K
, 2

K
ă z ď 3

K
...

...

1, 1 ´ 1

K
ă z ď 1

.

Given δ P p0, 1

K
q, by translations, scalings and summations of the δ-approximated step function

σRrz{δs ´ σRrz{δ ´ 1s “

$
’&
’%

0 z ď 0

z{δ 0 ă z ă δ

1 δ ď z

,

we define

fpzq “ 1

K
`

nÿ

j“1

K´1ÿ

t“1

1

K

ˆ
σR

„
z ´ 2pj ´ 1q

δ
´ t

δK


´ σR

„
z ´ 2pj ´ 1q

δ
´ 1 ´ t

δK

˙

`
n´1ÿ

j“1

ˆ
1 ` 1

K

˙
pσRrz ´ p2j ´ 1qs ´ σRrz ´ 2jsq .

It is straightforward to verify that fpz`p2j´2qq “ stepKpzq`p2j´2q for all z P r0, 1szΩpr0, 1s,K, δq
and j P rns. Moreover, the function f can be represented by a shallow ReLU network with
2nK ´ 2 units in the hidden layer.

We then concatenate multiple f in parallel to construct a feed-forward layer F
pFF q
1

: Rdxˆn Ñ
R
dxˆn with width at most 2ndxpK ` 1q, satisfying

F
pFF q
1

pX ` P q “

¨
˝

fpX1,1 ` P1,1q ¨ ¨ ¨ fpX1,n ` P1,nq
...

. . .
...

fpXdx,1 ` Pdx,1q ¨ ¨ ¨ fpXdx,n ` Pdx,nq

˛
‚

«

¨
˝

stepKpX1,1q ` P1,1 ¨ ¨ ¨ stepKpX1,nq ` P1,n
...

. . .
...

stepKpXdx,1q ` Pdx,1 ¨ ¨ ¨ stepKpXdx,nq ` Pdx,n

˛
‚

“

¨
˝

stepKpX1,1q ¨ ¨ ¨ stepKpX1,nq
...

. . .
...

stepKpXdx,1q ¨ ¨ ¨ stepKpXdx,nq

˛
‚` P .

Noting that

Ωpr0, 1sdxˆn,K, δq “
ď

iPrdxs,jPrns

tX : Xi,j P Ωpr0, 1s,K, δqu,

we conclude that F
pFF q
1

pX ` P q “ F
pFF q
1 pX ` P q for any X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq.

Step 3: Since tG ` P : G P GKu can be regarded as sequences, each of which has no
duplicate token due to positional encoding, it follows from [33, Theorem 2] that there exists a
self-attention layer F pSAq : Rdxˆn Ñ R

dxˆn with H “ 1 and s “ 1 that serves as a contextual
mapping for such input sequences (see [33, 69] for further discussion). In essence, a contextual
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mapping is a bijection between sequences that satisfies F pSAqpGpiq `P q:,k ‰ F pSAqpGpjq ` P q:,l
if Gpiq ‰ Gpjq P GK or k ‰ l P rns. The remaining is to associate each output token with its
corresponding function value using a feed-forward layer, which reduces to a memorization task.

Lemma 11 gives a construction of such a feed-forward layer, denoted as F
pFF q
2

, with width at
most 5nKdxn (set r “ n ¨ |GK | ď nKdxn therein), such that

F
pFF q
2

pF pSAqpG ` P qq “ F pGq for all G P GK ,

and }F pFF q
2

pZq}F ď
?
dxnKH.

Let Eout be the identity mapping. It holds that Eout ˝ F
pFF q
2

˝ F pSAq ˝ F
pFF q
1

˝ Ein P
Tdx,dxpdx, 1, 1, 5nKdxn, 2q. Note that for any X P ωGzΩpr0, 1sdxˆn,K, δq,

Eout ˝ F
pFF q
2

˝ F pSAq ˝ F
pFF q
1

˝ EinpXq
“ F

pFF q
2

˝ F pSAq ˝ F
pFF q
1

pX ` P q
“ F

pFF q
2

˝ F pSAq ˝ F
pFF q
1 pX ` P q

“ F
pFF q
2

˝ F pSAqpG ` P q
“ F pGq “ F pXq.

Thus, for any X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq “ Ť
GPGK

ωGzΩpr0, 1sdxˆn,K, δq, we have

Eout ˝ F
pFF q
2

˝ F pSAq ˝ F
pFF q
1

˝ EinpXq “ F pXq,

which completes the proof by noting (4).

Proposition 8. Given γ P p0, 1s and KH ą 0, assume that F : r0, 1sdxˆn Ñ R
dxˆn with each en-

try Fi,j P Hγpr0, 1sdxˆn,KHq. For any ε ą 0, K P N and δ P p0, 1

3K
s, if rN P Tdx,dxpD,H,S,W,Lq

is a Transformer network that satisfies

| rNi,jpXq ´ Fi,jpXq| ď ε

for any i P rdxs, j P rns and X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq, then there exists a new Trans-
former network

N P Tdx,dxp3dxnmaxtD, 5dxu, 3dxnH,S, 3dxnmaxtW, 14dxu, L` 2dxnq,

such that

|Ni,jpXq ´ Fi,jpXq| ď ε` dxnKHδ
γ

for any i P rdxs, j P rns and X P r0, 1sdxˆn.

Proof. We basically follow the proof of [39, Theorem 2.1].
Step 1: We prove that, given i P rdxs, j P rns, Fi,j P Hγpr0, 1sdxˆn,KHq, and a general

function Gi,j : R
dxˆn Ñ R satisfying

|Gi,jpXq ´ Fi,jpXq| ď ε for any X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq, (5)

then

|Φi,jpXq ´ Fi,jpXq| ď ε` dxnKHδ
γ for any X P r0, 1sdxˆn, (6)
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where Φi,j :“ Φ
pdxnq
i,j is defined by induction through

Φ
pkq
i,j pXq :“ mid

´
Φ

pk´1q
i,j

´
X ´ δEpkq

¯
,Φ

pk´1q
i,j pXq ,Φpk´1q

i,j

´
X ` δEpkq

¯¯
(7)

for k “ 1, 2, ¨ ¨ ¨ , dxn, Φ
p0q
i,j “ Gi,j , midp¨, ¨, ¨q is a function returning the middle value of three

inputs, and Epu`pv´1qdxq denotes the matrix with 1 at the pu, vq-th position and 0 elsewhere for
u P rdxs, v P rns. In other words, if Gi,j provides a uniform approximation outside the trifling
region, then the carefully constructed Φi,j extends this uniform approximation to the entire
domain, with only a slight increase in the approximation error.

Note that tEpkqudxnk“1
defined above is a re-indexing of the standard basis in R

dxˆn. We re-
index the elements of X “ pXu,vq in the same manner. Let Xpu`pv´1qdxq “ Xu,v for u P rdxs, v P
rns. Using this notation, define

Ωk :“
"
X : Xpiq P

"
r0, 1s, if i ď k

r0, 1szΩpr0, 1s, K, δq, if i ą k

*
.

Clearly, Ω0 “ r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq and Ωdxn “ r0, 1sdxˆn.
We will prove by induction that for each k P t0, 1, . . . , dxnu,

|Φpkq
i,j pXq ´ Fi,jpXq| ď ε` k ¨KHδ

γ for any X P Ωk. (8)

As the final step of the induction, we derive

|Φi,jpXq ´ Fi,jpXq| “ |Φpdxnq
i,j pXq ´ Fi,jpXq|

ď ε ` dxnKHδ
γ for any X P Ωdxn “ r0, 1sdxˆn,

which completes the proof of (6).
In the base case, it follows from (5) that

|Φp0q
i,j pXq ´ Fi,jpXq| “ |Gi,jpXq ´ Fi,jpXq|

ď ε for any X P Ω0 “ r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq.

Now, assume that for some k P t1, 2, . . . , dxnu,

|Φpk´1q
i,j pXq ´ Fi,jpXq| ď ε ` pk ´ 1qKHδ

γ for any X P Ωk´1.

For fixed Xp1q, . . . ,Xpk´1q P r0, 1s and Xpk`1q, . . . ,Xpdxnq P r0, 1szΩpr0, 1s,K, δq, define

φptq “ Φ
pk´1q
i,j pXp1q, . . . ,Xpk´1q, t,Xpk`1q, . . . ,Xpdxnqq

and

fptq “ Fi,jpXp1q, . . . ,Xpk´1q, t,Xpk`1q, . . . ,Xpdxnqq.

The induction hypothesis gives

|φptq ´ fptq| ď ε ` pk ´ 1q ¨ KHδ
γ for any t P r0, 1szΩpr0, 1s,K, δq.

Since Fi,j P Hγpr0, 1sdxˆn,KHq implies f P Hγpr0, 1s,KHq, applying Lemma 10 to the univariate
functions φptq and fptq yields

|rφptq ´ fptq| ď ε` pk ´ 1q ¨KHδ
γ `KHδ

γ “ ε ` k ¨ KHδ
γ for any t P r0, 1s,
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where

rφptq “ mid pφpt ´ δq, φptq, φpt ` δqq
“ midpΦpk´1q

i,j pXp1q, . . . ,Xpk´1q, t ´ δ,Xpk`1q, . . . ,Xpdxnqq,
Φ

pk´1q
i,j pXp1q, . . . ,Xpk´1q, t,Xpk`1q, . . . ,Xpdxnqq,

Φ
pk´1q
i,j pXp1q, . . . ,Xpk´1q, t ` δ,Xpk`1q, . . . ,Xpdxnqqq

“ Φ
pkq
i,j pXp1q, . . . ,Xpk´1q, t,Xpk`1q, . . . ,Xpdxnqq

by definition of Φ
pkq
i,j . Since Xp1q, . . . ,Xpk´1q P r0, 1s, Xpkq “ t P r0, 1s and Xpk`1q, . . . ,Xpdxnq P

r0, 1szΩpr0, 1s,K, δq are arbitrary, we obtain

|Φpkq
i,j pXq ´ Fi,jpXq| ď ε` k ¨KHδ

γ for any X P Ωk.

This completes the induction.
Step 2: Recall that Φ “ pΦi,jqiPrdxs,jPrns is defined by (7). We now prove that if G P

Tdx,dxpD,H,S,W,Lq, then

Φ P Tdx,dxp3dxn maxtD, 5dxu, 3dxnH,S, 3dxnmaxtW, 14dxu, L ` 2dxnq.

The observation here is that, to compute Φ “ Φ
pdxnq, we first evaluate

Φ
pdxn´1qp¨ ` cdxnδE

pdxnqq for each cdxn P t´1, 0, 1u.

Each such evaluation, in turn, requires computing

Φ
pdxn´2qp¨ ` cdxn´1δE

pdxn´1q ` cdxnδE
pdxnqq for each cdxn´1 P t´1, 0, 1u.

Continuing this process recursively, determining Φ ultimately requires evaluating

Φ
p0qp¨ ` řdxn

l“1
clδE

plqq for every pc1, . . . , cdxnq P t´1, 0, 1udxn.

Conversely, since Φ
p0q “ G by definition, assuming that we have access to all functions Gp¨ `řdxn

l“1
clδE

plqq, we can iteratively apply the mid function to Φ
pkq to recover Φpk`1q, following the

same construction as in (7), and ultimately get Φ. On the other hand, each function Gp¨ `řdxn
k“1

ckδE
pkqq is a Transformer network thanks to positional encoding, and the mid function

can be implemented by feed-forward layers and vectorized operations, thereby completing the
construction. The details are given below.

Fixing k P t0, 1, . . . , dxn´ 1u, we reindex the functions
!
Φ

pkqp¨ ` řdxn
l“k`1

clδE
plqq : pck`1, . . . , cdxnq P t´1, 0, 1udxn´k

)

as tΦpkq
l u3dxn´k

l“1
(set Φ

pdxnq
1

“ Φ
pdxnq for notational convenience), such that

”
Φ

pk`1q
l

ı
i,j

“ mid

ˆ”
Φ

pkq
3l´2

ı
i,j
,
”
Φ

pkq
3l´1

ı
i,j
,
”
Φ

pkq
3l

ı
i,j

˙

for all i P rdxs, j P rns, which aligns with (7). Since midp¨, ¨, ¨q P FNN 3,1p14, 2q by Lemma 9,

there exists an FNN rN P FNN 3dx,dxp14dx, 2q, such that for all j P rns,

rN

¨
˚̊
˚̊
˝

”
Φ

pkq
3l´2

ı
:,j”

Φ
pkq
3l´1

ı
:,j”

Φ
pkq
3l

ı
:,j

˛
‹‹‹‹‚

“
”
Φ

pk`1q
l

ı
:,j
.
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We then concatenate rN in parallel to construct a new FNN

rN pkq P FNN 3dx¨3dxn´k´1,dx¨3dxn´k´1p14dx ¨ 3dxn´k´1, 2q

such that

rN pkq

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

”
Φ

pkq
1

ı
:,j”

Φ
pkq
2

ı
:,j”

Φ
pkq
3

ı
:,j

...”
Φ

pkq

3dxn´k´2

ı
:,j”

Φ
pkq

3dxn´k´1

ı
:,j”

Φ
pkq

3dxn´k

ı
:,j

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̋

”
Φ

pk`1q
1

ı
:,j

...”
Φ

pk`1q

3dxn´k´1

ı
:,j

˛
‹‹‹‚.

By recursively composing rN pkq for each k P t0, 1, . . . , dxn´ 1u, we obtain

rN pdxn´1q ˝ rN pdxn´2q ˝ ¨ ¨ ¨ ˝ rN p0q P FNN dx3dxn,dxp14dx3dxn´1, 2dxnq,

which, by construction, satisfies

rN pdxn´1q ˝ rN pdxn´2q ˝ ¨ ¨ ¨ ˝ rN p0q

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

”
Φ

p0q
1

ı
:,j”

Φ
p0q
2

ı
:,j”

Φ
p0q
3

ı
:,j

...”
Φ

p0q
3dxn´2

ı
:,j”

Φ
p0q

3dxn´1

ı

:,j”
Φ

p0q

3dxn

ı
:,j

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“ rN pdxn´1q ˝ rN pdxn´2q ˝ ¨ ¨ ¨ ˝ rN p1q

¨
˚̊
˚̋

”
Φ

p1q
1

ı
:,j

...”
Φ

p1q

3dxn´1

ı
:,j

˛
‹‹‹‚

...

“
”
Φ

pdxnq
ı
:,j
,

for each j P rns. Furthermore, Lemma 5 guarantees that any token-wise FNN can be expressed in
terms of feed-forward layers. We have (setW “ 14dx3

dxn´1 and L “ 2dxn therein) an embedding

map Ein : Rdx3
dxnˆn Ñ R

14dx3
dxn´1ˆn, a projection map Eout : R

14dx3
dxn´1ˆn Ñ R

dxˆn, and 2dxn

feed-forward layers F
pFF q
L`2dxn

, . . . ,F
pFF q
L`1

, each with width at most 3¨14dx3dxn´1 “ 14dx3
dxn, such

that

Eout ˝ F
pFF q
L`2dxn

˝ ¨ ¨ ¨ ˝ F
pFF q
L`1

˝ Ein

¨
˚̊
˚̊
˝

Φ
p0q
1

Φ
p0q
2

...

Φ
p0q
3dxn

˛
‹‹‹‹‚

“ Φ
pdxnq. (9)
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Due to the positional encoding, each function

Gp¨ `
řdxn

l“1
ckδE

plqq P Tdx,dxpD,H,S,W,Lq.

Recall that G “ Φ
p0q and tΦp0q

l u3dxn

l“1
is a reordering of tΦp0qp¨`řdxn

l“1
clδE

plqqu. By concatenation
of Transformers (see Proposition 6), there exists a Transformer network

N P Tdx,dx3dxnp3dxnD, 3dxnH,S, 3dxnW,Lq

such that

N pXq “

¨
˚̊
˚̊
˝

Φ
p0q
1

Φ
p0q
2

...

Φ
p0q
3dxn

˛
‹‹‹‹‚
.

Together with (9) and Φ
pdxnq “ Φ, we have

Eout ˝ F
pFF q
L`2dxn

˝ ¨ ¨ ¨ ˝ F
pFF q
L`1

˝ Ein ˝ N pXq

“ Eout ˝ F
pFF q
L`2dxn

˝ ¨ ¨ ¨ ˝ F
pFF q
L`1

˝ Ein

¨
˚̊
˚̊
˝

Φ
p0q
1

Φ
p0q
2

...

Φ
p0q

3dxn

˛
‹‹‹‹‚

“ Φ
pdxnq “ ΦpXq,

thereby

Φ P Tdx,dxpmaxt3dxnD, 14dx3dxn´1u, 3dxnH,S,maxt3dxnW, 14dx3dxnu, L ` 2dxnq
Ď Tdx,dxp3dxn maxtD, 5dxu, 3dxnH,S, 3dxnmaxtW, 14dxu, L ` 2dxnq,

which completes the proof.

Lemma 9 (Lemma 3.1 of [39]). The middle value function midpx1, x2, x3q P FNN 3,1p14, 2q.

Lemma 10 (Lemma 3.3 of [39]). Given any ε ą 0, K P N, and δ P p0, 1

3K
s, assume that

f P Hγpr0, 1s,KHq and g : R Ñ R is a general function with

|gpxq ´ fpxq| ď ε, for any x P r0, 1szΩpr0, 1s,K, δq.

Then

|φpxq ´ fpxq| ď ε `KHδ
γ for any x P r0, 1s,

where

φpxq :“ mid pgpx ´ δq, gpxq, gpx ` δqq for any x P R.

Proof of Theorem 1. Case 1: p P r1,8q. Let

N P Tdx,dxpdx, 1, 1, 5nKdxn, 2q

be as in Proposition 7. By Proposition 7 and noting that the Lebesgue measure of Ωpr0, 1sdxˆn,K, δq
is at most dxnKδ, we have

}N ´ F }p
Lppr0,1sdxˆnq
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“
ż

r0,1sdxˆn

}N pXq ´ F pXq}pFdX

“
ż

Ωpr0,1sdxˆn,K,δq
}N pXq ´ F pXq}pFdX `

ż

r0,1sdxˆnzΩpr0,1sdxˆn,K,δq
}N pXq ´ F pXq}pFdX

ď
ż

Ωpr0,1sdxˆn,K,δq
}N pXq ´ F pXq}pFdX

`
ż

r0,1sdxˆnzΩpr0,1sdxˆn,K,δq
pdxnqmaxt0, p

2
´1u

dxÿ

i“1

nÿ

j“1

|Ni,jpXq ´ Fi,jpXq|pdX

ď p2
a
dxnKHqp ¨ dxnKδ ` pdxnq1`maxt0, p

2
´1upKHpdxnqγ{2K´γqp

ď 2ppdxnq2pKp
H

ppKδq
1
p `K´γqp,

using for the last inequality that γ P p0, 1s, maxta, bu ď a`b for any a, b ě 0, and ap`bp ď pa`bqp
for all p ě 1 and a, b ě 0. Hence,

}N ´ F }Lppr0,1sdxˆnq ď 2pdxnq2KHppKδq
1
p `K´γq.

Choosing δ ď K´pγ´1 and K ě ε´1{γ so that Kdxn “ rε
´ dxn

γ s, we conclude

}N ´ F }Lppr0,1sdxˆnq ď 4pdxnq2KHε

and

N P Tdx,dxpdx, 1, 1, 5nrε
´ dxn

γ s, 2q.

Case 2: p “ 8. By Proposition 7, there exists a Transformer network

rN P Tdx,dxpdx, 1, 1, 5nKdxn, 2q

such that

| rNi,jpXq ´ Fi,jpXq| ď pdxnqγ{2KHK
´γ

for any i P rdxs, j P rns and X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq. By Proposition 8 (assume that
5nKdxn ě 14dx), there exists a new Transformer network

N P Tdx,dxp5dx3dxn, 3dxn, 1, 5n3dxnKdxn, 2 ` 2dxnq,

such that

|Ni,jpXq ´ Fi,jpXq| ď pdxnqγ{2KHK
´γ ` dxnKHδ

γ

for any i P rdxs, j P rns and X P r0, 1sdxˆn. This implies

}N ´ F }L8pr0,1sdxˆnq “ sup
XPr0,1sdxˆn

}N pXq ´ F pXq}F

ď sup
XPr0,1sdxˆn

dxÿ

i“1

nÿ

j“1

|Ni,jpXq ´ Fi,jpXq|

ď
dxÿ

i“1

nÿ

j“1

sup
XPr0,1sdxˆn

|Ni,jpXq ´ Fi,jpXq|

ď pdxnq1`γ{2KHK
´γ ` pdxnq2KHδ

γ .
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Choosing δ P p0, 1

3K
s sufficiently small and K ě ε´1{γ so that Kdxn “ rε

´ dxn
γ s, we conclude

}N ´ F }L8pr0,1sdxˆnq ď 4pdxnq2KHε

and

N P Tdx,dxp5dx3dxn, 3dxn, 1, 5n3dxnrε´ dxn
γ s, 2 ` 2dxnq.

This completes the proof.

Proof of Theorem 2. Let K, GK and ωG be as defined in the proof of Proposition 7. We approx-
imate the target function F using a piecewise constant function, where the value in each cell is
given by the average of F over that cell. Define

F pXq “
ÿ

GPGK

FG1ωG
pXq,

where

rFGsi,j “ Kdxn

ż

ωG

Fi,jpXqdX, i P rdys, j P rns.

Since each cell ωG is a bounded convex domain, Poincaré inequality gives, for any p P r1,8s,

}rFGsi,j ´ Fi,j}LppωGq ď C}∇Fi,j}LppωGqK
´1,

where C is a constant depending only on dxn, and }∇F }Lppωq denotes the Lp-norm of the Frobe-

nius norm of ∇F (see [9,17]). Summing over all grid cells and using that Fi,j P W1,ppr0, 1sdxˆn,KW q
implies }∇Fi,j}Lppr0,1sdxˆnq ď pdxnqmaxt0, 1

2
´ 1

p
u
KW , we obtain

}Fi,j ´ F i,j}Lppr0,1sdxˆnq “

$
&
%

´ř
GPGK

}Fi,j ´ rFGsi,j}pLppωGq

¯1{p
if p ă 8

supGPGK
}Fi,j ´ rFGsi,j}L8pωGq if p “ 8

ď C}∇Fi,j}Lppr0,1sdxˆnqK
´1

ď Cpdxnqmaxt0, 1
2

´ 1
p

u
KWK

´1,

(10)

for any p P r1,8s.
From Step 2 and Step 3 of Proposition 7, there exists a Transformer network

N P Tdx,dxpdx, 1, 1, 5nKdxn, 2q

such that

N pXq “ F pXq for any X P r0, 1sdxˆnzΩpr0, 1sdxˆn,K, δq

and

}N pXq}F ď
a
dxnKW for any X P R

dxˆn.

Since the Lebesgue measure of Ωpr0, 1sdxˆn,K, δq is at most dxnKδ, for p P r1,8q, we have

}N ´ F }p
Lppr0,1sdxˆnq

“
ż

r0,1sdxˆn

}N pXq ´ F pXq}pFdX
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“
ż

Ωpr0,1sdxˆn,K,δq
}N pXq ´ F pXq}pFdX `

ż

r0,1sdxˆnzΩpr0,1sdxˆn,K,δq
}F pXq ´ F pXq}pFdX

ď
ż

Ωpr0,1sdxˆn,K,δq
}N pXq ´ F pXq}pFdX

`
ż

r0,1sdxˆnzΩpr0,1sdxˆn,K,δq
pdxnqmaxt0, p

2
´1u

dxÿ

i“1

nÿ

j“1

|F i,jpXq ´ Fi,jpXq|pdX

ď p2
a
dxnKWqp ¨ dxnKδ ` pdxnqmaxt0, p

2
´1u

dxÿ

i“1

nÿ

j“1

´
Cpdxnqmaxt0, 1

2
´ 1

p
u
KWK

´1

¯p

ď p2Cqppdxnq2pKp
W

ppKδq
1
p `K´1qp,

using for the last inequality that p ě 1, maxta, bu ď a` b for any a, b ě 0, and ap ` bp ď pa` bqp
for all p ě 1 and a, b ě 0. Hence,

}N ´ F }Lppr0,1sdxˆnq ď 2Cpdxnq2KWppKδq
1
p `K´1q.

Choosing δ ď K´p´1 and K ě ε´1 so that Kdxn “ rε´dxns, we conclude

}N ´ F }Lppr0,1sdxˆnq ď 4Cpdxnq2KWε

and

N P Tdx,dxpdx, 1, 1, 5nrε´dxns, 2q.

This completes the proof.

Lemma 11. Let dx, dy, r P N with dx ě dy. Let tpxi,yiquri“1
be a set of input-output pairs such

that xi P R
dx ,yi P R

dy , i P rrs and xi ‰ xj if i ‰ j. Then, there exists a feed-forward layer
F pFF q : Rdx Ñ R

dx with width at most 3r ` 2dx such that

F pFF qpxiq “
ˆ
yi

0

˙
for all i P rrs,

and }F pFF qpzq} ď maxi }yi} for any z P R
dx.

Proof. Let R ą 0 be determined later. Since xi, i P rrs are pairwise distinct, we can find v P R
dx

such that vJxi, i P rrs are distinct. The existence of v can be found in [45, Lemma 13]. We
define

A
p1q
i “ R13v

J, b
p1q
i “

¨
˝

´RvJxi ´ 1

´RvJxi

´RvJxi ` 1

˛
‚, A

p2q
i “

ˆ
yi

0

˙`
1,´2, 1

˘
, b

p2q
i “ 0.

Then, by direct calculation, we obtain

A
p2q
i σRrAp1q

i x ` b
p1q
i s ` b

p2q
i

“
ˆ
yi

0

˙`
σRrRvJpx ´ xiq ´ 1s ´ 2σRrRvJpx ´ xiqs ` σRrRvJpx ´ xiq ` 1s

˘

“
ˆ
yi

0

˙
Iipxq,
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where Iipxq is the hat function with Iipxiq “ 1 and Iipxq “ 0 if |vJpx ´ xiq| ě 1{R. To ensure
the supports of Iipxq for all i P rrs are disjoint, we choose R ą 2{mini‰j |vJpxi ´ xjq|. Define

Ap1q “

¨
˚̊
˚̊
˚̋

A
p1q
1

...

A
p1q
r

Idx
´Idx

˛
‹‹‹‹‹‚
, bp1q “

¨
˚̊
˚̊
˚̋

b
p1q
1

...

b
p1q
r

0

0

˛
‹‹‹‹‹‚
, Ap2q “

´
A

p2q
1
, . . . ,A

p2q
r ,´Idx , Idx

¯
, bp2q “ 0,

and let

F pFF qpxq “ x ` Ap2qσRrAp1qx ` bp1qs ` bp2q

“
rÿ

i“1

ˆ
yi

0

˙
Iipxq.

We complete the proof by verifying that

F pFF qpxkq “
rÿ

i“1

ˆ
yi

0

˙
Iipxkq “

ˆ
yk

0

˙

and

}F pFF qpxq} “
›››››

rÿ

i“1

ˆ
yi

0

˙
Iipxq

›››››

ď max
i

}yi}
›››››

rÿ

i“1

Iipxq
›››››

ď max
i

}yi}.

4.2 Proof of Theorem 3

We introduce sample complexities, which measure the richness of the function class in different
aspects, and use them to bound the generalization error.

Definition 5 (VC-dimension). Let H be a class of real-valued functions defined on Ω. The
VC-dimension of H, denoted by VCDimpHq, is the largest integer N for which there exist points
x1, . . . , xN P Ω such that

|tsgnphpx1qq, . . . , sgnphpxN qq : h P Hu| “ 2N .

Definition 6 (Pseudo-dimension). Let H be a class of real-valued functions defined on Ω. The
pseudo-dimension of H, denoted by PdimpHq, is the largest integer N for which there exist points
x1, . . . , xN P Ω and constants c1, . . . , cN P R such that

|tsgnphpx1q ´ c1q, . . . , sgnphpxN q ´ cN q : h P Hu| “ 2N .

Definition 7 (Covering number). Let ρ be a pseudo-metric on M and S Ď M. For any δ ą 0,
a set A Ď M is called a δ-covering of S if for any x P S there exists y P A such that ρpx, yq ď δ.
The δ-covering number of S, denoted by N pδ, S, ρq, is the minimum cardinality of any δ-covering
of S.
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Theorem 12 (Theorem 8.14 of [2]). Let h be a function from R
d ˆ R

n to t0, 1u, determining
the class

H “ tx ÞÑ hpa, xq : a P R
du.

Suppose that h can be computed by an algorithm that takes as input the pair pa, xq P R
d ˆ R

n

and returns hpa, xq after no more than t of the following operations:

• the exponential function α ÞÑ eα on real numbers,

• the arithmetic operations `, ´, ˆ, and { on real numbers,

• jumps conditioned on ą, ě, ă, ď, “, and ‰ comparisons of real numbers, and

• output 0 or 1.

Then VCdimpHq ď t2d pd ` 19 log2p9dqq. Furthermore, if the t steps include no more than q in
which the exponential function is evaluated, then

VCdimpHq ď pdpq ` 1qq2 ` 11dpq ` 1q pt` log2p9dpq ` 1qqq .

Theorem 12 gives bounds on the VC-dimension of a function class in terms of the number
of arithmetic operations required to compute the functions. This result immediately implies
a bound on the VC-dimension (or pseudo-dimension) for Transformer networks. By applying
standard techniques in learning theory, one can further derive upper bounds for the covering
number. The following lemma summarizes these bounds.

Lemma 13. Recall that F “ tf “ xN ,Ey : N P Tdx,dxpD,H,S,W,Lqu. Then the following
bounds hold:

• VCdimpFq À pHS `W q2D2H2L4,

• PdimpFq À pHS `W q2D2H2L4,

• supX logN pδ, CKF , dX ,8q À pHS `W q2D2H2L4 log mK
δ

, where X “ tXiumi“1
and

dX ,8pf, gq “ max
iPrms

|fpXiq ´ gpXiq|.

We hide constants that depend on dx and n.

Proof. Recall that F “ tf “ xN ,Ey : N P Tdx,dxpD,H,S,W,Lqu. By carefully counting the
computational steps required to evaluate any f P F , we deduce that

• the total number of parameters is bounded by d À pHS `W qDL,

• the total number of computational operations is bounded by t À LpHDSn`HSn2 `WDnq,
• the number of evaluations of the exponential function is bounded by q À LHn2.

Theorem 12 immediately implies that

VCdimpFq ď pdpq ` 1qq2 ` 11dpq ` 1q pt` log2p9dpq ` 1qqq
À pHS `W q2D2H2L4,

where we use logpxq ď x for x ě 1 and suppress constants that depend on dx and n.
For the pseudo-dimension, note that by definition VCdimptfpxq ´ r : f P F , r P Ruq “

PdimpFq. Using the same reasoning as above, we have

PdimpFq À pHS `W q2D2H2L4,
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again by Theorem 12.
Finally, by Theorem 12.2 of [2], we have

logN pδ, CKF , dX ,8q ď PdimpCKFq log emK
δ

ď PdimpFq log emK
δ

À pHS `W q2D2H2L4 log
mK

δ
.

Taking the supremum over all possible sample sets X completes the proof.

Proof of Theorem 3. Let X and dX ,8 be defined as in Lemma 13. Similar to the proof of [32,
Theorem 5], given a random sample Dm “ tpxi, yiqumi“1

, the excess risk can be decomposed as

EDmrRpCBm f̂mq ´ Rpf˚qs À Eapp ` Egen ` Eden,

where

Eapp :“ inf
fPF

Erpf ´ f˚q2s,

Egen :“ B2
mkm

m
sup

|X |“m

logN pm´1, CBmF , dX ,8q,

Eden :“ B2
mm

km
βpkmq.

Here, km P N is a parameter to be chosen. It can be seen that the excess risk is bounded
by the sum of the approximation error Eapp, the generalization error Egen, and the dependence
error Eden. Note that as km increases, Eden decreases due to the monotonic decrease of the
β-mixing coefficient βpkmq, whereas Egen increases. Besides, if we select a larger hypothesis class
F , then Eapp decreases but Egen increases because the covering number grows with the size of
the hypothesis class. Therefore, to obtain a better convergence rate, we must carefully trade off
these three errors by choosing an appropriate hypothesis class F and tuning the parameter km.

Since by assumption the density of Π is upper bounded, Theorem 1 implies that

Eapp ď inf
fPF

}f ´ f˚}2L2pr0,1sdxˆnq À ε2,

where the hypothesis class

F “ FpDm À 1,Hm À 1, Sm À 1,Wm À ε
´ dxn

γ , Lm À 1q.

Then by Lemma 13,

Egen À B2
mkm

m
pHS `W q2D2H2L4 logpm2Bmq

À plogmq3km
m

ε
´ 2dxn

γ ,

where we take Bm — logm.
We now consider three cases for the sequence txiumi“1

.
Case 1: if txiumi“1

is geometrically β-mixing, i.e., βpkmq ď β0 exp p´β1krmq for some r, β0, β1 ą
0, we set km — plogmq1{r so that βpkmq À 1{m100. Then,

EDmrRpCBm f̂mq ´ Rpf˚qs À ε2 ` plogmq3`1{r

m
ε

´ 2dxn
γ

28



À m
´ γ

γ`dxn plogmq3`1{r,

where ε is chosen as ε — m
´ γ

2γ`2dxn .
Case 2: if txiumi“1

is algebraically β-mixing, that is, βpkmq ď β0{krm for some r, β0 ą 0, then

EDmrRpCBm f̂mq ´ Rpf˚qs À ε2 ` plogmq3km
m

ε
´ 2dxn

γ ` plogmq2m
kr`1
m

À m
´ rγ

pr`2qγ`pr`1qdxn plogmq3,

where we use the AM-GM inequality and choose ε — m
´ rγ

2pr`2qγ`2pr`1qdxn and km — m
2γ`dxn

pr`2qγ`pr`1qdxn .
Case 3: if txiumi“1

is a sequence of i.i.d. random variables, then βpkmq “ 0 for all km ě 1.
This implies

EDmrRpCBm f̂mq ´ Rpf˚qs À ε2 ` plogmq3
m

ε
´ 2dxn

γ

À m
´ γ

γ`dxn plogmq3,

where we choose ε — m
´ γ

2γ`2dxn . So we complete the proof.

4.3 Proof of Theorem 4

The original Kolmogorov-Arnold representation theorem states that for any continuous function
f : r0, 1sd Ñ R, there exist univariate continuous functions gq, ψp,q such that

fpx1, . . . , xdq “
2dÿ

q“0

gq

˜
dÿ

p“1

ψp,qpxpq
¸
.

[51] derived modifications of this representation that transfer smoothness properties of the
represented function to the outer function.

Proposition 14 (Theorem 2 of [51]). For any fixed dimension d ě 2, there exists a monotone
function φ : r0, 1s Ñ C (the Cantor set) such that for any function f P Hγpr0, 1sd,KHq with

some γ P p0, 1s, we can find a function g P H
γ log 2

d log 3 pC, 2
?
dKHq such that

fpx1, . . . , xdq “ g

˜
3

dÿ

p“1

3´pφpxpq
¸
. (11)

Moreover, for any x P r0, 1s with its binary representation x “ r0.ax
1
ax
2
. . .s2, the function φ is

given explicitly by

φpxq “
8ÿ

j“1

2axj

31`dpj´1q
“ r0.p2ax1q 0 . . . . . . 0looomooon

pd´1q-times

p2ax2q 0 . . . . . . 0looomooon
pd´1q-times

s3,

where r¨sB denotes the B-adic expansion of a real number.

We note that a given real number can have multiple B-adic representations (for example,
r1s10 “ r0.999 . . .s10), which may make φ not well-defined. To eliminate this ambiguity, we adopt
the convention of using a unique B-adic representation for all real numbers. Observe that the
argument of g in (11) satisfies

3

dÿ

p“1

3´pφpxpq “ r0.p2ax1

1
qp2ax2

1
q . . . p2axd

1
qp2ax1

2
q . . .s3. (12)

29



By construction, the Cantor set consists precisely of those numbers in r0, 1s whose ternary
expansion contains only the digits 0 and 2. This shows that the mapping 3

řd
p“1

3´pφpxpq
indeed defines a bijection between r0, 1sd and the Cantor set C. Additionally, an approximation
of φ with a truncation parameter K is defined by

φKpxq :“
Kÿ

j“1

2axj

31`dpj´1q
, (13)

which will be used in our construction.

Proof of Theorem 4. By Proposition 14 and the fact that φK approximates φ, there exists a

function G : Rdxˆn Ñ R
dxˆn with each entry Gu,v P H

γ log 2

dxn log 3 pC, 2
?
dxnKHq such that

F pXq “ G

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφpXp,qq
¸

« G

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφKpXp,qq
¸
. (14)

We will construct a generalized Transformer network that approximates the latter mapping. In
the proof below, for simplicity, we omit the placeholder zeros used for alignment.

Step 1: We first show that there exist 2K`2 generalized feed-forward layers F
pGFF q
1

, . . . ,F
pGFF q
2K`2

such that

F
pGFF q
2K`2

˝ ¨ ¨ ¨ ˝ F
pGFF q
1

: X ÞÑ Z1,

where

Z1 “

¨
˚̋
3
řdx

p“1
ap,1rφKpXp,1q 3

řdx
p“1

ap,2rφKpXp,2q ¨ ¨ ¨ 3
řdx

p“1
ap,nrφKpXp,nq

...
...

...

3
řdx

p“1
ap,1rφKpXp,1q 3

řdx
p“1

ap,2rφKpXp,2q ¨ ¨ ¨ 3
řdx

p“1
ap,nrφKpXp,nq

˛
‹‚.

Here, ap,q “ 1

3pq´1qdx`p and rφK is a function that satisfies

rφKpxq “

$
’&
’%

0, if x ă 0,

φKpxq, if x P ΩK Ď r0, 1s,
1, if x ą 1,

where φK is defined in (13) and ΩK Ď r0, 1s has Lebesgue measure at least 1 ´ 2´Kγp. [51,
Theorem 3] guarantees the existence of an FNN rφK P FNN 1,1p4, 2Kq with the above properties.

By parallel computation, we can construct an FNN rN1 P FNN 1,1p4n, 2Kq such that

rN1pxq “
´
1, 3´dx , 3´2dx , . . . , 3´pn´1qdx

¯

¨
˚̊
˚̊
˚̋

rφKpxq
rφKpx ´ 2q
rφKpx ´ 4q

...
rφKpx ´ 2pn´ 1qq

˛
‹‹‹‹‹‚

“
nÿ

q“1

3´pq´1qdx rφKpx ´ 2pq ´ 1qq.

If x P r2pj ´ 1q, 2j ´ 1s for some j P rns, then

rN1pxq “
j´1ÿ

q“1

3´pq´1qdx rφKpx ´ 2pq ´ 1qq ` 3´pj´1qdx rφKpx ´ 2pj ´ 1qq
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`
nÿ

q“j`1

3´pq´1qdx rφKpx´ 2pq ´ 1qq

“
j´1ÿ

q“1

3´pq´1qdx ` 3´pj´1qdx rφKpx´ 2pj ´ 1qq

“ 3´pj´1qdx rφKpx´ 2pj ´ 1qq ` bj,

where we define b1 “ 0 and bj “ řj´1

q“1
3´pq´1qdx for j ě 2.

Now consider x P R
dx . Fixing j P rns, if xi P r2pj ´ 1q, 2j ´ 1s for all i P rdxs, we can

construct an FNN rN2 P FNN dx,dxp4dxn, 2Kq such that

rN2pxq “ 1dx

´
1, 3´1, . . . , 31´dx

¯
¨
˚̊
˚̋

rN1px1q
rN1px2q

...
rN1pxdxq

˛
‹‹‹‚

“ 1dx

´
1, 3´1, . . . , 31´dx

¯
¨
˚̊
˚̋

3´pj´1qdx rφKpx1 ´ 2pj ´ 1qq ` bj
3´pj´1qdx rφKpx2 ´ 2pj ´ 1qq ` bj

...

3´pj´1qdx rφKpxdx ´ 2pj ´ 1qq ` bj

˛
‹‹‹‚

“
˜

dxÿ

p“1

31´p´pj´1qdx rφKpxp ´ 2pj ´ 1qq
¸
1dx `

˜
bj

dxÿ

p“1

31´p

¸
1dx

“
˜
3

dxÿ

p“1

ap,j rφKpxp ´ 2pj ´ 1qq
¸
1dx ` cj1dx ,

where we define cj “ bj
řdx

p“1
31´p. Using that Xp,j P r0, 1s implies Xp,j ` 2pj ´ 1q P r2pj ´

1q, 2j ´ 1s, set x “ X:,j ` 2pj ´ 1q1dx in the above equation to obtain

rN2pX:,j ` 2pj ´ 1q1dxq “
˜
3

dxÿ

p“1

ap,j rφKpXp,jq
¸
1dx ` cj1dx .

By Lemma 5, there exist 2K feed-forward layers F
pFF q
2

, . . . ,F
pFF q
2K`1

, each with width at most
3 ¨ 4dxn “ 12dxn, such that

F
pFF q
2K`1

˝ ¨ ¨ ¨ ˝ F
pFF q
2

pX:,1, . . . ,X:,n ` 2pn´ 1q1dxq “
´
rN2pX:,1q, . . . , rN2pX:,n ` 2pn´ 1q1dxq

¯
,

where we omit placeholder zeros for simplicity. Finally, to add and then remove the bias terms,
we use two generalized feed-forward layers. We define

F
pGFF q
1

pX:,1, . . . ,X:,nq :“ pX:,1, . . . ,X:,n ` 2pn´ 1q1dxq

and

F
pGFF q
2K`2

pZ:,1, . . . ,Z:,nq :“ pZ:,1 ´ c11dx , . . . ,Z:,n ´ cn1dxq.

It is straightforward to verify that

F
pGFF q
2K`2

˝ F
pFF q
2K`1

˝ ¨ ¨ ¨ ˝ F
pFF q
2

˝ F
pGFF q
1

pXq
“ F

pGFF q
2K`2

˝ F
pFF q
2K`1

˝ ¨ ¨ ¨ ˝ F
pFF q
2

pX:,1, . . . ,X:,n ` 2pn ´ 1q1dxq
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“ F
pGFF q
2K`2

´
rN2pX:,1q, . . . , rN2pX:,n ` 2pn ´ 1q1dxq

¯

“ F
pGFF q
2K`2

˜˜
3

dxÿ

p“1

ap,1rφKpXp,1q
¸
1dx ` c11dx , . . . ,

˜
3

dxÿ

p“1

ap,nrφKpXp,nq
¸
1dx ` cn1dx

¸

“
˜˜

3

dxÿ

p“1

ap,1rφKpXp,1q
¸
1dx , . . . ,

˜
3

dxÿ

p“1

ap,nrφKpXp,nq
¸
1dx

¸

“ Z1.

Step 2: We show that there exist a generalized self-attention layer F pGSAq and a generalized

feed-forward layer F
pGFF q
2K`3

such that

F
pGFF q
2K`3

˝ F pGSAq :

ˆ
Z1

O

˙
ÞÑ

ˆ
Z2

O

˙
,

where

Z2 “

¨
˚̊
˚̊
˚̋

3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq 3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2 ¨ ¨ ¨ 3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2pn ´ 1q

...
...

...

3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq 3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2 ¨ ¨ ¨ 3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2pn ´ 1q

˛
‹‹‹‹‹‚
.

Note that Z2 is obtained by summing the columns of Z1 and then adding different bias terms
to each column.

We now prove the existence of such layers by first considering a standard self-attention layer.
In fact, we only require the softmax function to compute the column average, so it can be
replaced by a generalized self-attention layer. We define a self-attention layer by choosing the
parameters as follows:

H “ 1, S “ dx, W pOq “ n

ˆ
Odx

Idx

˙
, W pV q “ pIdx ,Odxq , W pKq “ O, W pQq “ O.

Then, by direct calculation based on the definition, we have

F pSAq

ˆ
Z1

O

˙
“

¨
˝

´
3
řdx

p“1
ap,1rφKpXp,1q

¯
1dx ¨ ¨ ¨

´
3
řdx

p“1
ap,nrφKpXp,nq

¯
1dx´

3
řdx

p“1

řn
q“1

ap,qrφKpXp,qq
¯
1dx ¨ ¨ ¨

´
3
řdx

p“1

řn
q“1

ap,q rφKpXp,qq
¯
1dx

˛
‚.

Next, we define a generalized feed-forward layer with the following parameters:

W p1q “

¨
˚̋

Idx Odx

´Idx Odx

Odx Idx
Odx ´Idx

˛
‹‚, Bp1q “ O,

W p2q “
ˆ

´Idx Idx Idx ´Idx
Odx Odx ´Idx Idx

˙
, Bp2q “

ˆ
0dx 21dx ¨ ¨ ¨ 2pn´ 1q1dx
0dx 0dx ¨ ¨ ¨ 0dx

˙
.

It can then be verified that

F
pGFF q
2K`3

˝ F pSAq

ˆ
Z1

O

˙
“
ˆ
Z2

O

˙
,

where we have used the identity x “ σRrxs ´ σRr´xs.
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Step 3: We construct a generalized feed-forward layer F
pGFF q
2K`4

interpolating the outer func-

tion G in (14) at the 2dxnK ` 1 interpolation points

3

dxÿ

p“1

nÿ

q“1

ap,qφKpXp,qq P
#

dxnKÿ

j“1

2tj3
´j : pt1, . . . , tdxnKq P t0, 1udxnK

+
ď

t1u.

Denote these points by 0 “: s0 ă s1 ă ¨ ¨ ¨ ă s2dxnK´1 ă s2dxnK :“ 1 and fix u P rdxs. For
any x P R, we define a scalar function

rGupxq :“ Gu,1ps0q `
2dxnKÿ

j“1

Gu,1psjq ´Gu,1psj´1q
sj ´ sj´1

pσRrx ´ sj´1s ´ σRrx ´ sjsq

` Gu,2ps0q ´Gu,1ps2dxnK q
s0 ` 2 ´ s2dxnK

pσRrx ´ s2dxnK s ´ σRrx´ ps0 ` 2qsq

`
2dxnKÿ

j“1

Gu,2psjq ´Gu,2psj´1q
sj ´ sj´1

pσRrx ´ psj´1 ` 2qs ´ σRrx ´ psj ` 2qsq ` ¨ ¨ ¨

` Gu,nps0q ´Gu,n´1ps2dxnK q
s0 ` 2 ´ s2dxnK

pσRrx´ ps2dxnK ` 2pn ´ 2qqs ´ σRrx ´ ps0 ` 2pn ´ 1qqsq

`
2dxnKÿ

j“1

Gu,npsjq ´Gu,npsj´1q
sj ´ sj´1

pσRrx ´ psj´1 ` 2pn ´ 1qqs ´ σRrx´ psj ` 2pn ´ 1qqsq

“ Gu,1ps0q

`
nÿ

v“1

2dxnKÿ

j“1

Gu,vpsjq ´Gu,vpsj´1q
sj ´ sj´1

pσRrx ´ psj´1 ` 2pv ´ 1qqs ´ σRrx´ psj ` 2pv ´ 1qqsq

`
nÿ

v“2

Gu,vps0q ´Gu,v´1ps2dxnK q
s0 ` 2 ´ s2dxnK

pσRrx´ ps2dxnK ` 2pv ´ 2qqs ´ σRrx´ ps0 ` 2pv ´ 1qqsq .

In other words, rGu is defined as the piecewise linear interpolation of the points
!

psj ` 2pv ´ 1q, Gu,vpsjqq : j “ 0, 1, . . . , 2dxnK , v “ 1, . . . , n
)
,

with the function being constant outside the interval r0, 2n ´ 1s. We observe that

• rGupsj ` 2pv ´ 1qq “ Gu,vpsjq for every j P t0u Y r2dxnK s, u P rdxs, v P rns,
• } rGu}L8pRq ď maxvPrns }Gu,v}L8pCq,

• rGu P FNN 1,1pnp2dxnK ` 1q, 1q.

By stacking the functions rGu for u P rdxs vertically, we obtain a feed-forward layer, with width
at most dxnp2dxnK ` 1q ` 2dx, such that

F
pGFF q
2K`4

pZq “

¨
˚̊
˚̋

rG1pZ1,1q rG1pZ1,2q ¨ ¨ ¨ rG1pZ1,nq
rG2pZ2,1q rG2pZ2,2q ¨ ¨ ¨ rG2pZ2,nq

...
...

...
rGdxpZdx,1q rGdxpZdx,2q ¨ ¨ ¨ rGdxpZdx,nq

˛
‹‹‹‚.

Together with Step 1 and Step 2, we define the overall generalized Transformer network as

N :“ Eout ˝ F
pGFF q
2K`4

˝ F
pGFF q
2K`3

˝ F pGSAq ˝ F
pGFF q
2K`2

˝ ¨ ¨ ¨ ˝ F
pGFF q
1

˝ Ein

P GT dx,dxpD “ 4dxn,H “ 1, S “ dx,W “ dxnp2dxnK ` 1q ` 2dx, L “ 2K ` 4q,
(15)
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where Ein and Eout are appropriately chosen to add and remove zeros to match the hidden
dimension D. In particular, we have

N pXq
“ Eout ˝ F

pGFF q
2K`4

˝ F
pGFF q
2K`3

˝ F pGSAq ˝ F
pGFF q
2K`2

˝ ¨ ¨ ¨ ˝ F
pGFF q
1

˝ EinpXq

“ Eout ˝ F
pGFF q
2K`4

˝ F
pGFF q
2K`3

˝ F pGSAq

ˆ
Z1

O

˙

“ Eout ˝ F
pGFF q
2K`4

ˆ
Z2

O

˙

“

¨
˚̊
˚̊
˚̊
˚̊
˚̋

rG1

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq

¸
rG1

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2

¸
¨ ¨ ¨ rG1

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2pn ´ 1q

¸

rG2

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq

¸
rG2

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2

¸
¨ ¨ ¨ rG2

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2pn ´ 1q

¸

...
...

...

rGdx

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq

¸
rGdx

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2

¸
¨ ¨ ¨ rGdx

˜
3

dxÿ

p“1

nÿ

q“1

ap,q
rφKpXp,qq ` 2pn ´ 1q

¸

˛
‹‹‹‹‹‹‹‹‹‚

.

Step 4: We now conduct an error analysis. We have

}N ´ F }p
Lppr0,1sdxˆnq

“
ż

r0,1sdxˆn

}N pXq ´ F pXq}pFdX

ď
ż

r0,1sdxˆn

pdxnqmaxt0, p
2

´1u
dxÿ

u“1

nÿ

v“1

|Nu,vpXq ´ Fu,vpXq|pdX

“ pdxnqmaxt0, p
2

´1u
dxÿ

u“1

nÿ

v“1

˜ż

X:@Xi,jPΩK

`
ż

X:DXi,jRΩK

¸
|Nu,vpXq ´ Fu,vpXq|pdX

“: pdxnqmaxt0, p
2

´1u
dxÿ

u“1

nÿ

v“1

pI ` IIq.

To estimate I, using that rφKpXp,qq “ φKpXp,qq when Xp,q P ΩK , rGu interpolates Gu,v by

construction, and Gu,v P H
γ log 2

dxn log 3 pC, 2
?
dxnKHq, we have

|Nu,vpXq ´ Fu,vpXq|

“
ˇ̌
ˇ̌
ˇ
rGu

˜
3

dxÿ

p“1

nÿ

q“1

ap,q rφKpXp,qq ` 2pv ´ 1q
¸

´Gu,v

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφpXp,qq
¸ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ
rGu

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφKpXp,qq ` 2pv ´ 1q
¸

´Gu,v

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφpXp,qq
¸ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇGu,v

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφKpXp,qq
¸

´Gu,v

˜
3

dxÿ

p“1

nÿ

q“1

ap,qφpXp,qq
¸ˇ̌
ˇ̌
ˇ

ď 2pdxnq 1
2KH

ˇ̌
ˇ̌
ˇ3

dxÿ

p“1

nÿ

q“1

ap,q pφKpXp,qq ´ φpXp,qqq
ˇ̌
ˇ̌
ˇ

γ log 2

dxn log 3

ď 2pdxnq 1
2KH

ˇ̌
ˇ̌
ˇ̌2

8ÿ

q“dxnK`1

3´q

ˇ̌
ˇ̌
ˇ̌

γ log 2

dxn log 3
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ď 2pdxnq 1
2KH3

´Kγ log 2

log 3

“ 2pdxnq 1
2KH2

´γK ,

where the second inequality follows from the fact that, as indicated in (12), 3
řdx

p“1

řn
q“1

ap,qφpXp,qq
and 3

řdx
p“1

řn
q“1

ap,qφKpXp,qq are both in the Cantor set C and have the same first dxnK ternary
digits. Thus,

I “
ż

X:@Xi,jPΩK

|Nu,vpXq ´ Fu,vpXq|pdX

ď 2ppdxnq
p
2K

p
H2

´pγK .

To estimate II, noting that both Nu,v and Fu,v are bounded, and that ΩK has Lebesgue measure
at least 1 ´ 2´pγK , we obtain

II “
ż

X:DXi,jRΩK

|Nu,vpXq ´ Fu,vpXq|pdX

ď
ż

X:DXi,jRΩK

´
}Nu,v}L8pr0,1sdxˆnq ` }Fu,v}L8pr0,1sdxˆnq

¯p

dX

ď
´

}Nu,v}L8pr0,1sdxˆnq ` }Fu,v}L8pr0,1sdxˆnq

¯p

p1 ´ p1 ´ 2´pγKqdxnq

ď 22ppdxnq p
2

`1K
p
H
2´pγK ,

where we apply Bernoulli’s inequality in the last inequality.
We combine the bounds for I and II to obtain

}N ´ F }p
Lppr0,1sdxˆnq

ď pdxnqmaxt0, p
2

´1u
dxÿ

u“1

nÿ

v“1

´
2ppdxnq

p
2K

p
H2

´pγK ` 22ppdxnq
p
2

`1K
p
H2

´pγK
¯

ď pdxnq3p22pKp
H
2´pγK ,

where we have used p ě 1 and maxta, bu ď a` b for all a, b ě 0, which implies

}N ´ F }Lppr0,1sdxˆnq ď 4pdxnq3KH2
´γK .

Choose K ě 1

γ
log2

1

ε
so that 2dxnK “ rε

´ dxn
γ s. Then we have

}N ´ F }Lppr0,1sdxˆnq ď 4pdxnq3KHε,

and by (15),

N P GT dx,dxpD “ 4dxn,H “ 1, S “ dx,W ď 3dxnrε
´ dxn

γ s, L ď 6r 1
γ
log2

1

ε
sq.

This completes the proof.
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