
Noname manuscript No.
(will be inserted by the editor)

Support matrix machine: exploring sample sparsity,
low rank, and adaptive sieving in high-performance
computing

Can Wu · Dong-Hui Li · Defeng Sun

Received: date / Accepted: date

Abstract Support matrix machine (SMM) is a successful supervised classi-
fication model for matrix-type samples. Unlike support vector machines, it
employs low-rank regularization on the regression matrix to effectively cap-
ture the intrinsic structure embedded in each input matrix. When solving
a large-scale SMM, a major challenge arises from the potential increase in
sample size, leading to substantial computational and storage burdens. To
address these issues, we design a semismooth Newton-CG (SNCG) based aug-
mented Lagrangian method (ALM) for solving the SMM. The ALM exhibits
an asymptotic R-superlinear convergence if a strict complementarity condition
is satisfied. The SNCG method is employed to solve the ALM subproblems,
achieving at least a superlinear convergence rate under the nonemptiness of
an index set. Furthermore, the sparsity of samples and the low-rank nature
of solutions enable us to reduce the computational cost and storage demands
for the Newton linear systems. Additionally, we develop an adaptive sieving
strategy that generates a solution path for the SMM by exploiting sample
sparsity. The finite convergence of this strategy is also demonstrated. Numer-
ical experiments on both large-scale real and synthetic datasets validate the
effectiveness of the proposed methods.

Can Wu
School of Mathematics and Statistics, Hainan University, Haikou, 570228, China. This work
was conducted during her Postdoctoral Fellowship at the Department of Applied Mathe-
matics, The Hong Kong Polytechnic University.
E-mail: wucan-opt@hainanu.edu.cn

Dong-Hui Li
School of Mathematical Sciences, South China Normal University, Guangzhou, 510631,
China
E-mail: lidonghui@m.scnu.edu.cn

Defeng Sun
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom,
Hong Kong
E-mail: defeng.sun@polyu.edu.hk

ar
X

iv
:2

41
2.

08
02

3v
1

 [
m

at
h.

O
C

]
 1

1
D

ec
 2

02
4

2 C. Wu, D. Li, D. Sun

Keywords Support matrix machine · Sample sparsity · Low rank · Adaptive
sieving · Augmented Lagrangian method · Semismooth Newton method

Mathematics Subject Classification (2020) 90C06 · 90C25 · 90C90

1 Introduction

Numerous well-known classification methods, such as linear discriminant anal-
ysis, logistic regression, support vector machines (SVMs), and AdaBoost, were
initially designed for vector or scalar inputs [19]. On the other hand, matrix-
structured data, like digital images with pixel grids [65] and EEG signals with
multi-channel voltage readings over time [59], are also prevalent in practical
applications. Classifying matrix data often involves flattening it into a vec-
tor, but this causes several issues [52]: a) High-dimensional vectors increase
dimensionality problems, b) Loss of matrix structure and correlations, and c)
Structural differences require different regularization methods. To circumvent
these challenges, the support matrix machine (SMM) was introduced by Luo,
Xie, Zhang, and Li [40]. Given a set of training samples {Xi, yi}ni=1, where
Xi ∈ Rp×q represents the ith feature matrix and yi ∈ {−1,+1} is its cor-
responding class label, the optimization problem of the SMM is formulated
as

minimize
(W,b)∈Rp×q×R

1

2
∥W∥2F +τ∥W∥∗+C

n∑
i=1

max
{
1− yi

[
tr(W⊤Xi) + b

]
, 0
}
, (1)

where W ∈ Rp×q is the matrix of regression coefficients, b ∈ R is an offset
term, C and τ are positive regularization parameters. Here, ∥ · ∥F and ∥ ·
∥∗ denote the Frobenius norm and nuclear norm of a matrix, respectively.
The objective function in (1) combines two key components: a) the spectral
elastic net penalty (1/2)∥ · ∥2F + τ∥ · ∥∗, enjoying grouping effect1 and low-rank
structures; b) the hinge loss, ensuring sparsity and robustness. This model has
been incorporated as a key component in deep stacked networks [16,37] and
semi-supervised learning frameworks [30]. Additionally, the SMM model (1)
and its variants are predominantly applied in fault diagnosis (e.g., [48,34,32,
27,44,45,14,29,64,46,31]) and EEG classification (e.g., [70,72,53,16,4,37,17,
36]). For a comprehensive overview of SMM applications and extensions, see
the recent survey [23].

The two-block alternating direction methods of multipliers (ADMMs) are
the most widely adopted methods for solving the convex SMM model (1) and
its extensions, including least squares SMMs [34,32,36,17], multi-class SMMs
[72,48], weighted SMMs [27,31,46], transfer SMMs [4,44], and pinball SMMs
[12,44,45,14]. Compared to classical SVMs, the primary challenge in solving a
large-scale SMM model (1) and the above extensions arises from the additional
nuclear norm term. Specifically, their dual problems are no longer a quadratic

1 At a solution pair (W, b) of the model (1), the columns of the regression matrix W
exhibit a grouping effect when the associated features display strong correlation [40].

Support matrix machine: exploring sample sparsity... 3

program (QP) due to the presence of the sphere constraint in the sense of
the spectral norm, which precludes the use of the off-the-shelf QP solvers like
LIBQP2. To overcome this drawback, Luo et al. [40] suggested to utilize the
two-block fast ADMM with restart (F-ADMM), proposed in [15]. Indeed, it is
reasonable to choose two-block ADMM algorithms over three-block ADMM [3]
because the former consistently requires fewer iterations, resulting in lower sin-
gular value decomposition costs from the soft thresholding operator. However,
F-ADMM solves the dual subproblems by calling the LIBQP solver, which
requires producing at least one n × n matrix. This can cause a memory bur-
den as the sample size n increases significantly. As a remedy, Duan et al. [10]
introduced a quantum algorithm that employs the quantum matrix inversion
algorithm [18] and a quantum singular value thresholding algorithm to update
the subproblems’s variables in the F-ADMM framework, respectively. Never-
theless, no numerical experiments were reported in [10], leaving the practical
effectiveness of the proposed algorithm undetermined. Efficiently solving the
SMM models under large-scale samples remains a significant challenge.

The first purpose of this paper is to devise an efficient and robust algorithm
for solving the SMM model (1) when n is significantly large (e.g., several
hundred thousand or up to a million) and pq is large (e.g., ten of thousands).
By leveraging the sample sparsity and the low-rank property of the solution to
model (1), we develop an efficient and robust semismooth Newton-CG based
augmented Lagrangian method. Notably, these two properties depend on the
values of the parameters C and τ . Here, sample sparsity indicates that the
solution of (1) relies solely on a subset of samples (feature matrices) known as
active samples (support matrices), while disregarding the remaining portion
referred to as non-active samples (non-support matrices). At each iteration,
a conjugate gradient (CG) algorithm is employed to solve the Newton linear
system. By making full use of the sample sparsity and the solution’s low-rank
property in (1), the primary computational cost in each iteration of the CG
method can be reduced to O(pqmax{|J1|, |α|}), instead of O(npq). Here, the
index set J1 ultimately corresponds the active support matrices. Its cardinality
|J1| is typically much smaller than the total sample size n. And the cardinality
of the index set α eventually corresponds to the rank of the solution matrix
W in the model (1). It is worth mentioning that the proposed computational
framework can be readily extended to convex variants of the SMM model (1),
such as multi-class SMMs [72,48], weighted SMMs [27,31,46], transfer SMMs
[4,44], and pinball SMMs [12,44,45,14].

Our second goal in this paper is to develop a strategy that efficiently guesses
and adjusts irrelevant samples before the starting of the aforementioned opti-
mization process. This method is particularly useful for generating a solution
path for models (1). Recently, Ghaoui et al. [24] introduced a safe feature
elimination method for ℓ1-regularized convex problems. It inspired researchers
to extend these ideas to conventional SVMs and develop safe sample screening
rules [43,61,74,49]. Those rules aim to first bound the primal SVM solution

2 The codes are available at https://cmp.felk.cvut.cz/~xfrancv/pages/libqp.html.

https://cmp.felk.cvut.cz/~xfrancv/pages/libqp.html

4 C. Wu, D. Li, D. Sun

within a valid region and then exclude non-active samples by relaxing the
Karush-Kuhn-Tucker conditions, which reduces the problem size and saves
computational costs and storage. However, existing safe screening rules are
typically problem-specific and cannot be directly applied to the SMM model
(1). The major challenges include two parts: a) the objective function in (1) is
not strongly convex due to the intercept term b [74]; b) the nuclear norm term
complicates the removal of non-support matrices using first-order optimality
conditions for the dual SVM model [61]. Recently, Yuan, Lin, Sun, and Toh
[67,38] introduced a highly efficient and flexible adaptive sieving (AS) strat-
egy for convex composite sparse machine learning models. By exploiting the
inherent sparsity of the solutions, it significantly reduces computational load
through solving a finite number of reduced subproblems on a smaller scale [66,
26,63]. The effectiveness of this AS strategy crucially hinges on solution spar-
sity, which dictates the size of these reduced subproblems. Unlike the sparsity
emerges at solutions, the SMM model (1) inherently exhibits sample sparsity.
As a result, the application of the AS strategy to (1) is not straightforward.
We will extend the idea of the AS strategy in [67,38] to generate a solution
path for the SMM model (1).

Our main contributions in this paper are outlined as follows:

1) To solve the SMM (1), we propose an augmented Lagrangian method
(ALM), which guarantees asymptotic R-superlinear convergence of the
KKT residuals under a mild strict complementarity condition, commonly
satisfied in the classical soft margin SVM model. For solving each ALM
subproblem, we use the semismooth Newton-CG method (SNCG), ensuring
superlinear convergence when an index set is nonempty, with its cardinality
ultimately corresponding to the number of active support matrices.

2) The main computational bottleneck in solving semismooth Newton linear
systems with the conjugate gradient method is the execution of the gen-
eralized Jacobian linear transformation. By leveraging the sample sparsity
and solution’s low-rank structure in model (1), we can reduce the cost of
this transformation from O(pqmax{|J1|, |α|}) to O(npq), where the car-
dinalities of J1 and α are typically much smaller than the sample size n.
Numerical experiments demonstrate that ALM-SNCG achieves an aver-
age speedup of 422.7 times over F-ADMM on four real datasets, even for
low-accuracy solutions of model (1).

3) To efficiently generate a solution path for the SMM models with a huge
sample size, we employ an AS strategy. This strategy iteratively identi-
fies and removes inactive samples to obtain reduced subproblems. Solving
these subproblems inexactly ensures convergence to the desired solution
path within a finite number of iterations (see Theorem 3). Numerical ex-
periments reveal that, for generating high-accuracy solution paths of mod-
els (1), the AS strategy paired with ALM-SNCG is, on average, 2.53 times
faster than the warm-started ALM-SNCG on synthetic dataset with one
million samples.

Support matrix machine: exploring sample sparsity... 5

The rest of the paper is organized as follows. Section 2 discusses the sample
sparsity and the solution’s low-rank structure of the SMM model (1). Building
on these properties, Section 3 introduces the computational framework of a
semismooth Newton-CG based augmented Lagrangian method for solving this
model. Section 4 explores how these properties reduce computational costs in
solving the Newton linear system. Section 5 introduces an adaptive sieving
strategy for computing a solution path of the SMM models across a fine grid
of C’s. Finally, Section 6 presents extensive numerical experiments on synthetic
and real data to demonstrate the effectiveness of the proposed methods.

Notation. Let Rm×n be the space of all m × n real matrices and Sn be the
space of all n × n real symmetric matrices. The notation 0m×n stands for
the zero matrix in Rm×n, and In ∈ Rn×n is the identity matrix. We use On

to denote the set of all n × n orthogonal matrices. For X,Y ∈ Rm×n, their
inner product is defined by ⟨X,Y ⟩ = tr(X⊤Y), where “tr” represents the
trace operation. The Frobenius norm of X ∈ Rm×n is ∥X∥F =

√
⟨X,X⟩. The

n-dimensional vector space Rn×1 is abbreviated as Rn. The vector en ∈ Rn

is the vector whose elements are all ones. We denote the index set [m] :=
{1, 2, . . . ,m}. For any index subsets α ⊆ [m] and β ⊆ [n], and any X ∈ Rm×n,
let Xαβ denote the |α| × |β| submatrix of X obtained by removing all the
rows of X not in α and all the columns of X not in β. For any x ∈ Rn,
we write xα as the subvector of x obtained by removing all the elements
of x not in α, and Diag(x) as the diagonal matrix with diagonal entries xi,
i = 1, . . . , n. The notation ∥ · ∥2 represents the matrix spectral norm, defined
as the largest singular value of the matrix. For any τ > 0, we define Bτ

2 :=
{X ∈ Rm×n | ∥X∥2 ≤ τ}. The metric projection of X onto Bτ

2 is denoted
by ΠBτ

2
(X), with ∂ΠBτ

2
(X) representing its Clarke generalized Jacobian at X.

Similarly, for any closed convex set K ⊂ Rn, ΠK(ω) and ∂ΠK(ω) denote the
metric projection of ω ∈ Rn onto K and its Clarke generalized Jacobian at ω,
respectively.

2 The structural properties of the SMM model (1)

This section highlights the sample sparsity and low-rank properties at the
Karush-Kuhn-Tucker (KKT) points of the model (1), providing the foundation
for developing an efficient algorithm.

For notational simplicity, we first reformulate the SMM model (1). Denote

X := Rp×q × R× Rn × Rp×q and Y := Rn × Rp×q.

Define the linear operator A : Rp×q → Rn and its corresponding adjoint
A∗ : Rn → Rp×q as follows:

AW = (⟨y1X1,W ⟩, . . . , ⟨ynXn,W ⟩)⊤ , A∗z =

n∑
k=1

zkykXk, ∀ (z,W) ∈ Y. (2)

6 C. Wu, D. Li, D. Sun

Let y = (y1, y2 . . . , yn)
⊤, v = en − AW − by, and S = [0, C]n. The support

function of S is given by δ∗S(v) = C
∑n

i=1 max{vi, 0} for any v ∈ Rn. The
SMM model (1) can be equivalently expressed as

minimize
(W,b,v,U)∈X

1

2
∥W∥2F + τ∥U∥∗ + δ∗S(v)

subject to AW + by + v = en,

W − U = 0p×q.

(P)

Its Lagrangian dual problem can be written as

maximize
(λ,Λ)∈Y

−Φ(λ,Λ) := 1

2
∥A∗λ+ Λ∥2F + ⟨λ, en⟩+ δS×Bτ

2
(−λ,Λ)

subject to y⊤λ = 0.
(D)

It is easy to get the following KKT system of (P) and (D):W +A∗λ+ Λ = 0, λ⊤y = 0, 0 ∈ ∂δ∗S(v) + λ,

0 ∈ ∂ τ∥U∥∗ − Λ, AW + by + v = en, W − U = 0p×q.
(3)

Without loss of generality, suppose that there exist indices i0, j0 ∈ [n] such that
yi0 = +1 and yj0 = −1 (otherwise, the classification task cannot be executed).
Clearly, the solution set of the KKT system (3) is always nonempty. Indeed,
the objective function in problem (1) is a real-valued, lower level-bounded
convex function. It follows from [58, Theorem 1.9] that the solution set of
(1) is nonempty, convex, and compact, with a finite optimal value. Since the
equivalent problem (P) of (1) contains linear constraints only, by [55, Corollary
28.3.1], the KKT system (3) has at least one solution. It is known from [55,
Theorems 28.3, 30.4, and Corollary 30.5.1] that (W, b, v, U, λ, Λ) is a solution
to (3) if and only if (W, b, v, U) is an optimal solution to (P), and (λ,Λ) is an
optimal solution to (D).

2.1 Characterizing sample sparsity

For the SMMmodel (P), a sufficiently large sample size n introduces significant
computational and storage challenges. However, the inherent sample sparsity
offers a promising avenue for developing efficient algorithms.

Suppose that (W, b, v, U, λ, Λ) is a solution of the KKT system (3). It
follows that

W = −A∗λ− Λ =
n∑

j=1

(−λ)jyjXj − Λ.

This implies that the value of W depends solely on the samples associated
with the non-zero elements of −λ, a property referred to as sample sparsity.

Support matrix machine: exploring sample sparsity... 7

In addition, by −λ ∈ ∂δ∗S(v) in (3), we deduce that for each j ∈ [n],

(−λ)j ∈

η ∈ R

∣∣∣∣∣∣∣∣
η = C if vj > 0

η ∈ [0, C] if vj = 0

η = 0 otherwise

 . (4)

It implies that −λ ∈ [0, C]n. Analogous to the concept of support vectors [6],
we introduce the definition of support matrices.

Definition 1 (Support matrix) An exampleXj that satisfies the inequality
0 < (−λ)j ≤ C is said a support matrix at (W, b); otherwise, it is a non-
support matrix. The set of all support matrices at (W, b) is denoted as

SM := {Xj | 0 < (−λ)j ≤ C, j ∈ [n]}.

To illustrate the geometric interpretation of support matrices, we define
the optimal hyperplane H(W, b) and the decision boundaries H+(W, b) and
H−(W, b) associated with (W, b) as follows:

H(W, b) := {X | ⟨W,X⟩+ b = 0},
H+(W, b) := {X | ⟨W,X⟩+ b = 1}, H−(W, b) := {X | ⟨W,X⟩+ b = −1}.

Based on (4) and (v)j = 1− yj(⟨W,Xj⟩+ b), we obtain that

SM ⊆ {Xj | vj ≥ 0, j ∈ [n]} = {Xj | yj(⟨W,Xj⟩+ b) ≤ 1, j ∈ [n]}. (5)

Thus, geometrically, support matrices include a subset of examples lying on
the decision boundaries, within the region between them, or misclassified.

It can also be observed from (4) that

{Xj | yj(⟨W,Xj⟩+b) < 1, j ∈ [n]} = {Xj | vj > 0, j ∈ [n]} ⊆ {Xj | (−λ)j = C}.

This implies that, after excluding support matricesXj at (W, b) where (−λ)j =
C, only those remaining on the decision boundaries are retained, i.e.,

ASM := {Xj | (−λ)j ∈ (0, C), j ∈ [n]} ⊆ {Xj | yj(⟨W,Xj⟩+ b) = 1, j ∈ [n]}.

Here, we define support matrices satisfying 0 < (−λ)j < C as active support
matrices. Notably, the number of support matrices far exceeds that of active
support matrices. As shown in Figure 1, the proportion of support matrices
relative to the total sample size ranges from 9% to 86%, whereas the propor-
tion of active support matrices is significantly lower, ranging from 0% to 3%.
This raises a natural question: Can we design an algorithm whose main
computational cost depends solely on the samples corresponding to
the active support matrices?

8 C. Wu, D. Li, D. Sun

Fig. 1 Comparison of SM, ASM, and NSM under (n, p, q, τ)=(100, 2, 1, 0.1) (Here, NSM
means the set of non-support matrix. Red circles represent positive examples, blue diamonds
represent negative examples, and solid circles/diamonds indicate support matrices. Active
support matrices are highlighted with a green square border. SM/ASM refers to the set
of support matrices after excluding the active support matrices. We observe that (a) the
cardinality of active support matrices is significantly smaller than that of support matrices;
and (b) as the value of C increases, both the number of support matrices and the optimal
margin 2/∥W∥F decrease.)

2.2 Characterizing low-rank property of W

In addition to the sample sparsity of model (P), another key property is the
low-rank structure of the solution W . Indeed, since (W, b, v, U, λ, Λ) is a solu-
tion to the KKT system (3), one has that

W = U = Proxτ∥·∥∗(Λ+ U) = Proxτ∥·∥∗(−A
∗λ).

Without loss of generality, we assume that p ≤ q. And suppose −A∗λ has the
following singular value decomposition (SVD):

−A∗λ = U [Diag(v) 0]V ⊤,

where U ∈ Op, V ∈ Oq, and v := (v1, v2, . . . , vp) ∈ Rp with v1 ≥ v2 ≥ . . . ≥ vp.
Furthermore, define

k̄ := max{i ∈ [p] | vi > τ}.

By applying the proximal mapping Proxτ∥·∥∗(−A∗λ) , as described in [39], we
obtain

W =Proxτ∥·∥∗(−A
∗λ) = U [Diag(max{v1 − τ, 0}, . . . ,max{vp − τ, 0}) 0]V ⊤

= U [Diag(v1 − τ, . . . , vk̄ − τ, 0, . . . , 0) 0]V ⊤.

This implies that the rank of W is k̄. As illustrated in Figure 2, for sufficiently
large τ , k̄ is non-increasing, potentially enhancing classification accuracy on

Support matrix machine: exploring sample sparsity... 9

Fig. 2 The changes of values of k̄ and Accuracytest as the value of τ increases on EEG
and CIFAR-10 real datasets

the test set (denoted Accuracytest in (39)). Thus, the low-rank property of W
may correspond to improved performance on the test set. Given this, how can
an efficient algorithm be designed to leverage the low-rank structure
of W when k̄ is sufficiently small?

3 A semismooth Newton-CG based augmented Lagrangian method
for the SMM model

In this section, we present our algorithmic framework for solving the SMM
model (1), which comprises an outer loop using the inexact augmented La-
grangian method (ALM) and inner loops employing the semismooth Newton-
CG method for ALM subproblems.

3.1 An inexact augmented Lagrangian method

We are going to develop an inexact augmented Lagrangian method for solv-
ing the problem (P). Given a positive penalty parameter σ, the augmented
Lagrangian function Lσ : X × Y → R for (P) takes the form

Lσ(x; z) =
1

2
∥W∥2F + τ∥U∥∗ + δ∗S(v) + ⟨λ,AW + by + v − en⟩+ ⟨Λ,W − U⟩

+
σ

2
∥AW + by + v − en∥2 +

σ

2
∥W − U∥2F ,

(6)
where x = (W, b, v, U) ∈ X and z = (λ,Λ) ∈ Y. Following the general frame-
work in [56], the steps of the ALM method is summarized in Algorithm 1
below.

10 C. Wu, D. Li, D. Sun

Algorithm 1 An inexact augmented Lagrangian method

Initialization: Given are two positive parameters σ0 and σ∞. Choose an
initial point z0 = (λ0, Λ0) ∈ Y. Set k = 0. Perform the following steps in each
iteration until a proper stopping criterion is satisfied:

Step 1. Compute an approximate solution

(W k+1, bk+1, vk+1, Uk+1) ≈ argmin
{
fk(x) := Lσk

(x; zk) | x ∈ X
}
. (7)

Step 2. Update the multipliers

(λk+1, Λk+1) = (λk+σk(AW k+1+bk+1y+vk+1−en), Λk+σk(W
k+1−Uk+1)).

Step 3. Update σk+1 ↑ σ∞ ≤ ∞.

In Step 1 of Algorithm 1, the subproblem (7) is solved inexactly. Different
inexact rules can be adopted. Here, we give two easily implementable inexact
rules. Observe that (Ŵ , b̂, v̂, Û) is an optimal solution to the ALM subproblem
(7) if and only if it satisfies

(Ŵ , b̂) ∈ argmin
{
φk(W, b) | (W, b) ∈ Rp×q × R

}
,

(v̂, Û) =
(
σ−1
k Proxδ∗S (ωk(Ŵ , b̂)), σ−1

k Proxτ∥·∥∗(Xk(Ŵ))
)
,

(8)

(9)

where the function φk : Rp×q × R→ R is defined by

φk(W, b) :=(1/2)∥W∥2F + (σk)
−1Eδ∗S

(ωk(W, b))− (2σk)
−1∥λk∥2

+ (σk)
−1Eτ∥·∥∗(Xk(W))− (2σk)

−1∥Λk∥2F .
(10)

Here, ωk : Rp×q × R→ Rn and Xk : Rp×q → Rp×q are defined as

ωk(W, b) := −λk − σk(AW + b y − en) and Xk(W) := Λk + σkW. (11)

Additionally, Eg(·) and Proxg(·) represent the Moreau envelop and proximal
mapping of some proper closed convex function g, respectively. Similar to those
in [9], we adopt the following two easily implementable inexact rules for (8):

(A) ∥∇φk(W
k+1, bk+1)∥ ≤ ε 2

k /σk

1 + ∥xk+1∥+ ∥zk+1∥
min {1/χk, 1} ,

(B) ∥∇φk(W
k+1, bk+1)∥ ≤ (η 2

k /σk)∥zk+1 − zk∥2

1 + ∥xk+1∥+ ∥zk+1∥
min {1/χk, 1}

where {εk} and {ηk} are two given positive summable sequences, xk = (W k, bk,
vk, Uk), zk = (λk, Λk), and χk = ∥W k+1∥F + ∥zk+1 − zk∥/σk + 1/σk.

Rockafellar’s original work [56] demonstrated the asymptotic Q-superlinear
convergence rate of the dual sequence produced by the ALM, assuming Lip-
schitz continuity of the dual solution mapping at the origin. However, this

Support matrix machine: exploring sample sparsity... 11

condition is challenging to satisfy for (P) due to the requirement of dual solu-
tion uniqueness. Therefore, we consider a weaker quadratic growth condition
on the dual problem (D) in this paper. The quadratic growth condition for
(D) at z := (λ,Λ) ∈ ΩD is said to hold if there exist constants ε > 0 and
κ > 0 such that

Φ(z) ≥ Φ(z) + κdist2(z,ΩD), ∀ z := (λ,Λ) ∈ FD ∩ Bε(z). (12)

Here, the function Φ is defined in (D), ΩD denotes the set of all optimal
solutions to (D), and FD := {(λ,Λ) ∈ Y | y⊤λ = 0,−λ ∈ S,Λ ∈ Bτ

2} represents
the set of all feasible solutions to (D).

Denote Rkkt : X ×Y → X ×Y be the natural residual mapping as follows:

Rkkt(x, z) :=



W +A∗λ+ Λ

y⊤λ

v − Proxδ∗S (v − λ)

U − Proxτ∥·∥∗(U + Λ)

AW + by + v − en

W − U


.

The following theorem establishes the global convergence and asymptotic R-
superlinear convergence of the KKT residuals in terms of ∥Rkkt(xk, zk)∥ under
criteria (A) and (B) for Algorithm 1, which can be directly derived from [9,
Theorem 2].

Theorem 1 Let {(xk, zk)} be an infinite sequence generated by Algorithm 1
under criterion (A) with xk := (W k, bk, vk, Uk) and zk := (λk, Λk). Then the
sequence {zk} converges to some z ∈ ΩD. Moreover, the sequence {xk} is
bounded with all of its accumulation points in the solution set of (P).

If in addition, criterion (B) is executed and the quadratic growth condition
(12) holds at z, then there exists k′ ≥ 0 such that for all k ≥ k′, βηk < 1 and

dist (zk+1, ΩD) ≤ θkdist (z
k, ΩD), ∥Rkkt(xk+1, zk+1)∥ ≤ θ′kdist (z

k, ΩD),

where

θk :=

[
βηk + (βηk + 1)/

√
1 + σ2

kκ
2

]
/(1− βηk)→ θ∞ := 1/

√
1 + σ2

∞κ2,

θ′k :=
[
1/σk + (η2k/σk)∥zk+1 − zk∥

]
/(1− βηk)→ θ′∞ := 1/σ∞,

β :=
√

2
[
1 + τ

√
p+ C

√
n+ γ(

√
n+ 1) + 2γ2

]
with some γ ≥ 1.

Moreover, θ∞ = θ′∞ = 0 if σ∞ = +∞.

The following proposition gives a sufficient condition for the quadratic
growth condition (12) with respect to the dual problem (D). Here, we assume
without loss of generality that 0 < p ≤ q. Detailed proof is given in Appendix
A.

12 C. Wu, D. Li, D. Sun

Proposition 1 Let z := (λ,Λ) ∈ ΩD. Assume that there exists (λ̃, Λ̃) ∈ ΩD

such that

rank (−Υ) + rank (τI − Λ̃) = p with I := U [Ip 0p×(q−p)]V
⊤
, (14)

where Υ := A∗λ+ Λ, and the SVD of Λ̃ is

Λ̃ = U [Σ(Λ̃) 0]V
⊤

with U ∈ Op and V ∈ Oq. (15)

Then the quadratic growth condition (12) at z holds for the dual problem (D).

Finally, condition (14) can be interpreted as a strict complementarity con-
dition. Indeed, if (W, b, v, U, λ, Λ) satisfies the KKT system (3), then W =
−(A∗λ + Λ) = −Υ . Consequently, the condition (14) means that there exists

(λ̃, Λ̃) ∈ ΩD such that

rank (W) + rank (τI − Λ̃) = p. (16)

Moreover, by the use of [73, Proposition 10] and (A.5), we can deduce ⟨W, τI−
Λ̃⟩ = 0. In this sense, equality (16) is regarded as a strict complementar-

ity between the matrices W and τI − Λ̃. In particular, (16) retains true if
rank (W) = p and τ = 0, a condition inherently satisfied in the context of the
soft margin support vector machine model [6].

3.2 A semismooth Newton-CG method to solve the subproblem (8)

In Algorithm 1, the primary computational cost arises from solving the convex
subproblem (8). In this subsection, we propose a semismooth Newton-CG
method to calculate an inexact solution to this subproblem.

Due to the convexity of φk(·, ·), solving subproblem (8) is equivalent to
solving the following nonlinear equation:

∇φk(W, b) =

W −A∗ΠS (ωk(W, b)) +ΠBτ
2
(Xk(W))

−y⊤ΠS (ωk(W, b))

 = 0, (17)

where ωk(W, b) and Xk(W) are defined in (11). Notice that ∇φk(·, ·) is not
smooth but strongly semismooth (see, e.g., [11, Proposition 7.4.4] and [21,
Theorem 2.3]). It is then desirable to solve using the semismooth Newton
method. The semismooth Newton method has been extensively studied. Un-
der some regularity conditions, the method can be superlinearly/quadratically
convergent, see, e.g., [51,50,69].

In what follows, we construct an alternative set for the Clarke general-
ized Jacobian ∂2φk(W, b) of ∇φk at (W, b), which is more computationally
tractable. Define for (W, b) ∈ Rp×q × R,

∂̂ 2φk(W, b) :=

[
I + σk∂ΠBτ

2
(Xk(W))

0

]
+ σk

[
A∗

y⊤

]
∂ΠS(ωk(W, b))[A y].

Support matrix machine: exploring sample sparsity... 13

It follows from [5, Proposition 2.3.3 and Theorem 2.6.6] that

∂ 2φk(W, b)(dW , dy) ⊆ ∂̂ 2φk(W, b)(dW , dy), ∀ (dW , dy) ∈ Rp×q × R.

The element V ∈ ∂̂ 2φk(W, b) takes the following form

V =

[
I + σkG

0

]
+ σk

[
A∗

y⊤

]
M [A y], (18)

where G ∈ ∂ΠBτ
2
(Xk(W)), M ∈ ∂ΠS(ωk(W, b)), and I is the identity operator

from Rp×q to Rp×q.
The steps of the semismooth Newton-CG method for solving (8) are stated

in Algorithm 2.

Algorithm 2 A semismooth Newton-CG method for subproblem (8)

Initialization: Choose positive scalars µ ∈ (0, 1/2), η̄, τ1, τ2, δ ∈ (0, 1), ϱ ∈
(0, 1] and an initial point (W k,0, bk,0) ∈ Rp×q × R. Set i = 0. Execute the
following steps until the stopping criteria (A) and/or (B) at (W k,i+1, bk,i+1)
are satisfied.

Step 1 (finding the semismooth Newton direction). Choose G ∈
∂ΠBτ

2
(Xk(W

k,i)) and M ∈ ∂ΠS(ωk(W
k,i, bk,i)). Let Vi := V be given as in

(18) with W = W k,i, b = bk,i, and ρi = τ1 min{τ2, ∥∇φk(W
k,i, bk,i)∥}. Ap-

ply the conjugate gradient (CG) algorithm to find an approximate solution
(d i

W , d i
b) ∈ Rp×q × R of the following linear equation

Vi(dW , db) + ρi(0, db) = −∇φk(W
k,i, bk,i) (19)

such that

∥Vi(d i
W , d i

b) + ρi(0, d
i
b) +∇φk(W

k,i, bk,i)∥ ≤ min(η̄, ∥∇φk(W
k,i, bk,i)∥1+ϱ).

Step 2 (line search). Set αi = δmi , where mi is the first nonnegative
integer m for which

φk(W
k,i+δmd i

W , bk,i+δmd i
b) ≤ φk(W

k,i, bk,i)+µ δm
〈
∇φk(W

k,i, bk,i), (d i
W , d i

b)
〉
.

Step 3. Set W k,i+1 = W k,i + αid
i
W , bk,i+1 = bk,i + αid

i
b , and i← i+ 1.

In our semismooth Newton method, the positive definiteness of Vi in the
Newton linear system (19) is crucial for ensuring the superlinear convergence of
the method, as discussed in [69,33]. In what follows, we show that the positive
definiteness of Vi is equivalent to the constraint nondegenerate condition from
[60], which simplifies to the nonemptiness of a specific index set. Here, the

constraint nondegenerate condition associated with an optimal solution (λ̂, Λ̂)
of the dual problem for (7) can be expressed as (see [60])

y⊤lin
(
TS(−λ̂)

)
= R. (20)

14 C. Wu, D. Li, D. Sun

Proposition 2 Let (Ŵ , b̂) be an optimal solution for subproblem (8). Denote

λ̂ := −ΠS(ωk(Ŵ , b̂)) and J1(−λ̂) := {j ∈ [n] | 0 < (−λ̂)j < C}, where

ωk(Ŵ , b̂) is defined in (11). Then the following conditions are equivalent:

(i) The constraint nondegenerate condition (20) holds at λ̂;

(ii) The index set J1(−λ̂) is nonempty;

(iii) Every element in ∂̂ 2φk(Ŵ , b̂) is self-adjoint and positive definite.

Proof See Appendix B. ⊓⊔

We conclude this section by giving the convergence theorem of Algorithm
2. It can be proved in a way similar to those in [51, Proposition 3.1] and [69,
Theorem 3.5].

Theorem 2 The sequence {(W k,i, bk,i)}i≥0 generated by Algorithm 2 is bounded.
Moreover, every accumulation point is an optimal solution to (8). If at some

accumulation point (W
k+1

, b
k+1

), the constraint nondegeneracy condition (20)

holds with λ
k+1

:= −ΠS(ωk(W
k+1

, b
k+1

)). Then the whole sequence {(W k,i, bk,i)}
converges to (W

k+1
, b

k+1
) and

∥(W k,i+1, bk,i+1)− (W
k+1

, b
k+1

)∥ = O
(
∥(W k,i, bk,i)− (W

k+1
, b

k+1
)∥1+ϱ

)
.

4 Implementation of the semismooth Newton-CG method

As previous mentioned, our focus is on situations where the sample size n
greatly exceeds the maximum of p and q, particularly when n ≫ pq. As a
result, the main computational burden in each iteration of Algorithm 2 is
solving the following Newton linear system:

V(dW , db) + ρ(0, db) = (Rhs1, rhs2), (dW , db) ∈ Rp×q × R, (21)

where V is defined in (18) with G ∈ ∂ΠBτ
2
(Xk(W̃)), M ∈ ∂ΠS(ωk(W̃ , b̃)),

σ := σk, W̃ := W k,i, and b̃ := bk,i. The right-hand sides are

Rhs1 := −[W̃−A∗ΠS(ωk(W̃ , b̃))+ΠBτ
2
(Xk(W̃))] and rhs2 := y⊤ΠS(ωk(W̃ , b̃)).

It can be further rewritten as ṼdW = Rhs1− (σ · rhs2)(σy⊤My + ρ)−1A∗My,

db = (σy⊤My + ρ)−1(rhs2− σy⊤MA dW),
(22)

where

Ṽ := I + σG +H

with

H := σA∗MA− σ2(σy⊤My + ρ)−1A∗Myy⊤MA. (23)

Support matrix machine: exploring sample sparsity... 15

Clearly, the major cost for finding an inexact solution of (22) lies in the
computation of

ṼdW = dW + σGdW +HdW .

In the next two parts, we discuss how to reduce the computational cost for
computing GdW and HdW by selecting special linear operators G and H, re-
spectively.

4.1 The computation of GdW

According to [21, Theorem 2.5] or [22, Proposition 2], if ∥Xk(W̃)∥2 ≤ τ ,

then we can select G such that GdW = dW . In the case ∥Xk(W̃)∥2 > τ ,

the computation of GdW depends on the SVD of Xk(W̃). Without loss of

generality, we assume p ≤ q. Let Xk(W̃) have the following SVD:

Xk(W̃) = U [Diag(ν) 0]V ⊤ = UDiag(ν)V ⊤
1 ,

where U ∈ Op, V = [V1 V2] ∈ Oq with V1 ∈ Rq×p and V2 ∈ Rq×(q−p), and
ν = (ν1, . . . , νp)

⊤ ∈ Rp is the vector of singular values ordered as ν1 ≥ . . . ≥ νp.
Denote

α :=[k1(ν)], β := β1 ∪ β2, γ := {p+ 1, p+ 2, . . . , q}, (24)

β1 :={k1(ν) + 1, . . . , k2(ν)}, β2 := {k2(ν) + 1, k2(ν) + 2, . . . , p},

where k1(ν) := max{i ∈ [p] | νi > τ} and k2(ν) := max{i ∈ [p] | νi ≥ τ}.
Define three matrices Ξ1 ∈ Rp×p, Ξ2 ∈ Rp×p, and Ξ3 ∈ Rp×(q−p):

Ξ1 =


Eαα Eαβ1 Ξ1

αβ2

Eβ1α 0 0

(Ξ1
αβ2

)⊤ 0 0

 , Ξ2 =


Ξ2

αα Ξ2
αβ1

Ξ2
αβ2

(Ξ2
β1α

)⊤ 0 0

(Ξ2
αβ2

)⊤ 0 0

 , Ξ3 =


Ξ3

αγ

0

0

 ,

(25)

where E ∈ Rp×p is the matrix whose elements are all ones, and

(Ξ1
αβ2

)ij =
νi − τ

νi − νj
, for i ∈ α, j ∈ β2; (Ξ2

αα)ij = 1− 2τ

νi + νj
, for i, j ∈ α;

(Ξ2
αβ)ij =

νi − τ

νi + νj
, for i ∈ α, j ∈ β; (Ξ3

αγ)ij = 1− τ

νi
, for i ∈ α, j ∈ γ.

As a result, If ∥Xk(W̃)∥2 > τ , GdW can be expressed as (see [21, Theorem
2.5] or [22, Proposition 2])

GdW = dW − U
[
Ξ1 ◦ S(H̃1) +Ξ2 ◦ T (H̃1)

]
V ⊤
1︸ ︷︷ ︸

G1dW

− U(Ξ3 ◦ H̃2)V
⊤
2︸ ︷︷ ︸

G2dW

, (26)

16 C. Wu, D. Li, D. Sun

where H̃1 := U⊤dWV1 and H̃2 := U⊤dWV2. Here, S : Rp×p → Sp and T :
Rp×p → Rp×p are linear matrix operators defined by

S(X) := (X +X⊤)/2 and T (X) := (X −X⊤)/2, ∀X ∈ Rp×p.

The primary computational cost of GdW is approximately 4p2q + 4pq2

flops. However, by leveraging the sparsity of the matrices Ξ1, Ξ2, and Ξ3, the
computation of G1dW and G2dW in (26) can be performed more efficiently.

The term G1dW . Based on the definitions of Ξ1 and Ξ2 in (25), G1dW in
(26) can be computed by

G1dW =U
[
Ξ1 ◦ S(H̃1) +Ξ2 ◦ T (H̃1)

]
V ⊤
1

=Uα

[
(S(H̃1))αβ1

+Ξ2
αβ1
◦ (T (H̃1))αβ1

]
V ⊤
1β1

+ Uα

[
Ξ1

αβ2
◦ (S(H̃1))αβ2

+Ξ2
αβ2
◦ (T (H̃1))αβ2

]
V ⊤
1β2

+
{
Uα

[
(S(H̃1))αα +Ξ1

αα ◦ (T (H̃1))αα

]
+ Uβ2

[
(Ξ1

αβ2
)⊤ ◦ (S(H̃1))β2α + (Ξ2

αβ2
)⊤ ◦ (T (H̃1))β2α

]
+ Uβ1

[
(S(H̃1))β1α + (Ξ2

αβ1
)⊤ ◦ (T (H̃1))β1α

]}
V ⊤
1α.

It shows that the computational cost for computing G1dW can be reduced
from 4p3 + 4p2q flops to 14|α|pq + 4|α|p2 flops. From the definition of α in
(24), if the tuple (W k+1, bk+1, vk+1, Uk+1, λk+1, Λk+1) generated by Algorithm
1 is a KKT solution to (3), then |α| = rank(W k+1) follows immediately. As
mentoned in Subsection 2.2, for sufficient large τ , the rank ofW k+1 is generally
much less than p, i.e., |α| ≪ p. Therefore, the low-rank structure of W k+1 can
be effectively leveraged within our computational framework.

The term G2dW . According to the definition of Ξ3 in (25), we have

G2dW =U(Ξ3 ◦ H̃2)V
⊤
2 = Uα[Ξ

3
αγ ◦ (U⊤

α dWV2)]V
⊤
2 = UαDiag(d)U⊤

α dWV2V
⊤
2

=UαDiag(d)U⊤
α dW (Iq − V1V

⊤
1) = UαDiag(d)[U⊤

α dW − (U⊤
α dWV1)V

⊤
1]

with d := (d1, . . . , d|α|)
⊤ ∈ R|α| and dℓ := 1− τ/νℓ for ℓ = 1, . . . , |α|. The last

equality shows that by the use of the sparsity in Ξ3, the cost for computing
U(Ξ3 ◦H̃2)V

⊤
2 can also be notably decreased from 4p2(q−p)+4pq(q−p) flops

to 4|α|pq flops when |α| ≪ p.
The preceding arguments show that exploiting the sparsity in G, induced by

the low rank ofW k+1, reduces the computational cost of GdW from 4p2q+4pq2

flops to 18|α|pq + 4|α|p2 flops, with |α| typically much smaller than p.

4.2 The computation of HdW

By the definition of H in (23), we have

HdW = σA∗MAdW − σ2(σy⊤My + ρ)−1A∗Myy⊤MAdW . (27)

Support matrix machine: exploring sample sparsity... 17

Notice that in the above expression,M can be an arbitrary element in ∂ΠS(ω(W̃ , b̃)).

To save computational cost, we select a simple M ∈ ∂ΠS(ω(W̃ , b̃)) as follows:

M = Diag(v) with vj =

{
1, if 0 < (ω(W̃ , b̃))j < C,

0, otherwise,
j = 1, 2, . . . , n.

Let
J1 = J1(ω(W̃ , b̃)) := {j ∈ [n] | 0 < (ω(W̃ , b̃))j < C}. (28)

It is easy to get y⊤My = |J1|, and

A∗My = A∗
J1
yJ1

, y⊤MA dW = y⊤J1
AJ1

dW , A∗MA dW = A∗
J1
AJ1

dW ,

where the linear mapping AI and its adjoint mapping A∗
I with I ⊆ [n] are

defined by

AIY := (AY)I and A∗
Iz :=

∑
j∈I

zjyjXj , ∀ Y ∈ Rp×q, ∀z ∈ Rn. (29)

Therefore, it follows from (27) that

HdW = σA∗
J1
AJ1

dW − σ2(σ|J1|+ ρ)−1A∗
J1
yJ1

y⊤J1
AJ1

dW .

It means that the cost for computing HdW can be decreased from O(npq) to
O(|J1|pq). Observe that if (W k+1, bk+1, vk+1, Uk+1, λk+1, Λk+1) is generated
by Algorithm 1 as a solution of the KKT system (3), then the index set J1
corresponds to the active support matrices at (W k+1, bk+1). In fact, based on
Step 2 in Algorithm 1 and (9), we deduce from the Moreau identity that

λk+1 = −ωk(W
k+1, bk+1) + Proxδ∗S (ωk(W

k+1, bk+1)) = −ΠS(ωk(W
k+1, bk+1)),

where ωk(·, ·) is defined in (11). It further implies from (28) that

J1 = {j ∈ [n] | (ωk(W
k+1, bk+1))j ∈ (0, C)} = {j ∈ [n] | (−λk+1)j ∈ (0, C)}.

(30)
The analysis in Subsection 2.1 reveals that the cardinality of the index set J1
is typically much smaller than n, thereby providing a positive answer to the
question posed earlier. This results in a significant decrease in the computa-
tional cost for calculating HdW .

4.3 Solving equation (22)

The discussion above has shown that the equation (22) can be reduced as ṼdW = Rhs1− (σ · rhs2)(σ|J1|+ ρ)−1A∗
J1
yJ1

,

db = (σ|J1|+ ρ)−1
(
rhs2− σy⊤J1

AJ1
dW

) (31)

with
Ṽ = I + σG + σA∗

J1
AJ1
− σ2(σ|J1|+ ρ)−1A∗

J1
yJ1

y⊤J1
AJ1

. (32)

18 C. Wu, D. Li, D. Sun

Accordingly, the inexact rule in Step 1 of Algorithm 2 is written as∥∥∥ṼdW − [
Rhs1− (σ · rhs2)(σ|J1|+ ρ)−1A∗

J1
yJ1

]∥∥∥ ≤ min(η̄, ∥∇φk(W̃ , b̃)∥1+ϱ).

The positive definiteness of the above linear operator Ṽ is proved in the next
proposition.

Proposition 3 The linear operator Ṽ : Rp×q×R→ Rp×q×R defined in (32)
is a self-adjoint and positive definite operator.

Proof From [42, Proposition 1], we know that each element G in ∂ΠBτ
2
(W̃) is

self-adjoint and positive semidefinite. So Ṽ is self-adjoint. If the index set J1 is
empty, then Ṽ = I+σG is positive definite. Otherwise, for any dW ∈ Rp×q\{0},
it follows from (32) that〈

dW , ṼdW
〉
=

〈
dW ,

[
I + σG + σA∗

J1

(
I|J1| − σ(σ|J1|+ ρ)−1yJ1

y⊤J1

)
AJ1

]
dW

〉
= ⟨dW , (I + σG)dW ⟩+ σ

〈
AJ1

dW ,
(
I|J1| − σ(σ|J1|+ ρ)−1yJ1

y⊤J1

)
(AJ1

dW)
〉

≥⟨dW , (I + σG)dW ⟩+ σ
〈
AJ1

dW ,
(
I|J1| − yJ1

y⊤J1
/|J1|

)
(AJ1

dW)
〉

≥⟨dW , (I + σG)dW ⟩ > 0,

where the last second inequality follows from the fact that I|J1| − yJ1
y⊤J1

/|J1|
is an orthogonal projection matrix in R|J1|×|J1|. The desired conclusion is
achieved. ⊓⊔

Table 1 summarizes the main computational costs of ṼH obtained by a
traditional manner in (22) and by exploiting the solution’s low rank and sample

sparsity in (31). This indicates that when calculating the term ṼH, the main
expenses are only O(max{|J1|, |α|}pq), which is always significantly lower than
O(npq) when n≫ q ≥ p.

Table 1 The main computational costs of ṼH for a given H under two different manners
with n ≥ q ≥ p

Traditional manner in (22) Exploiting the sparsity of M and G in (31)

main terms cost main terms cost

y⊤My O(n) y⊤J1
yJ1

O(|J1|)

A∗My O(npq) A∗
J1

yJ1
O(|J1|pq)

y⊤MAH O(npq) y⊤J1
AJ1H O(|J1|pq)

A∗MAH O(npq) A∗
J1

AJ1
H O(|J1|pq)

GH O(pq2) GH O(|α|pq)

total cost O(npq) total cost O(max{|J1|, |α|}pq)

Support matrix machine: exploring sample sparsity... 19

5 An adaptive strategy

The previous section concentrated on solving the SMM model (P) with fixed
parameters C and τ . In many cases, one needs to compute a solution path
{W (Ci), b(Ci)}Ni=1 across a specified sequence of grid points 0 < C1 < C2 <
. . . < CN . A typical example is to optimize the hyperparameter C through
cross-validation while maintaining τ constant in model (P). This section presents
an adaptive sieving (AS) strategy that iteratively reduces the sample size,
thereby facilitating the efficient computation of the solution path for C in
models (P), particularly for extremely large n.

We develop the AS strategy based on the following two key observations.
First, the solution (W, b) of (1) only depends on the samples corresponding to
its support matrices (abbreviated as active samples). Identifying these active
samples can reduce the scale of the problem and thereby reduce its compu-
tational cost. Second, as shown in Figure 1, when Ci−1 < Ci, the support
matrices at C = Ci−1 is always a superset of those at C = Ci. Thus, to solve
model (1) at C = Ci, it is reasonable to initially restrict it to the active sample
set at (W (Ci−1), b(Ci−1)).

The core idea behind the AS strategy can be viewed as a specialized
warm-start approach. It aggressively guesses and adjusts the active samples at
(W (Ci), b(Ci)) for a new grid point Ci, using the solution (W (Ci−1), b(Ci−1))
obtained from the previous grid point Ci−1. Specifically, we initiate the ith
problem within a restricted sample space that includes all active samples at
(W (Ci−1), b(Ci−1)). After solving the restricted SMM model, we update active
samples at the computed solution. The process is repeated until no additional
active samples need to be included.

The similar strategy has been employed to efficiently compute solution
paths for convex composite sparse machine learning problems by leveraging the
inherent sparsity of solutions [67,66,26,63]. However, since the SMM model
(P) does not guarantee solution’s sparsity, the method proposed in [67,38]
cannot be directly applied here. We will develop an adaptive sieving strategy
that efficiently generates a solution path for the SMM model (P) by effectively
exploiting the intrinsic sparsity of the samples. For a specified index set I ⊆
[n], we define

S i
I := {x ∈ R|I| | 0 ≤ xj ≤ Ci, j = 1, . . . , |I|}.

The subscript I is omitted when I = [n]. Detailed framework of the AS
strategy is presented in Algorithm 3.

Remark 1 (a) In Step 2 of Algorithm 3, the index set J k(Ci) can be expressed
as

J k(Ci) = {j ∈ I
k
(Ci) | yj(⟨W k(Ci), Xj⟩+ bk(Ci)) ≤ 1}.

It aims to identify all indices of the support matrices at (W k(Ci), b
k(Ci))

beyond Ik(Ci), as described by (5).

20 C. Wu, D. Li, D. Sun

Algorithm 3 An AS strategy

Choose an initial point (W (C0), b(C0)) ∈ Rp×q × R , a sequence of grid
points 0 < C0 < C1 < . . . < CN , a tolerance ε ≥ 0, a scalar ε̂ ≥ 0,
and a positive integer dmax. Compute the initial index set I∗(C0) := {j ∈
[n] | yj(⟨W (C0), Xj⟩ + b(C0)) ≤ 1 + ε̂}. Execute the following steps for
i = 1, 2, . . . , N with the initialization I0(Ci) = I∗(Ci−1) and k = 0.

Step 1. Find a KKT tuple (W k(Ci), b
k(Ci), v

k
I (Ci), U

k(Ci), λ
k
I(Ci), Λ

k(Ci))

∈ Rp×q × R× R|Ik(Ci)| × Rp×q × R|Ik(Ci)| × Rp×q of the following problem

minimize
W,b,vI ,U

1

2
∥W∥2F + τ∥U∥∗ + δ∗

S i

Ik
(vI)− ⟨δW ,W ⟩ − b δb − ⟨δvI , vI⟩ − ⟨δU , U⟩

subject to AIk(Ci)W + byIk(Ci)
+ vI − (en)Ik(Ci) = δλI , W − U = δΛ,

(33)
where AIk(Ci) is defined in (29) and (δW , δb, δvI , δU , δλI , δΛ) ∈ Rp×q × R×
R|Ik(Ci)| × Rp×q × R|Ik(Ci)| × Rp×q is an error satisfying

max(∥δW ∥, |δb|, ∥δvI∥, ∥δU∥, ∥δλI∥, ∥δΛ∥) ≤ ε. (34)

Step 2. Compute index set

J k(Ci) := {j ∈ I
k
(Ci) | vkj (Ci) ≥ 0}, (35)

where Ik(Ci) := [n] \ Ik(Ci). Extend vkI (Ci) and λk
I(Ci) to n-dimensional

vectors vk(Ci) and λk(Ci) by setting vkj (Ci) = 1−yj(⟨W k(Ci), Xj⟩+bk(Ci))

for j ∈ Ik(Ci), and λk
j (Ci) = −C if j ∈ J k(Ci), otherwise λk

j (Ci) = 0.

Step 3. If J k(Ci) = ∅, stop and set (W (Ci), b(Ci), v(Ci), U(Ci), λ(Ci),
Λ(Ci)) = (W k(Ci), b

k(Ci), v
k(Ci), U

k(Ci), λ
k(Ci), Λ

k(Ci)) with I∗(Ci) =
{j ∈ [n] | yj(⟨W (Ci), Xj⟩ + b(Ci)) ≤ 1 + ε̂}. Let i ← i + 1 (unless i = N
already so that the algorithm should be stopped). Otherwise compute the
index set

Ĵ k+1(Ci) :=

{
j ∈ J k(Ci)

∣∣∣∣ (vk(Ci))j is among the first d largest

values in {vkt (Ci)}t∈J k+1(Ci)

}
,

where d is a given positive integer satisfying d ≤ min{|J k(Ci)|, dmax}. Let
Ik+1(Ci) := Ik(Ci) ∪ Ĵ k+1(Ci). Set k ← k + 1 and go to Step 1.

(b) In Step 3 of Algorithm 3, the nonnegative scalar ε̂ provides flexibility in
adjusting the size of the index set I∗(Ci). Specifically, if ε̂ = 0, I∗(Ci)
includes all indices of active samples at (W (Ci), b(Ci)). In general, by se-
lecting an appropriate positive scalar ε̂ > 0, we aim to ensure that I∗(Ci)
includes as many active indices as possible at the solution for the next grid
point Ci+1.

Support matrix machine: exploring sample sparsity... 21

(c) The reduced subproblem (33) shares the same mathematical structure as
(P) with a reduced subset of training samples {Xj , yj}j∈Ik(Ci). This simi-
larity allows us to efficiently apply Algorithm 1 to solve (33).

Lastly, we establish the finite convergence of Algorithm 3 in the following
theorem. Its proof is given in Appendix C.

Theorem 3 For each Ci, Algorithm 3 terminates within a finite number of
iterations. That is, there exists an integer k̄ ∈ [1, n] such that J k̄(Ci) = ∅.
Furthermore, any output solution

(
W (Ci), b(Ci), v(Ci), U(Ci), λ(Ci), Λ(Ci)

)
is

a KKT tuple for the following problem

minimize
(W,b,v,U)∈X

1

2
∥W∥2F + τ∥U∥∗ + δ∗Si(v)− ⟨δW ,W ⟩ − b δb − ⟨δv, v⟩ − ⟨δU , U⟩

subject to AW + by + v − en = δλ, W − U = δΛ,

(36)
where the error (δW , δb, δv, δU , δλ, δΛ) satisfies max(∥δW ∥, |δb|, ∥δv∥, ∥δU∥, ∥δλ∥,
∥δΛ∥) ≤ ε.

6 Numerical experiments

We have executed extensive numerical experiments to demonstrate the effi-
ciency of our proposed algorithm and strategy on both large-scale synthetic
and real datasets. All the experiments were implemented in MATLAB on a
windows workstation (8-core, Intel(R) Core(TM) i7-10700 @ 2.90GHz, 64G
RAM).

6.1 Implementation details

For the SMM model (P), we measure the qualities of the computed solutions
via the following relative KKT residual of the iterates:

ηkkt = max{ηW , ηb, ηv, ηU , ηλ, ηΛ}, (37)

where

ηW :=
∥W +A∗λ+ Λ∥F

1 + ∥W∥F + ∥A∗λ∥F + ∥Λ∥F
, ηb :=

|λ⊤y|
1 +
√
n
, ηv :=

∥λ+ΠS(v − λ)∥
1 + ∥λ∥+ ∥v∥

,

ηU =
∥Λ−ΠBτ

2
(U + Λ)∥F

1 + ∥Λ∥F + ∥U∥F
, ηλ =

∥ AW + by + v − en∥
1 +
√
n

, ηΛ =
∥W − U∥F

1 + ∥W∥F + ∥U∥F
.

By default, the termination criteria for Algorithm 1 (denoted as ALM-SNCG)
involves either satisfying ηkkt ≤ ε or reaching the maximum number 500 of
iterations. In the case where both algorithms stopped with different criteria,
we used the value of the objective functions obtained from the ALM-SNCG

22 C. Wu, D. Li, D. Sun

satisfying ηkkt ≤ 10−8 (denoted as objopt) as benchmarks to evaluate their
quality (denoted as objcomputed):

Relobj :=
|objcomputed − objopt|

1 + |objopt|
. (38)

Both synthetic and real datasets were utilized in the subsequent exper-
iments. The sampling data {(Xi, yi)}ni=1 ⊆ Rp×q × {−1, 1} was generated
following the process in [40]. For any k ∈ [p] and ℓ ∈ [q], denote akℓ :=

[(X1)kℓ, . . . , (Xn)kℓ]
⊤ ∈ Rn. Each vector akℓ is constructed as:

akℓ = b⌈rℓ/q⌉ + ϵkℓ with ϵkℓ ∼ N(0, δ2In), k = 1, . . . , p, ℓ = 1, . . . , q.

Here, b1, b2, . . . , br are r orthonormal vectors in Rn, and 0 < r ≤ min{p, q}.
Given a p × q matrix W with rank r, each sample’s class label is determined
by yi = sign(⟨W,Xi⟩) for i ∈ [n], where sign(x) equals 1 if x ≥ 0 and −1
otherwise. In our experiments, we set r = 20 and δ = 2× 10−4. For each data
configuration, the sample sizes n vary from 1.25× 104 to 1.25× 106, with 80%
used as training data and the remaining 20% used for testing.

We also utilized four distinct real datasets. They are

– the electroencephalogram alcoholism dataset (EEG)3 for classifying sub-
jects based on EEG signals as alcoholics or non-alcoholics;

– the INRIA person dataset (INRIA)4 for detecting the presence of individ-
uals in an image;

– the CIFAR-10 dataset (CIFAR-10)5 for classifying images as depicting ei-
ther a dog or a truck;

– the MNIST handwritten digit dataset (MNIST)6 for classifying handwrit-
ten digit images as the number 0 or not.

Additional information for these datasets is provided in Tabel 2, where ntrain

and ntest denote the number of training and test samples, respectively.

Table 2 Summary of four real datasets

datasets p× q ntrain ntest datasets p× q ntrain ntest

EEG 256× 64 300 66 CIFAR-10 32× 32 10000 2000

INRIA 70× 134 3634 1579 MNIST 28× 28 60000 10000

In subsequent experiments, we set the parameter τ in the SMM model (1)
to 10 and 100 for random data, and to 1 and 10 for real data.

3 http://kdd.ics.uci.edu/databases/eeg/eeg.html
4 ftp://ftp.inrialpes.fr/pub/lear/douze/data/INRIAPerson.tar
5 https://www.cs.toronto.edu/~kriz/cifar.html
6 https://yann.lecun.com/exdb/mnist

http://kdd.ics.uci.edu/databases/eeg/eeg.html
ftp://ftp.inrialpes.fr/pub/lear/douze/data/INRIAPerson.tar
https://www.cs.toronto.edu/~kriz/cifar.html
https://yann.lecun.com/exdb/mnist

Support matrix machine: exploring sample sparsity... 23

6.2 Solving the SMM model at a fixed parameter value C

In this subsection, we evaluate four algorithms - ALM-SNCG, the inexact semi-
proximal ADMM (isPADMM), the symmetric Gauss-Seidel based isPADMM
(sGS-isPADMM), and Fast ADMM with restart (F-ADMM) - for solving the
SMM model (1) with fixed parameters τ and C. Additional details on is-
PADMM and sGS-isPADMM can be found in Appendices D and E, respec-
tively. The F-ADMM is based on the works of Luo et al. [40]7 and Goldstein et
al. [15]. Each method is subject to a two-hour computational time limit. For
consistent comparison, we adopt the termination criterion Relobj ≤ ε, where
Relobj is defined in (38). We assess their performance at two accuracy levels:
ε = 10−4 and ε = 10−6.

Firstly, we evaluate the performance of two-block ADMM algorithms (F-
ADMM and isPADMM) and three-block ADMM (sGS-isPADMM) for solving
the SMM model (1) on the EEG training dataset. The “Iteration time” column
in Table 3 represents the average time per iteration for each algorithm. Nu-
merical results in Table 3 show that, on average, sGS-isPADMM is 2.6 times
faster per iteration than F-ADMM and 52.2 times faster than isPADMM.
However, sGS-isPADMM is 7.2 times slower than isPADMM in terms of total
time consumed due to having 184.8 times more iteration steps on average,
leading to higher SVD costs from the soft thresholding operator. Henceforth,
we will focus on comparing the performance of two-block ADMM algorithms
and ALM-SNCG on synthetic and real datasets.

Table 3 Results of sGS-isPADMM (sGS), F-ADMM (F), and isPADMM (isP) with
Relobj ≤ ε on EEG training dataset

ε τ C
Relobj Iteration numbers Time (seconds) Iteration time (seconds)

sGS F isP sGS F isP sGS F isP sGS F isP

1e-4

1

1e-4 1e-4 6e-5 9e-5 3876 477 19 26.1 5.0 2.0 7e-3 1e-2 1e-1

1e-3 1e-4 1e-4 5e-5 4251 285 16 27.5 4.4 3.8 6e-3 2e-2 2e-1

1e-2 1e-4 5e-4 1e-4 4329 30000 22 28.5 616.3 11.3 7e-3 2e-2 5e-1

1e-1 1e-4 5e-3 8e-5 4317 30000 23 27.7 616.2 16.1 6e-3 2e-2 7e-1

10

1e-4 6e-5 6e-5 6e-5 3324 117 20 20.6 1.2 6.0 6e-3 1e-2 3e-1

1e-3 1e-4 1e-4 1e-4 8818 8141 111 55.0 100.2 9.7 6e-3 1e-2 9e-2

1e-2 1e-4 1e-4 9e-5 7986 2841 93 49.9 58.5 22.1 6e-3 2e-2 2e-1

1e-1 1e-4 1e-1 1e-4 5428 30000 63 33.9 621.1 31.1 6e-3 2e-2 5e-1

1e-6

1

1e-4 1e-6 1e-6 9e-7 23861 25759 45 151.5 279.1 3.3 6e-3 1e-2 7e-2

1e-3 1e-6 1e-6 8e-7 7147 501 25 44.2 9.0 5.5 6e-3 2e-2 2e-1

1e-2 1e-6 5e-4 7e-7 7614 30000 48 48.5 621.7 21.7 6e-3 2e-2 5e-1

1e-1 1e-6 5e-3 9e-7 7544 30000 44 47.1 623.7 29.4 6e-3 2e-2 7e-1

10

1e-4 8e-7 7e-7 6e-7 4268 121 28 26.4 1.3 11.6 6e-3 1e-2 4e-1

1e-3 1e-6 1e-6 1e-6 26985 21117 151 168.4 259.1 12.5 6e-3 1e-2 8e-2

1e-2 1e-6 1e-6 7e-7 11853 5363 111 74.2 109.6 25.9 6e-3 2e-2 2e-1

1e-1 1e-6 6e-2 4e-7 9044 30000 89 56.5 617.2 41.1 6e-3 2e-2 5e-1

It is worth mentioning that ALM-SNCG is initialized with a lower-accuracy
starting point from isPADMM, using up to four iterations for synthetic datasets
and up to ten iterations for real datasets. Otherwise, the origin is used as the

7 Its code is available for download at: http://bcmi.sjtu.edu.cn/~luoluo/code/smm.zip

http://bcmi.sjtu.edu.cn/~luoluo/code/smm.zip

24 C. Wu, D. Li, D. Sun

default starting point for the algorithms. Tables 4 and 5 present the numerical
performance of the above three algorithms, including the following informa-
tion:

– |J1|: the cardinality of the index set J1 defined in (28);
– |α|: the cardinality of the index set α defined in (24);
– Accuracytest: the classification accuracy on test set for solutions from each

algorithm, i.e.,

Accuracytest := |{i | ŷi = (ytest)i, i = 1, . . . , ntest}|/ntest. (39)

Here, ŷ represents the predicted class label vector, and ytest denotes the
true class label vector for the test set.

6.2.1 Numerical results on synthetic data

Table 4 shows the computational results for ALM-SNCG, isPADMM, and
F-ADMM on randomly generated data with C ranging from 0.1 to 100. The
results indicate that ALM-SNCG and isPADMM can solve all problems within
two hours. In contrast, F-ADMM encountered memory trouble when the sam-
ple sizes exceed 105. For (n, p, q, τ, C) = (10000, 1000, 500, 100, 100), F-ADMM
exibited lower classification accuracy (Accuracytest) compared to isPADMM
and ALM-SNCG due to its inability to achive the desired solution accuracy.
Even for the smallest instance (n, p, q) = (10000, 100, 100), F-ADMM is, on
average, 101.2 times slower than ALM-SNCG to reach Relobj ≤ 10−4 and
210.2 times slower to reach Relobj ≤ 10−6. On the other hand, ALM-SNCG
is on average 8.7 times faster than isPADMM for ε = 10−4 and 13.0 times
faster for ε = 10−6. It shows that ALM-SNCG is more efficient and stable,
particularly for high-accuracy solutions.

6.2.2 Numerical results on real data

Table 5 lists the results for ALM-SNCG, F-ADMM, and isPADMM on the
model (1) using four real datasets described in Table 2, with the parameter
C ranging from 10−4 to 100. The results in the table show that both ALM-
SNCG and isPADMM achieved high accuracy (Relobj ≤ 10−6) in all instances,
while F-ADMM only stopped successfully for 56% problems with accuracy
Relobj ≤ 10−4, and for 47% problems with accuracy Relobj ≤ 10−6. Table
5 also reveals that ALM-SNCG performed on average 2.6 times (5.9 times)
faster than isPADMM and 422.7 times (477.2 times) faster than F-ADMM
when the stop criteria was set to Relobj ≤ 10−4 (Relobj ≤ 10−6).

6.3 Computing a solution path of the SMM model for {Ci}Ni=1

In this subsection, we assess the numerical performance of the AS strategy on
both synthetic and real datasets. While do numerical experiments, we used

Support matrix machine: exploring sample sparsity... 25

Table 4 Results of F-ADMM (F), isPADMM (isP), and ALM-SNCG (A) with Relobj ≤ ε
on random data

Data
ε τ C |J1| |α|

Accuracytest Relobj Time (seconds)

(n, p, q) F isP A F isP A F isP A

(1e4, 1e2, 1e2)

1e-4

10

0.1 27 1 0.9876 0.9872 0.9872 8e-5 8e-5 3e-5 11.2 18.2 1.6

1 65 1 0.9932 0.9932 0.9936 8e-5 1e-4 8e-5 13.5 13.5 1.7

10 46 1 0.9928 0.9928 0.9928 4e-5 3e-5 1e-4 26.0 20.6 1.6

100 26 1 0.9936 0.9936 0.9936 9e-5 6e-5 4e-5 28.1 21.7 7.9

100

0.1 19 1 0.9844 0.9844 0.9848 8e-5 8e-5 1e-4 14.8 10.4 2.2

1 42 1 0.9880 0.9880 0.9880 3e-5 6e-5 8e-5 10.5 17.1 2.3

10 39 1 0.9932 0.9932 0.9932 1e-4 9e-5 7e-5 26.3 69.1 1.7

100 37 1 0.9932 0.9932 0.9932 1e-4 9e-5 8e-5 1526.2 37.5 2.0

1e-6

10

0.1 21 1 0.9872 0.9872 0.9872 4e-7 8e-7 8e-7 21.7 29.4 2.4

1 20 1 0.9932 0.9932 0.9932 4e-7 8e-7 8e-7 21.2 27.1 5.5

10 23 1 0.9928 0.9928 0.9928 7e-7 3e-7 8e-7 33.1 37.0 4.3

100 22 1 0.9936 0.9936 0.9936 3e-5 7e-7 9e-7 7200.6 42.4 14.0

100

0.1 11 1 0.9848 0.9848 0.9848 9e-7 7e-7 8e-7 29.5 18.9 4.9

1 18 1 0.9880 0.9880 0.9880 8e-7 8e-7 9e-7 15.4 25.6 5.3

10 23 1 0.9932 0.9932 0.9932 7e-7 4e-7 1e-6 38.7 46.4 6.0

100 22 1 0.9932 0.9932 0.9932 5e-4 8e-7 7e-7 7200.0 116.7 6.4

(1e4, 1e3, 5e2)

1e-4

10

0.1 22 1 0.9940 0.9940 0.9940 6e-5 9e-5 8e-5 421.3 2020.6 237.8

1 23 1 0.9924 0.9924 0.9924 3e-6 8e-5 9e-5 536.0 1082.0 295.1

10 23 1 0.9924 0.9924 0.9924 2e-3 8e-5 9e-5 7200.1 1565.1 255.8

100 32 107 0.9888 0.9936 0.9936 2e+0 9e-5 8e-5 7202.5 1249.0 864.5

100

0.1 20 1 0.9880 0.9880 0.9880 9e-5 8e-5 2e-5 556.5 2030.1 243.7

1 24 1 0.9940 0.9940 0.9940 4e-3 7e-5 7e-5 7202.7 1229.2 242.3

10 23 1 0.9936 0.9936 0.9936 3e-2 4e-5 6e-5 7202.5 2050.7 258.6

100 23 1 0.9836 0.9920 0.9920 2e+0 7e-5 8e-5 7200.7 2118.4 510.0

1e-6

10

0.1 20 1 0.9940 0.9940 0.9940 9e-7 1e-6 2e-7 525.8 2353.6 334.3

1 21 1 0.9924 0.9924 0.9924 7e-5 3e-7 4e-7 7203.5 1580.2 517.2

10 21 1 0.9924 0.9924 0.9924 2e-3 4e-7 7e-7 7201.9 3531.0 413.7

100 32 107 0.9916 0.9936 0.9936 2e+0 7e-7 6e-7 7202.8 2177.1 1229.5

100

0.1 20 1 0.9880 0.9880 0.9880 9e-7 8e-7 7e-7 969.2 2685.1 265.5

1 21 1 0.9940 0.9940 0.9940 4e-3 7e-7 4e-7 7201.5 3305.9 411.1

10 22 1 0.9936 0.9936 0.9936 3e-2 9e-7 9e-7 7204.6 6706.1 371.6

100 21 1 0.9792 0.9920 0.9920 3e+0 6e-7 4e-7 7200.6 3331.2 628.9

(1e5, 50, 1e2)

1e-4

10

0.1 197 1 - 0.9681 0.9683 - 7e-5 5e-5 - 27.6 3.6

1 636 1 - 0.9682 0.9682 - 5e-5 2e-5 - 33.1 6.8

10 502 1 - 0.9686 0.9687 - 4e-5 4e-5 - 38.5 15.2

100 430 45 - 0.9692 0.9693 - 7e-5 4e-5 - 93.4 88.8

100

0.1 189 1 - 0.9682 0.9681 - 7e-5 5e-5 - 56.9 3.6

1 568 1 - 0.9685 0.9685 - 9e-5 7e-5 - 64.6 6.7

10 590 1 - 0.9685 0.9685 - 6e-5 7e-5 - 76.9 4.8

100 388 1 - 0.9690 0.9690 - 7e-5 2e-5 - 111.5 38.1

1e-6

10

0.1 64 1 - 0.9683 0.9683 - 1e-6 9e-7 - 365.7 7.0

1 97 1 - 0.9682 0.9682 - 1e-6 9e-7 - 278.2 13.9

10 93 1 - 0.9687 0.9686 - 9e-7 8e-7 - 96.6 22.4

100 117 45 - 0.9693 0.9693 - 1e-6 9e-7 - 282.0 104.6

100

0.1 36 1 - 0.9682 0.9682 - 7e-7 9e-7 - 324.6 10.3

1 48 1 - 0.9684 0.9685 - 9e-7 9e-7 - 654.4 19.8

10 66 1 - 0.9685 0.9685 - 6e-7 8e-7 - 171.1 15.2

100 87 1 - 0.9690 0.9690 - 8e-7 1e-6 - 417.5 45.2

(1e6, 50, 1e2)

1e-4

10

0.1 1935 1 - 0.9018 0.9017 - 5e-5 5e-5 - 194.2 29.0

1 11357 1 - 0.9017 0.9017 - 4e-5 3e-5 - 167.5 60.0

10 9267 30 - 0.9074 0.9078 - 7e-5 4e-6 - 694.4 271.5

100 13027 50 - 0.9445 0.9448 - 7e-5 5e-5 - 2346.5 67.0

100

0.1 1348 1 - 0.9017 0.9017 - 8e-5 4e-5 - 339.2 34.7

1 7545 1 - 0.9018 0.9018 - 8e-5 6e-5 - 370.5 49.4

10 8750 1 - 0.9018 0.9018 - 7e-5 7e-6 - 327.2 154.8

100 12252 29 - 0.9408 0.9410 - 9e-5 3e-5 - 1702.6 1136.2

1e-6

10

0.1 862 1 - 0.9018 0.9017 - 7e-7 7e-7 - 372.7 42.7

1 3072 2 - 0.9017 0.9017 - 1e-6 9e-7 - 1222.0 89.9

10 4294 30 - 0.9077 0.9077 - 1e-6 9e-7 - 2003.1 290.6

100 2409 50 - 0.9450 0.9450 - 7e-7 9e-7 - 5413.7 224.1

100

0.1 312 1 - 0.9017 0.9017 - 9e-7 8e-7 - 1703.4 72.9

1 835 1 - 0.9018 0.9018 - 8e-7 1e-6 - 4299.5 127.2

10 2319 1 - 0.9018 0.9018 - 6e-7 9e-7 - 2320.4 187.4

100 1833 29 - 0.9413 0.9413 - 8e-7 9e-7 - 5371.3 1289.7

26 C. Wu, D. Li, D. Sun

Table 5 Results of F-ADMM (F), isPADMM (isP), and ALM-SNCG (A) with Relobj ≤ ε
on real data

Prob
ε τ C |J1| |α|

Accuracytest Relobj Time (seconds)

(n, p, q) F isP A F isP A F isP A

EEG

(300, 256, 64)

1e-4

1

1e-4 6 2 0.7424 0.7424 0.7424 6e-5 9e-5 6e-5 5.0 2.0 2.1

1e-3 60 5 0.8636 0.8636 0.8636 1e-4 5e-5 6e-5 4.4 3.8 4.5

1e-2 123 5 0.9394 0.9545 0.9394 5e-4 1e-4 7e-5 616.3 11.3 6.9

1e-1 123 5 0.9545 0.9545 0.9394 5e-3 8e-5 9e-5 616.2 16.1 12.1

10

1e-4 95 0 0.6667 0.6667 0.6667 6e-5 6e-5 4e-6 1.2 6.0 2.7

1e-3 6 2 0.7424 0.7424 0.7424 1e-4 1e-4 9e-5 100.2 9.7 5.7

1e-2 60 5 0.8636 0.8636 0.8636 1e-4 9e-5 6e-5 58.5 22.1 9.2

1e-1 124 5 0.9394 0.9394 0.9394 1e-1 1e-4 6e-5 621.1 31.1 10.8

1e-6

1

1e-4 6 2 0.7424 0.7424 0.7424 1e-6 9e-7 7e-7 279.1 3.3 2.2

1e-3 60 5 0.8636 0.8636 0.8636 1e-6 8e-7 9e-7 9.0 5.5 4.7

1e-2 123 5 0.9394 0.9394 0.9394 5e-4 7e-7 6e-7 621.7 21.7 8.2

1e-1 123 5 0.9394 0.9394 0.9394 5e-3 9e-7 5e-7 623.7 29.4 12.2

10

1e-4 91 0 0.6667 0.6667 0.6667 7e-7 6e-7 5e-8 1.3 11.6 2.6

1e-3 6 2 0.7424 0.7424 0.7424 1e-6 1e-6 7e-7 259.1 12.5 6.1

1e-2 60 5 0.8636 0.8636 0.8636 1e-6 7e-7 5e-7 109.6 25.9 10.2

1e-1 123 5 0.9394 0.9394 0.9394 6e-2 4e-7 5e-7 617.2 41.1 15.8

INRIA

(3634, 70, 134)

1e-4

1

1e-3 12 2 0.8892 0.8892 0.8892 1e-4 6e-5 1e-4 5.4 6.7 5.6

1e-2 100 6 0.8898 0.8898 0.8898 8e-5 1e-4 1e-4 6.0 10.6 6.5

1e-1 807 35 0.8638 0.8645 0.8645 5e-3 1e-4 7e-5 7200.1 103.5 37.3

1 1080 44 0.8385 0.8379 0.8379 8e-1 8e-5 7e-5 7200.1 173.8 44.2

10

1e-3 1716 0 0.7131 0.7131 0.7131 9e-5 8e-5 7e-5 392.7 328.7 23.9

1e-2 17 2 0.8904 0.8904 0.8904 1e-4 9e-5 9e-5 21.8 13.5 8.2

1e-1 123 6 0.8879 0.8879 0.8879 1e-4 9e-5 9e-5 43.8 30.0 17.1

1 938 27 0.8493 0.8436 0.8461 3e-1 1e-4 7e-5 7200.2 148.5 123.4

1e-6

1

1e-3 11 2 0.8892 0.8892 0.8892 9e-7 8e-7 8e-7 6.7 16.3 6.2

1e-2 98 6 0.8898 0.8898 0.8898 9e-7 9e-7 7e-7 12.6 26.7 8.2

1e-1 807 35 0.8645 0.8645 0.8645 5e-3 1e-6 9e-7 7200.0 416.1 88.2

1 1080 44 0.8391 0.8379 0.8379 8e-1 1e-6 1e-6 7200.2 502.1 59.1

10

1e-3 2028 0 0.7131 0.7131 0.7131 3e-5 7e-7 8e-7 7200.1 1508.3 26.0

1e-2 17 2 0.8911 0.8911 0.8911 1e-6 8e-7 9e-7 49.1 19.8 9.1

1e-1 123 6 0.8879 0.8879 0.8879 1e-6 9e-7 9e-7 142.8 48.6 19.9

1 937 27 0.8436 0.8461 0.8461 4e-1 1e-6 8e-7 7200.0 362.8 174.4

CIFAR-10

(10000, 32, 32)

1e-4

1

1e-3 15 2 0.8015 0.8015 0.8020 9e-5 9e-5 1e-4 14.2 2.0 1.3

1e-2 62 5 0.8245 0.8245 0.8245 9e-5 8e-5 1e-4 8.3 1.7 1.1

1e-1 319 19 0.8205 0.8210 0.8190 1e-4 9e-5 7e-5 26.5 4.6 1.5

1 751 30 0.7790 0.7990 0.8020 4e-1 9e-5 7e-5 7200.6 12.5 2.1

10

1e-3 5 1 0.7645 0.7645 0.7645 1e-4 6e-5 8e-5 25.9 2.2 1.5

1e-2 15 2 0.8050 0.8050 0.8050 1e-4 7e-5 1e-4 26.2 2.1 1.6

1e-1 70 5 0.8235 0.8235 0.8235 1e-4 9e-5 8e-5 43.9 2.4 1.9

1 457 20 0.7805 0.8170 0.8180 2e-1 8e-5 9e-5 7200.3 4.2 1.9

1e-6

1

1e-3 11 2 0.8015 0.8020 0.8015 9e-7 6e-7 7e-7 19.4 6.4 1.5

1e-2 55 5 0.8245 0.8245 0.8245 9e-7 5e-7 7e-7 19.7 6.8 1.6

1e-1 304 19 0.8200 0.8200 0.8195 4e-5 9e-7 8e-7 7200.3 17.6 1.6

1 723 30 0.7940 0.8015 0.8015 2e-1 9e-7 9e-7 7200.4 42.0 3.6

10

1e-3 6 1 0.7645 0.7645 0.7645 1e-6 7e-7 1e-6 79.3 4.3 2.0

1e-2 12 2 0.8050 0.8050 0.8050 1e-6 8e-7 7e-7 92.2 7.5 2.1

1e-1 62 5 0.8235 0.8235 0.8235 1e-6 1e-6 8e-7 146.9 7.3 2.2

1 438 20 0.8020 0.8175 0.8170 3e-1 9e-7 8e-7 7200.2 13.5 2.9

MNIST

(60000, 28, 28)

1e-4

1

1e-1 212 14 0.9928 0.9928 0.9927 9e-5 9e-5 9e-5 225.0 12.8 4.0

1 422 22 0.9930 0.9930 0.9927 2e-3 9e-5 1e-4 7201.4 16.9 5.7

1e+1 498 25 0.9764 0.9922 0.9922 6e+0 8e-5 6e-5 7201.0 36.4 9.6

1e+2 549 26 0.9540 0.9917 0.9915 2e+1 9e-5 9e-5 7201.6 42.2 16.7

10

1e-1 91 5 0.9924 0.9924 0.9924 9e-5 7e-5 9e-5 178.2 7.7 4.4

1 274 14 0.9926 0.9926 0.9926 1e-3 9e-5 1e-4 7200.3 12.4 4.1

1e+1 473 21 0.9769 0.9926 0.9926 5e+0 9e-5 6e-5 7201.0 17.7 8.3

1e+2 541 25 0.9710 0.9916 0.9916 1e+1 1e-4 8e-5 7202.4 34.5 17.1

1e-6

1

1e-1 213 14 0.9928 0.9928 0.9928 4e-6 9e-7 1e-6 7200.7 42.0 4.3

1 414 22 0.9929 0.9929 0.9928 2e-3 1e-6 1e-6 7202.9 50.3 7.7

1e+1 496 25 0.9764 0.9923 0.9923 6e+0 9e-7 7e-7 7201.0 94.7 16.8

1e+2 542 26 0.9540 0.9915 0.9915 2e+1 9e-7 8e-7 7202.2 101.8 48.8

10

1e-1 91 5 0.9924 0.9924 0.9924 9e-7 9e-7 8e-7 483.5 17.1 5.2

1 269 14 0.9926 0.9926 0.9926 2e-3 8e-7 8e-7 7202.8 28.3 5.1

1e+1 470 21 0.9855 0.9926 0.9926 4e+0 1e-6 9e-7 7200.2 64.5 13.3

1e+2 532 25 0.9657 0.9916 0.9916 1e+1 8e-7 9e-7 7201.1 129.6 51.7

Support matrix machine: exploring sample sparsity... 27

the ALM-SNCG as inner solver. It means that for given parameters Ci and τ ,
we solved problem (1) by ALM-SNCG. The ALM-SNCG with AS strategy is
abbreviated as AS+ALM. We compared the performance of AS+ALM with
that of the warm-started ALM-SNCG (abbreviated as Warm+ALM), evalu-
ated at ηkkt ≤ 10−4 and ηkkt ≤ 10−6, respectively. In all experiments, we set
dmax = 500 in Algorithm 3. Additionally, ε̂ is set to 0.05 for n < 500, 000 and
0.1 otherwise for random data, and to 0.4 for real data.

Tables 6 and 7 show the performance of both methods AS+ALM and
Warm+ALM. Each column in the tables takes the following meaning:

– Avg nSM: the average number of the support matrices for the reduced
subproblems (33);

– Avg sam/Max sam: the average/maximum sample size of (33);
– Worst relkkt: the maximum relative KKT residuals as in (37);
– Avg |J1|/Avg time: the average values of |J1|/computation times;
– Iteration numbers: the average number of iterations. For AS+ALM, the

column shows the average number of AS rounds, followed by the aver-
age number of outer augmented Lagrangian iterations, with the average
number of inner semismooth Newton-CG iterations in parentheses.

6.3.1 Numerical results on synthetic data

Table 6 displays the numerical results from AS+ALM and Warm+ALM using
a given sequence {Ci}Ni=1 on random data. The parameter C ranges from 0.1
to 100, divided into 50 equally spaced grid points on the log10 scale. A notable
observation from Table 6 is that, on average, the AS strategy requires only
one iteration per grid point to achieve the desired solution. It suggests that
the initial index sets I0(Ci) almost fully cover indices of the support matrices
at the solutions for each Ci.

Table 6 also reveals that despite the average number of inner ALM-SNCG
iterations in AS+ALM surpasses that of Warm+ALM across all instances,
the AS strategy can still accelerate the Warm+ALM by an average factor
of 2.69 (under ηkkt ≤ 10−4) and 3.07 (under ηkkt ≤ 10−6) in terms of time
consumption. This is due to the smaller average sample size of AS’s reduced
subproblems compared to that of the original SMM models. Furthermore,
Figure 3 depicts that the percentages of support matrices in the reduced sub-
problems (mean(|SM|/nI)) consistently exceed those in the original problems
(mean(|SM|)/n). Here, |SM| and nI represent the number of support matri-
ces and samples in the reduced subproblem (33) during each AS iteration,
respectively.

6.3.2 Numerical results on real data

Lastly, we compare AS+ALM and Warm+ALM in generating the entire solu-
tion path for SMM models (P) on large-scale CIFAR-10 and MNIST training
datasets. We vary C from 10−3 to 1 for the CIFAR-10 and from 10−1 to 102

28 C. Wu, D. Li, D. Sun

Table 6 Results for generating solution paths using Warm+ALM (Warm) and AS+ALM
(AS) with a sequence {Ci}Ni=1 and ηkkt ≤ ε on random data

Data
ε τ

Information of the AS Avg |J1| Worst relkkt Iteration numbers Avg time (seconds)

(n, p, q) Avg nSM Avg sam Max sam Warm AS Warm AS Warm AS Warm AS

(1e4, 1e2, 1e2)

1e-4
10 1374 1532 4152 28 25 1e-4 5e-5 (2, 20) 1(3, 25) 1.50 0.49

100 2542 2825 8739 27 25 1e-4 1e-4 (3, 20) 1(4, 24) 1.50 0.65

1e-6
10 1375 1532 4153 21 21 1e-6 6e-7 (11, 46) 1(13, 50) 3.93 1.20

100 2542 2825 8736 20 19 1e-6 1e-6 (12, 47) 1(14, 50) 3.80 1.55

(1e4, 1e3, 5e2)

1e-4
10 449 507 1360 24 22 1e-4 3e-5 (5, 27) 1(10, 39) 98.37 40.39

100 962 1086 3548 25 23 1e-4 1e-4 (7, 31) 1(11, 40) 107.76 37.84

1e-6
10 449 507 1360 21 21 1e-6 4e-7 (15, 57) 1(21, 66) 211.74 69.51

100 962 1086 3550 21 21 1e-6 1e-6 (20, 71) 1(24, 73) 244.64 64.56

(1e5, 5e1, 1e2)

1e-4
10 17750 19285 44278 105 76 1e-4 4e-5 (2, 38) 1(3, 39) 12.50 2.71

100 22697 24878 67188 120 84 1e-4 4e-5 (2, 10) 1(3, 14) 3.47 1.48

1e-6
10 17753 19287 44268 32 30 1e-6 6e-7 (14, 70) 1(17, 85) 23.29 6.35

100 22700 24879 67180 27 24 1e-6 8e-7 (15, 51) 1(19, 60) 16.93 5.21

(1e6, 5e1, 1e2)

1e-4
10 276208 303668 485124 1363 984 1e-4 5e-5 (2, 24) 1(3, 28) 76.63 34.20

100 291663 321628 565727 1254 860 1e-4 5e-5 (2, 15) 1(3, 18) 57.21 34.15

1e-6
10 276231 303681 485006 413 395 1e-6 6e-7 (14, 67) 1(17, 76) 209.41 78.54

100 291677 321643 565653 234 214 1e-6 7e-7 (15, 60) 1(18, 67) 197.75 82.87

Fig. 3 Comparison of support matrices percentage between reduced subproblems
(mean(|SM|/nI)) and original problems (mean(|SM|)/n) on random data under ηkkt ≤ ε

for the MNIST, using 50 equally spaced grid points on a log10 scale. Similarly
to the previous subsection, Table 7 and Figure 4 demonstrate that the AS
strategy reduces the overall sample size of SMM models, thereby enhancing
computational efficiency compared to the warm-starting strategy. Particularly,
on the MNIST dataset, AS+ALM achieves average speedup factors of 1.50 and
1.92 over Warm+ALM for ηkkt ≤ 10−4 and ηkkt ≤ 10−6, respectively.

Support matrix machine: exploring sample sparsity... 29

Table 7 Results for generating solution paths using Warm+ALM (Warm) and AS+ALM
(AS) with a sequence {Ci}Ni=1 and ηkkt ≤ ε on real data

Prob
ε τ

information of the AS Avg |J1| Worst relkkt Iteration numbers Avg time (seconds)

(n, p, q) Avg nSM Avg sam Max sam Warm AS Warm AS Warm AS Warm AS

CIFAR-10

(1e4, 32, 32)

1e-4
1 4302 5709 7045 242 242 1e-4 1e-4 (11, 52) 1(12, 52) 0.78 0.59

10 5073 6580 9661 86 86 1e-4 1e-4 (15, 110) 1(15, 109) 1.41 1.05

1e-6
1 4300 5709 7045 240 240 1e-6 1e-6 (22, 72) 1(22, 71) 1.20 0.87

10 5073 6580 9661 85 85 1e-6 1e-6 (26, 138) 1(26, 138) 1.73 1.30

MNIST

(6e4, 28, 28)

1e-4
1 1063 1924 2403 443 442 1e-4 1e-4 (5, 73) 1(5, 75) 4.16 2.77

10 1188 2130 3316 352 352 1e-4 1e-4 (9, 96) 1(9, 98) 5.14 3.41

1e-6
1 1064 1924 2404 441 440 1e-6 1e-6 (12, 221) 1(13, 181) 10.37 5.10

10 1188 2130 3318 350 350 1e-6 1e-6 (16, 157) 1(17, 155) 7.36 4.07

Fig. 4 Comparison of support matrices percentage between reduced subproblems
(mean(|SM|/nI)) and original problems (mean(|SM|)/n) on real data under ηkkt ≤ ε

7 Conclusion

In this paper, we have proposed a semismooth Newton-CG based augmented
Lagrangian method for solving the large-scale support matrix machine (SMM)
model. Our algorithm effectively leverages the sparse and low-rank structures
inherent in the second-order information associated with the SMM model.
Furthermore, we have developed an adaptive sieving (AS) strategy aimed at
iteratively guessing and adjusting active samples, facilitating the rapid gener-
ation of solution paths across a fine grid of parameters C for the SMM models.
Numerical results have convincingly demonstrated the superior efficiency and
robustness of our algorithm and strategy in solving large-scale SMM models.
Nevertheless, the current AS strategy focuses on reducing the sample size of
subproblems. The further research direction is to explore methods for simulta-
neously reducing both sample size and the dimensionality of feature matrices.

30 C. Wu, D. Li, D. Sun

This may be achieved through the development of effective combinations of
the active subspace selection [20,13] and the AS strategy.

Support matrix machine: exploring sample sparsity... 31

Appendices

A Proof of Proposition 1

Proof To proceed, we characterize the set ΩD. It is not difficult to show that the KKT
system (3) is equivalent to the following system:

0 = y⊤λ,

0 ∈ by −A(A∗λ+ Λ)− en + ∂δS(−λ), (b, λ, Λ) ∈ R× Y.

0 ∈ A∗λ+ Λ+ ∂δBτ
2
(Λ),

(A.1)

Indeed, if (W, b, v, U, λ, Λ) ∈ X × Y satisfies (3), then (b, λ, Λ) solves (A.1). Conversely, if
(b, λ, Λ) ∈ R × Y solves (A.1), then (W, b, v, U, λ, Λ) with W = −A∗λ − Λ, U = W , and
v = en−AW−by satisfies the KKT system (3). For any pair z := (λ,Λ) ∈ ΩD, Υ = A∗λ+Λ
is an invariant (see, e.g., [41]). We then define η := A(Υ) + en. Based on the arguments
preceding Subsection 2.1 and the equivalence between (3) and (A.1), we claim that for any
b ∈ MD(z), the set ΩD can be expressed as

ΩD = VD ∩ G1
D ∩ G2

D(b), (A.2)

where

MD(z) := {b ∈ R | (b, λ, Λ) satisfies (A.1)}, G1
D :=

{
(λ,Λ) ∈ Y | y⊤λ = 0

}
,

G2
D(b) :=

(
−∂δ∗S(η − by)

)
× ∂τ∥ − Υ∥∗, VD :=

{
(λ,Λ) ∈ Y | A∗λ+ Λ = Υ

}
.

Building on the above preparation, we proceed to establish the conclusion of Proposition
1. We first show that for any ((−λ,Λ), (ξ, Ξ)) ∈ gph ∂δS×Bτ

2
, ∂δS×Bτ

2
is metrically subregular

at (−λ,Λ) for (ξ, Ξ), i.e., there exist a constant κ > 0 and a neighborhood U ⊆ Y of (−λ,Λ)
such that

dist
(
(λ,Λ), (∂δS×Bτ

2
)−1(ξ, Ξ)

)
≤ κdist

(
(ξ, Ξ), ∂δS×Bτ

2
(λ,Λ)

)
, ∀ (λ,Λ) ∈ U .

Here, dist(x,D) := mind∈D ∥d − x∥ denotes the distance from x to a closed convex set D
in a finite dimensional real Euclidean space Z, and gphF := {(x, y) ∈ Z × Z | y ∈ F (x)}
represents the graph of a multi-valued mapping F from Z to Z. In fact, it follows from
the piecewise linearity of δ∗S(·) on Rn and [58, Proposition 12.30] that ∂δ∗S(·) is piecewise

polyhedral. Then, for any (ξ,−λ) ∈ gph ∂δ∗S , we obtain from [54, Proposition 1] that ∂δ∗S(·)
is locally upper Lipschitz continuous at ξ, which further implies the metric subregularity of
∂δS at −λ for ξ. Let Bτ

1 ⊂ Rp be the ℓ1-norm ball centered at 0 with radius τ . Similarly, for
any (v, v̂) ∈ gph ∂δBτ

1
, ∂δBτ

1
is metrically subregular at v for v̂ due to the piecewise linearity

of τ∥ · ∥∞ on Rp. For any given (Λ,Ξ) ∈ gph ∂δBτ
2
, it follows from [7, Proposition 3.8] that

∂δBτ
2

is also metrically subregular at Λ for Ξ. Thus, there exist positive constants κ1 and

κ2 and a neighborhood U of (−λ,Λ) such that for any (λ,Λ) ∈ U ,

dist
(
(λ,Λ), (∂δS×Bτ

2
)−1(ξ, Ξ)

)
≤ dist

(
λ, (∂δS)

−1(ξ)
)
+ dist

(
Λ, (∂δBτ

2
)−1(Ξ)

)
≤ κ1dist

(
ξ, ∂δS(λ)

)
+ κ2dist

(
Ξ, ∂δBτ

2
(Λ)

)
≤ max{κ1, κ2}

(
dist(ξ, ∂δS(λ)) + dist(Ξ, ∂δBτ

2
(Λ))

)
≤

√
2max{κ1, κ2}dist

(
(ξ, Ξ), ∂δS×Bτ

2
(λ,Λ)

)
,

where the second inequality follows from the metric subregularity of ∂δS at −λ for ξ and
the metric subregularity of ∂δBτ

2
at Λ for Ξ.

32 C. Wu, D. Li, D. Sun

Next, for any b ∈ MD(z), we prove that the collection of sets {VD,G1
D,G2

D(b)} is
boundedly linearly regular, i.e., for every bounded set B ⊂ Y, there exists a constant κ′ > 0
such that for any (λ,Λ) ∈ B,

dist
(
(λ,Λ),VD ∩ G1

D ∩ G2
D(b)

)
≤ κ′ max

{
dist((λ,Λ),VD), dist((λ,Λ),G1

D), dist((λ,Λ),G2
D(b))

}
.

In fact, based on the arguments preceding Subsection 2.1 and (A.2), the intersection VD ∩
G1
D ∩ G2

D(b) is nonempty. Define G21
D (b) :=

(
−∂δ∗S(η − by)

)
×Rp×q and G22

D := Rn × ∂τ∥ −
Υ∥∗. It follows from the equality (A.2) that

ΩD = VD ∩ G1
D ∩ G21

D (b) ∩ G22
D . (A.3)

It can be checked that {VD,G1
D,G2

D(b)} is boundedly linearly regular if and only if {VD,G1
D,

G21
D (b),G22

D } is boundedly linearly regular. Furthermore, from [55, Corollary 19.2.1 and The-

orem 23.10], ∂δ∗S(η − by) is a polyhedral convex set, implying that G21
D (b) is also poly-

hedral convex. Since VD and G1
D are polyhedral convex, based on [2, Corollary 3] and

(A.3), we only need to show that there exists (λ̃, Λ̃) ∈ ΩD such that (Λ̃, Λ̃) ∈ ri (G22
D),

i.e., Λ̃ ∈ ri
(
∂τ∥ − Υ∥∗

)
. Let rank(Λ̃) = r. It follows from [62, Example 2] that ∥Λ̃∥2 ≤ τ .

Suppose the SVD of Λ̃ in (15) has the following form:

Λ̃ = U
[
Σ(Λ̃) 0

]
V

⊤
= [U1 U(0,1) U0]


τIs 0 0

0 τΣ(0,1)(Λ̃) 0

0 0 0



V

⊤
1

V
⊤
(0,1)

V
⊤
0

 , (A.4)

where Σ(Λ̃) = Diag
(
ν1(Λ̃), . . . , νp(Λ̃)

)
∈ Sp

+ and Σ(0,1)(Λ̃) = Diag(ν s+1(Λ̃), . . . , ν r(Λ̃)) ∈

S r−s
++ with singular values 1 = ν1(Λ̃) = . . . = ν s(Λ̃) > ν s+1(Λ̃) ≥ . . . ≥ ν r(Λ̃) > ν r+1(Λ̃) =

. . . = νp(Λ̃) = 0, and U :=
[
U1 U(0,1) U0

]
∈ Op and V :=

[
V 1 V (0,1) V 0

]
∈ Oq whose

columns form a compatible set of orthonormal left and right singular vectors of Λ̃ with
U1 ∈ Rp×s, U(0,1) ∈ Rp×(r−s), U0 ∈ Rp×(p−r), V 1 ∈ Rq×s, V (0,1) ∈ Rq×(r−s), and

V 0 ∈ Rq×(q−r). Based on [62, Example 2] and (A.4), one has that Λ̃ ∈ ri(∂τ∥− Υ∥∗) if and
only if rank(−Υ) = s. One the other hand, from the definition of the matrix I in (14), we
obtain that

τI − Λ̃ =
[
U1 U(0,1) U0

]

0 0 0 0

0 τ(Ir−s −Σ(0,1)(Λ̃)) 0 0

0 0 Ip−r 0



V

⊤
1

V
⊤
(0,1)

V
⊤
0

 , (A.5)

which implies that rank(τI − Λ̃) = p − s. It means that rank(−Υ) = s if and only if p =

rank(−Υ) + rank(τI − Λ̃). Therefore, if there exists (λ̃, Λ̃) ∈ ΩD such that p = rank(−Υ) +

rank(τI − Λ̃), then {VD,G1
D,G2

D(b)} is boundedly linearly regular.
Based on all the above analysis, the desired conclusion can be established utilizing [8,

Theorem 3.1] and [1, Theorem 3.3]. ⊓⊔

B Proof of Theorem 2

Proof Building upon a technique similar to [33, Proposition 3.1], we obtain the following
equivalent relation:

V is self-adjoint and positive definite in Rp×q × R ⇐⇒ y⊤My > 0, (B.1)

Support matrix machine: exploring sample sparsity... 33

where V is any element in ∂̂2φk(Ŵ , b̂) defined in (18) with M ∈ ∂ΠS(ωk(Ŵ , b̂)). Here, for
any ω ∈ Rn, the Clarke generalized Jacobian ∂ΠS(ω) can be expressed as

∂ΠS(ω) =

Diag(v)

∣∣∣∣∣∣∣
vj = 1, if ωj ∈ (0, C);

vj ∈ [0, 1], if ωj = 0 or ωj = C;

vj = 0, if ωj < 0 or ωj > C

 . (B.2)

We consider the explicit expression of lin(TS(−λ̂)). Denote the following two index sets

J2(−λ̂) := {j ∈ [n] | λ̂j = 0} and J3(−λ̂) := {j ∈ [n] | − λ̂j = C}.

Then we can deduce from [58, Theorem 6.9] that

TS(−λ̂) = {d ∈ Rn | dJ2(−λ̂)
≥ 0, dJ3(−λ̂)

≤ 0}.

It follows that
lin(TS(−λ̂)) = {d ∈ Rn | dJ2(−λ̂)

= 0, dJ3(−λ̂)
= 0}.

“(i) ⇔ (ii)”. The equality (20) at λ̂ holds if and only if R = y⊤
J1(−λ̂)

R|J1(−λ̂)|, i.e.,

J1(−λ̂) ̸= ∅.
“(ii) ⇒ (iii)”. If J1(−λ̂) ̸= ∅, we obtain from λ̂ = −ΠS(ωk(Ŵ , b̂)) that there exists an

index j0 ∈ [n] such that 0 < (ωk(Ŵ , b̂))j0 < C. It follows from (B.2) that y⊤My > 0. By
the equivalent relation (B.1), we prove condition (iii).

“(iii) ⇒ (ii)”. If the condition (iii) holds, then by the equivalence in (B.1), y⊤My > 0

for any M ∈ ∂ΠS(ωk(Ŵ , b̂)). It means from (B.2) that there exists j0 ∈ [n] such that

0 < (ωk(Ŵ , b̂))j0 < C. From λ̂ = −ΠS(ωk(Ŵ , b̂)), it follows that 0 < (−λ̂)j0 < C, implying
condition (ii). ⊓⊔

C Proof of Theorem 3

Proof For each given Ci, the cardinality of I k
(Ci) will decrease as that of Ik(Ci) increases.

According to the finiteness of samples size n, the index set J k(Ci) as a subset of Ik
(Ci)

will be empty after a finite number of iterations, ensuring finite termination.
Next, we show that the output solution (W (Ci), b(Ci), v(Ci), U(Ci), λ(Ci), Λ(Ci)) of Al-

gorithm 3 is a KKT tuple of the problem (36). Indeed, by the finite termination of Algorithm

3, we know that there exists an integer k̄ ∈ [n] such that (W (Ci), b(Ci), v
k̄
I (Ci), U(Ci), λ

k̄
I (Ci),

Λ(Ci)) is a KKT solution of the reduced subproblem (33) with the error (δW , δb, δvI , δU , δλI ,

δΛ) satisfying the condition (34) and J k̄(Ci) = ∅. And v(Ci) and λ(Ci) are obtained by

expanding v k̄
I (Ci) and λ k̄

I (Ci) to the n-dimensional vectors with the rest entries being

1− yj(⟨W (Ci), Xj⟩+ b(Ci)) and 0 for any j ∈ I k̄
(Ci), respectively.

For the sake of convenience in further analysis, we will exclude Ci from the above KKT

solutions and index sets. Additionally, we will eliminate k̄ from I k̄, I k̄
, λ k̄

I , and v k̄
I . By the

KKT conditions of the reduced subproblem (33) and the condition (34), one has that

δW = W +A∗
IλI + Λ, δb = y⊤I λI , δΛ = W − U, δvI − λI ∈ ∂δ∗

S i
I
(vI), δU + Λ ∈ ∂τ∥U∥∗,

δλI = AIW + byI + vI − e|I|, max(∥δW ∥, |δb|, ∥δU∥, ∥δλI∥, ∥δvI∥, ∥δΛ∥) ≤ ε,

(C.1)
where AI and A∗

I are defined in (29). By extending δλI and δvI to the n-dimensional error
vectors δλ and δv with the rest elements being 0, we only need to show that

δW = W +A∗λ+ Λ, δb = y⊤λ, δλ = AW + by + v − en, δv − λ ∈ ∂δ∗
S i (v).

34 C. Wu, D. Li, D. Sun

Indeed, due to the fact that (λ)I = 0, we obtain

A∗λ = A∗
IλI +A∗

I(λ)I = A∗
IλI and y⊤λ = y⊤I λI + y⊤I (λ)I = y⊤I λI ,

which follows from (C.1) that δW = W +A∗λ+Λ and δb = λ
⊤
y. From expanding manners

of v and δλ, we know that vI = eI − AIW − byI , which further implies from (C.1) that

δλ = AW+by+v−en. At last, from J k̄(Ci) = ∅, one has vj < 0 for all j ∈ I. It follows that

(δv)I − (λ)I = 0 = ∇δ∗
S i
I
(vI). Combing with (C.1), we obtain that δv − λ ∈ ∂δ∗

Si (v). ⊓⊔

D An isPADMM for solving SMM model

In this part, we outline the framework of the inexact semi-proximal ADMM (isPADMM) to
solve the SMM model (1). Specifically, according to the definition of the linear operator A
in (2), the SMM model (1) can be equivalently reformulated as follows:

minimize
(W,b,U)∈Rp×q×R×Rp×q

1

2
∥W∥2F + τ∥U∥∗ + δ∗S(en −AW − by)

subject to W − U = 0.

(D.1)

Its augmented Lagrangian function is defined for any (W, b, U, Λ) ∈ Rp×q×R×Rp×q×Rp×q

as follows:

Lγ(W, b, U ;Λ) =
1

2
∥W∥2F + τ∥U∥∗ + δ∗S(en −AW − by) + ⟨Λ,W − U⟩+

γ

2
∥W − U∥2F ,

where γ is a positive penalty parameter. The framework of isPADMM for solving (D.1) is
outlined in Algorithm 5.

Algorithm 4 An isPADMM for solving SMM model (D.1)

Initialization: Let γ > 0 and ζ ∈ (0, (1 +
√
5)/2) be given parameters, {εk}k≥0 be a

nonnegative summable sequence. Choose δ > 0 and an initial point (U0, Λ0) ∈ Rp×q×Rp×q .
Set k = 0 and perform the following steps in each iteration:

Step 1. Compute

(W k+1, b k+1) = argmin
W,b

{
Lγ

(
W, b, Uk;Λk

)
+

δ

2
(b− bk)2 − ⟨d k

W ,W ⟩ − bd k
b

}
=argmin

W,b

{
1 + γ

2
∥W +

Λk − γUk

1 + γ
∥2F + δ∗S(en −AW − by)

+
δ

2
(b− bk)2 − ⟨d k

W ,W ⟩ − bd k
b

}
, (D.2)

where (d k
W , d k

b) ∈ Rp×q × R is an error term such that (1/γ)∥δ k
W ∥2F + (1/δ)|d k

b |2 ≤ εk.

Step 2. Compute

Uk+1 = argmin
U∈Rp×q

{
Lγ(W

k+1, bk+1, U ;Λk)
}

=
1

γ
Proxτ∥·∥∗ (γW

k+1 + Λk).

Step 3. Update Λk+1 = Λk + ζ γ
(
Wk+1 − Uk+1

)
.

Notably, subproblem (D.2) closely resembles the original SMM model (1), except τ is set
to zero and an additional proximal term involving b is included. This similarity allows the

Support matrix machine: exploring sample sparsity... 35

direct application of the semismooth Newton-based augmented Lagrangian method to these
subproblems, as discussed in Sections 3 and 4. The derivations, not detailed here, follow a
rationale similar to that of the aforementioned algorithms. Furthermore, by leveraging the
results of [3, Theorem 5.1], we can deduce the global convergence of Algorithm 5 in a direct
manner. To ensure computational feasibility, the isPADMM iterations are capped at 30,000,
with δ set to 10−6.

E A sGS-isPADMM for solving SMM model

In this part, we present the framework of the symmetric Gauss-Seidel based inexact semi-
proximal ADMM (sGS-isPADMM) to effectively solve the SMM model (P). Based on the
definition of the augmented Lagrangian function in (6), the steps of the sGS-isPADMM for
solving (P) are listed as follows.

Algorithm 5 A sGS-isPADMM for solving SMM model (P)

Initialization: Let γ > 0 and ζ ∈ (0, (1 +
√
5)/2) be given parameters,

{εk}k≥0 be a nonnegative summable sequence. Select a self-adjoint positive
semidefinite linear operator S1 : Rp×q → Rp×q. Choose an initial point
(W 0, b0, v0, U0, λ0, Λ0) ∈ Rp×q × R × Rn × Rp×q × Rn × Rp×q. Set k = 0
and perform the following steps in each iteration:

1: Step 1. Compute

b
k+1

= argmin
b∈R

{
Lγ

(
Wk, b, vk, Uk;λk, Λk

)}
= −

1

n
y⊤

(
AWk + vk − en +

λk

γ

)
,

Wk+1 = argmin
W∈Rp×q

{
Lγ(W, b

k+1
, vk, Uk;λk, Λk) +

1

2
∥W −Wk∥2S1

− ⟨δkW ,W ⟩
}
,

bk+1 = argmin
b∈R

{
Lγ(W

k+1, b, vk, Uk;λk, Λk)
}

= −
1

n
y⊤

(
AWk+1 + vk − en +

λk

γ

)
,

where δkW ∈ Rp×q is an error matrix such that ∥δkW ∥ ≤ εk.

2: Step 2. Compute

vk+1 =
1

γ
Proxδ∗

S

(
−λk − γ(AWk+1 + bk+1y − en)

)
,

Uk+1 = (1/γ)Proxτ∥·∥∗

(
Λk + γWk+1

)
.

3: Step 3. Update

λk+1 = λk + ζ γ(AW k+1 + bk+1y + vk+1 − en),

Λk+1 = Λk + ζ γ(W k+1 − Uk+1).

Building upon the results in [3, Proposition 4.2 and Theorem 5.1], we can directly obtain
the global convergence results for Algorithm 5. Lastly, the maximum number of iterations
for the sGS-isPADMM is set to 30,000.

36 C. Wu, D. Li, D. Sun

Statements and Declarations

Funding The work of Defeng Sun was supported in part by RGC Senior Research Fellow
Scheme No. SRFS2223-5S02 and GRF Project No. 15307822.

Availability of data and materials The references of all datasets are provided in this
published article.

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Artacho, F.A., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials.
J. Convex Anal. 15(2), 365–380 (2008)

2. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property,
bounded linear regularity, Jameson’s property (G), and error bounds in convex op-
timization. Math. Program. 86(1), 135–160

3. Chen, L., Sun, D.F., Toh, K.C.: An efficient inexact symmetric Gauss-Seidel based
majorized ADMM for high-dimensional convex composite conic programming. Math.
Program. 161(1), 237–270 (2017)

4. Chen, Y., Hang, W., Liang, S., Liu, X., Li, G., Wang, Q., Qin, J., Choi, K.S.: A novel
transfer support matrix machine for motor imagery-based brain computer interface.
Front. Neurosci. 14, 606949 (2020)

5. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley and Sons, New York
(1983)

6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
7. Cui, Y., Ding, C., Zhao, X.: Quadratic growth conditions for convex matrix optimization

problems associated with spectral functions. SIAM J. Optim. 27(4), 2332–2355 (2017)
8. Cui, Y., Sun, D.F., Toh, K.C.: On the asymptotic superlinear convergence of the aug-

mented Lagrangian method for semidefinite programming with multiple solutions. arXiv
preprint arXiv:1610.00875 (2016)

9. Cui, Y., Sun, D.F., Toh, K.C.: On the R-superlinear convergence of the KKT residuals
generated by the augmented Lagrangian method for convex composite conic program-
ming. Math. Program. 178(1), 381–415 (2019)

10. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines.
Phys. Rev. A 96(3), 032301 (2017)

11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems. Springer Science & Business Media, New York (2007)

12. Feng, R., Xu, Y.: Support matrix machine with pinball loss for classification. Neural
Comput. Appl. 34, 18643–18661 (2022)

13. Feng, R., Zhong, P., Xu, Y.: A subspace elimination strategy for accelerating support
matrix machine. Pac. J. Optim. 18(1), 155–176 (2022)

14. Geng, M., Xu, Z., Mei, M.: Fault diagnosis method for railway turnout with pinball
loss-based multiclass support matrix machine. Appl. Sci. 13(22), 12375 (2023)

15. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction op-
timization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)

16. Hang, W., Feng, W., Liang, S., Wang, Q., Liu, X., Choi, K.S.: Deep stacked support
matrix machine based representation learning for motor imagery eeg classification. Com-
put. Meth. Programs Biomed. 193, 105466 (2020)

17. Hang, W., Li, Z., Yin, M., Liang, S., Shen, H., Wang, Q., Qin, J., Choi, K.S.: Deep
stacked least square support matrix machine with adaptive multi-layer transfer for EEG
classification. Biomed. Signal Process. Control 82, 104579 (2023)

18. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equa-
tions. Phys. Rev. Lett. 103(15), 150502 (2009)

19. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, vol. 2. Springer (2009)

https://arxiv.org/abs/1610.00875

Support matrix machine: exploring sample sparsity... 37

20. Hsieh, C.J., Olsen, P.: Nuclear norm minimization via active subspace selection. In:
International Conference on Machine Learning, pp. 575–583. PMLR (2014)

21. Jiang, K.: Algorithms for Large Scale Nuclear Norm Minimization and Convex
Quadratic Semidefinite Programming Problems. Ph.D. thesis (2011)

22. Jiang, K., Sun, D.F., Toh, K.C.: Solving nuclear norm regularized and semidefinite
matrix least squares problems with linear equality constraints. In: Discrete Geometry
and Optimization, pp. 133–162. Springer (2013)

23. Kumari, A., Akhtar, M., Shah, R., Tanveer, M.: Support matrix machine: A review.
Neural Networks (2024). https://doi.org/10.1016/j.neunet.2024.106767

24. Laurent, E.G., Vivian, V., Tarek, R.: Safe feature elimination in sparse supervised learn-
ing. Pac. J. Optim. 8(4), 667–698 (2012)

25. Li, H., Xu, Y.: Support matrix machine with truncated pinball loss for classification.
Appl. Soft. Comput. 154, 111311 (2024)

26. Li, Q., Jiang, B., Sun, D.F.: MARS: A second-order reduction algorithm for high-
dimensional sparse precision matrices estimation. J. Mach. Learn. Res. 24, 1–44 (2023)

27. Li, X., Cheng, J., Shao, H., Liu, K., Cai, B.: A fusion cwsmm-based framework for
rotating machinery fault diagnosis under strong interference and imbalanced case. IEEE
Trans. Industr. Inform. 18(8), 5180–5189 (2022)

28. Li, X., Cheng, J., Shao, H., Liu, K., Cai, B.: A fusion CWSMM-based framework for
rotating machinery fault diagnosis under strong interference and imbalanced case. IEEE
Trans. Ind. Inform. 18(8), 5180–5189 (2022)

29. Li, X., Li, S., Wei, D., Si, L., Yu, K., Yan, K.: Dynamics simulation-driven fault diagnosis
of rolling bearings using security transfer support matrix machine. Reliab. Eng. Syst.
Saf. 243, 109882 (2024)

30. Li, X., Li, Y., Yan, K., Shao, H., Lin, J.J.: Intelligent fault diagnosis of bevel gearboxes
using semi-supervised probability support matrix machine and infrared imaging. Reliab.
Eng. Syst. Saf. 230, 108921 (2023)

31. Li, X., Li, Y., Yan, K., Si, L., Shao, H.: An intelligent fault detection method of indus-
trial gearboxes with robustness one-class support matrix machine toward multisource
nonideal data. IEEE ASME Trans. Mechatron. 29(1), 388–399 (2024)

32. Li, X., Shao, H., Lu, S., Xiang, J., Cai, B.: Highly efficient fault diagnosis of rotating
machinery under time-varying speeds using LSISMM and small infrared thermal images.
IEEE Trans. Syst. Man Cybern. Syst. 52(12), 7328–7340 (2022)

33. Li, X., Sun, D.F., Toh, K.C.: QSDPNAL: A two-phase augmented Lagrangian method
for convex quadratic semidefinite programming. Math. Program. Comput. 10, 703–743
(2018)

34. Li, X., Yang, Y., Pan, H., Cheng, J., Cheng, J.: Non-parallel least squares support
matrix machine for rolling bearing fault diagnosis. Mech. Mach. Theory 145, 103676
(2020)

35. Li, Y., Wang, D., Liu, F.: The auto-correlation function aided sparse support matrix
machine for EEG-based fatigue detection. IEEE Trans. Circuits Syst. II-Express Briefs
70(2), 836–840 (2023)

36. Liang, S., Hang, W., Lei, B., Wang, J., Qin, J., Choi, K.S., Zhang, Y.: Adaptive multi-
model knowledge transfer matrix machine for EEG classification. IEEE Trans. Neural
Netw. Learn. Syst. 35(6), 7726–7739 (2024)

37. Liang, S., Hang, W., Yin, M., Shen, H., Wang, Q., Qin, J., Choi, K.S., Zhang, Y.: Deep
EEG feature learning via stacking common spatial pattern and support matrix machine.
Biomed. Signal Process. Control 74, 103531 (2022)

38. Lin, M., Yuan, Y., Sun, D.F., Toh, K.C.: Adaptive sieving with PPDNA: Generating
solution paths of exclusive lasso models. arXiv preprint arXiv:2009.08719 (2020)

39. Liu, Y.J., Sun, D., Toh, K.C.: An implementable proximal point algorithmic framework
for nuclear norm minimization. Math. Program. 133, 399–436 (2012)

40. Luo, L., Xie, Y., Zhang, Z., Li, W.J.: Support matrix machines. In: International
Conference on Machine Learning, pp. 938–947. PMLR (2015)

41. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper.
Res. Lett. 7, 21–26 (1988)

42. Meng, F., Sun, D.F., Zhao, G.: Semismoothness of solutions to generalized equations
and the Moreau-Yosida regularization. Math. Program. 104, 561–581 (2005)

https://doi.org/10.1016/j.neunet.2024.106767
https://arxiv.org/abs/2009.08719

38 C. Wu, D. Li, D. Sun

43. Ogawa, K., Suzuki, Y., Takeuchi, I.: Safe screening of non-support vectors in pathwise
SVM computation. In: International Conference on Machine Learning, pp. 1382–1390.
PMLR (2013)

44. Pan, H., Sheng, L., Xu, H., Tong, J., Zheng, J., Liu, Q.: Pinball transfer support matrix
machine for roller bearing fault diagnosis under limited annotation data. Appl. Soft.
Comput. 125, 109209 (2022)

45. Pan, H., Sheng, L., Xu, H., Zheng, J., Tong, J., Niu, L.: Deep stacked pinball transfer
matrix machine with its application in roller bearing fault diagnosis. Eng. Appl. Artif.
Intell. 121, 105991 (2023)

46. Pan, H., Xu, H., Zheng, J., Shao, H., Tong, J.: A semi-supervised matrixized graph
embedding machine for roller bearing fault diagnosis under few-labeled samples. IEEE
Trans. Industr. Inform. 20(1), 854–863 (2024)

47. Pan, H., Xu, H., Zheng, J., Su, J., Tong, J.: Multi-class fuzzy support matrix machine
for classification in roller bearing fault diagnosis. Adv. Eng. Inform. 51, 101445 (2022)

48. Pan, H., Yang, Y., Zheng, J., Li, X., Cheng, J.: A fault diagnosis approach for roller
bearing based on symplectic geometry matrix machine. Mech. Mach. Theory 140, 31–43
(2019)

49. Pan, X., Xu, Y.: A novel and safe two-stage screening method for support vector ma-
chine. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2263–2274 (2019)

50. Qi, H., Sun, D.F.: A quadratically convergent Newton method for computing the nearest
correlation matrix. SIAM J. Matrix Anal. Appl. 28(2), 360–385 (2006)

51. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367
(1993)

52. Qian, C., Tran-Dinh, Q., Fu, S., Zou, C., Liu, Y.: Robust multicategory support matrix
machines. Math. Program. 176, 429–463 (2019)

53. Razzak, I., Blumenstein, M., Xu, G.: Multiclass support matrix machines by maximizing
the inter-class margin for single trial EEG classification. IEEE Trans. Neural Syst.
Rehabilitation Eng. 27(6), 1117–1127 (2019)

54. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. in Mathemat-
ical Programming at Oberwolfach, Math. Program. Stud. pp. 206–214 (1981)

55. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
56. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algo-

rithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
57. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algo-

rithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
58. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer Science &

Business Media (2009)
59. Sanei, S., Chambers, J.A.: EEG Signal Processing. John Wiley & Sons (2013)
60. Shapiro, A.: Sensitivity analysis of generalized equations. J. Math. Sci. 115(4), 2554–

2565 (2003)
61. Wang, J., Wonka, P., Ye, J.: Scaling SVM and least absolute deviations via exact data

reduction. In: International Conference on Machine Learning, pp. 523–531. PMLR
(2014)

62. Watson, G.A.: Characterization of the subdifferential of some matrix norms. Linear
Alg. Appl. 170, 33–45 (1992)

63. Wu, C., Cui, Y., Li, D., Sun, D.F.: Convex and nonconvex risk-based linear regression
at scale. INFORMS J. Comput. 35(4), 797–816 (2023)

64. Xu, H., Pan, H., Zheng, J., Tong, J., Zhang, F., Chu, F.: Intelligent fault identification in
sample imbalance scenarios using robust low-rank matrix classifier with fuzzy weighting
factor. Appl. Soft. Comput. 152, 111229 (2024)

65. Yang, J., Zhang, D., Frangi, A.F., Yang, J.y.: Two-dimensional PCA: a new approach
to appearance-based face representation and recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 26(1), 131–137 (2004)

66. Yuan, Y., Chang, T.H., Sun, D.F., Toh, K.C.: A dimension reduction technique for large-
scale structured sparse optimization problems with application to convex clustering.
SIAM J. Optim. 32(3), 2294–2318 (2022)

67. Yuan, Y., Lin, M., Sun, D.F., Toh, K.C.: Adaptive sieving: A dimension reduction
technique for sparse optimization problems. arXiv preprint arXiv:2306.17369 (2023)

https://arxiv.org/abs/2306.17369

Support matrix machine: exploring sample sparsity... 39

68. Zhang, W., Liu, Y.: Proximal support matrix machine. J. appl. math. phys 10(7),
2268–2291 (2022)

69. Zhao, X.Y., Sun, D.F., Toh, K.C.: A Newton-CG augmented Lagrangian method for
semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

70. Zheng, Q., Zhu, F., Heng, P.A.: Robust support matrix machine for single trial EEG
classification. IEEE Trans. Neural Syst. Rehabilitation Eng. 26(3), 551–562 (2018)

71. Zheng, Q., Zhu, F., Qin, J., Chen, B., Heng, P.A.: Sparse support matrix machine.
Pattern Recognit. 76, 715–726 (2018)

72. Zheng, Q., Zhu, F., Qin, J., Heng, P.A.: Multiclass support matrix machine for single
trial EEG classification. Neurocomputing 275, 869–880 (2018)

73. Zhou, Z., So, A.M.C.: A unified approach to error bounds for structured convex opti-
mization problems. Math. Program. 165, 689–728 (2017)

74. Zimmert, J., de Witt, C.S., Kerg, G., Kloft, M.: Safe screening for support vector ma-
chines. In: NIPS Workshop on Optimization in Machine Learning (OPT) (2015)

	Introduction
	The structural properties of the SMM model (1)
	A semismooth Newton-CG based augmented Lagrangian method for the SMM model
	Implementation of the semismooth Newton-CG method
	An adaptive strategy
	Numerical experiments
	Conclusion
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	An isPADMM for solving SMM model
	A sGS-isPADMM for solving SMM model

