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Abstract In this paper, we introduce an HPR-LP solver, an implementation
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objective error. Based on the complexity results, we design an adaptive strat-
egy of restart and penalty parameter update to improve the efficiency and
robustness of the HPR method. We conduct extensive numerical experiments
on different LP benchmark datasets using NVIDIA A100-SXM4-80GB GPU
in different stopping tolerances. Our solver’s Julia version achieves a 2.39x
to 5.70x speedup measured by SGM10 on benchmark datasets with presolve
(2.03x to 4.06x without presolve) over the award-winning solver PDLP with
the tolerance of 10−8.
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1 Introduction

In this paper, we introduce how to implement a Halpern Peaceman-Rachford
(HPR) method with semi-proximal terms [42] to solve the following linear
programming (LP) problems:

min
x∈Rn

⟨c, x⟩

s.t. A1x = b1

A2x ≥ b2

x ∈ C,

(1)

where A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1 , b2 ∈ Rm2 , c ∈ Rn, and C := {x ∈
Rn | l ≤ x ≤ u} with given vectors l ∈ (R ∪ {−∞})n and u ∈ (R ∪ {+∞})n.
Let A = [A1;A2] ∈ Rm×n with m = m1 +m2, and b = [b1; b2] ∈ Rm. In this
paper, we assume that A is a non-zero matrix. Then, the dual of problem (1)
is given by

min
y∈Rm,z∈Rn

− ⟨b, y⟩+ δD(y) + δ∗C(−z)

s.t. A∗y + z = c,
(2)

where δD(·) is the indicator function over D := {y = (y1, y2) ∈ Rm1 × Rm2
+ }

and δ∗C(·) is the conjugate of δC(·).
Traditionally, the commercial solvers for LP [19,22] are based on the sim-

plex methods and interior point methods. In recent years, first-order methods
(FOMs) have gained increasing attention for solving large-scale LP problems
due to their low iteration cost and ease of parallelization [2,3,4,12,26,29,33,34,
41]. Notably, Applegate et al. [2,3] developed an award-winning solver PDLP1,
which employed the primal-dual hybrid gradient (PDHG) method [47] as its
base algorithm, equipped with several effective implementation techniques, in-
cluding the use of the ergodic iterate as a restart point2, an update rule for the
penalty parameter σ, and a line search strategy. The GPU implementation of
PDLP (cuPDLP.jl [28] and cuPDLP-c [30]) has shown some advantages over
commercial LP solvers like Gurobi [19] and COPT [16] for solving large-scale
LP problems. It is worth noting that the ergodic sequence of the semi-proximal

1 The authors of [2,3] were awarded the Beale–Orchard-Hays Prize for Excellence in Com-
putational Mathematical Programming at the 25th International Symposium on Mathemat-
ical Programming (https://ismp2024.gerad.ca/), July 21-26, 2024, Montréal, Canada.

2 In the GPU implementation (e.g., [28] and [30]), the restart point is selected based
on the weighted KKT residual, utilizing either the last iterate or the ergodic iterate. For
theoretical analysis, the ergodic iterate is used as the restart point [3].

https://ismp2024.gerad.ca/
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ADMM (sPADMM) [15], including PDHG [9,14], achieves an O(1/k) iteration
complexity with respect to the objective error and the feasibility violation
[11], where k is the iteration number. To the best of our knowledge, it is still
unknown whether the ergodic sequence of sPADMM can achieve an O(1/k)
iteration complexity in terms of the Karush-Kuhn-Tucker (KKT) residual for
LP.3

Recently, some progress in complexity results has been achieved in accel-
erating the preconditioned (semi-proximal) PR [42,44,46] using the Halpern
iteration [20,25,39]. In particular, Zhang et al. [46] applied the Halpern itera-
tion to the PR splitting method [13,27], developing the HPR method without
proximal terms.4 This HPR method achieves an iteration complexity of O(1/k)
for the KKT residual and the objective error. Subsequently, Yang et al. [44] re-
formulated the proximal PR method as a proximal point method (PPM) with
a positive definite preconditioner, developing an HPR method with proximal
terms via the Halpern iteration that obtains the O(1/k) iteration complex-
ity for the weighted fixed-point residual. Finally, Sun et al. [42] reformulated
the semi-proximal PR method into a degenerate PPM (dPPM) with a posi-
tive semidefinite preconditioner [7] and applied the Halpern iteration to this
dPPM, resulting in an HPR method with semi-proximal terms that enjoys the
desired O(1/k) iteration complexity for the KKT residual and the objective
error.5 Compared to existing algorithms for solving LP, the HPR method [42,
46] offers a key theoretical advantage: an O(1/k) iteration complexity in terms
of the KKT residual, which motivates us to explore the potential of HPR for
solving large-scale LP problems.

The main purpose of this paper is to introduce a solver called HPR-LP for
solving LP problems. The main features of our solver are highlighted below.

1. Based on the iteration complexity of O(1/k) in terms of the KKT residual,
in our HPR-LP solver we integrate a restart strategy and an update rule
of penalty parameter σ into the HPR method with semi-proximal terms
for solving large-scale LP problems.

2. We test the numerical performance of the HPR-LP solver on different LP
benchmark datasets using NVIDIA A100-SXM4-80GB GPU in different
stopping tolerances. The Julia version of our solver achieves a 2.39x to
5.70x speedup measured by SGM10 on benchmark datasets with presolve
(2.03x to 4.06x without presolve) over the award-winning solver PDLP

3 Shen and Pan [40] extended Monteiro and Svaiter’s ergodic O(1/k) iteration complexity
result with respect to the ε-subdifferential residual [31] from ADMM to sPADMM, which

can yield an O(1/
√
k) iteration complexity for the KKT residual of LP problems.

4 The HPR method without proximal terms is equivalent to Kim’s accelerated proximal
point method (PPM) applied to the Douglas-Rachford method in view of the relationship
between Halpern’s iteration and Kim’s accelerated PPM [23,38].

5 The Halpern PDHG for LP proposed in [29] corresponds to a special case of the HPR
method in [42] with one proximal term to be strongly convex and ρ = 1. Inspired by our
work, Lu and Yang [29], in their revised version, extended their approach by introducing the
reflected restarted Halpern PDHG (r2HPDHG), which adopts ρ = 2 within the framework of
the HPRmethod in [42]. By incorporating similar algorithmic enhancements as cuPDLP [28],
r2HPDHG achieves a 1.27x to 1.33x speedup over cuPDLP in their numerical experiments.
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with the tolerance of 10−8. Moreover, for the same accuracy, HPR-LP
successfully solves more problems than cuPDLP.jl does.

The remaining parts of this paper are organized as follows. In Section 2,
we briefly introduce the base algorithm, an HPR method with semi-proximal
terms, for solving LP. Then, in Section 3, we discuss the implementation of
HPR-LP, which incorporates a restart strategy and an update rule for the
penalty parameter. Section 4 provides extensive numerical results on different
LP benchmark sets. Finally, we conclude the paper in Section 5.

Notation. Let Rn be the n-dimensional real Euclidean space equipped with
an inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. We denote the nonnegative
orthant of Rn as Rn

+. For a matrix A ∈ Rm×n, we denote its transpose by

A∗ and its spectral norm by ∥A∥ :=
√
λ1 (AA∗), where λ1 (AA∗) represents

the largest eigenvalue of the symmetric matrix AA∗. Additionally, for any
self-adjoint positive semidefinite linear operator M : Rn → Rn, we define
the semi-norm ∥x∥M :=

√
⟨x,Mx⟩ for any x ∈ Rn. For any convex function

f : Rn → (−∞,+∞], we denote its effective domain as dom(f) := {x ∈
Rn | f(x) < +∞}, its subdifferential as ∂f(·), its conjugate as f∗(z) :=
supx∈Rn{⟨x, z⟩ − f(x)}, z ∈ Rn, and its proximal mapping as Proxf (x) :=
argminz∈Rn

{
f(z) + 1

2∥z − x∥2
}
, x ∈ Rn. Let C ⊆ Rn be a convex set. Denote

the indicator function over C by δC(·), i.e., for any x ∈ Rn, δC(x) = 0 if
x ∈ C, and δC(x) = +∞ if x /∈ C. We write the distance of x ∈ Rn to C
as dist(x,C) := infz∈C ∥z − x∥. For a given closed convex set C ⊆ Rn and
a given point x ∈ Rn, the Euclidean projection of x onto C is denoted by
ΠC(x) := argmin{∥x − z∥ | z ∈ C}. Moreover, for any x ∈ C, we use NC(x)
to denote the normal cone of C at x.

2 Preliminaries

In this section, we introduce an HPR method with semi-proximal terms for
solving LP problems. According to [36, Corollary 28.3.1], we know that (y∗, z∗) ∈
Rm×Rn is an optimal solution to problem (2) if and only if there exists x∗ ∈ Rn

such that (y∗, z∗, x∗) satisfies the following KKT system:

0 ∈ Ax∗ − b+ND(y∗), 0 ∈ z∗ +NC(x
∗), A∗y∗ + z∗ − c = 0. (3)

For any (y, z, x) ∈ Rm ×Rn ×Rn, the augmented Lagrangian function associ-
ated with the dual problem (2) is defined as

Lσ(y, z;x) := −⟨b, y⟩+ δD(y) + δ∗C(−z) + ⟨x,A∗y+ z − c⟩+ σ

2
∥A∗y+ z − c∥2,

where σ > 0 is a given penalty parameter. For notational convenience, let w :=
(y, z, x) ∈ Rm × Rn × Rn. Then, an HPR method with semi-proximal terms
proposed in [42] for solving problems (1) and (2) is presented in Algorithm 1.

Algorithm 1 corresponds to the accelerated preconditioned (semi-proximal)
ADMM (pADMM) introduced in [42] with α = 2, where Step 5 is the Halpern
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Algorithm 1 An HPR method with semi-proximal terms for the problem (2)

1: Input: Set the penalty parameter σ > 0. Let T1 : Rm → Rm be a self-adjoint positive
semidefinite linear operator such that T1+σAA∗ is positive definite. Denote w = (y, z, x)
and w̄ = (ȳ, z̄, x̄). Choose an initial point w0 = (y0, z0, x0) ∈ D × Rn × Rn.

2: for k = 0, 1, ..., do

3: Step 1. z̄k+1 = argmin
z∈Rn

{
Lσ

(
yk, z;xk

)}
;

4: Step 2. x̄k+1 = xk + σ(A∗yk + z̄k+1 − c);

5: Step 3. ȳk+1 = argmin
y∈Rm

{
Lσ

(
y, z̄k+1; x̄k+1

)
+

σ

2
∥y − yk∥2T1

}
;

6: Step 4. ŵk+1 = 2w̄k+1 − wk;

7: Step 5. wk+1 =
1

k + 2
w0 +

k + 1

k + 2
ŵk+1;

8: end for

9: Output: Iteration sequence {w̄k}.

iteration with a stepsize of 1
k+2 [20,25]. We refer to it as an HPR method

with semi-proximal terms because, for the convex optimization problem (27),
the Halpern accelerating pADMM (without proximal terms) [42] is equivalent
to the HPR method without proximal terms [46], whose proof can be found
in Appendix A. Now, to discuss the global convergence of the HPR method
with semi-proximal terms presented in Algorithm 1, we make the following
assumption:

Assumption 1 There exists a vector (y∗, z∗, x∗) ∈ Rm × Rn × Rn satisfying
the KKT system (3).

Under Assumption 1, solving problems (1) and (2) is equivalent to finding a
w∗ ∈ Rm×Rn×Rn such that 0 ∈ T w∗, where the maximal monotone operator
T is defined by

T w =

−b+ND(y) +Ax
−∂δ∗C(−z) + x
c−A∗y − z

 , ∀w = (y, z, x) ∈ Rm × Rn × Rn. (4)

Consider the following self-adjoint linear operator M : Rm × Rn × Rn →
Rm × Rn × Rn,

M =

σAA∗ + σT1 0 A
0 0 0
A∗ 0 1

σ In

 , (5)

where In denotes the identity matrix in Rn×n. We can establish the equivalence
between the HPRmethod with semi-proximal terms and the accelerated dPPM
[42] in the following proposition.

Proposition 1 Consider the operators T defined in (4) and M defined in
(5). Then the sequence

{
wk

}
generated by the HPR method with semi-proximal
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terms in Algorithm 1 coincides with the sequence
{
wk

}
generated by the fol-

lowing accelerated dPPM
w̄k+1 = (M+ T )−1Mwk,

ŵk+1 = 2w̄k+1 − wk,

wk+1 =
1

k + 2
w0 +

k + 1

k + 2
ŵk+1,

with the same initial point w0 ∈ D × Rn × Rn.

Proof This result can be derived similarly from [42, Proposition 3.2]. ⊓⊔

By utilizing the equivalence in Proposition 1, we can establish the global
convergence of the HPR method with semi-proximal terms, as presented in
the following proposition.

Proposition 2 (Corollary 3.5 in [42]) Suppose that Assumption 1 holds.
Then the sequence {w̄k} = {(ȳk, z̄k, x̄k)} generated by the HPR method with
semi-proximal terms in Algorithm 1 converges to the point w∗ = (y∗, z∗, x∗),
where (y∗, z∗) solves problem (2) and x∗ solves problem (1).

Moreover, the equivalence in Proposition 1, together with the iteration com-
plexity of the Halpern iteration [25], yields the following iteration complexity
for the HPR method with semi-proximal terms:

Proposition 3 (Proposition 2.9 in [42]) Suppose that Assumption 1 holds.
Then the sequences {wk} and {ŵk} generated by the HPR method with semi-
proximal terms in Algorithm 1 satisfy

∥wk − ŵk+1∥M ≤
2
∥∥w0 − w∗

∥∥
M

k + 1
, ∀k ≥ 0 and w∗ ∈ T −1(0). (6)

To further analyze the complexity of the HPR method with semi-proximal
terms in terms of the KKT residual and the objective error, we consider the
residual mapping associated with the KKT system (3), as introduced in [21]:

R(w) =

 y −ΠD(y −Ax+ b)
x−ΠC(x− z)
c−A∗y − z

 , ∀w = (y, z, x) ∈ Rm × Rn × Rn. (7)

Additionally, let {(ȳk, z̄k)} be the sequence generated by Algorithm 1. We
define the objective error as follows:

h(ȳk+1, z̄k+1) := −⟨b, ȳk+1⟩+ δ∗C(−z̄k+1) + ⟨b, y∗⟩ − δ∗C(−z∗), ∀k ≥ 0,

where (y∗, z∗) is the limit point of the sequence {(ȳk, z̄k)}. Based on the it-
eration complexity presented in Proposition 3, we can derive the complexity
result of the HPR method with semi-proximal terms in terms of the KKT
residual and the objective error, as stated in the following theorem.
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Theorem 1 (Theorem 3.7 in [42]) Suppose that Assumption 1 holds. Let
{(ȳk, z̄k, x̄k)} be the sequence generated by the HPR method with semi-proximal
terms in Algorithm 1, and let w∗ = (y∗, z∗, x∗) be the limit point of the sequence
{(ȳk, z̄k, x̄k)} and R0 = ∥w0−w∗∥M. Then for all k ≥ 0, we have the following
iteration complexity bounds:

∥R(w̄k+1)∥ ≤
(
σ(∥A∥+ ∥

√
T1∥) + 1√

σ

)
R0

(k + 1)
(8)

and(
−1√
σ
∥x∗∥

)
R0

(k + 1)
≤ h(ȳk+1, z̄k+1) ≤

(
3R0 +

1√
σ
∥x∗∥

)
R0

(k + 1)
. (9)

Remark 1 There are several complexity results related to the KKT residual
of ADMM-type methods for solving LP in the literature. In the ergodic sense,
Monteiro and Svaiter [31] established an ergodic O(1/k) iteration complexity
for ADMM with a unit dual step size in terms of the ε-subdifferential, which, as
mentioned in the introduction, implies an ergodic O(1/

√
k) iteration complex-

ity for the KKT residual. Recently, building on the ergodic O(1/k) iteration
complexity of the PDHG established by Chambolle and Pock [9,10], Apple-
gate et al. [3] derived an ergodic O(1/k) iteration complexity of the PDHG for
solving LP, measured by primal feasibility violation, dual feasibility violation,
and the primal-dual gap, all of which can be inferred from the KKT residual.
In the nonergodic sense, Cui et al. [11] showed that a majorized ADMM with
semi-proximal terms achieves a nonergodic O(1/

√
k) iteration complexity for

the KKT residual. Compared to these existing methods, the HPR method
attains a much improved O(1/k) iteration complexity in terms of the KKT
residual as in (8), providing stronger theoretical guarantees that, in turn, sup-
port practical advantages in solving large-scale LP problems efficiently. For
more complexity results, please refer to [42] and the references therein.

3 A Halpern Peaceman-Rachford solver for solving LP

In this section, we present an HPR-LP solver for solving large-scale LP prob-
lems, as outlined in Algorithm 2. In the HPR-LP solver, we integrate a restart
strategy and adaptive updates of the penalty parameter σ into the HPR
method with semi-proximal terms.

3.1 Restart criteria

From Theorem 1, we know that the base algorithm, the HPR method with
semi-proximal terms, achieves the iteration complexity of O(1/k) with respect
to the KKT residual and the objective error. This result is derived from the
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Algorithm 2 HPR-LP: A Halpern Peaceman-Rachford method for the prob-
lem (2)

1: Input: Let T1 : Rm → Rm be a self-adjoint positive semidefinite linear operator such
that T1 + AA∗ is positive definite. Denote w = (y, z, x) and w̄ = (ȳ, z̄, x̄). Choose an
initial point w0,0 = (y0,0, z0,0, x0,0) ∈ D × Rn × Rn.

2: Initialization: Set the outer loop counter r = 0, the total loop counter k = 0, and the
initial penalty parameter σ0 > 0.

3: repeat

4: initialize the inner loop: set inner loop counter t = 0;

5: repeat

6: z̄r,t+1 = argmin
z∈Rn

{
Lσr

(
yr,t, z;xr,t

)}
;

7: x̄r,t+1 = xr,t + σr(A
∗yr,t + z̄r,t+1 − c);

8: ȳr,t+1 = argmin
y∈Rm

{
Lσr

(
y, z̄r,t+1; x̄r,t+1

)
+

σr

2
∥y − yr,t∥2T1

}
;

9: ŵr,t+1 = 2w̄r,t+1 − wr,t;

10: wr,t+1 =
1

t+ 2
wr,0 +

t+ 1

t+ 2
ŵr,t+1;

11: t = t+ 1, k = k + 1;
12: until one of the restart criteria holds or termination criteria hold

13: restart the inner loop: τr = t, wr+1,0 = w̄r,τr ,

14: σr+1 = SigmaUpdate(w̄r,τr , wr,0, T1, A), r = r + 1;

15: until termination criteria hold

16: Output: {w̄r,t}.

complexity analysis in Proposition 3, which offers a tighter bound for designing
restart criteria. Thus, we define the following merit function:

Rr,t := ∥wr,t − w∗∥M, ∀r ≥ 0, t ≥ 0,

where w∗ is an arbitrary solution to the KKT system (3). Note that Rr,0 repre-
sents the upper bound (disregarding the factor 2) in the complexity results in
Proposition 3 at the r-th outer loop. A natural strategy is to restart the inner
loop when Rr,t has sufficiently decreased compared to Rr,0, i.e., Rr,t ≤ α1Rr,0,
where α1 ∈ (0, 1). Unfortunately, in practice, if α1 is too small, the algorithm
is likely to fail to achieve this sufficient reduction. Hence, we also consider the
length of the inner loop and the oscillation of the merit function Rr,t. These
ideas have been implemented in PDLP with different merit functions [2,28,
30].6 In addition, since w∗ is unknown, we approximate Rr,t using the following
expression, inspired by Proposition 3:

R̃r,t = ∥wr,t − ŵr,t+1∥M.

Consequently, the restart criteria in HPR-LP are defined as follows:

6 In [2], Applegate et al. used a normalized duality gap as the merit function, whereas Lu
et al. selected a weighted KKT residual as the merit function in [28,30].
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1. Sufficient decay of R̃r,t+1:

R̃r,t+1 ≤ α1R̃r,0; (10)

2. Necessary decay + no local progress of R̃r,t+1:

R̃r,t+1 ≤ α2R̃r,0 and R̃r,t+1 > R̃r,t; (11)

3. Long inner loop:
t ≥ α3k, (12)

where α1 ∈ (0, α2), α2 ∈ (0, 1), and α3 ∈ (0, 1). Once any of the three restart
criteria is met, we restart the inner loop for the (r+1)-th iteration, set wr+1,0 =
w̄r,τr , and update σr+1.

3.2 Update rule for σ

The update rule for σ in HPR-LP is also derived from the complexity results
of the HPR method with semi-proximal terms in Proposition 3. Specifically,
we update σr+1 at the (r+1)-th restart for any r ≥ 0 by solving the following
optimization problem:

σr+1 := argmin
σ

∥∥wr+1,0 − w∗∥∥2
M , (13)

where
∥∥wr+1,0 − w∗

∥∥
M represents the upper bound of the complexity results

in Proposition 3 at the (r+1)-th outer loop. A smaller upper bound is expected
to lead to a smaller ∥wr+1,t − ŵr+1,t+1∥M for any t ≥ 0, which further results
in a smaller KKT residual ∥R(w̄r+1,t+1)∥. Substituting the definition of M
from (5) into (13), we derive

σr+1 = argmin
σ

∥∥wr+1,0 − w∗∥∥2
M

= argmin
σ

(
σ∥yr+1,0 − y∗∥2T1

+ σ−1∥xr+1,0 − x∗ + σA∗(yr+1,0 − y∗)∥2
)

=

√
∥xr+1,0 − x∗∥2

∥yr+1,0 − y∗∥2T1
+ ∥A∗(yr+1,0 − y∗)∥2

.

(14)
Since computing ∥xr+1,0 − x∗∥ and ∥yr+1,0 − y∗∥2T1

+ ∥A∗(yr+1,0 − y∗)∥2 are
not implementable, we approximate these terms in HPR-LP using

∆x := ∥x̄r,τr − xr,0∥ and ∆y :=
√

∥ȳr,τr − yr,0∥2T1
+ ∥A∗(ȳr,τr − yr,0)∥2,

(15)
respectively. Consequently, we update σr+1 as follows:

σr+1 =
∆x

∆y
. (16)

Note that the approximations ∆x and ∆y may deviate significantly from the
true values, so we update σ using formula (16) only when the following con-
ditions are met; otherwise, we reset σ to 1:
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1. ∆x and ∆y are within a suitable range:

∆x ∈ (10−16, 1012), ∆y ∈ (10−16, 1012); (17)

2. The relative infeasibilities of primal and dual problems should not differ
excessively:

errord
errorp

∈ (10−8, 108), (18)

where

errorp :=
∥ΠD(b−Ax̄r,τr )∥

1 + ∥b∥
, errord :=

∥c−A∗ȳr,τr − z̄r,τr∥
1 + ∥c∥

.

In summary, the update rule for σ is presented in Algorithm 3.

Algorithm 3 SigmaUpdate

1: Input: (w̄r,τr , wr,0, T1, A).
2: Calculate ∆x and ∆y defined in (15);
3: if conditions (17) and (18) are satisfied then

4: σr+1 =
∆x

∆y
;

5: else
6: σr+1 = 1;
7: end if
8: Output: σr+1.

Remark 2 The update rule for σ is not only applicable to LP problems but
can also be directly extended to the HPR method with semi-proximal terms
[42] for solving more general convex optimization problems (27).

We discuss two special choices of proximal operator T1 to obtain the update
formula of σ as follows. For other choices of T1, one can use (16) to determine
σ.

1. T1 = 0. For example, consider the LP problems without inequality con-
straint (i.e., m2 = 0). At the r-th outer loop and t-th inner loop, ȳr,t+1

can be obtained by solving the following linear equations:

AA∗ȳr,t+1 =
1

σ
(b−A(x̄r,t+1 + σ(z̄r,t+1 − c))). (19)

Solving the linear equations (19) by the direct method is affordable in
many applications such as in the optimal transport problem [45] or the
Wasserstein barycenter problem [46]. According to (16), if conditions (17)
and (18) are satisfied, then σr+1 is computed as:

σr+1 =
∥x̄r,τr − xr,0∥

∥A∗(ȳr,τr − yr,0)∥
. (20)
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2. T1 = λIm −AA∗ with λ ≥ λ1(AA∗) as proposed in [14,9,43]. This applies
when inequality constraints are present (i.e., m2 > 0) or when solving the
linear equations (19) directly is not affordable. In this case, ȳr,t+1

1 = yr,t1 +
1

λ
(b1/σ −A1Ry),

ȳr,t+1
2 = ΠRm2

+

(
yr,t2 + 1

λ (b2/σ −A2Ry)
)
,

(21)

where Ry := x̄r,t+1/σ + (A∗yr,t + z̄r,t+1 − c). If conditions (17) and (18)
are satisfied, then σr+1 is given by:

σr+1 =
1√
λ

∥x̄r,τr − xr,0∥
∥ȳr,τr − yr,0∥

. (22)

Remark 3 The formula (22) is similar to the primal weight ω update formula
with θ = 1 in Algorithm 3 of [2], except for the inclusion of the term λ.

3.3 The GPU implementation of the HPR-LP

We first present the update formulas for each subproblem in HPR-LP (Steps
6-8). Specifically, for any r ≥ 0 and t ≥ 0, the update of z̄r,t+1 is given by:

z̄r,t+1 = argmin
z∈Rn

{
Lσr

(
yr,t, z;xr,t

)}
=

1

σr

(
ΠC

(
xr,t + σr(A

∗yr,t − c)
)
−
(
xr,t + σr(A

∗yr,t − c)
))

.
(23)

Next, the update of x̄r,t+1 is:

x̄r,t+1 = xr,t + σr(A
∗yr,t + z̄r,t+1 − c) = ΠC

(
xr,t + σr(A

∗yr,t − c)
)
. (24)

For general LP problems, we set T1 = λIm − AA∗ with λ ≥ λ1(AA∗) in the
HPR-LP. Consequently, following from (21) and (24), the update for ȳr,t+1 is
given by: 

ȳr,t+1
1 = yr,t1 +

1

λσr

(
b1 −A1(2x̄

r,t+1 − xr,t)
)
,

ȳr,t+1
2 = ΠRm2

+

(
yr,t2 +

1

λσr

(
b2 −A2(2x̄

r,t+1 − xr,t)
))

.
(25)

By combining (23), (24), and (25), we observe that it is not necessary to com-
pute z̄r,t+1 at every iteration. Instead, we only need to evaluate z̄r,t+1 using
(23) when checking the termination criteria for stopping HPR-LP. Further-
more, the update of (23), (24), and (25) mainly involves the matrix-vector
multiplications, vector additions, and projections. The overall per-iteration
complexity of HPR-LP is O(nnz(A)), where nnz(A) denotes the number of
nonzero entries in A.

Moreover, to fully utilize the parallel computing power of GPUs, we imple-
ment custom CUDA kernels for (23), (24), and (25). For matrix-vector multi-
plications, we utilize cusparseSpMV() from the cuSPARSE library, which ap-
plies the CUSPARSE SPMV CSR ALG2 algorithm to ensure deterministic results.
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4 Numerical experiments

In this section, we compare the performance of HPR-LP implemented in Ju-
lia [6] with cuPDLP.jl [28] on a GPU. The experimental setup is detailed in
Section 4.1. Section 4.2 discusses the performance of these two solvers on Mit-
telmann’s LP benchmark set.7 Section 4.3 presents numerical results on LP
relaxations of instances from the MIPLIB 2017 collection [17]. Finally, Section
4.4 highlights the numerical results on extremely large instances, including
LPs generated from quadratic assignment problems (QAPs) [8], the “zib03”
instance as discussed by Koch et al. [24], and the LP formulation of the
PageRank problem [32].

4.1 Experimental setup

Benchmark datasets. We conduct extensive performance experiments on
both classical benchmark sets and extremely large-scale instances. Specifically,
we evaluate HPR-LP and cuPDLP.jl [28] on two classic benchmark datasets:
Mittelmann’s LP benchmark set and LP relaxations of instances from the MI-
PLIB 2017 collection. We use 49 publicly available Mittelmann’s LP bench-
mark instances. For the MIPLIB 2017 set, we initially select 383 instances
based on the criteria outlined in [28]. After excluding three instances during
Gurobi’s presolve [19], we retain 380 instances.8 We then split the MIP relax-
ations into three classes based on the number of nonzeros in the constraint
matrix, as shown in Table 1, following the approach in [28]. In addition, to
further explore the limits of the capability of HPR-LP, we employ several ex-
tremely large-scale LP problems referenced in [30], including LPs generated
from QAPs [8] the “zib03” instance from [24], and several instances of PageR-
ank problem [32].

Table 1: Scales of instances in MIP relaxations.

Small Medium Large

Number of nonzeros 100K-1M 1M-10M >10M

Number of instances 268 94 18

Software and computing environment. HPR-LP is implemented in Julia
[6], referred to as HPR-LP.jl. Similarly, cuPDLP.jl [28], the GPU version of
PDLP, is also implemented in Julia.9 All tested solvers are run on an NVIDIA

7 https://plato.asu.edu/ftp/lpfeas.html.
8 Two instances are identified as unbounded by Gurobi’s presolve, and one instance is

solved by Gurobi’s presolve.
9 We downloaded the cuPDLP.jl from https://github.com/jinwen-yang/cuPDLP.jl on

July 24th, 2024. The infeasibility detection function of cuPDLP.jl is disabled.

https://plato.asu.edu/ftp/lpfeas.html
https://github.com/jinwen-yang/cuPDLP.jl
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A100-SXM4-80GB GPU with CUDA 12.3, and the experiments are conducted
in Julia 1.10.4 on Ubuntu 22.04.3 LTS.

Presolve and preconditioning. To assess the impact of presolve on the
FOMs, we compare all tested algorithms on two sets of instances: the original
instances without presolve and the instances with presolve by Gurobi 11.0.3
(academic license). For preconditioning in HPR-LP, we perform 10 iterations
of Ruiz scaling [37], followed by the bidiagonal preconditioning used by Pock
and Chambolle [35] with α = 1. Finally, we normalize b and c divided by ∥b∥+1
and ∥c∥+1, respectively. For cuPDLP.jl [28], we use the default preconditioning
settings.

Initialization and parameter setting. We initialize HPR-LP with the ori-
gin point and set the penalty parameter σ0 = 1. After preconditioning, we
choose T1 = λ1(AA∗)Im−AA∗ and compute λ1(AA∗) using the power method
[18]. In HPR-LP, the restart criteria are based on conditions (10), (11), and
(12), with parameters α1 = 0.2, α2 = 0.6 , and α3 = 0.2. The penalty param-
eter σ is updated using formula (22). For cuPDLP.jl [28], the default settings
are applied.

Termination criteria. In HPR-LP, the sequence {w̄r,t} is used to check the
stopping criteria, which automatically satisfies x̄r,t ∈ C and ȳr,t ∈ D for any
r ≥ 0, and t ≥ 1. We terminate HPR-LP when the following stopping criteria
used in PDLP [2,28,30] are satisfied for the tolerance ε ∈ (0,∞):

|⟨b, y⟩ − δ∗C(−z)− ⟨c, x⟩| ≤ ε (1 + |⟨b, y⟩ − δ∗C(−z)|+ |⟨c, x⟩|) ,
∥ΠD(b−Ax)∥ ≤ ε (1 + ∥b∥) ,
∥c−A∗y − z∥ ≤ ε (1 + ∥c∥) .

We evaluate the performance of all tested algorithms with ε = 10−4, 10−6, and
10−8 for all the datasets. Moreover, in HPR-LP.jl, we check the termination
and restart criteria every 150 iterations, whereas cuPDLP.jl uses its default
setting of checking termination criteria every 64 iterations.

Time limit. In Section 4.3, we impose 15000 seconds as the time limit in Mit-
telmann’s benchmark. For Section 4.2, we impose a time limit of 3600 seconds
on instances with small-sized and medium-sized instances, and a time limit of
18000 seconds for large instances. For Section 4.4, we impose 18000 seconds as
the time limit for the LP instances generated by QAPs and PageRank prob-
lems, and 36000 seconds for the “zib03” instance.

Shifted geometric mean. We use the shifted geometric mean of solving
time, as employed in Mittelmann’s benchmarks, to measure the performance
of solvers on a collection of problems. Specifically, the shifted geometric mean
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is defined as

(

n∏
i=1

(ti +∆))1/n −∆,

where ti is the solving time in seconds for the i-th instance. We shift by
∆ = 10 and denote this measure as SGM10. If an instance remains unsolved,
the solving time is set to the corresponding time limit. As with cuPDLP.jl [28],
we exclude the time required for reading data, presolving, and preconditioning.
For cuPDLP.jl, we use the default timing settings. For HPR-LP.jl, in addition
to the algorithm runtime, we also include the time spent on the power method.

4.2 Mittelmann’s LP benchmark set

Mittelmann’s LP benchmark set is a standard benchmark for evaluating the
numerical performance of different LP solvers. In this experiment, we first
analyze the impact of the restart strategy, the Halpern iteration, the update
rule for σ, and the relaxation step (Step 9 in Algorithm 2). We then compare
HPR-LP.jl with cuPDLP.jl on Mittelmann’s LP benchmark set.

Figure 1 summarizes the relative impact of HPR-LP’s enhancements on 49
instances of Mittelmann’s LP benchmark set without presolve at a tolerance of
10−8. As shown in subtable (a) of Figure 1, the enhancements described in Sec-
tion 3 significantly improve the performance of the baseline Douglas-Rachford
(DR) method, which corresponds to Steps 1–3 in Algorithm 1. Meanwhile,
subfigure (b) of Figure 1 presents the normalized SGM10 values, computed
relative to the baseline DR method, offering a clear visual representation of
performance gains. Specifically, incorporating restart criteria and the Halpern
iteration, the Halpern DR method for LP (HDR-LP) with a fixed σ solves 4
more problems than the DR method and achieves a 2.30× speedup in terms
of SGM10. Furthermore, introducing the adaptive update rule for σ allows
HDR-LP to solve 9 more problems than HDR-LP with a fixed σ, resulting in
a 5.20× speedup in terms of SGM10. Finally, by incorporating an additional
relaxation step (Step 9 in Algorithm 2), HPR-LP benefits from a larger step
size than HDR-LP, leading to a 1.67× speedup over HDR-LP in terms of
SGM10.
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(a) SGM10 and the number of solved problems.

Enhancements Solved SGM10

DR 27 2087.3

+ restart & Halpern (=HDR-LP with fixed σ) 31 905.7

+ σ update (=HDR-LP) 42 174.1

+ relaxation (=HPR-LP) 43 103.8

DR +restart & Halpern +  update + relaxation (= HPR-LP)

5.0 10
-2

8.3 10
-2

4.3 10
-1

1.0 10
0

N
o

rm
a

liz
e

d
 S

G
M

1
0

(b) Normalized SGM10.

Fig. 1: Relative impact of HPR-LP’s enhancements on Mittelmann’s LP
benchmark set without presolve.

The numerical performance of HPR-LP.jl and cuPDLP.jl, both with and
without presolve, is presented in Tables 2 and 3, respectively. The main results
are summarized as follows:

• HPR-LP.jl consistently solves 3 to 5 more problems than cuPDLP.jl does
across all tolerance levels, as shown in Tables 2 and 3.

• In terms of SGM10, HPR-LP.jl outperforms cuPDLP.jl on Mittelmann’s
LP benchmark set across all tolerance levels. For instance, as shown in
Table 2, HPR-LP.jl achieves a 3.71x speedup over cuPDLP.jl to obtain a
solution with a 10−8 relative accuracy for the presolved dataset. Similarly,
in Table 3, HPR-LP.jl achieves a 2.68x speedup over cuPDLP.jl to attain
the same tolerance for the unpresolved dataset.
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• HPR-LP.jl exhibits better performance on the presolved dataset compared
to the unpresolved dataset, since HPR-LP.jl solves more problems on the
presolved Mittelmann’s LP benchmark set across all tolerance levels.

Table 2: Numerical performance of different solvers on 49 instances of
Mittelmann’s LP benchmark set with presolve.

Tolerance 10−4 10−6 10−8

Solvers SGM10 Solved SGM10 Solved SGM10 Solved

cuPDLP.jl 60.0 46 118.6 45 220.6 43

HPR-LP.jl 17.4 49 31.8 49 59.4 48

Table 3: Numerical performance of different solvers on 49 instances of
Mittelmann’s LP benchmark set without presolve.

Tolerance 10−4 10−6 10−8

Solvers SGM10 Solved SGM10 Solved SGM10 Solved

cuPDLP.jl 76.9 42 156.2 41 277.9 40

HPR-LP.jl 30.2 47 69.1 44 103.8 43

To further compare HPR-LP.jl with cuPDLP.jl, we present the shifted geo-
metric mean of iteration counts for different solvers on 49 instances of Mittel-
mann’s LP benchmark set in Table 4, similar to the SGM10 metric for time. As
shown in Table 4, HPR-LP.jl requires fewer iterations than cuPDLP.jl across
different tolerance levels. Additionally, Table 5 reports the per-iteration time
of both solvers. On average, the per-iteration time of cuPDLP.jl is 2.59× that
of HPR-LP.jl with presolve and 2.22× without presolve. One possible reason
is that cuPDLP.jl employs a line search strategy to achieve a larger step size,
which incurs significant computational overhead [28]. In contrast, HPR-LP.jl
makes use of the theoretical advance in [42] to choose the desirable relax-
ation parameter value of 2 (Step 9 in Algorithm 2) to obtain a large step size,
providing a guaranteed theoretical foundation for simpler and more efficient
implementation.
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Table 4: Shifted geometric mean of iteration counts for different solvers on 49
instances of Mittelmann’s LP benchmark set, with and without presolve.

With Presolve Without Presolve

Solver 10−4 10−6 10−8 10−4 10−6 10−8

cuPDLP.jl 47694.3 120748.1 253827.3 42997.0 125972.9 260003.4

HPR-LP.jl 27661.1 71380.7 150375.0 36018.2 115121.2 206069.4

Table 5: Per-iteration time in seconds of different solves for Mittelmann’s LP
benchmark set.

With Presolve Without Presolve

Metric HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

Median 1.4e-4 4.3e-4 2.0e-4 5.2e-4

Mean 3.7e-4 9.6e-4 5.4e-4 1.2e-3

Standard Deviation 9.0e-4 1.7e-3 7.2e-5 3.1e-4

Min 7.7e-5 3.0e-4 6.2e-3 1.1e-2

Max 6.2e-3 1.1e-2 1.1e-3 2.0e-3

4.3 MIP relaxations

In this experiment, we compare HPR-LP.jl with cuPDLP.jl on the MIP relax-
ations set, which includes 380 instances. The numerical performance of these
two solvers, both with and without presolve, is presented in Tables 6 and 7,
respectively. The main results are summarized as follows:

• With a 10−8 accuracy, HPR-LP.jl solves 7 more problems than cuPDLP.jl
does across the 380 presolved MIP relaxation instances, as shown in Table
6. Moreover, on the unpresolved dataset, HPR-LP.jl solves more problems
than cuPDLP.jl does in different stopping tolerances, as shown in Table 7.

• In terms of SGM10 across 380 instances, HPR-LP.jl consistently outper-
forms cuPDLP.jl at all tolerance levels. As shown in Table 6, HPR-LP.jl
achieves a 2.39x speedup over cuPDLP.jl to obtain a solution with a
10−8 accuracy for the presolved dataset. Similarly, in Table 7, HPR-LP.jl
achieves a 2.03x speedup over cuPDLP.jl to obtain a solution with the
same accuracy for the unpresolved dataset.
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Table 6: Numerical performance of different solvers on 380 instances of MIP
relaxations with presolve.

Classes
Tolerance 10−4 10−6 10−8

Solvers SGM10 Solved SGM10 Solved SGM10 Solved

Small (268)
cuPDLP.jl 8.4 262 15.3 261 23.7 254

HPR-LP.jl 4.1 262 6.3 261 8.9 261

Medium (94)
cuPDLP.jl 10.4 94 23.6 92 35.4 92

HPR-LP.jl 5.8 94 11.0 92 15.8 92

Large (18)
cuPDLP.jl 31.7 17 64.1 17 102.4 17

HPR-LP.jl 22.9 17 44.0 17 76.0 17

Total (380)
cuPDLP.jl 9.6 373 18.6 370 28.4 363

HPR-LP.jl 5.1 373 8.3 370 11.9 370

Table 7: Numerical performance of different solvers on 380 instances of MIP
relaxations without presolve.

Classes
Tolerance 10−4 10−6 10−8

Solvers SGM10 Solved SGM10 Solved SGM10 Solved

Small (268)
cuPDLP.jl 11.5 266 20.0 262 27.7 258

HPR-LP.jl 4.6 267 7.6 265 12.6 259

Medium (94)
cuPDLP.jl 14.9 90 26.7 89 43.8 87

HPR-LP.jl 7.4 92 13.7 91 19.8 90

Large (18)
cuPDLP.jl 129.8 16 253.3 15 442.2 14

HPR-LP.jl 117.6 17 260.7 15 428.6 14

Total (380)
cuPDLP.jl 14.3 372 25.0 366 36.3 359

HPR-LP.jl 6.9 376 11.6 371 17.9 363

4.4 Large-scale applications: QAP, ZIB problem, and PageRank instances

In this experiment, we evaluate the performance of HPR-LP.jl and cuPDLP.jl
on extremely large-scale LP datasets. Specifically, we first apply Adams-Johnson
linearization [1] to generate LP instances of quadratic assignment problems
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(QAPs) from QAPLIB [8], formulated as follows:

min
x,s

∑
i,j

∑
k,l

aikbjlsijkl

s.t.
∑
i

sijkl = xkl, j, k, l = 1, . . . , N,∑
j

sijkl = xkl, i, k, l = 1, . . . , N,

sijkl = sklij , i, j, k, l = 1, . . . , N,

sijkl ≥ 0, i, j, k, l = 1, . . . , N,∑
j

xij = 1, i = 1, . . . , N,

∑
i

xij = 1, j = 1, . . . , N,

0 ≤ xij ≤ 1, i, j = 1, . . . , N,

(26)

where (aik)N×N represents the flow matrix, and (bjl)N×N represents the dis-
tance matrix in the facility location application. The solving time and SGM10
for the two tested algorithms on 20 QAP instances, both with and without
presolve, are presented in Tables 8 and 9, respectively. Across all tolerance
levels, HPR-LP.jl consistently outperforms cuPDLP.jl in terms of SGM10. For
example, HPR-LP.jl achieves a 5.70x speedup over cuPDLP.jl on the pre-
solved dataset in terms of SGM10 to obtain a solution with a 10−8 relative
accuracy, as shown in Table 8. On the unpresolved dataset, as shown in Table
9, HPR-LP.jl achieves a 2.57x speedup over cuPDLP.jl in terms of SGM10
for the same relative accuracy.
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Table 8: Solving time in seconds and SGM10 for different solvers on 20 QAP
instances [8] with presolve.

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

esc64a 5.8 5.4 6.2 7.0 6.9 14.6

lipa40a 0.6 5.5 3.5 35.2 19.3 240.2

lipa40b 0.5 3.2 2.5 11.4 13.7 93.8

lipa50a 6.2 11.2 8.2 72.7 38.5 365.3

lipa50b 0.9 7.0 5.8 20.3 32.6 172.1

lipa60a 2.5 20.8 12.4 141.8 85.5 1348.7

lipa60b 2.1 8.3 10.0 37.2 71.4 275.9

lipa70a 4.5 40.2 25.5 304.7 168.5 2111.9

lipa70b 4.8 15.0 22.0 76.0 129.3 571.2

sko56 1.8 18.0 8.1 108.5 100.0 550.0

sko64 3.1 28.6 12.3 183.4 125.0 1650.6

tai40a 0.5 3.8 1.9 12.9 14.3 99.9

tai40b 4.3 11.0 12.9 141.6 215.3 456.3

tai50a 1.0 6.4 4.2 24.4 31.4 186.8

tai50b 1.8 14.6 12.8 522.2 303.2 839.4

tai60a 2.7 9.1 8.4 46.6 66.1 344.3

tai60b 18.9 160.6 48.9 311.5 1099.8 7641.9

tai64c 2.1 4.9 2.1 5.6 2.6 5.5

tho40 0.5 7.7 1.8 44.3 14.5 360.1

wil50 1.3 5.9 4.1 34.3 56.1 341.2

SGM10 2.9 12.7 8.8 60.0 60.2 343.1
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Table 9: Solving time in seconds and SGM10 for different solvers on 20 QAP
instances [8] without presolve.

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

esc64a 7.6 7.8 8.6 9.0 10.0 13.9

lipa40a 4.2 13.7 37.7 112.7 322.6 1601.5

lipa40b 5.1 16.6 45.9 110.6 421.5 1317.4

lipa50a 14.6 36.8 103.2 285.8 756.4 2446.9

lipa50b 14.7 38.9 115.2 372.0 1187.3 4244.2

lipa60a 27.2 95.5 218.2 479.7 1961.1 4556.0

lipa60b 36.0 68.8 273.9 823.0 2642.0 7991.0

lipa70a 54.4 170.0 461.0 1115.0 3639.9 10585.7

lipa70b 75.9 154.5 534.7 1383.3 5287.8 15409.4

sko56 32.6 55.7 515.6 1123.7 8511.9 15220.3

sko64 37.5 85.1 357.0 994.5 4125.7 9047.3

tai40a 5.8 12.7 45.2 163.0 426.9 1342.8

tai40b 8.5 32.8 184.9 361.2 3898.6 13098.4

tai50a 15.3 29.0 126.0 283.6 995.9 3322.1

tai50b 16.4 62.5 449.5 836.4 8287.1 14482.2

tai60a 35.3 76.8 272.5 811.0 2408.6 8713.1

tai60b 62.6 163.6 1939.7 1663.0 18000.0 18000.0

tai64c 4.8 9.2 7.7 12.6 12.4 35.5

tho40 5.0 15.2 39.4 141.7 613.3 1405.6

wil50 16.4 43.7 170.8 491.2 1171.7 3581.3

SGM10 18.9 43.9 150.7 342.4 1246.4 3202.5

The numerical results of the instance “zib03” in Table 10 show that HPR-
LP.jl achieves a 4.47x speedup over cuPDLP.jl on the presolved dataset and
a 4.06x speedup on the unpresolved dataset, both in terms of SGM10, to
return a solution with a 10−8 relative accuracy. Moreover, we observe that
for a relative accuracy of 10−4, both HPR-LP.jl and cuPDLP.jl require more
solution time with presolve than without. One possible explanation is that
“zib03” has been preprocessed by CPLEX 11, and excessive preprocessing
may not always enhance algorithm performance. In some cases, it can even
be detrimental by introducing numerical issues and disrupting useful problem
structures. For instance, in this case, the coefficients of c originally range from
[1, 2], but after presolve, they shift to [1e-6, 3], potentially affecting numerical
stability.



22 Kaihuang Chen et al.

Table 10: Solving time in seconds for the “zib03” instance [24].

Tolerance 10−4 10−6 10−8

Solver HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

With presolvea 273.8 351.9 1317.2 1634.6 3685.8 16462.2

Without presolveb 154.2 237.7 1063.6 1963.9 4865.3 19746.4

a Although “zib03” has been preprocessed by CPLEX 11, we still apply Gurobi’s presolve function to
this data for consistency in the experimental setup. The matrix A in “zib03” contains 19,701,908
rows, 29,069,187 columns, and 104,300,584 non-zeros after presolve.

b The matrix A in “zib03” contains 19,731,970 rows, 29,128,799 columns, and 104,422,573 non-zeros
without presolve.

c The commercial LP solver COPT used 16.5 hours to solve this instance on an AMD Ryzen 9 5900X
[30].

Following the approach in [2], we generate multiple instances of the PageR-
ank problem with varying numbers of nodes. In this experiment, the presolve
procedure has minimal impact on these instances. Therefore, we focus on re-
porting the numerical results for all tested solvers on the original (unpresolved)
dataset, as summarized in Table 11. Across all tolerance levels, HPR-LP.jl con-
sistently outperforms cuPDLP.jl in terms of SGM10. For instance, on the un-
presolved dataset, HPR-LP.jl achieves a 2.16× speedup over cuPDLP.jl when
obtaining a solution with 10−8 relative accuracy, as shown in Table 11.

Table 11: Solving time in seconds and SGM10 for different solvers on 4
PageRank instances without presolve.

Tolerance 10−4 10−6 10−8

Nodes HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl HPR-LP.jl cuPDLP.jl

104 0.1 1.4 0.1 1.5 0.1 1.6

105 0.1 1.4 0.1 1.5 0.2 1.8

106 0.4 1.7 0.5 2.4 0.8 2.8

107 9.9 7.5 15.2 32.6 20.7 46.6

SGM10 2.0 2.8 2.8 6.3 3.6 7.8

5 Conclusion

In this paper, we developed an HPR-LP solver for solving large-scale LP prob-
lems, which integrates an adaptive strategy of restart and penalty parameter
update into an HPR method with semi-proximal terms. Extensive numerical
results on LP benchmark datasets showcased the efficiency of the HPR-LP
solver in computing solutions varying from low to high accuracy. Neverthe-
less, there are still a few instances where the HPR-LP solver fails to obtain
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solutions within the allocated time. Exploring an accelerated sPADMM with
a faster iteration complexity than O(1/k) in terms of the KKT residual may
be beneficial. One possible way to improve the performance of the HPR-LP
solver is to incorporate the fast Krasnosel’skii-Mann iteration, which can yield
an iteration complexity of o(1/k) in terms of the KKT residual and the ob-
jective error [42]. Another possible way is to design a similar algorithm with
a linear rate better than that possessed by sPADMM [21]. We leave these as
our future research directions.

A The equivalence between the Halpern accelerating pADMM
without proximal terms and the HPR method without proximal
terms

Let X, Y, and Z be three finite-dimensional real Euclidean spaces, each equipped with an
inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. In this appendix, we aim to establish the
equivalence between the HPR method without proximal terms [46] and the Halpern accel-
erating pADMM without proximal terms [42] for solving the following convex optimization
problem:

miny∈Y,z∈Z f1(y) + f2(z)
subject to B1y +B2z = c,

(27)

where f1 : Y → (−∞,+∞] and f2 : Z → (−∞,+∞] are two proper closed convex functions,
B1 : Y → X and B2 : Z → X are two given linear operators, and c ∈ X is a given point. Let
σ > 0 be a given penalty parameter. The augmented Lagrangian function of problem (27)
is defined by, for any (y, z, x) ∈ Y× Z× X,

Lσ(y, z;x) := f1(y) + f2(z) + ⟨x,B1y +B2z − c⟩+
σ

2
∥B1y +B2z − c∥2.

The dual of problem (27) is given by

max
x∈X

{−f∗
1 (−B∗

1x)− f∗
2 (−B∗

2x)− ⟨c, x⟩} , (28)

where B∗
1 : X → Y and B∗

2 : X → Z are the adjoint of B1 and B2, respectively. Subsequently,
the HPRmethod without proximal terms [46] and the Halpern accelerating pADMMwithout
proximal terms [42] for solving problem (27) are detailed in Algorithm 4 and Algorithm 5,
respectively.

Proposition 4 Assume that ∂f1(·)+σB∗
1B1 and ∂f2(·)+σB∗

2B2 are maximal and strongly
monotone, respectively. Let w0 = (y0, z0, x0) ∈ dom(f1)×dom(f2)×X. Then, the sequence

{(yk+1, zk+1, xk+ 1
2 )} generated by the HPR method without proximal terms in Algorithm

4, starting from the same initial point (y0, x0) ∈ dom(f1)×X, is equivalent to the sequence
{(ȳk+1, z̄k+1, x̄k+1)} produced by the Halpern accelerating pADMM without proximal terms
in Algorithm 5.

Proof Based on the assumptions that ∂f1(·)+σB∗
1B1 and ∂f2(·)+σB∗

2B2 are both maximal
and strongly monotone, we can conclude from [5, Corollary 11.17] that the solution to each
subproblem in both algorithms exists and is unique. We then prove the statement in the
proposition using the method of induction. For k = 0, due to the same initial point (y0, x0),
it is clear that:

z1 = z̄1, x
1
2 = x̄1, and y1 = ȳ1. (29)

Moreover, according to Steps 2, 4, and 5 in Algorithm 4, we know that x̃1 satisfies:

x̃1 = 1
2
(x̃0 + x1) + σ

2
B1(y0 − y1)

= 1
2
(x̃0 + x

1
2 + σ(B1y1 +B2z1 − c)) + σ

2
B1(y0 − y1)

= 1
2
(x

1
2 + x̃0 + σ(B1y0 +B2z1 − c))

= x
1
2 .

(30)
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Algorithm 4 An HPR method without proximal terms [46] for solving convex
optimization problem (27)

1: Input: y0 ∈ dom(f1), x0 ∈ X, and σ > 0.
2: Initialization: x̃0 := x0.
3: for k = 0, 1, ..., do

4: Step 1. zk+1 = argmin
z∈Z

{
Lσ(y

k, z; x̃k)
}
;

5: Step 2. xk+ 1
2 = x̃k + σ(B1y

k +B2z
k+1 − c);

6: Step 3. yk+1 = argmin
y∈Y

{
Lσ(y, z

k+1;xk+ 1
2 )

}
;

7: Step 4. xk+1 = xk+ 1
2 + σ(B1y

k+1 +B2z
k+1 − c);

8: Step 5. x̃k+1 =

(
1

k + 2
x̃0 +

k + 1

k + 2
xk+1

)
+

σ

k + 2

[
B1y

0 −B1y
k+1

]
;

9: end for

Algorithm 5 A Halpern accelerating pADMM without proximal terms [42]
for solving convex optimization problem (27)

1: Input: w0 = (y0, z0, x0) ∈ dom(f1)× dom(f2)×X, and σ > 0. Denote w = (y, z, x) and
w̄ = (ȳ, z̄, x̄).

2: for k = 0, 1, ..., do

3: Step 1. z̄k+1 = argmin
z∈Z

{
Lσ

(
yk, z;xk

)}
;

4: Step 2. x̄k+1 = xk + σ(B1y
k +B2z̄

k+1 − c);

5: Step 3. ȳk+1 = argmin
y∈Y

{
Lσ

(
y, z̄k+1; x̄k+1

)}
;

6: Step 4. ŵk+1 = 2w̄k+1 − wk;

7: Step 5. wk+1 =
1

k + 2
w0 +

k + 1

k + 2
ŵk+1;

8: end for

It follows from Step 1 in Algorithm 4 that z2 satisfies the following optimality condition:

0 ∈ ∂f2(z2) +B∗
2 x̃

1 + σB∗
2 (B1y1 +B2z2 − c)

⇐⇒ 0 ∈ ∂f2(z2) +B∗
2 (x

1
2 + σ(B1y1 +B2z2 − c)).

(31)

On the other hand, z̄2 obtained by Step 1 in Algorithm 5 should satisfy the following
optimality condition:

0 ∈ ∂f2(z̄2) +B∗
2 (x

1 + σ(B1y1 +B2z̄2 − c)). (32)

Substituting

x1 =
1

2
x0 +

1

2
(2x̄1 − x0) and y1 =

1

2
y0 +

1

2
(2ȳ1 − y0) (33)

from Steps 4 and 5 in Algorithm 5 into (32), we obtain:

0 ∈ ∂f2(z̄2) +B∗
2 (x̄

1 + σ(B1ȳ1 +B2z̄2 − c)).

This, together with (29) and (31), implies:

z2 = z̄2. (34)

Furthermore, according to Step 2 in Algorithm 4 and (30), we know that:

x
3
2 = x̃1 + σ(B1y

1 +B2z
2 − c) = x

1
2 + σ(B1y

1 +B2z
2 − c). (35)
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Also, from Step 2 in Algorithm 5 and (33), we know that x̄2 satisfies:

x̄2 = x1 + σ(B1y1 +B2z̄2 − c)
= x̄1 + σ(B1ȳ1 +B2z̄2 − c).

It follows from (29), (34), and (35) that:

x
3
2 = x̄2, (36)

which, together with (34), implies:
y2 = ȳ2 (37)

by comparing Step 3 in Algorithms 4 and 5. Hence, the statement is true for k = 1.
Now, assume that the statement holds for some k ≥ 1. Then, by the assumption of

induction, we have

yk+1 = ȳk+1, zk+1 = z̄k+1, and xk+ 1
2 = x̄k+1. (38)

According to Step 5 in Algorithm 4 and (38), we know that x̃k+1 satisfies

x̃k+1 =
(

1
k+2

x̃0 + k+1
k+2

xk+1
)
+ σ

k+2

[
B1y0 −B1yk+1

]
= 1

k+2
x̃0 + k+1

k+2
(xk+1/2 + σ(B1yk+1 +B2zk+1 − c)) + σ

k+2
B1(y0 − yk+1)

= 1
k+2

x0 + k+1
k+2

(x̄k+1 + σ(B1ȳk+1 +B2z̄k+1 − c)) + σ
k+2

B1(y0 − ȳk+1).

(39)

In addition, according to Step 1 in Algorithm 4, we know that zk+2 satisfies

0 ∈ ∂f2(zk+2) +B∗
2 x̃

k+1 + σB∗
2 (B1yk+1 +B2zk+2 − c). (40)

On the other hand, from Steps 2 and 5 in Algorithm 5, we know that xk+1 satisfies

xk+1 = 1
k+2

x0 + k+1
k+2

(2x̄k+1 − xk)

= 1
k+2

x0 + k+1
k+2

(x̄k+1 + σ(B1yk +B2z̄k+1 − c))
(41)

and yk+1 satisfies
yk+1 = 1

k+2
y0 + k+1

k+2
(2ȳk+1 − yk). (42)

In addition, from Step 1 in Algorithm 5, we have

0 ∈ ∂f2(z̄
k+2) +B∗

2 (x
k+1 + σ

(
B1y

k+1 +B2z̄
k+2 − c)

)
. (43)

Substituting (41) and (42) into (43), we can obtain

0 ∈ ∂f2(z̄k+2) +B∗
2

(
1

k+2
x0 + k+1

k+2
(x̄k+1 + σ(B1ȳk+1 +B2z̄k+1 − c))

)
+B∗

2

(
σ

k+2
B1(y0 − ȳk+1) + σ(B1ȳk+1 +B2z̄k+2 − c)

)
,

which together with (39) implies

0 ∈ ∂f2(z̄k+2) +B∗
2

(
x̃k+1 + σ(B1ȳk+1 +B2z̄k+2 − c)

)
.

It follows from (38) and (40) that
zk+2 = z̄k+2. (44)

Moreover, according to Step 2 in Algorithm 4, we know that xk+ 3
2 satisfies

xk+ 3
2 = x̃k+1 + σ(B1y

k+1 +B2z
k+2 − c). (45)

Also, from Step 2 in Algorithm 5, (39), (41) and (42), we know that x̄k+2 satisfies

x̄k+2 = xk+1 + σ(B1yk+1 +B2z̄k+2 − c)
= x̃k+1 + σ(B1ȳk+1 +B2z̄k+2 − c).
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It follows from (38), (44), and (45) that

xk+ 3
2 = x̄k+2. (46)

Since (z̄k+2, x̄k+2) = (zk+2, xk+ 3
2 ), then we have

yk+2 = ȳk+2 (47)

by comparing Step 3 in Algorithms 4 and 5. Hence, from (44), (46), and (47), we know that
the statement also holds for k + 1. Thus, by induction, we have completed the proof. ⊓⊔
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