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Abstract

In this paper, we study the Aubin property of the Karush-Kuhn-Tucker solution map-
ping for the nonlinear semidefinite programming (NLSDP) problem at a locally optimal
solution. In the literature, it is known that the Aubin property implies the constraint
nondegeneracy by Fusek [SIAM J. Optim. 23 (2013), pp. 1041-1061] and the second-order
sufficient condition by Ding et al. [SIAM J. Optim. 27 (2017), pp. 67-90]. Based on the
Mordukhovich criterion, here we further prove that the strong second-order sufficient con-
dition is also necessary for the Aubin property to hold. Consequently, several equivalent
conditions including the strong regularity are established for NLSDP’s Aubin property. To-
gether with the recent progress made by Chen et al. on the equivalence between the Aubin
property and the strong regularity for nonlinear second-order cone programming [SIAM
J. Optim., in press; arXiv:2406.13798v3 (2024)], this paper constitutes a significant step
forward in characterizing the Aubin property for general non-polyhedral C2-cone reducible
constrained optimization problems.
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sufficient condition, Constraint nondegeneracy, Strong regularity
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1 Introduction

Consider the constrained optimization problem

min
x∈X

f(x) s.t. G(x) ∈ K, (1.1)

where X and Y are two finite-dimensional real Hilbert spaces each endowed with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖, f : X → R and G : X → Y are twice continuously
differentiable functions, and K ⊆ Y is a closed convex set. The Lagrangian function of (1.1) is
defined by

L(x, y) := f(x) + 〈y,G(x)〉, (x; y) ∈ X × Y. (1.2)
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Here and throughout this paper, the notation (·; ·) signifies the arrangement of two vectors or
linear operators symbolically column-wise. Then the first-order optimality condition of (1.1) is
characterized by the Karush-Kuhn-Tucker (KKT) system

0 = ∇xL(x, y) and y ∈ NK(G(x)), (1.3)

where ∇xL(x, y) denotes the adjoint of L′
x(x, y), the partial derivative of L with respect to

x ∈ X , and NK denotes the normal cone of K in convex analysis [40]. For any solution
(x̄; ȳ) ∈ X × Y of the KKT system (1.3), we say that x̄ is a stationary point of (1.1) and ȳ is a
(Lagrange) multiplier at x̄. The set of all multipliers at x̄ is denoted by M(x̄).

The canonically perturbed version [7, Section 5.1.3] of (1.1) is given by

min
x∈X

f(x)− 〈a, x〉 s.t. G(x) + b ∈ K, (1.4)

where a ∈ X and b ∈ Y are the perturbation parameters. With L being the Lagrangian function
defined by (1.2), the KKT system of (1.4), as a perturbed KKT system of (1.1), is given by

a = ∇xL(x, y) and y ∈ NK(G(x) + b). (1.5)

Then, one can associate (1.5) with the solution mapping

SKKT(a, b) := {(x; y) | a = ∇xL(x, y), y ∈ NK(G(x) + b)}. (1.6)

As a core research topic in perturbation analysis of optimization problems, how the solution
set SKKT(a, b) of (1.5) varies along with (a; b) around the origin has been studied for a long
time [7, 14, 15, 21, 24, 34, 43]. In a landmark paper of Robinson [37], the definition of strong
regularity was introduced to extend the inverse and implicit function theorems to generalized
equations. Note that the KKT system (1.3) can be equivalently reformulated to the generalized
equation

0 ∈ Φ(x, y) :=

(
∇xL(x, y)
−G(x)

)
+

(
{0}

N−1
K (y)

)
. (1.7)

Then, we say that (x̄; ȳ) ∈ X × Y is a strongly regular solution of (1.7) (or the KKT system
(1.3)) if the inverse of the set-valued mapping

Φ(x, y) :=

(
∇2
xxL(x̄, ȳ)(x− x̄) +∇G(x̄)(y − ȳ)

−G(x̄)−G′(x̄)(x− x̄)

)
+

(
{0}

N−1
K (y)

)

has a Lipschitz continuous single-valued localization around (0; 0) ∈ X×Y for (x̄; ȳ), where∇2
xxL

is the partial Hessian of L with respect to x. According to [12], such a strong regularity condition
is equivalent to the condition that the solution mapping SKKT has a Lipschitz continuous single-
valued localization around ((0; 0); (x̄; ȳ)), or equivalently, the mapping Φ in (1.7) is strongly
metrically regular at (x̄; ȳ) for (0; 0). Another significant yet less restrictive concept in studying
the variation of SKKT(a, b) with respect to the perturbation is the Aubin property (cf. [43,
Section 9F] or [14, Section 3E] for a systematic introduction), which was originally called the
“pseudo-Lipschitzian” property by Aubin [1]. The Aubin property of SKKT holds at (0; 0) ∈
X ×Y for (x̄; ȳ) ∈ SKKT(0, 0) if there exist a constant κ > 0 and open neighborhoods U of (0; 0)
and V of (x̄; ȳ) such that

SKKT(a
′, b′) ∩ V ⊆ SKKT(a, b) + κ‖(a′; b′)− (a; b)‖BX×Y ∀ (a; b), (a′; b′) ∈ U ,

where BX×Y denotes the closed unit ball in X × Y centered at the origin. It is easy to see
from the definition that the Aubin property of SKKT holds at (0; 0) for (x̄; ȳ) if (x̄; ȳ) is a
strongly regular solution to (1.3). Moreover, such an Aubin property is equivalent to the metric
regularity or the linear openness of Φ at (x̄; ȳ) (e.g. [43, Theorem 9.43]).

Since the solution mapping SKKT is implicitly defined, verifying both the strong regularity
and the Aubin property from their definitions is generally unachievable. Consequently, char-
acterizations for the two conditions have evolved into a central topic in optimization theory
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and variational analysis. For conventional nonlinear programming with K in (1.1) being a con-
vex polyhedral cone, such characterizations have been well established for about three decades.
Specifically, Robinson [37] defined the strong second-order sufficient condition (SSOSC) for the
nonlinear programming problem. Moreover, at a stationary point x̄ satisfying the linear inde-
pendence constraint qualification (LICQ), he also showed in [37, Theorem 4.1] that the KKT
system is strongly regular at (x̄; ȳ) ∈ SKKT if the SSOSC holds at (x̄; ȳ). At the same time,
Kojima [27] introduced the concept of strong stability to stationary points of the nonlinear pro-
gramming problem, and showed in [27, Theorems 6.4 & 6.5] that for a locally optimal solution
satisfying the LICQ, it is strongly stable if and only if the SSOSC holds. It was later revealed
by Jongen et al. [23, Section 3] that the strong regularity and the strong stability are equivalent
for stationary points of nonlinear programming where the LICQ holds. Furthermore, the strong
regularity was characterized by Kummer [28] based on a generalized “implicit function theorem”
on nonsmooth equations, and one may refer to [22] and [26] for a related approach, especially
[26, Theorem 4.3] for a survey of equivalent characterizations. By combining the results of [37],
[27], and [26], one has that at a locally optimal solution of the nonlinear programming problem,
the strong regularity is equivalent to the condition that both the SSOSC and the LICQ hold (cf.
[6, Remark 4.11]). Such a result is also available in [6, Theorem 4.10] and [7, Proposition 5.38].
In addition to these equivalent characterizations of the strong regularity, a surprising result of
Dontchev and Rockafellar [13, Theorems 1, 4, & 5] for the nonlinear programming problem
is that the Aubin property of SKKT at (0; 0) for (x̄; ȳ) ∈ SKKT(0, 0), with x̄ being a locally
optimal solution, implies the strong regularity of the KKT system (1.3) at (x̄; ȳ). Consequently,
a comprehensive class of equivalent characterizations of the Aubin property for the nonlinear
programming problem was achieved.

When the set K in (1.1) is no longer a polyhedral set, characterizing these two concepts
becomes much more involved. A more realistic setting is that K is C2-cone reducible (cf.
[7, Definition 3.135]), which is practical enough for encompassing many important classes of
optimization problems, including the nonlinear programming, the nonlinear second-order cone
programming (NLSOCP), and the nonlinear semidefinite programming (NLSDP) [44]. In this
setting, the perturbation analysis of problem (1.1) has been extensively studied [3, 4, 5, 11,
45, 46], and characterizing the strong regularity via second-order optimality conditions has
been recognized as a prominent topic. Although deriving an equivalent characterization of the
strong regularity akin to [7, Proposition 5.38] for problem (1.1) in its general form has not been
achieved, achievements have been made for the most representative classes of problems with
significant importance in the form of (1.1).

According to [7, Theorem 5.24], the strong regularity of the KKT system (1.3) at a solution
(x̄; ȳ) implies that the constraint nondegeneracy condition holds at x̄ (or x̄ is nondegenerate,
cf. (2.13)). With the help of this result, Bonnans and Ramı́rez [5] established a counterpart
of [7, Proposition 5.38] for the NLSOCP problem. For the NLSDP problem, Sun [45] defined
the SSOSC by introducing an approximation set, and finally obtained a collection of equivalent
characterizations of the strong regularity condition, including the SSOSC accompanied by the
constraint nondegeneracy. These results properly extend the characterizations of the strong
regularity from the conventional nonlinear programming to problem (1.1) with K being a non-
polyhedral set. Nevertheless, for both the NLSOCP and the NLSDP problems, obtaining such
an extension for characterizing the Aubin property has been an open question for a long time.

The first step to address this issue was achieved by Outrata and Ramı́rez [33] (and the
erratum by Opazo, Outrata, and Ramı́rez [32]). They proved that, for a nondegenerate locally
optimal solution x̄ of the NLSOCP problem (i.e., (1.1) with K being the Cartesian product of
second-order cones), the Aubin property of a solution mapping (akin to (3.1)) at 0 ∈ X for x̄
implies the SSOSC, but under an assumption regarding the strict complementarity. Recently,
Chen et al. [8] finalized this conclusion by removing these assumptions and showed that, with
ȳ ∈ M(x̄), the Aubin property of SKKT at (0; 0) for (x̄; ȳ) is equivalent to the strong regularity
of (x̄; ȳ) to the KKT system, thus constituting for the NLSOCP a counterpart of the seminal
result of Dontchev and Rockafellar [13]. As a result, an extension of the characterizations
for the Aubin property is realized from the nonlinear programming problem to the NLSOCP
problem. Generally, if K is a C2-cone reducible set, another recent work [19, Theorem 5.14]
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utilized an assumption on relative interiors of subdifferential mappings to prove the equivalence
between the Aubin property of SKKT and the strong regularity of the KKT system, but such an
assumption is exactly the strict complementarity condition when applied to the desired NLSDP
problem.

In this paper, we study the characterizations of the Aubin property for the KKT solution
mapping of the NLSDP problem

min
x∈X

f(x) s.t. h(x) = 0, gj(x) ∈ S
pj
+ , j = 1, . . . , J, (1.8)

where h : X → R
m and gj : X → Spj , j = 1, . . . , J are twice continuously differentiable

functions, Spj is the linear space of pj × pj real symmetric matrices endowed with the inner
product 〈A,B〉 := trace(AB) for A,B ∈ Spj , where trace(·) denotes the sum of the diagonal
elements, and S

pj
+ is the closed convex cone of all positive semidefinite matrices in Spj . When

J = 1 in (1.8), the strong regularity of the corresponding KKT system is equivalent to the
SSOSC together with the constraint nondegeneracy [45, Theorem 4.1]. For the case that J > 1,
it is easy to see from the analysis in [45] that such an equivalence still holds. Moreover, in the
case that J = 1, Fusek [16] showed that the Aubin property at (0; 0) for a solution (x̄; ȳ) implies
the constraint nondegeneracy at x̄. Such a result was later extended by Klatte and Kummer
[25] to the general case of problem (1.1).

The main contribution of this paper is that, at a locally optimal solution x̄ of (1.8) with
ȳ ∈ M(x̄), we prove that the Aubin property of SKKT at (0; 0) for (x̄; ȳ) implies the SSOSC. We
achieve this by designing an auxiliary optimization problem and fully exploiting its properties,
and using the Mordukhovich criterion for characterizing the Aubin property [29]. We should
emphasize that the key tools we used in this paper are essentially different from those in [8] for
the NLSOCP. Specifically, the main progress in [8] is based on a lemma of alternative choices
on cones, and the fact that the spectral factorization associated with second-order cones admits
only two “eigenvalues” is indispensable. This approach can be used here when maxj{pj} ≤ 3,
but does not apply to the general cases. Consequently, it is not hard to see that the tools
in [8] are far from sufficient for deriving a counterpart of its main result in the setting of the
NLSDP problem (1.8). Based on the equivalence between the Aubin property and the strong
regularity established in this paper, we finally obtain a comprehensive collection of equivalent
characterizations of the Aubin property for the NLSDP problem (1.8).

The remaining parts of this paper are organized as follows. Section 2 introduces the notation,
the definitions, and the preliminary results used throughout this paper. In Section 3, we study
the implications of the Aubin property of the solution mapping SKKT for NLSDP, especially the
SSOSC. The characterizations of the Aubin property of SKKT for NLSDP are given in Section
4. We conclude this paper with some discussions in Section 5.

2 Notation and preliminaries

Let E and F be two finite-dimensional real Hilbert spaces each endowed with an inner product
〈·, ·〉 and its induced norm ‖ · ‖. The inner product on E × F is defined by 〈(z1; z′1), (z2; z

′
2)〉 :=

〈z1, z2〉+ 〈z′1, z
′
2〉 for all (z1; z2), (z

′
1; z

′
2) ∈ E ×F , and the norm ‖ · ‖ on E ×F is induced by this

inner product. For a vector z ∈ E (or a subspace E0 ⊆ E), z⊥ (or E⊥
0 ) denotes its orthogonal

complement in E . Given a set of vectors {z1, . . . , zr} ⊂ E , we use span {z1, . . . , zr} to denote
the linear subspace it spans. Given a cone C ⊆ E , C◦ := {v ∈ E | 〈v, z〉 ≤ 0 ∀ z ∈ C} is the
polar cone of C. For a linear operator A : E → F , we use A∗, rge(A) and ker(A) to denote
its adjoint, range space, and null space, respectively. Note that rge(A) = (ker(A∗))⊥. For a
continuously differentiable function ψ : E → F , we use ψ′(z) to denote the Fréchet derivative
or the Jacobian of ψ at z ∈ E , and define ∇ψ(z) := (ψ′(z))∗.

Given a matrix A ∈ R
l×q, we use Aik to denote the entry at the i-th row and the k-th column

of A, and use Ak to denote the k-th column of A. The transpose of A is denoted by A⊤. When
l = q, we use A−1 to denote the inverse of A if it is nonsingular. Given a subset S ⊆ {1, . . . , q},
we use |S| to denote its cardinality and use AS to denote the sub-matrix of A by eliminating
all the columns that are not indexed by S from A. For the given index sets I ⊆ {1, . . . , l} and
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S ⊆ {1, . . . , q}, we use AIS to denote the |I| × |S| sub-matrix of A by removing all the rows
and columns not in I and S, respectively. Given two matrices A,B ∈ R

l×q, A ◦ B denotes
their Hadamard product. The inner product of A,B is defined by 〈A,B〉 = trace(A⊤B), and
‖A‖ =

√
〈A,A〉 is the Frobenius norm. We use E to denote an all-ones matrix, whose dimension

will be specified from the context. For a matrix A ∈ Sp, we use A ≻ 0 (or A � 0) to say that A
is positive definite (or positive semidefinite). Moreover, A ≺ 0 (or A � 0) means that −A ≻ 0
(or −A � 0).

Given a set C ⊆ E , we use lin(C) to denote the largest linear subspace contained in C (the
lineality space of C), aff(C) to denote the smallest linear subspace that contains C (the affine
hull of C), intC to denote its topological interior, and clC to denote the closure of C. The
paratingent cone of C at z̄ is defined by

T P
C (z̄) := lim sup

z
C→z̄,tց0

C − z

t
,

where “lim sup” is the outer limit in Painlevé-Kuratowski convergence for subsets, and z
C
→ z̄

means that z → z̄ with z ∈ C. The regular (Fréchet) normal cone of C at z̄ ∈ C is defined by

N̂C(z̄) := {v ∈ E | 〈v, z − z̄〉 ≤ o(‖z − z̄‖) ∀ z ∈ C},

and the limiting (Mordukhovich) normal cone of C at z̄ ∈ C is defined by

NC(z̄) := lim sup
z

C→z̄

N̂C(z).

When C is a closed convex set, N̂C(z̄) coincides with NC(z̄), and both of them are simply called
the normal cone of C at z̄ (in convex analysis [40]), i.e.,

NC(z̄) =

{
{v ∈ E | 〈v, z − z̄〉 ≤ 0 ∀z ∈ C}, if z̄ ∈ C,

∅, otherwise.

When C is a closed convex set, the tangent cone TC(z̄) of C at z̄ ∈ C can be defined by
TC(z̄) := (NC(z̄))

◦ (cf. [43, Example 6.24]).
Given a function ψ : E → (−∞,∞] with z̄ ∈ E such that ψ(z̄) is finite, according to [43,

Theorem 8.9], the (limiting) subdifferential of ψ at z̄ is defined by

∂ψ(z̄) := {v | (v;−1) ∈ Nepiψ(z̄;ψ(z̄))}, (2.1)

where epiψ := {(z; t) | t ≥ ψ(z)} is the epigraph of ψ.
Given a set-valued mapping Ψ : E ⇒ F , we use gphΨ ⊆ E × F to denote the graph of Ψ,

i.e.,
gphΨ := {(z;w) ∈ E × F | w ∈ Ψ(z)}.

The strict graphical (paratingent) derivative of Ψ at (z̄; w̄) ∈ gphΨ is defined by

D∗Ψ(z̄, w̄)(u) = {v ∈ F | (u; v) ∈ T P
gphΨ(z̄; w̄)}, u ∈ E . (2.2)

Meanwhile, the limiting coderivative of Ψ at (z̄; w̄) ∈ gphΨ is defined by

D∗Ψ(z̄, w̄)(v) := {u ∈ E | (u;−v) ∈ NgphΨ(z̄; w̄)}, v ∈ F . (2.3)

The set-valued mapping Ψ : E ⇒ F is said to have the Aubin property at z̄ ∈ E for w̄ ∈ Ψ(z̄)
if there exist a constant κ > 0 and open neighborhoods U of z̄ and V of w̄ such that

Ψ(z) ∩ V ⊆ Ψ(z′) + κ‖z − z′‖BF ∀ z, z′ ∈ U ,

where BF is the closed unit ball in F centered at the origin. Moreover, such an Aubin property
has been equivalently characterized by the Mordukhovich criterion [29]. Specifically, under the
assumption that gphΨ is locally closed around (z̄; w̄) ∈ gphΨ, the Aubin property of Ψ holds
at z̄ for w̄ if and only if D∗Ψ(z̄, w̄)(0) = {0}.
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2.1 Coderivative related to positive semidefinite cone

This subsection briefly introduces the explicit formula of the limiting coderivative of the normal
cone mapping to Sp+, which was calculated by Ding et al. [10]. Let A ∈ Sp be given. It admits
an eigenvalue decomposition in the form of

A = PΛP⊤ = P



Λαα

0ββ
Λγγ


P⊤ with P = (Pα, Pβ , Pγ), (2.4)

where P ∈ R
p×p is an orthogonal matrix and Λ is a diagonal matrix with non-increasing diagonal

elements λ1, . . . , λp (the eigenvalues of A) such that Λαα ≻ 0 and Λγγ ≺ 0. Here α, β and γ are
three sets of indices with the cardinalities |α|, |β| and |γ|. One has Pα ∈ R

p×|α|, Pβ ∈ R
p×|β|

and Pγ ∈ R
p×|γ|. We use ΠSp

+
(A) to denote the metric projection of A to the cone Sp+ (under

the Frobenius norm). For convenience, we denote A+ := ΠSp
+
(A) and A− := A − A+ ∈ −Sp+.

Then, it is obvious that |α| and |γ| are the ranks of A+ and A−, respectively. Recall that Sp+
is a closed convex cone, and one has

TSp
+
(A+) = {Z ∈ Sp | P⊤

β∪γZPβ∪γ � 0}.

Consequently, it holds that

lin
(
TSp

+
(A+)

)
= {Z ∈ Sp | P⊤

β ZPβ = 0, P⊤
β ZPγ = 0, P⊤

γ ZPγ = 0}.

Note that (A+, A−) ∈ gphNSp
+
, and in the following we will introduce the explicit formulation

of the coderivative D∗NSp
+
(A+, A−). For this purpose, denote the set of all partitions of the

index set β by Pβ and let R
|β|
≥ be the set of all the vectors in R

|β| whose components are
arranged in non-increasing order, i.e.,

R
|β|
≥ := {z ∈ R

|β| | z1 ≥ z2 ≥ · · · ≥ z|β|}.

For any z ∈ R
|β|
≥ , one can define D(z) ∈ R

|β|×|β| as the matrix whose elements (D(z))ik,
i, k ∈ {1, . . . , |β|}, are given by

(D(z))ik :=





max{zi, 0} −max{zk, 0}

zi − zk
∈ [0, 1], if zi 6= zk,

1, if zi = zk > 0,

0, if zi = zk ≤ 0.

Define the set

Υ|β| :=

{
Z ∈ S|β| | Z = lim

k→∞
D(zk), zk → 0, zk ∈ R

|β|
≥

}
⊆ S|β|. (2.5)

Let Ξ1 ∈ Υ|β|. Then, there exists a partition π(β) := (β+, β0, β−) ∈ Pβ such that

Ξ1 =




Eβ+β+
Eβ+β0

(Ξ1)β+β−

E⊤
β+β0

0 0

(Ξ1)
⊤
β+β−

0 0


 , (2.6)

where each element of (Ξ1)β+β− belongs to the interval [0, 1]. Moreover, based on Ξ1 one can
define the matrix

Ξ2 :=




0 0 Eβ+β− − (Ξ1)β+β−

0 0 Eβ0β−

(Eβ+β− − (Ξ1)β+β−)
⊤ E⊤

β0β−
Eβ−β−


 . (2.7)

Building upon the above definitions, the coderivative of NSp

+
can be explicitly given in the

following result.
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Lemma 2.1. [10, Theorem 3.1 & Proposition 3.3] Suppose that A ∈ Sp has the eigenvalue
decomposition in (2.4). Then, U ∈ D∗NSp

+
(A+, A−)(V ) if and only if

U = P




0 0 Ũαγ
0 Ũββ Ũβγ
Ũγα Ũγβ Ũγγ


P⊤ and V = P



Ṽαα Ṽαβ Ṽαγ
Ṽβα Ṽββ 0

Ṽγα 0 0


P⊤ (2.8)

with
Ũββ ∈ D∗NS|β|

+

(0, 0)(Ṽββ) and Σαγ ◦ Ũαγ − (Eαγ − Σαγ) ◦ Ṽαγ = 0, (2.9)

where Ũ := P⊤UP ∈ Sp, Ṽ := P⊤V P ∈ Sp, and Σ ∈ R
p×p is the matrix defined by

Σik :=
max{λi, 0} −max{λk, 0}

λi − λk
, i, k ∈ {1, . . . , p},

where 0/0 is defined to be 1. In addition, Ũββ ∈ D∗NS|β|
+

(0, 0)(Ṽββ) holds if and only if there

exist a matrix Ξ1 ∈ Υ|β| in (2.5) and an orthogonal matrix O ∈ R
|β|×|β| such that

Ξ1 ◦O
⊤ŨββO = Ξ2 ◦O

⊤ṼββO, O⊤
β0
ŨββOβ0

� 0, and O⊤
β0
ṼββOβ0

� 0, (2.10)

where (β+, β0, β−) ∈ P(β) is a partition such that Ξ1 takes the form of (2.6) and Ξ2 is given
by (2.7).

We make the following remarks on Lemma 2.1.

Remark 2.1. According to the definitions of A+ and A−, from (2.4) one can see that the
index set β corresponds to the failure of the strict complementarity. Specifically, the fact that
A+ ∈ Sp+, A− ∈ Sp− and 〈A+, A−〉 = 0 constitutes a complementarity condition, and this
complementarity is strict if A is not singular. When |β| 6= 0, an extensive non-smooth analysis

should be imposed to establish the relation between Ũββ and Ṽββ in (2.8), resulting in a more
complicated coderivative inclusion (2.9) than the relationship for the other matrix pairs.

Remark 2.2. For the case that A = 0 in Lemma 2.1, one has |β| = p. Thus, by taking P

as the identity matrix, one can get Ṽββ = V . In addition, one can further take β+ = β and
β− = β0 = ∅ to get a partition of β. In this case, from (2.6) and (2.7) one has Ξ1 = Eββ and

Ξ2 = 0 ∈ S|β|. Then, one has that (2.10) holds with Ũββ := 0 ∈ S|β| for any orthogonal matrix
O ∈ R

|β|×|β|. Consequently, one has 0 ∈ D∗NSp
+
(0, 0)(V ) for any V ∈ Sp.

Furthermore, to understand Lemma 2.1 more intuitively, one can consider the following
example, which is constructed from [10, Example 7.1].

Example 2.1. Consider the matrix

A =




0 −2 −1
−2 0 −1
−1 −1 −1


 with A+ =




1 −1 0
−1 1 0
0 0 0


 and A− =



−1 −1 −1
−1 −1 −1
−1 −1 −1


 .

We have

A = P



2 0 0
0 0 0
0 0 −3


P⊤ with P =




1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3


 ,

and that the index sets of positive, zero, and negative eigenvalues are given by α = {1}, β = {2},
and γ = {3}. Also, we have Σ13 = 2

5
. Since |β| = 1 and O ∈ {1,−1}, three cases should be

considered:

(1) β = β+, Ξ1 = 1, and Ξ2 = 0. One has Ũ22 = 0.
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(2) β = β0 and Ξ1 = Ξ2 = 0. From (2.10) one has Ũ22 ≤ 0 and Ṽ22 ≤ 0.

(3) β = β−, Ξ1 = 0, and Ξ2 = 1. One has Ṽ22 = 0.

Therefore, U ∈ D∗NS3
+
(A+, A−)(V ) if and only if

V = P



Ṽ11 Ṽ12 Ṽ13
Ṽ21 Ṽ22 0

Ṽ31 0 0


P⊤ and U = P




0 0 Ũ13

0 Ũ22 Ũ23

Ũ31 Ũ32 Ũγγ


P⊤

with 2Ũ13 = 3Ṽ13 and (Ũ22; Ṽ22) ∈ (R× {0}) ∪ ({0} ×R) ∪ (R− ×R−).

2.2 Second-order sufficient conditions

In this subsection, we briefly introduce the second-order (sufficient) optimality conditions of the
NLSDP problem (1.8), which can be viewed as an extension of the discussions in [45].

Let x̄ be a stationary point of the NLSDP (1.8) and ȳ = (ζ̄; Γ̄1; . . . ; Γ̄J) ∈ M(x̄) be a
multiplier at x̄, where ζ̄ ∈ R

m and Γ̄j ∈ Spj for all j = 1, . . . , J . From the KKT system (1.3)
we know that gj(x̄) ∈ S

pj
+ and Γ̄j ∈ NSpj

+

(gj(x̄)). For convenience, define

g(x̄) := (g1(x); . . . ; gJ(x̄)) and Aj := gj(x̄) + Γ̄j , j = 1, . . . , J.

Then one has (Aj)+ = gj(x̄) and (Aj)− = Γ̄j . One also has the eigenvalue decomposition
Aj = PjΛ

jP⊤
j as in (2.4) with Pj = ((Pj)αj

, (Pj)βj
, (Pj)γj ) being the corresponding orthogonal

matrix and Λj being the corresponding diagonal matrix of eigenvalues.
Recall that at a stationary point x ∈ X of (1.1) with M(x) being nonempty, the critical

cone at x is defined by

C(x) := {d ∈ X | G′(x)d ∈ TK(G(x)), f
′(x)d = 0}.

Then, following the discussions in [45, Section 3], the critical cone of (1.8) at x̄ can be explicitly
given as

C(x̄) =
{
d |h′(x̄)d = 0, g′j(x̄)d ∈ C(Aj ;S

pj
+ ), j = 1, . . . , J

}
, (2.11)

where for each j = 1, . . . , J ,

C(Aj ;S
pj
+ ) := TSpj

+

(
gj(x̄)

)
∩ Γ̄⊥

j

=
{
Z ∈ Spj | (Pj)

⊤
βj
Z(Pj)βj

� 0, (Pj)
⊤
βj
Z(Pj)γj = 0, (Pj)

⊤
γj
Z(Pj)γj = 0

}
.

(2.12)

According to [7, Section 4.6.1], for a feasible point x ∈ X of (1.1), it is called nondegenerate
[38], or the constraint nondegeneracy [39] is called to hold at x, if

G′(x)X + lin(TK(G(x))) = Y. (2.13)

Then for the NLSDP (1.8), the constraint nondegeneracy condition (2.13) at x̄ can be written
as (

h′(x̄)
g′(x̄)

)
X +

(
{0}∏J

j=1 lin
(
TSpj

+

(gj(x̄))
)
)

=

(
R
m

∏J

j=1 S
pj

)
. (2.14)

Note that (2.14) implies that M(x̄) is a singleton, i.e., ȳ is the unique multiplier at x̄. In this
case, by following the proof of [45, Proposition 3.1] one can get from (2.11) that

aff(C(x̄)) = {d ∈ X | h′(x̄)d = 0, g′j(x̄)d ∈ aff(C(Aj ;S
pj
+ )), j = 1, . . . , J}

=

{
d ∈ X

∣∣∣∣∣
h′(x̄)d = 0, (Pj)

⊤
βj
(g′j(x̄)d)(Pj)γj = 0,

(Pj)
⊤
γj
(g′j(x̄)d)(Pj)γj = 0, j = 1, . . . , J

}
.

(2.15)
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Next, we discuss the second-order optimality conditions for (1.8). With x̄ being a stationary
point of (1.8) and ȳ = (ζ̄; Γ̄1; . . . ; Γ̄J) ∈ M(x̄), we define the self-adjoint linear operator Q :
X → X by

〈d,Qd〉 = 〈d,∇2
xxL(x̄, ȳ)d〉 − 2

J∑

j=1

〈Γ̄j , (g
′
j(x̄)d)(gj(x̄))

†(g′j(x̄)d)〉, d ∈ X , (2.16)

where (gj(x̄))
† denotes the Moore–Penrose pseudoinverse of gj(x̄) for all j = 1, . . . , J . Based

on (2.16), the second-order sufficient condition and the strong second-order sufficient condition
(SSOSC) for (1.8) are defined as follows.

Definition 2.1. Let x̄ be a stationary point of (1.8) with ȳ = (ζ̄; Γ̄1; . . . ; Γ̄J ) ∈ M(x̄) and C(x̄)
be the critical cone at x̄. Let Q : X → X be the self-adjoint linear operator defined by (2.16).
We say that the second-order sufficient condition holds at (x̄; ȳ) if

〈d,Qd〉 > 0 ∀d ∈ C(x̄)\{0}. (2.17)

Moreover, we say that the SSOSC holds at (x̄; ȳ) if

〈d,Qd〉 > 0 ∀d ∈ aff(C(x̄))\{0}. (2.18)

Remark 2.3. In Definition 2.1, the second-order sufficient condition given by (2.17) comes
from [4], while the SSOSC is a straightforward extension and simplification of [45, Definition
3.2] from the case that J = 1 to the general setting. It is the same as [45, Definition 3.2] when
J = 1 and the constraint nondegeneracy holds.

The following result on the relationship between the Aubin property of SKKT and the second-
order sufficient condition (2.17) comes from [11, Corollary 25]. It constitutes the starting point
of our analysis.

Lemma 2.2. Let x̄ be a locally optimal solution to (1.8) with ȳ ∈ M(x̄). Suppose that the
Aubin property of SKKT in (1.6) holds at (0; 0) for (x̄; ȳ). Then, x̄ is nondegenerate, in the
sense that (2.14) holds, and the second-order sufficient condition (2.17) in Definition 2.1 holds
with Q being defined in (2.16).

2.3 Technical lemmas

In this part, we provide three technical lemmas for our discussions. These results are not
specialized only for the problems considered here. The first lemma is about the polar cone.

Lemma 2.3 ([43, Corollary 11.25(d)]). Let H : E → F be a linear operator and K ⊆ F be a
closed nonempty convex cone. Then the set C := {z ∈ E | Hz ∈ K} is also a closed convex cone
and one has

C◦ = cl {H∗v | v ∈ K◦},

where the closure operation is superfluous if 0 is in the interior of {K − rgeH}.

The following lemma gives a variational characterization of self-adjoint positive definite
operators. One can also see [20, Proposition 3.1] for a more straightforward proof based on the
Moreau decomposition.

Lemma 2.4 ([18, Theorem 3.6]). Let H : E → E be an invertible self-adjoint linear operator
and C be a closed convex cone in E. Then

〈z,Hz〉 > 0 ∀z ∈ E \ {0} ⇔

{
〈z,Hz〉 > 0 ∀z ∈ C\{0} and

〈z,H−1z〉 > 0 ∀z ∈ C◦\{0}.
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The following lemma discusses Robinson’s constraint qualification [36] of a special constraint
system. Recall that for the general constraint system G(x) ∈ K in (1.1), we say that Robinson’s
constraint qualification holds at a point x ∈ X such thatG(x) ∈ K if 0 ∈ int {G(x)+G′(x)X−K}.
According to [7, Proposition 2.97 & Corollary 2.98], this constraint qualification is equivalent
to

G′(x)X + TK(G(x)) = Y.

Moreover, if Robinson’s constraint qualification holds at a locally optimal solution x̄ of (1.1),
then the set of multipliers M(x̄) is non-empty, convex and compact [7, Theorem 3.9].

Lemma 2.5. Let H : E → F be a linear operator and K ⊆ F be a nonempty closed convex cone.
Then, Robinson’s constraint qualification holds at any feasible point to the constraint system

z −H∗v = 0,
1

2
(‖v‖2 − 1) = 0, and v ∈ K. (2.19)

Proof. Suppose that (z̄; v̄) ∈ E ×F is a given feasible point to the constraint system (2.19). Let
(∆z ; δ; ∆v) ∈ E ×R×F be arbitrarily chosen. To show that Robinson’s constraint qualification
holds at (z̄; v̄) we need to find z ∈ E , v ∈ F and u ∈ TK(v̄) such that





z −H∗v = ∆z, (2.20a)

〈v̄, v〉 = δ, (2.20b)

v + u = ∆v. (2.20c)

Since K is a closed convex cone, from [43, Example 6.24] we know that NK(v̄) = (TK(v̄))◦.
Then by Moreau’s decomposition theorem [40, Theorem 31.5] we know that one can uniquely
decompose ∆v by ∆v = ∆′

v +∆′′
v such that

∆′
v ∈ TK(v̄), ∆′′

v ∈ NK(v̄), and 〈∆′
v,∆

′′
v 〉 = 0.

One can take v0 := ∆′′
v ∈ NK(v̄) and u0 := ∆′

v ∈ TK(v̄), so that v0 + u0 = ∆v. Moreover, it is
easy to see from v̄ ∈ K that

λv̄ ∈ TK(v̄) with λ := 〈v̄, v0〉 − δ.

Then, by letting v := v0 − λv̄ and u := u0 + λv̄ one has u ∈ TK(v̄) and that (2.20c) holds.
Moreover, since ‖v̄‖ = 1, we have 〈v̄, v〉 = 〈v̄, v0 −λv̄〉 = 〈v̄, v0〉−λ = δ, so that (2.20b) is valid.
Then, letting z := ∆z +H∗v, we have that (2.20a) holds. This completes the proof.

3 Implications of the Aubin property for NLSDP

In this section, we study the implications of the Aubin property of the solution mapping SKKT

in (1.6) for the NLSDP problem (1.8). Throughout this section, we set G(x) := (h(x); g(x)) =

(h(x); g1(x); . . . ; gJ(x)), Y := R
m×
∏J
j=1 S

pj andK := {0 ∈ R
m}×

∏J
j=1 S

pj
+ in (1.1). Moreover,

we make no distinction between the general constraint optimization problem (1.1) and the
NLSDP problem (1.8) for convenience.

3.1 A reduction method for NLSDP

This part exploits the Aubin property of the solution mapping SKKT in (1.6). Note that if
SKKT in (1.6) has the Aubin property at (0; 0) ∈ X ×Y for (x̄; ȳ), the tilt perturbation solution
mapping SGE, defined by

SGE(a) := {x ∈ X | a ∈ ∇f(x) +∇G(x)NK(G(x))}, (3.1)

also has the Aubin property at 0 ∈ X for x̄. Moreover, according to the Mordukhovich criterion
[29], the latter Aubin property holds if and only if

D∗
SGE(0, x̄)(0) = {0}.
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Next, we use a reduction method to get more accessible results from the original formula of
the Mordukhovich criterion. Since K is C2-cone reducible at every y ∈ K, one can utilize the
second-order chain rule developed in [33, Theorem 7], as a generalization of [31, Theorem 3.4],
to get the following result.

Lemma 3.1. Let x̄ be a stationary point of (1.8) with ȳ ∈ M(x̄). Suppose that x̄ is nondegen-
erate, i.e., (2.14) holds. Then one has

D∗
SGE(0, x̄)(0) =

{
−d | 0 ∈ ∇2

xxL(x̄, ȳ)d+∇G(x̄)D∗NK(G(x̄), ȳ)(G
′(x̄)d)

}
.

Proof. The proof follows directly from [33, Theorem 20], in which K was assumed to be a
second-order cone, but it still holds when K is a general closed convex set.

Next, we apply Lemmas 2.1 and 3.1 to the NLSDP problem (1.8) to obtain the following
result.

Proposition 3.1. Let x̄ be a nondegenerate stationary point of (1.8) such that ȳ = (ζ̄; Γ̄1; . . . ; Γ̄J) ∈
M(x̄). For j ∈ {1, . . . , J}, define Aj := gj(x̄) + Γ̄j and write its eigenvalue decomposition
Aj = PjΛ

jP⊤
j as in (2.4) with Pj =

(
(Pj)αj

, (Pj)βj
, (Pj)γj

)
being the corresponding orthogonal

matrix and Λj being the corresponding diagonal matrix of eigenvalues. Then, the mapping SGE

defined by (3.1) has the Aubin property at 0 for x̄ if and only if

Qd /∈ rge(∇h(x̄))−

{
J∑

j=1

∇gj(x̄)(Pj)βj∪γj




Ũ jβjβj
Ũ jβjγj

(Ũ jβjγj
)⊤ Ũ jγjγj


 (Pj)

⊤
βj∪γj

∣∣∣∣
Ũ jβjβj

∈ D∗N
S|βj |

+

(0, 0)
(
(Pj)

⊤
βj
(g′j(x̄)d)(Pj)βj

)

∀Ũ jβjγj
∈ R

|βj|×|γj |, Ũ jγjγj ∈ S|γj |, j = 1, . . . , J

}
∀d ∈ aff(C(x̄))\{0},

(3.2)

where Q is the linear operator defined by (2.16).

Proof. From Lemma 3.1 we know that the mapping SGE defined by (3.1) has the Aubin property
at 0 for x̄ if and only if

∇2
xxL(x̄, ȳ)d /∈ −∇h(x̄)D∗N{0}(h(x̄), ζ̄)(h

′(x̄)d)

−
∑J
j=1 ∇gj(x̄)D

∗NSpj
+

(gj(x̄), Γ̄j)(g
′
j(x̄)d) ∀ 0 6= d ∈ X .

(3.3)

In the following, we will reformulate the right-hand side of (3.3) into an explicit form by using
specific formulas of coderivatives for normal cones. On the one hand, since h(x̄) = 0, it is easy
to see from the definition of the coderivative in (2.3) that

D∗N{0}(h(x̄), ζ̄)(h
′(x̄)d) =

{
R
m, if h′(x̄)d = 0,

∅, otherwise.

On the other hand, for all j = 1, . . . , J , by applying Lemma 2.1 to A := Aj = gj(x̄) + Γ̄j and
V := V j := g′j(x̄)d we know that U j ∈ D∗NSpj

+

(gj(x̄), Γ̄j)(g
′
j(x̄)d) holds if and only if U := U j

and V can be expressed as in (2.8) with α := αj , β := βj and γ := γj such that (2.9) holds.
Since x̄ is nondegenerate, from the formula of aff(C(x̄)) given in (2.15) one can see that (3.3)
holds if and only if

∇2
xxL(x̄, ȳ)d /∈ rge(∇h(x̄))−

J∑

j=1

∇gj(x̄)U
j
d ∀d ∈ aff(C(x̄))\{0}, (3.4)
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where with Ṽ jαjγj
:= (Pj)

⊤
αj
(g′j(x̄)d)(Pj)γj and Ṽ jβjβj

:= (Pj)
⊤
βj
(g′j(x̄)d)(Pj)βj

, the set U
j
d is

defined by

U
j
d :=

{
Pj




0 0 Ũ jαjγj

0 Ũ jβjβj
Ũ jβjγj

(Ũ jαjγj
)⊤ (Ũ jβjγj

)⊤ Ũ jγjγj


P⊤

j

∣∣∣∣∣
Ũ jβjβj

∈ D∗N
S|βj |

+

(0, 0)(Ṽ jβjβj
),

Σjαjγj
◦ Ũ jαjγj

= (Eαjγj − Σjαjγj
) ◦ Ṽ jαjγj

, j = 1, . . . , J

}
,

in which the matrix Σj is defined by

Σjik :=
max{λji , 0} −max{λjk, 0}

λji − λjk
, i, k ∈ {1, . . . , pj}, j = 1, . . . , J, (3.5)

where 0/0 is defined to be 1 and each λji is the i-th diagonal element of Λj . Note that for any

U j ∈ U
j
d, j = 1, . . . , J , it holds that

U j = Pj




0 0 Ũ jαjγj

0 Ũ jβjβj
Ũ jβjγj

(Ũ jαjγj
)⊤ (Ũ jβjγj

)⊤ Ũ jγjγj


P⊤

j

and Σjαjγj
◦ Ũ jαjγj

= (Eαjγj − Σαjγj ) ◦ Ṽ
j
αjγj

. Then, from the definition of Σjαjγj
in (3.5) one

can see that for any i ∈ αj and k ∈ γj it holds that

λji
λji − λjk

Ũ jik +
λjk

λji − λjk
Ṽ jik = 0.

Consequently, one has λji Ũ
j
ik + λjkṼ

j
ik = 0. Therefore, it holds that

Ũ jαjγj
+ (Λjαjαj

)−1Ṽ jαjγj
Λjγjγj = 0, j = 1, . . . , J. (3.6)

Next, we provide an equivalent reformulation of the last term1 in (2.16) for defining the linear
operator Q, for the purpose of studying the left-hand side of (3.2). Note that for any d ∈ X
one has g′j(x̄)d ∈ Spj and (gj(x̄))

† ∈ Spj . Therefore, it holds that

2
〈
Γ̄j , (g

′
j(x̄)d)(gj(x̄))

†(g′j(x̄)d)
〉

=
〈
Γ̄j(g

′
j(x̄)d)(gj(x̄))

†, g′j(x̄)d
〉
+
〈
(gj(x̄))

†(g′j(x̄)d)Γ̄j , g
′
j(x̄)d

〉
,

=
〈
∇gj(x̄)

(
Γ̄j(g

′
j(x̄)d)(gj(x̄))

† + (gj(x̄))
†(g′j(x̄)d)Γ̄j

)
, d
〉

∀j = 1, . . . , J.

(3.7)

One can see from the eigenvalue decomposition of gj(x̄) + Γ̄j = Aj = PjΛ
jP⊤

j and Ṽ jαjγj
=

(Pj)
⊤
αj
(g′j(x̄)d)(Pj)γj that

(gj(x̄))
†(g′j(x̄)d)Γ̄j = Pj



(Λjαjαj

)−1

0
0


P⊤

j (g′j(x̄)d)Pj



0

0
Λjγjγj


P⊤

j

= Pj



0 0 (Λjαjαj

)−1Ṽ jαjγj
Λjγjγj

0 0 0
0 0 0


P⊤

j = Pj



0 0 −Ũ jαjγj

0 0 0
0 0 0


P⊤

j ,

(3.8)

1This term was known as the “sigma term” (cf. [5, p. 177]).
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where the last equality comes from (3.6). Similarly, one also has that

Γ̄j(g
′
j(x̄)d)(gj(x̄))

† = Pj




0 0 0
0 0 0

−Ũ jαjγj
0 0


P⊤

j . (3.9)

Then, by putting (3.7), (3.8) and (3.9) together, one can see that

2〈Γ̄j , (g′j(x̄)d)(gj(x̄))
†(g′j(x̄)d)〉 =

〈
∇gj(x̄)Pj




0 0 −Ũ jαjγj

0 0 0

−Ũ jαjγj
0 0


P⊤

j , d

〉
. (3.10)

Now, one can see from the definition of Q in (2.16) and (3.10) that (3.2) holds if and only if
(3.4) holds. This completes the proof.

Proposition 3.1 may seem complicated and confusing, but in fact, it represents the first step
of our reduction method. Taking a look at (3.2), only the βj and γj parts remain, and we have
reduced the αj part in gj(x̄) + Γ̄j . When the assumptions in Proposition 3.1 hold, one can

further define the linear operator B : X → R
m ×

∏J

j=1(R
|βj|×|γj| × S|γj |) by

Bd :=




h′(x̄)d(
2P⊤

β1
[g′1(x̄)d]Pγ1 ;P

⊤
γ1
[g′1(x̄)d]Pγ1

)

...(
2P⊤

βJ
[g′J(x̄)d]PγJ ;P

⊤
γJ
[g′J(x̄)d]PγJ

)



, d ∈ X . (3.11)

From (2.15) one can see that ker(B) = aff(C(x̄)), which is a finite-dimensional subspace of X . Let
r be the dimension of ker(B). Then, a collection of linearly independent vectors ω1, . . . , ωr ∈ X
can be found such that span{ω1, . . . , ωr} = ker(B). Moreover, one can define the linear operator
W : Rr → ker(B) via

Wν =
r∑

i=1

νiωi, ν = (ν1; . . . ; νr) ∈ R
r. (3.12)

Consequently, rge(W) = ker(B) = aff(C(x̄)). Based on the definition of W in (3.12) we have the
following result from Proposition 3.1.

Proposition 3.2. Suppose that the conditions of Proposition 3.1 are satisfied. Let Q be the
linear operator defined by (2.16) and W be the linear operator defined by (3.12). Then, the
mapping SGE defined by (3.1) has the Aubin property at 0 for x̄ if and only if

W∗QWν /∈

{
−

J∑

j=1

W∗∇gj(x̄)(Pj)βj
Ũ jβjβj

(Pj)
⊤
βj

∣∣ Ũβjβj
∈ D∗N

S|βj |

+

(0, 0)((Pj)
⊤
βj
(g′j(x̄)Wν)(Pj)βj

)

}
∀ν ∈ R

r\{0}.

(3.13)

Proof. From proposition 3.1 we know that the the mapping SGE defined by (3.1) for the NLSDP
problem (1.8) has the Aubin property at 0 for x̄ if and only if (3.2) holds. Note that W in
(3.12) is well-defined and rge(W) = aff(C(x̄)). Therefore, such an Aubin property of SGE holds
if and only if

QWν /∈ rge(∇h(x̄))−

{
J∑

j=1

∇gj(x̄)(Pj)βj∪γj




Ũ jβjβj
Ũ jβjγj

(Ũ jβjγj
)⊤ Ũ jγjγj


 (Pj)

⊤
βj∪γj

∣∣∣∣
Ũ jβjβj

∈ D∗N
S|βj |

+

(0, 0)
(
(Pj)

⊤
βj
(g′j(x̄)Wν)(Pj)βj

)

∀ Ũ jβjγj
∈ R

|βj|×|γj|, Ũ jγjγj ∈ S|γj |, j = 1, . . . , J

}
∀ν ∈ R

r\{0}.

(3.14)
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Consequently, it is sufficient to prove that (3.14) and (3.13) are equivalent.
First, suppose that (3.13) does not hold, i.e., there exists a nonzero vector ν̄ ∈ R

r such that

W∗QW ν̄ = −
J∑

j=1

W∗∇gj(x̄)(Pj)βj
Ũ jβjβj

(Pj)
⊤
βj

(3.15)

with
Ũβjβj

∈ D∗N
S|βj |

+

(0, 0)((Pj)
⊤
βj
(g′j(x̄)Wν)(Pj)βj

), j = 1, . . . , J.

Denote µ̄ := QW ν̄. From (3.15) one has

µ̄+

J∑

j=1

∇gj(x̄)(Pj)βj
Ũ jβjβj

(Pj)
⊤
βj

∈ ker(W∗). (3.16)

Recall that the linear operator B in (3.11) is well-defined and

ker(W∗) = (rge(W))⊥ =(ker(B))⊥ = rge(B∗).

Thus, we calculate rge(B∗) to further reformulate (3.16). Note that for any d ∈ X , ξ ∈ R
m,

U jβjγj
∈ R

|βj|×|γj |, U jγjγj ∈ S|γj |, j = 1, . . . , J , it holds from (3.11) that

〈
B∗
(
ξ;
(
U1
βjγj

;U1
γjγj

)
; · · · ;

(
UJβJγJ

;UJγJγJ
))
, d
〉

=
〈(
ξ;
(
U1
βjγj

;U1
γjγj

)
; · · · ;

(
UJβJγJ

;UJγJγJ
))
,Bd

〉

= 〈ξ, h′(x̄)d〉

+

J∑

j=1

〈
U jβjγj

, 2(Pj)
⊤
βj
[g′j(x̄)d](Pj)γj

〉
+

J∑

j=1

〈
U jγjγj , (Pj)

⊤
γj
[g′j(x̄)d](Pj)γj

〉

= 〈∇h(x̄)ξ, d〉

+2

J∑

j=1

〈
(Pj)βj

U jβjγj
(Pj)

⊤
γj
, g′j(x̄)d

〉
+

J∑

j=1

〈
(Pj)γjU

j
γjγj

(Pj)
⊤
γj
, g′j(x̄)d

〉
.

We know that g′j(x̄)d is symmetric for all j = 1, . . . J . Therefore, one has
〈
B∗
(
ξ;
(
U1
βjγj

;U1
γjγj

)
; · · · ;

(
UJβJγJ

;UJγJγJ
))
, d
〉

= 〈∇h(x̄)ξ, d〉+
J∑

j=1

〈
(Pj)γj (U

j
βjγj

)⊤(Pj)
⊤
βj
, g′j(x̄)d

〉

+

J∑

j=1

〈
(Pj)βj

U jβjγj
(Pj)

⊤
γj
, g′j(x̄)d

〉
+

J∑

j=1

〈
(Pj)γjU

j
γjγj

(Pj)
⊤
γj
, g′j(x̄)d

〉

=
〈
∇h(x̄)ξ +

J∑

j=1

∇gj(x̄)(Pj)γj (U
j
βjγj

)⊤(Pj)
⊤
βj

+

J∑

j=1

∇gj(x̄)(Pj)βj
U jβjγj

(Pj)
⊤
γj

+

J∑

j=1

∇gj(x̄)(Pj)γjU
j
γjγj

(Pj)
⊤
γj
, d
〉
.

(3.17)

Then by combining (3.16) and the formula of rge(B∗) ≡ ker(W∗) given by (3.17) one can get

µ̄ ∈ rge
(
∇h(x̄)

)
−

{
J∑

j=1

∇gj(x̄)(Pj)βj∪γj




Ũ jβjβj
Ũ jβjγj

(Ũ jβjγj
)⊤ Ũ jγjγj


 (Pj)

⊤
βj∪γj

∣∣∣∣
Ũ jβjβj

∈ D∗N
S|βj |

+

(0, 0)
(
(Pj)

⊤
βj
(g′j(x̄)W ν̄)(Pj)βj

)

∀ Ũ jβjγj
∈ R

|βj|×|γj|, Ũ jγjγj ∈ S|γj |, j = 1, . . . , J

}
,
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which contradicts (3.14) since µ̄ = QW ν̄. Therefore, (3.14) implies (3.13).
Next, suppose that (3.14) does not hold, i.e., there exist two vectors ν̃ ∈ R

r and ξ ∈ R
m,

the matrices
Ũ jβjγj

∈ R
|βj |×|γj|, Ũ jγjγj ∈ S|γj |, j = 1, . . . , J,

and the matrices

Ũ jβjβj
∈ D∗N

S|βj |

+

(0, 0)
(
(Pj)

⊤
βj
(g′j(x̄)W ν̃)(Pj)βj

)
, j = 1, . . . , J,

such that

QW ν̃ = ∇h(x̄)ξ −
J∑

j=1

∇gj(x̄)(Pj)βj∪γj




Ũ jβjβj
Ũ jβjγj

(Ũ jβjγj
)⊤ Ũ jγjγj


 (Pj)

⊤
βj∪γj .

Note that for any vector ν ∈ R
r, it holds that Wν ∈ ker(B) = aff(C(x̄)). Then by using (2.15)

one has for all ν ∈ R
r it holds that

〈ν,W∗QW ν̃〉

= 〈ν,W∗∇h(x̄)ξ〉

−
∑J

j=1

〈
ν,W∗∇gj(x̄)(Pj)βj∪γj

(
Ũ jβjβj

Ũ jβjγj

(Ũ jβjγj
)⊤ Ũ jγjγj

)
(Pj)

⊤
βj∪γj

〉

= 〈h′(x̄)Wν, ξ〉

−
∑J

j=1

〈
(Pj)

⊤
βj∪γj(g

′
j(x̄)Wν)(Pj)βj∪γj ,




Ũ jβjβj
Ũ jβjγj

(Ũ jβjγj
)⊤ Ũ jγjγj



〉

= −
∑J
j=1

〈
(Pj)

⊤
βj
(g′j(x̄)Wν)(Pj)βj

, Ũ jβjβj

〉

= −
∑J
j=1

〈
ν,W∗∇gj(x̄)(Pj)βj

Ũ jβjβj
(Pj)

⊤
βj

〉
,

which means that W∗QW ν̃ = −
∑J

j=1 W
∗∇gj(x̄)(Pj)βj

Ũ jβjβj
(Pj)

⊤
βj
. Therefore, (3.13) also

implies (3.14). Consequently, (3.13) is equivalent to (3.14), which completes the proof.

Propositions 3.1 and 3.2 constitute the reduction method by reformulating the Mordukhovich
criterion to characterize the Aubin property of SGE defined by (3.1) to that given by (3.13),
in which only the indices βj are involved while the indices αj and γj are eliminated. Such a
reduction provides a more accessible form of the Aubin property, which is convenient for the
discussions on obtaining the SSOSC from the second-order sufficient condition. Before that, we
provide a useful result based on Proposition 3.2.

Corollary 3.1. Under the conditions of Proposition 3.2, the linear operator W∗QW is a non-
singular matrix in Sr.

Proof. Note that W∗QW ∈ Sr holds by definition. Suppose on the contrary that there exists
a nonzero vector ν̄ ∈ R

r such that W∗QW ν̄ = 0. According to the discussions in Remark 2.2
one can set

Ũ jβjβj
:= 0 ∈ D∗N

S|βj |

+

(0, 0)((Pj)
⊤
βj
(g′j(x̄)W ν̄)(Pj)βj

), j = 1, . . . , J.

As a result, one has W∗QW ν̄ = 0 = −
∑J

j=1 W
∗∇gj(x̄)(Pj)βj

Ũ jβjβj
(Pj)

⊤
βj
, which contradicts

(3.13). Consequently, W∗QW is not singular.
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3.2 Aubin property implies SSOSC

Note that Proposition 3.2 in the previous subsection provides a characterization of the Aubin
property of the mapping SGE defined by (3.1) using only the indices βj . In this part, our
objective is to utilize (3.13) and the second-order sufficient condition in (2.17) (as a consequence
of the Aubin property of SKKT for locally optimal solutions by Lemma 2.2) to derive the
SSOSC in (2.18). For this purpose, we need to first reformulate the two second-order optimality
conditions to pave the way for using Proposition 3.2.

Under the conditions of Proposition 3.2, define a linear operator A : Rr → S|β1|×· · ·×S|βJ |

by
Aν := (A1ν; . . . ;AJν), (3.18)

where the linear operators Aj : R
r → S|βj |, j = 1, . . . , J , are given by

Ajν := (Pj)
⊤
βj
(g′j(x̄)Wν)(Pj)βj

, ν ∈ R
r.

Then, one can define the closed convex cone Ω ⊆ R
r by

Ω := {ν ∈ R
r | Ajν � 0, j = 1, . . . , J}.

Note that x̄ is nondegenerate, and the linear operators B in (3.11) and W in (3.12) are well
defined with rge(W) = ker(B) = aff(C(x̄)). Thus, for any d ∈ aff(C(x̄)) there exists a vector
ν ∈ R

r such that d = Wν. Consequently, the SSOSC (2.18) can be equivalently written as

〈ν,W∗QWν〉 > 0 ∀ν ∈ R
r\{0}. (3.19)

Moreover, recall from (2.11), (2.12) and (2.15) that

C(x̄) =




d ∈ X

∣∣∣∣∣

h′(x̄)d = 0, (Pj)
⊤
βj
(g′j(x̄)d)(Pj)βj

� 0,

(Pj)
⊤
βj
(g′j(x̄)d)(Pj)γj = 0,

(Pj)
⊤
γj
(g′j(x̄)d)(Pj)γj = 0, j = 1, . . . , J





=
{
d ∈ X

∣∣ d ∈ aff(C(x̄)), (Pj)⊤βj
(g′j(x̄)d)(Pj)βj

� 0, j = 1, . . . , J
}
.

Therefore, the second-order sufficient condition (2.17) can be equivalently recast as

〈ν,W∗QWν〉 > 0 ∀ν ∈ Ω\{0}. (3.20)

Note that by Corollary 3.1, the matrix W∗QW is nonsingular. Then, by using Lemma 2.4 and
(3.20) we know that (3.19) holds if and only if

〈η, (W∗QW)−1η〉 > 0 ∀ η ∈ Ω◦\{0}. (3.21)

In the following, we show that the conditions of Lemma 2.2 can actually imply (3.19), hence
the SSOSC given by (2.18), which constitutes a remarkable improvement to the second-order
sufficient condition in this Lemma. To achieve this, we need the explicit formula of Ω◦, and the
following result is essential.

Lemma 3.2. Under the conditions of Proposition 3.2, the linear operator A defined by (3.18)
is surjective.

Proof. Since the constraint nondegeneracy (2.14) holds, for any given Yj ∈ Spj , j = 1, . . . , J ,
one can always find a vector d ∈ X and the matrices

Zj ∈ lin
(
TSpj

+

(gj(x̄))
)

= {Zj ∈ Spj | (Pj)⊤βj∪γjZj(Pj)βj∪γj = 0}, j = 1, . . . , J

such that




h′(x̄)d = 0,

g′j(x̄)d+ Zj = Pj



(Yj)αjαj

(Yj)αjβj
(Yj)αjγj

(Yj)βjαj
(Yj)βjβj

0

(Yj)γjαj
0 0


P⊤

j , j = 1, . . . , J.
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Consequently, it holds that

P⊤
j (g′j(x̄)d)Pj +



(Pj)

⊤
αj
Zj(Pj)αj

(Pj)
⊤
αj
Zj(Pj)βj

(Pj)
⊤
αj
Zj(Pj)γj

(Pj)
⊤
βj
Zj(Pj)αj

0 0

(Pj)
⊤
γj
Zj(Pj)αj

0 0




=



(Yj)αjαj

(Yj)αjβj
(Yj)αjγj

(Yj)βjαj
(Yj)βjβj

0
(Yj)γjαj

0 0


 , j = 1, . . . , J.

Since (Yj)βjβj
can be any matrix in S|βj |, one can see that the linear operator A defined by

(3.18) is subjective. This completes the proof.

Since A is subjective by Lemma 3.2, one can explicitly calculate from Lemma 2.3 that

Ω◦ = {A∗(Θ1; . . . ; ΘJ) | Θj ∈ −S
|βj |
+ , j = 1, . . . , J}

=





J∑

j=1

W∗∇gj(x̄)(Pj)βj
Θj(Pj)

⊤
βj

|Θj � 0, j = 1, . . . , J



 .

(3.22)

Now, we are ready to present the main result of this section.

Theorem 3.1. Let x̄ be a locally optimal solution to the NLSDP problem (1.8) and ȳ =
(ζ̄; Γ̄1; . . . ; Γ̄J) ∈ M(x̄) be a multiplier at x̄. Suppose that the solution mapping SKKT in (1.6)
has the Aubin property at (0; 0) for (x̄; ȳ). Then, the SSOSC (2.18) in Definition 2.1 holds at
(x̄; ȳ) with Q being defined in (2.16).

Proof. Following the notation of Proposition 3.2, for j ∈ {1, . . . , J}, define Aj := gj(x̄)+Γ̄j and
write its eigenvalue decomposition Aj = PjΛ

jP⊤
j as in (2.4) with Pj =

(
(Pj)αj

, (Pj)βj
, (Pj)γj

)

being the corresponding orthogonal matrix and Λj being the corresponding diagonal matrix of
eigenvalues. Then, from the above analysis, we only need to prove that (3.21) holds.

We start by considering the following auxiliary optimization problem

min
η∈Rr,Θj∈S|βj|

1
2
〈η, (W∗QW)−1η〉

s.t.





η −
∑J

j=1 W
∗∇gj(x̄)(Pj)βj

Θj(Pj)
⊤
βj

= 0,

1
2
(
∑J

j=1 ‖Θj‖
2 − 1) = 0,

Θj � 0, j = 1, . . . , J.

(3.23)

Since the feasible set of (3.23) is compact, the minimum of the objective function can be
attained at a certain solution (η̄; Θ̄1; . . . ; Θ̄J). Moreover, by applying Lemma 2.5 with H =

A, K = −(S
|β1|
+ × · · · × S

|βJ |
+ ), E = R

r and F = S|β1| × · · · × S|βJ |, one has that Robinson’s
constraint qualification holds for the constraint in (3.23) at (η̄; Θ̄1; . . . ; Θ̄J). Consequently,
we know from [7, Theorem 3.9] that there exists a Lagrange multiplier (ρ̄; τ̄ ; ∆̄1; . . . ; ∆̄J) ∈
R
r × R × S|β1| × · · · × S|βJ | at (η̄; Θ̄1; . . . ; Θ̄J) such that the following KKT system of (3.23)

holds: 



(W∗QW)−1η̄ + ρ̄ = 0,

−(Pj)
⊤
βj
(g′j(x̄)W ρ̄)(Pj)βj

+ τ̄ Θ̄j + ∆̄j = 0,

η̄ −
∑J

j=1 W
∗∇gj(x̄)(Pj)βj

Θ̄j(Pj)
⊤
βj

= 0,

1
2
(
∑J

j=1 ‖Θ̄j‖
2 − 1) = 0,

Θ̄j � 0, ∆̄j � 0, 〈∆̄j , Θ̄j〉 = 0, j = 1, . . . , J.

(3.24)

It is obvious that

W∗QW ρ̄ = −η̄ = −
J∑

j=1

W∗∇gj(x̄)(Pj)βj
Θ̄j(Pj)

⊤
βj
. (3.25)
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Moreover, from (3.24) one can also see that
∑J

j=1 ‖Θ̄j‖
2 = 1, so that

τ̄ = 〈(∆̄1; . . . ; ∆̄J ) + τ̄(Θ̄1; . . . ; Θ̄J), (Θ̄1; . . . ; Θ̄J)〉

=

J∑

j=1

〈
(Pj)

⊤
βj
(g′j(x̄)W ρ̄)(Pj)βj

, Θ̄j

〉

=
〈
ρ̄,

J∑

j=1

W∗∇gj(x̄)(Pj)βj
Θ̄j(Pj)

⊤
βj

〉
= 〈ρ̄, η̄〉 = −〈η̄, (W∗QW)−1η̄〉.

(3.26)

According to the last line of (3.24) one has the eigenvalue decompositions

Θ̄j + ∆̄j = Ōj



(Λ̄j)ᾱj ᾱj

0 0
0 0β̄jβ̄j

0

0 0 (Λ̄j)γ̄j γ̄j


 Ō⊤

j , j = 1, . . . , J,

where each Ōj is an orthogonal matrix such that (Λ̄j)ᾱj ᾱj
≻ 0 and (Λ̄j)γ̄j γ̄j ≺ 0. In this case,

it holds that

Θ̄j = Ōj



0ᾱj ᾱj

0 0
0 0β̄jβ̄j

0

0 0 (Λ̄j)γ̄j γ̄j


 Ō⊤

j , j = 1, . . . , J

and

∆̄j + τ̄ Θ̄j = Ōj



(Λ̄j)ᾱj ᾱj

0 0
0 0β̄jβ̄j

0

0 0 τ̄(Λ̄j)γ̄j γ̄j


 Ō⊤

j , j = 1, . . . , J. (3.27)

For an arbitrarily given index j ∈ {1, . . . , J}, one can take β+ = ᾱj , β0 = β̄j ∪ γ̄j and β− = ∅
in (2.6) and (2.7) to set

Ξ1 =



Eᾱj ᾱj

Eᾱj β̄j
Eᾱj γ̄j

Eβ̄j ᾱj
0 0

Eγ̄j ᾱj
0 0


 and Ξ2 = 0 ∈ S|βj |.

Consequently, it holds that

{
Ξ1 ◦ Ō⊤Θ̄jŌ = 0 = Ξ2 ◦ Ō⊤(∆̄j + τ̄ Θ̄j)Ō,

Ō⊤
β0
Θ̄jŌβ0

� 0.
(3.28)

Now, suppose on the contrary that (3.21) does not hold. With the help of the explicit formula
of Ω◦ in (3.22), it is easy to see that the optimal value of (3.23) is not positive, so that τ̄ ≥ 0
by (3.26). Thus, by (3.27) one has

Ō⊤
β0
(∆̄j + τ̄ Θ̄j)Ōβ0

� 0,

which, together with (3.28) and Lemma 2.1, implies that

Θ̄j ∈ D∗N
S|βj |

+

(0, 0)(∆̄j + τ̄Θ̄j) = D∗N
S|βj |

+

(0, 0)((Pj)
⊤
βj
(g′j(x̄)W ρ̄)(Pj)βj

),

where the equality holds from the second line of (3.24). Note that such an inclusion holds simul-
taneously for all j = 1, . . . , J . Thus, this inclusion, together with (3.25), makes a contradiction

to (3.13) in Proposition 3.2 (with ν = ρ̄ and Ũ jβjβj
= Θ̄j for all j = 1, . . . , J). Consequently, we

know that (3.21) is valid, which completes the proof.
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4 Characterizations of the Aubin property for NLSDP

This section establishes the equivalent characterizations of the Aubin property of SKKT in (1.6)
at (0; 0) for (x̄; ȳ) with x̄ being a locally optimal solution to the NLSDP problem (1.8) and
ȳ ∈ M(x̄).

We first review some related concepts in variational analysis. As mentioned in Section 1,
the Aubin property is related to the strong metric regularity [17, Definition 2.5]. Specifically,
for a set-valued mapping Ψ : E ⇒ F , one has Ψ is strongly metrically regular at (z̄; w̄) ∈ gphΨ
if Ψ−1 has the Aubin property at w̄ for z̄, and there exist neighborhoods U of z̄ and V of w̄,
such that Ψ−1(w) ∩ U is a singleton for all w ∈ V . The following result provides a criterion for
characterizing the strong metric regularity.

Lemma 4.1. [17, Theorem 2.7] Ψ is strongly metrically regular at (z̄; w̄) ∈ gph(Ψ) if and only
if for all w ∈ F and z ∈ E, one has

0 ∈ D∗Ψ(z̄, w̄)(w) ⇒ w = 0 and 0 ∈ D∗Ψ(z̄, w̄)(z) ⇒ z = 0,

where D∗ refers to the strict graphical derivative defined in (2.2).

Recall that the KKT system (1.3) can be equivalently written as the nonsmooth equation

F (x, y) :=

(
∇xL(x, y)

−G(x) + ΠK(G(x) + y)

)
= 0. (4.1)

Since F is locally Lipschitz continuous around (x̄; ȳ), it is almost everywhere differentiable in
a neighborhood V of (x̄; ȳ) by Rademacher’s theorem [43, Theorem 9.60]. We use DF ⊆ V to
denote the set of points at which F is differentiable. The Bouligand subdifferential of F at
(x̄; ȳ) is defined by

∂BF (x̄, ȳ) := {v ∈ X × Y | ∃ (xk; yk)
DF−→ (x̄; ȳ) with F ′(xk, yk) → v}.

Moreover, the Clarke generalized Jacobian of F at (x̄; ȳ) is defined by

∂F (x̄, ȳ) := conv(∂BF (x̄, ȳ)),

i.e., the convex hull of ∂BF (x̄, ȳ).
The perturbed KKT system (1.4) corresponds to a two-parametric optimization problem

min
x∈X

φ(x, b)− 〈a, x〉, (4.2)

where
φ(x, b) := f(x) + δK(G(x) + b) (4.3)

with δK(·) being the indicator function of K in convex analysis [40]. When a = 0 ∈ X and
b = 0 ∈ Y, one has (4.2) is exactly (1.1). Given ι > 0 and (x̄; b̄) ∈ X × Y such that φ(x̄, b̄) is
finite, one can define




Mι(a, b) := argmin

x∈X
{φ(x, b)− 〈a, x〉 | ‖x− x̄‖ ≤ ι},

mι(a, b) := inf
x∈X

{φ(x, b)− 〈a, x〉 | ‖x− x̄‖ ≤ ι}.
(4.4)

We say the point x̄ is a Lipschitzian fully stable local minimizer [30, Definition 3.2] of (4.2) at
(ā; b̄) if there exist numbers κ > 0, ι > 0 and a neighborhood V of (ā; b̄) such that the mapping
Mι(a, b) is single-valued on V with Mι(ā, b̄) = x̄ satisfying

‖Mι(a1, b1)−Mι(a2, b2)‖ ≤ κ‖(a1; b1)− (a2; b2)‖ ∀ (a1; b1), (a2; b2) ∈ V ,

and that the function mι(a, b) is also Lipschitz continuous on V . Unlike SKKT, the mapping
Mι(a, b) focuses mainly on locally optimal solutions.
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Recently, Rockafellar [41, 42] introduced the strong variational sufficient condition for local
optimality and provided several characterizations of this abstract property. With φ defined in
(4.3), one can reformulate (1.1) to

min
x∈X ,b∈Y

φ(x, b) s.t. b = 0.

Define the function φℓ(x, b) := φ(x, b)+ ℓ
2
‖b‖2. The following definition comes from [42, Section

2].

Definition 4.1. The (strong) variational sufficient condition for local optimality in (1.1) holds
with respect to a solution (x̄; ȳ) to the KKT system (1.3) if there exists ℓ > 0 such that φℓ is
(strongly) variationally convex with respect to the pair ((x̄; 0), (0; ȳ)) ∈ gph(∂φℓ), i.e., there exist
open convex neighborhoods U of (x̄; 0) and V of (0; ȳ), and a closed proper (strongly) convex
function ̺ ≤ φℓ on U such that

(U × V) ∩ gph(∂̺) = (U × V) ∩ gph(∂φℓ),

and ̺(x, b) = φℓ(x, b) holds for ((x; b); (a; y)) belonging to this common set. Here, ∂̺ is the
subdifferential in convex analysis and ∂φℓ is the limiting subdifferential defined in (2.1).

Remark 4.1. For a special case (J = 1 and m = 0) of the NLSDP problem (1.8), the strong
variational sufficient condition (with respect to a solution (x̄; ȳ) to the KKT system (1.3)) and
the SSOSC (2.18) (for the same (x̄; ȳ)) were proved to be equivalent in [46, Theorem 3.3]. This
equivalence can be extended to the NLSDP problem (1.8) in its general form with ease by directly
following their proof.

More recently, the primal-dual full stability was studied in [2] as an extension of the above
(primal) full stability. Specifically, given ȳ ∈ M(x̄), in addition to Mι in (4.4), one defines

M ι(a, b) := {(x, y) | x ∈Mι(a, b), (a, y) ∈ ∂φ(x, b), ‖y − ȳ‖ ≤ ι}.

We say that the primal-dual pair (x̄; ȳ) is fully stable [2, Definition 1.4] in problem (1.8) if there
exist a number ι > 0 and a neighborhood V of (0; 0) such that the mapping M ι is single-valued
and Lipschitz continuous in V , and the function mι is likewise Lipschitz continuous on V .

Based on the above definitions, the following result holds regarding the equivalent character-
izations of the Aubin property for the solution mapping SKKT in (1.6) of the NLSDP problem
(1.8).

Theorem 4.1. Let x̄ be a locally optimal solution to the NLSDP problem (1.8) and ȳ =
(ζ̄; Γ̄1; . . . ; Γ̄J) ∈ M(x̄) be a multiplier at x̄. Then, the following statements are equivalent:

(i) The solution mapping SKKT in (1.6) has the Aubin property at (0; 0) for (x̄; ȳ).

(ii) The strong second-order sufficient condition (2.18) holds at (x̄; ȳ) and x̄ is nondegenerate,
i.e., (2.14) holds.

(iii) Any element of the Clarke generalized Jacobian ∂F (x̄, ȳ) is nonsingular, where the function
F is defined in (4.1).

(iv) The KKT point (x̄; ȳ) is a strongly regular solution to the generalized equation (1.7) (or
the KKT system (1.5)).

(v) The mapping Φ in (1.7) is strongly metrically regular at (x̄; ȳ) for (0; 0).

(vi) For any w ∈ X × Y with 0 ∈ D∗Φ(x̄, ȳ)(w), one has w = 0.

(vii) The strong variational sufficient condition in Definition 4.1 holds with respect to (x̄; ȳ),
and x̄ is nondegenerate, i.e., (2.14) holds.

(viii) x̄ is a Lipschitzian fully stable local minimizer of (4.2), and x̄ is nondegenerate, i.e.,
(2.14) holds.
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(ix) The primal-dual pair (x̄; ȳ) is fully stable in (1.8).

Proof. One has (i) ⇒ (ii) from Theorem 3.1 and [25, Theorem 1]. By simply repeating the
proof of [45, Proposition 3.2] one can get (ii) ⇒ (iii) ⇒ (iv). It follows by [37, Corollary 2.2]
and the definition that (iv) ⇒ (v) holds. From Lemma 4.1 and the Mordukhovich criterion for
the Aubin property [43, Theorem 9.40] one has (v) ⇒ (vi) ⇒ (i). According to Remark 4.1 we
know that (ii) ⇔ (vii). One also has from [30, Theorem 5.6] that (iv) ⇔ (viii). Moreover, from
[2, Theorems 2.3 & 4.2] we have (v) ⇔ (ix). This completes the proof.

In the following, we introduce an example to help with understanding Theorem 4.1, focusing
on the equivalence of (i), (ii), and (iii).

Example 4.1. Consider the following optimization problem

min
x∈S3

f(x) :=
1

2
‖x‖2 −

1

2
x211

s.t. h(x) := x11 − 1 = 0,

g(x) := x ∈ S3
+.

(4.5)

The unique optimal solution x̄ of (4.5) and its unique Lagrange multiplier ȳ are given by

x̄ =



1 0 0
0 0 0
0 0 0


 and ȳ = (ζ̄ , Γ̄) with ζ̄ = 0, Γ̄ =



0 0 0
0 0 0
0 0 0


 .

It is easy to verify by definition that the constraint nondegeneracy holds at x̄ for (4.5). By direct
calculations the linear operator Q and B defined in (2.16) and (3.11) are given by

Qd =




0 d12 d13
d21 d22 d23
d31 d32 d33


 and Bd = d11 ∀d ∈ S3.

Note that one can find a basis for kerB given by

{ω1, ω2, ω3, ω4, ω5}

=







0 1 0
1 0 0
0 0 0


 ,



0 0 1
0 0 0
1 0 0


 ,



0 0 0
0 1 0
0 0 0


 ,



0 0 0
0 0 1
0 1 0


 ,



0 0 0
0 0 0
0 0 1





 .

Taking this basis for the definition of W in (3.12), one can get

W∗QWν = (2ν1; 2ν2; ν3; 2ν4; ν5) ∀ν = (ν1; ν2; ν3; ν4; ν5) ∈ R
5. (4.6)

Thus the SOSC (3.20) holds, and one can use the Aubin property of SGE to obtain the SSOSC.
According to Proposition 3.2, the Aubin property of SGE at 0 for x̄ can be equivalently

expressed as that for all 0 6= ν ∈ R
5,




2ν1
2ν2
ν3
2ν4
ν5



/∈








0
0

−u22
−u23 − u32

−u33




∣∣∣
(
u22 u23
u32 u33

)
∈ D∗NS2

+
(0, 0)

(
ν3 ν4
ν4 ν5

)



. (4.7)

If (4.7) does not hold, there exists a certain nonzero ν ∈ R
5 such that

ν1 = ν2 = 0 and −

(
ν3 ν4
ν4 ν5

)
∈ D∗

S2
+

(0, 0)

(
ν3 ν4
ν4 ν5

)
.
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However, this is impossible due to [35, Theorem 2.1]. Thus, the Aubin property of SGE at 0 for
x̄ holds. Consequently, the analysis in Theorem 3.1 tells us that the SSOSC (3.19) holds. Of
course, one can also directly observe the SSOSC from (4.6). As a result, the solution mapping
SKKT also has the Aubin property at the origin for (x̄; ȳ).

Besides, for the function F defined by (4.1), from [34, Lemma 11] and [45, Lemma 2.1] one
has for any W ∈ ∂F (x̄, ζ̄ , Γ̄), there exists a matrix T ∈ S3 such that

W (∆x,∆ζ,∆Γ) =







∆ζ ∆x12 ∆x13
∆x21 ∆x22 ∆x23
∆x31 ∆x32 ∆x33


+∆Γ

∆x11
−∆x+ T ◦ (∆x+∆Γ)



,

where “◦” denotes the Hadamard product and

T ∈

{

1 1 1
1 t1 t2
1 t2 t3



∣∣∣ t1, t2, t3 ∈ [0, 1]

}
.

Thus, it is easy to see that each element in ∂F (x̄, ζ̄, Γ̄) is not singular.

Remark 4.2. Note that the nine equivalent conditions listed in Theorem 4.1 are not exhaustive.
For example, one additional equivalent condition, according to [45, Remark 3.1], is that F is
a locally Lipschitz homeomorphism [15, Definition 2.1.9] near (x̄; ȳ). Furthermore, by [45,
Theorem 4.1], another condition is that x̄ is nondegenerate and strongly stable [7, Definition
5.33]. For more details and equivalent conditions, one may refer to [45] and the references
therein.

Remark 4.3. According to the equivalence between the two conditions (v) and (vi) in Theorem
4.1, one can see from Lemma 4.1 and [2, Section 2] that the conditions in Theorem 4.1 are also
equivalent to

0 ∈ D∗Φ(x̄, ȳ)(z) ⇒ z = 0 ∀z ∈ X × Y,

where D∗Φ denotes the strict graphical derivative defined by (2.2).

Remark 4.4. It should be emphasized that, for (1.1) with K being an arbitrary C2-cone re-
ducible set, it is still unknown if the strong regularity of the KKT system (1.7) is equivalent
to the constraint nondegeneracy (2.13) combined with a certain second-order optimality condi-
tion similar to (2.18). The currently known cases include the nonlinear programming [13], the
NLSOCP [5], the NLSDP problem [45] and a composite matrix programming regarding matrix
eigenvectors [9].

5 Conclusions

In this paper, we prove that at a locally optimal solution to the nonlinear semidefinite program-
ming problem (1.8), the Aubin property of SKKT (1.6) is equivalent to the strong second-order
sufficient condition plus the constraint nondegeneracy. This enables us to derive a series of
equivalent characterizations of the Aubin property, which includes the strong regularity of the
Karush-Kuhn-Tucker system (1.3). As a byproduct, for nonlinear semidefinite programming,
this paper answers the open question posed in [11, Section 5] if the Aubin property can be
characterized by an exact form of a certain second-order optimality condition together with
the constraint nondegeneracy. It should be noted that our analysis for nonlinear semidefinite
programming (and also for nonlinear second-order cone programming in [8]) relies on the ex-
plicit formulas of the coderivative for the underlying normal cone mapping. Currently, it is not
clear to us how to extend these results to generic non-polyhedral C2-cone reducible constrained
optimization problems. We leave this as our future research topic.
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