arXiv:2403.18320v2 [math.OC] 13 Aug 2024

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

Efficient Online Prediction for High-Dimensional Time Series
via Joint Tensor Tucker Decomposition

Zhenting Luan ZHENTING.LUAN@QPOLYU.EDU.HK
Defeng Sun DEFENG.SUN@QPOLYU.EDU.HK
Department of Applied Mathematics

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

Haoning Wang WHN22@MAILS. TSINGHUA.EDU.CN
Liping Zhang* LIPINGZHANG@QTSINGHUA.EDU.CN
Department of Applied Mathematics
Tsinghua University, Beijing, China

Abstract

Real-time prediction plays a vital role in various control systems, such as traffic conges-
tion control and wireless channel resource allocation. In these scenarios, the predictor
usually needs to track the evolution of the latent statistical patterns in the modern high-
dimensional streaming time series continuously and quickly, which presents new challenges
for traditional prediction methods. This paper is the first to propose a novel online algo-
rithm (TOPA) based on tensor factorization to predict streaming tensor time series. The
proposed algorithm TOPA updates the predictor in a low-complexity online manner to
adapt to the time-evolving data. Additionally, an automatically adaptive version of the
algorithm (TOPA-AAW) is presented to mitigate the negative impact of stale data. Simula-
tion results demonstrate that our proposed methods achieve prediction accuracy similar to
that of conventional offline tensor prediction methods, while being much faster than them
during long-term online prediction. Therefore, TOPA-AAW is an effective and efficient
solution method for the online prediction of streaming tensor time series.

Keywords: High-dimensional time series, streaming data, online prediction, Tucker
decomposition, alternating minimization method, autoregression

1 Introduction

Time series is a sequence of discrete data points observed over time, which is generated
naturally in various areas such as economics, climate, and traffic (Kwon et al., 2021; Shih
et al., 2019). The prediction of time series data is crucial in numerous real-world scenarios
such as stock market analysis (Sharma et al., 2017) and traffic flow (Lv et al., 2014).
For example, the prediction of traffic is the core component of intelligent transportation
systems, including route planning, traffic control and car dispatching (Li and Shahabi, 2018).
Conventional methods for time series prediction usually depend on autoregression (AR)
models (Lewis and Reinsel, 1985), e.g., autoregressive integrated moving average (ARIMA)
model (Hamilton, 2020) and vector autoregressive (VAR) model (Zivot and Wang, 2006),
to handle scalar or vector batch data.

x. Corresponding author.

LuAaN, SuN, WANG, AND ZHANG

However, with the emergence of large-scale time series data generated in modern pro-
duction activities, classical prediction methods face challenges posed by modern sensing
technologies. The modern time series data are usually super large-scale and detected from
numerous sensors. For instance, the freeway traffic Performance Measurement System of the
California Department of Transportation is a sensor network of more than 26000 individual-
lane inductive loops installed throughout California freeways, with more than 35000 detec-
tors that send traffic measures to a road control unit per 30 seconds (Pascale and Nicoli,
2011; Chen and Sun, 2021). Classical methods are not efficient and reliable for handling
such large-scale time series. Moreover, modern time series data are often multi-dimensional
with different characteristics shown in different dimensions, such as the channel state in-
formation in time, spatial, and frequency domains detected by periodic sounding reference
signals (Luo et al., 2018).

With the rapid development of sensing technologies, streaming time series data are
collected continuously from various types of sensors, such as the traffic low measurement
in the traffic congestion control system (Maarala et al., 2015) and the periodic channel
state information (CSI) in wireless channel resource allocation (Letaief and Zhang, 2006).
Accurate real-time prediction is beneficial for the system to make timely decisions in such
scenarios. However, conventional prediction methods must re-exploit the entire dataset,
including the newly observed data, to rebuild the prediction models in each process of
predicting the upcoming data, which is unsuitable for high-frequency streaming time series.
For example, in mobile scenarios, wireless channels change rapidly. So we’re going to see
a rapid mismatch of the external channels that rely on pilot estimation. As a result, the
performance of interference suppression algorithms is severely degraded. It is crucial to use
the prediction algorithm to obtain the channel of the channel at non-pilot time and improve
the difference between the estimated value and the actual channel, improve the system
performance (Kim et al., 2020). Additionally, due to the evolution of statistical patterns
in streaming time series data, predicting the upcoming data over an extended period is
improper without prediction model updating. Therefore, online prediction is essential to
help forecast upcoming data and make immediate decisions continuously and rapidly.

Recent advances in tensor research have led to the development of prediction models
(Ahn et al., 2021; Wang et al., 2024) for tensor time series (TTS) data with high dimen-
sions based on tensor factorization such as Tucker decomposition and CP decomposition
(see De Lathauwer et al., 2000; Kolda and Bader, 2009; Jing et al., 2018). These methods
explore the joint low-rank structure of all observed data, where the statistical patterns or
the periodicity of data are utilized for generating predictors. The tensor factorization strat-
egy (see Yu et al., 2016) is a generalization of matrix factorization, which has been shown
to be very efficient in large-scale multi-variable time series. Jing et al. (2018) developed
a multi-linear prediction model, MOAR, based on Tucker decomposition, which projected
the original tensors into several subspaces and built temporal connections among the core
tensors by the traditional autoregressive model. The constrained version of MOAR, called
MCAR, regularizes the residual of the joint tensor decomposition to find a more stable
solution. Shi et al. (2020) proposed a prediction algorithm that combined tensor decompo-
sition and ARIMA model for the block-Hankelized TTS data, which exploited the low-rank
structure of T'TS and captured the intrinsic correlations among it. Both of these approaches
demonstrate strong performance for single-time predictions by constructing predictors from

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

scratch with numerous iterative iterations. However, they are not suitable for direct ap-
plication in streaming T'TS online prediction due to the necessity of repeating the process
of constructing predictors. Tan et al. (2016) presented a short-term traffic flow prediction
approach for predicting streaming traffic data based on dynamic tensor completion (DTC).
This approach regarded the data to be predicted as some missing data in the corner of a
multi-dimensional tensor. It used DTC to complete the tensor to obtain the missing data
for prediction. However, this process depends on the multi-mode periodicity of traffic flow
data, and hence is unsuitable for generic TTS data without periodicity.

From the above mentioned, using traditional forecasting methods to deal with such
scenarios often faces the dual challenges of computational complexity and multi-dimensional
feature mining. A natural question is how to design an accurate and fast online prediction
algorithm for such high-dimensional tensor time series.

In this paper, we design an algorithm— Tucker-decomposition based Online Prediction
Algorithm (TOPA)— for predicting generic streaming T'TS data in an online manner, which
allows us to quickly update the predictors from the previous model and the latest obser-
vations rather than rebuild it from scratch. At each sampling time during the streaming
observation, we employ the Tucker decomposition for dimension reduction and joint fea-
ture subspace extraction of the streaming TTS, and find the auto-regression pattern in the
dimension-reduced TTS (the core tensor series). Then, the prediction results are obtained
from the predicted core tensor together with the inverse Tucker decomposition. We design a
regularized optimization problem with a least-squared form to search for the proper Tucker
decomposition and regression model. In order to quickly solve the optimization and update
the previous predictor, we introduce an online updating scheme for the optimization, of
which the initialization is exactly the solution to the previous optimization problem formu-
lated at the last time point. Moreover, for streaming data in which the statistical pattern
evolves over a long period, we propose an automatically-adaptive-weight (AAW) strategy
for processing past data during online prediction, which can reduce the cumulative error
of the predictor from stale data and automatically decrease the weights of very noisy data.
The improved version of TOPA is called TOPA-AAW.

In summary, the main contribution of this paper is to propose an online prediction
algorithm for streaming T'TS based on tensor factorization, which includes the following
specific aspects.

e The gradually varied joint tensor factorization structure of streaming TTS is up-
dated by the proposed online updating strategy for tracking the changing underlying
dynamic statistical characteristics. Compared with conventional joint tensor factor-
ization methods, this strategy takes much less time owing to only a few alternative
iterations with an inherited initialization.

e We design an online updating algorithm TOPA with inherited solutions to quickly up-
date the joint tensor factorization structure once observing new data. The prediction
accuracy of this algorithm is close to offline methods (e.g. Jing et al., 2018; Shi et al.,
2020), while the time complexity is significantly lower. The performance of TOPA is
validated in numerical simulations, including synthetic and real-world datasets. We
also analyze the convergence of our proposed algorithms.

LuAaN, SuN, WANG, AND ZHANG

e To reduce the interference from stale data to the latest statistical characteristics mod-
eling, we propose an automatically adaptive regularization strategy TOPA-AAW for
the introduced least-squared optimization problem. The TOPA-AAW can gradually
decrease the weights of historical and abnormal data.

The paper is organized as follows. In Section 2, we define the online prediction problem
and introduce the joint tensor factorization strategy for TTS. In Section 3, we propose the
TOPA and introduce the online manner for predicting streaming TTS data. In order to
address the problem of data staleness, we add automatically adaptive weights for regular-
izing the joint tensor factorization and propose TOPA-AAW in Section 4. In Section 5, we
evaluate the performance of our proposed algorithms in different scenarios and compare it
with some tensor offline prediction methods and neural-network-based methods. Finally,
conclusions are drawn in Section 6.

2 Preliminaries

In this section, we first give notation and tensor operators used in this paper. We next to
define the online prediction problem and introduce the joint tensor factorization strategy
for TTS.

2.1 Notation and Tensor Operators

We employ bold italic lower-case letters, bold italic capital letters, and bold calligraphic
letters to denote vectors, matrices, and tensors, respectively (e.g., , X and X). For a
positive integer n, denote the set [n] = {1,2,...,n}. We use uppercase letters with script
typestyle to denote the set of data (e.g., ¢). Furthermore, we represent the time series
with given length T' by uppercase letters with script typestyle equipped with a subscript
[T] (e-g-, 9r))- Denote I} as the k x k identity matrix. We use ()" to denote the conjugate
transpose of a complex matrix. The set of unitary matrices with given scale I x R(I > R)
is denoted as
UXE = (U e C*RIURU = Iy}

The Frobenius norm of a tensor X is defined as || X||p = /(X, X), where (-, -) is the inner
product. Moreover, the Frobenius norm of a tuple of tensor X = (X1,...,X,,) is defined as

1X|lF = /> i1 |Xil|%. Each dimension of a tensor is called a mode. The m-mode product
Xm between a tensor X € CI > *Im and a matrix U, € C'*Im ig defined as

Im
(X X Uiy iy 1 jimsroing = g X vimingUjim
im—1

for Yy € [Jn], Vi € [I}], VI € [M]\{m}. The m-mode unfolding matriz of a tensor is recorded
as Xy € ClnIlizm 1) Denote R(X) = (rank(X (1)), ,rank(X yp))) as the Tucker-
rank of an Mth-order tensor X.

2.2 Problem Formulation

Denote Xy € Cl*XIM a5 the observation at sampling time ¢ and 2 = A{X1,--, X7}
as the T'TS until sampling time T". Given 2|y, the prediction of X1 is to find a predictor

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

hr(-) that minimizes the mean squared error (MSE) as
min || X741 — hre(Zin) || F, (1)

where X 741 := hr(Z|)) is the prediction value of X7.

In this paper, we consider the online prediction problem (1) for streaming T'TS, in which
the prediction function hp(-) changes as streaming observations X arrive sequentially.
Therefore, the previous predictor should be updated with the latest observation for the next
prediction at each sampling time. This dynamic process is referred to as online prediction.

For high-dimensional streaming T'TS data, the curse of dimensionality makes data pro-
cessing challenging. To mitigate this challenge and explore the multi-aspect temporal con-
tinuity of T'TS, we introduce the joint tensor factorization strategy in the next subsection,
which motivates us to develop low-complexity algorithms for online prediction.

2.3 Joint Tensor Factorization Strategy

Tensor factorization is a powerful approach for compressing high-dimensional data (Kolda
and Bader, 2009). In this subsection, we provide a brief overview of this approach, which
has been shown to be effective in predicting non-streaming TTS (Jing et al., 2018; Wang
et al., 2024).

Owing to the temporal continuity of TTS, the T'TS data share similar multi-aspect fea-
ture subspaces, which can be extracted by Tucker decomposition (see Kolda and Bader,
2009). The Tucker decomposition factorizes a higher-order tensor into a core tensor multi-
plied by a set of projection matrices along each mode. The core tensor captures the essential
information of the original tensor, while the projection matrices represent the feature sub-
spaces. In this paper, we utilize joint Tucker decomposition to compress the original TTS
into a lower-dimensional representation while preserving the important features. Specifi-
cally, the joint Tucker decomposition finds the (Ry,--- , Rys)-rank approximation of given
TTS with joint projection matrices, which is formulated as:

M
X~ G [xmUP, telr], (2)

m=1

where QET) € Chrx..xBu i the core tensor corresponding to X, and ,S@T) € UlmxBm g
considered as the m-th joint feature subspace of Z|;.

As discussed in Jing et al. (2018), the core tensors obtained via joint Tucker decomposi-
tion can be viewed as a compact representation of the intrinsic interactions among multiple
feature subspaces of T'TS. This representation is more suitable for modeling temporal con-
tinuity than the original data. Moreover, the size of core tensors is much smaller than
the original TTS, which makes it computationally more efficient to apply AR models to
the core tensor series. For instance, we can utilize AR(p) model to illustrate the temporal
correlations among the core tensor series, which is formulated as

p
o = aNgM 4 £, pii<i<T ®)
=1

LuAaN, SuN, WANG, AND ZHANG

where {agT)} are AR parameters and SgT) is the white Gaussian noise in X;. With (3), the

(T
core tensor g(T le of next observation data is predicted by

p
5(T)
91 = Z O‘ET)Q(TTJ21—¢- (4)

=1

Thus, the prediction of upcoming data is given by extending the temporal continuity of
multi-aspect feature subspace to the next time point:

M

. (T

X141 = ggm)l H XU (5)
m=1

When dealing with streaming TTS, traditional offline prediction methods, such as
MCAR in Jing et al. (2018) and BHT-ARIMA in Shi et al. (2020), suffer from high computa-
tional complexity as they require finding a new predictor for (1) after each observation with-
out inheriting any information from previous predictors. This results in a time-consuming
process of repeatedly solving the model during the streaming observation. To address this
issue, we propose an online prediction method TOPA for (1) with the tensor-factorization
strategy. The proposed TOPA can quickly find new predictors by updating the previous
one with the latest observation, thereby reducing computational complexity.

3 TOPA for Streaming TTS

In this section, we introduce a novel two-stage online prediction algorithm for (1) called
Tucker-Decomposition-based Online Prediction Algorithm (TOPA). The first stage aims to
find an initial predictor using starting TTS. This stage can be seen as a generalization of
MCAR in Jing et al. (2018) with a simplified optimization problem. The second stage is the
main focus of TOPA, which continuously updates the predictor and predicts the upcoming
data as the streaming observation arrives. We online update the predictor by solving an
incremental optimization problem with the previous predictor as initialization. At the end
of this section, we analyze the convergence and computational complexity of TOPA.

3.1 Stage I: Initial Predictor with Starting TTS

In order to find a suitable initial predictor before receiving streaming data, the observer
needs to observe a starting TTS as the initial input for TOPA. It is assumed that this
starting TTS comprises Ty samples and the streaming observation starts from time Tp + 1.
By treating the starting TTS as a non-streaming TTS, we utilize the joint tensor-
factorization strategy introduced in Section 2.3 to create the initial predictor. The joint
Tucker decomposition of starting TTS is formulated as (2) with T" = Ty, which estimates
the joint feature subspaces of TTS as % (7o) £ {U&TO)}mE[M} and the core tensor series as
%[% (])) = {QETO)}tG[TO]. To be more generalized, we denote f () () as any desired AR-type

model for %[(TTO ‘i), e.g., VAR model and ARIMA model, which is formulated as
G ~ [y (@), te T, (6)

6

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

where 22(T0) represents all regression parameters in f and %[i] ©) are the first ¢ core tensors

of the starting TTS. For example, (T { } in (

Remark 1. Notice that the order of AR model, denoted p(< To), defines the number of past
data that have direct temporal correlations with the current data, i.e.,

o) @) = Foan (G5, 6.

For convenience, we still use f 1) (Z[y) to represent the model with a little abuse of
notation when there is no ambiguity about the order.

With the tensor factorization and regression, TOPA predicts X1, 41 by inversely pro-
jecting the predicted core tensor with the joint feature subspaces:

M
¥ = Grves T a0 = iy (459 TT 50

m=1 m=1

= hTo('%/[To})ﬂ (7)

where hr, (-) depends on % (T0) %[(T?) and 22(10), Define

Fr, (950, 210, a1 = Z;l”g(TO Forin () 13
t=p

To M
Tt
+ o3 0167 — &, T xm@)H |3,
t=1 m=1

where the first term is used to minimize the error of core tensor series regression, and the
second term is used to regularize the joint Tucker decomposition of the starting TTS with
a residual minimization formulation and regularization parameter ¢ > 0. By (7), we can
reformulate (1) as the following optimization problem:

min Fr, (g(TO) (To) 02/(T0)>

@'T0) 5(Ty) g/ (Ty) (7o} 7
[Tol ° ’

st. U eylnxBu - ym e [M]. (8)

According to the multi-variable and least-squared structure of problem (8), we propose a
proximal alternating minimization algorithm to solve it. In this algorithm, we solve a series
of subproblems with a proximal regularized term (see Kaplan and Tichatschke, 1998) of (8)
in an alternating manner, with each subproblem fixing all variables except the one being
updated. That is to say, it alternatively updates only one of 2(10) 7/ (To) and %[(Tr‘g})) at a

time. Fortunately, each subproblem with respect to 22(0) %7 (10) and g[%?) has closed-form
solution. We give the updated derivation process in details.

LuAaN, SuN, WANG, AND ZHANG

Update regression parameters: For AR model, the subproblem of updating & (To) —

{a!T0) = [agTO), e (To |} with proximal term and step size A is formulated as
T, . (T: (To) T,
af) :argmmFTo(o Aah ™) + Dl ol
(a7

To p
. T T A T
=argmin - |G =" G ullE + Slle — eV

® =pt1 i=1

The closed-form solution to (9) is

Ao\t A
o) = (R+35,) (r+5a™), (10)
where
L To) (Tt
Ri;= Y (9.0, 1<ij<p (11)
t=p+1
and
To
ri= Y <9§T3k,g(To > 1<i<np, (12)
t=p+1

Remark 2. When Tj is large enough, the entries of R and 7 can be seemed as approximations

of the autocorrelation function of %[(T])k

r(j — 1) =E(Gt, Gitj—i) -
Then, we have
R,j~r(i—j), ri~r().
With these approximations, when A = 0, (10) is the solution to the known Yule-Walker
equation (Chen et al., 2011).

Update joint projection matrices 9 T+D. For m = 1 to M, the subproblem of
updating U,SLTO) with proximal term and step size A is formulated as

mkH_UeIUI R [Tol,k* < k+1° i k41
m m

U(TO) argmin FTO (g(TO) 9(0) {U(To) m-— 1U{U}U{U (To) }j m+1>
A
+3IU-U, (To)) 2,

To) Tt
= argmin @ZHQ(0) He < U5+ 5 HU_Urgz,(l)c)H%

UcUImXRm .
Tt
= argmax Rtrace | UY zo:(Hi)m (g(TO)) iUT(,LT}L)) (13)
UcUlmxRm 1 2¢ ’

where the last equality holds by utilizing the orthogonal constraints UFU = T R,,, the
symbol Rtrace(X) denotes the trace of the real part of X, and

H = Xy H X li}jrl = H x;(U TO) . (14)

<m i>m

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

With orthogonal constraints, the closed-form solution of (13) is

T
Ur(n (I)€)+1 - Lm,kHRan,kH, (15)

where L, 41 € Ulm*Em and R, ;41 € Ufm*FEm are the left and right singular matrices of

To

A
D)oy (G1V iy + 55Ut (16)
t=1

Update core tensor series ¥ (?) For t =1 to Ty, the subproblem of updating U,Sl 0)
with proximal term and step size A is formulated as

T . T T
gg,kOJ)rl = arggmln FTO <{§[§ 1],k+1 U {gt} U {g sTIt{H’ yl(c+01)’ %k(Jr(i))
t

A
+516: = G013 (17)

Since (17) is a quadratic optimization problem, when the gradient of the objective function
with respect to G; vanishes, we can obtain the solution to (17):

gﬁoll ot [‘P'Xt H Xm mk+1 ks g] ift <p, (18)
and
(To) _ # (To) 0) (To) .
Gkt = ltpt? [f(@gol) (g[1, 1) T X nnl Xm mk+1) + g] if t > p. (19)
As t traverses [T + 1] 4T s updated to 410 = {g }
» “[Tolk P [To),k+1 ° t k+1 te[T):

According to (14) and (16), define

To

H A
w3 | 2 T @i [T 0") < (9),, + 0 @)

t=1 i<m j>m (m)

Then, we summarize this stage of TOPA in Algorithm 1. In each iteration, we first update
the regression model of the core tensor series in terms of current iteration results of core
tensors (line 2 in Algorithm 1), and then update the joint projection matrices and core tensor
series in the joint Tucker decomposition structure (line 3—6 and line 7—12, respectively).

By executing Algorithm 1, we can build an initial predictor (7) for the starting TTS,
which is the basis for the subsequent online prediction stage.

3.2 Stage II: Online Predictor Updating and Prediction

In this stage, new streaming TTS data arrive in sequence. After each data sampling,
we update the previous predictor online and then predict the upcoming TTS data with the
updated predictor. The online manner relies on the same assumption of temporal continuity

LuAaN, SuN, WANG, AND ZHANG

Algorithm 1 TOPA - Stage I

Input: TTS Zjp,), and autoregressive model f, step size A > 0, tolerance ¢ > 0 and
iteration number k£ =0

Output: Core tensor series %[Ef]), autoregressive parameters 2(70) and joint projection

matrices % (o)

Initialize joint projection matrices ?/ ={U,., (To _, randomly.
Initialize core tensor series:
i = 1960 = 2 Ty <UL
1: while £k >0 do
2: Compute regression parameters @,E, +1) for f with %[(]) via solving subproblem (9).
3: form=1:M do
4: Compute the left and right singular matrices Ly, g4+1 and Ry, k41 respectively of
W(T0) defined by (20).
5 Update U;T%)Jrl via (15).
6: end for
7. fort=1:pdo
8 Update ") ia (18).
9

t,k+1

. end for
10 fort=p+1:75do
11: Update g§ ko_)H via (19).
12: end for
3G — Gl 120 — 25+ 120 — 2| < ¢ then
14: Break;
15: end if
16: k<< k+1

17: end while

18: return Q(TO)ZQIETO), %(TO):?/k(TO), {4[(TTO?) %[%(]))k

10

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

Prediction ’ ’
Output

(22) (22)
Online e ’ el ’

Prediction G T4
-1 7 —= .' @ U‘(:) “7) - -] T+1)
- _Gir—j > 1 91| B [i Jirea)
UT-n s um U+
TV]“N’()((;) ey](1;\% PTHD
[~ —4 3
& & — &6

Observation T 1 >

Streaming TTS ’ ’

Figure 1: Stage IT of TOPA for Streaming TTS

of considered TTS as discussed in Section 2.3. In this stage, we repeat online updating and
prediction for online prediction, as illustrated in Figure 1, where Ty in (9), (15) and (17)
should be replaced by T'+ 1. We list the main two steps as follows.

Online updating step: At time 7'+ 1(> Tp), new TTS data X'ry; arrives. Similar to
Stage I, the process of finding new predictor hyyi(-) can be formulated as

. (T+1) p(T+1) g, (T+1)
ol Fri (g[Tﬂ} 7 U)
(T+1 ’
g (T+1)
st UTTD e ul*fv v e (M), (21)
where
T — (T T
1 1) 1
Proa (9 200, T0) = 37165 — foam (G I
t=p+1
T+1 T M
1
+o > 167 = 2 [T xm @3
t=1 m=1

Under the assumption of temporal continuity of T'T'S, the joint feature subspaces among
TTS data and core tensor series change smoothly as observation continues (Jing et al., 2018).
Moreover, compared to Fp(-), Fryi(-) contains only two additional terms that relate to
X7141. Thus the change in the objective function for the online optimization problem is
relatively small. When hp(+) is accurate enough, we can employ it as the initialization for
solving (21). Specifically, we take %[(T}) 1) and 2T as the initialization of (21), and
use an alternative updating scheme to solve (21) in closed forms. The details of alternative

updating are shown in the online updating step of Algorithm 2. The updates of 54[(7?:1?,

11

LuAaN, SuN, WANG, AND ZHANG

2T+ and % (T+Y are similar to (10), (15), (18) and (19). We omit the process of update
here.

Online prediction step: After online updating the predictor with new observation,
TOPA predicts the upcoming tensor data at time T+ 2 by

M
.5C'T+2 = fy(TH) ([7?_:][)> H XmU

m=1

=: hr1(Z]r41))- (22)

In the practice of our proposed online manner, we only need to run a few iterations
to find a predictor accurate enough, owing to the inheritance of the previous solution. In
contrast, offline prediction algorithms, such as those discussed in Jing et al. (2018) and Shi
et al. (2020), need to perform multiple iterations with random initialization to solve (21),
which is inefficient and repetitive during streaming observations. The simulations in Section
5 demonstrate that our online updating scheme performs as well as those offline methods,
even with just one iteration.

3.3 Convergence and Complexity Analysis

In this subsection, we analyze the convergence and complexity of TOPA. Since the online
updating process of Algorithm 2 is similar to Algorithm 1, we only provide convergence
analysis for Algorithm 1 here.

Denote the sequence generated by Algorithm 1 as {WIETO) = (g[gp])k’ @(TO) %k(TO)>}.

Let W) — <%[(7€(}))*, W(TO) %(To)) be any of its accumulation point. Let N(Ug‘i)) be the

normal cone of Ulm*Fm at U#LT?k), as defined in Rockafellar and Wets (2009). Then, we have
the following convergence result.

Theorem 1. Assume that the starting TTS and the regression parameter sequence {,@éTO)}k

generated by Algorithm 1 are bounded. Then, for any limit points WiTO) of the sequence
{W,(CTO)}, we have

oFr, (W) oFr, (W)
orm O T g Y)
i
and
OFr, (W’gTO)) (Tv)
L e NUD). (24)

U

In other words, any limit point of the iteration sequence generated by Algorithm 1 is the
stationary point of (8).

12

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

Algorithm 2 TOPA - Stage I1

Input: Streaming TTS 2|7 from T' = Tp, autoregressive model f, step size A > 0, and

tolerance € > 0
Output: Online prediction results { X} To+2

1: while observing new data X7, at time 7"+ 1: do
2: k<« 0
3: step 1: online updating

F o) G)X H xm (U)1

4: QTH : s
6: while k>0 do
;: fgomputelre-g];\lfscsilon parameters W,E 1) for f with [(T+1])k; via solving (9).
: orm=1: o
9: Compute the left and right singular matrices Ly, x4+1 and Ry, k41 respectively
of WD defined as (20).

10: Update Ul) ¢ L1 RE
11: end for
12: fort=1:pdo

(r+1) P Hm 1 xm(Uys«LT;L) g(TH
13: Girtl &

b ¢ + 5
14: end for
15: fort=p+1:T+1do

(T+1 THUONH | A(T+1)

(T+1) Foren G, ba) X H < (U i)+ 3610
16: Girrl & T _+

b @ 5
17: end f(%r o @ o @ o

1 1) 1 1) 1 1)
s A G~ R BT 2R+ 1250 - 2V < € then
19: Break;
20: end if
21: k+—k+1
22: end while T41) 41 T41) r41)
T4+1) + T4+1) + +1) +
23 PTH=p 7 T =9, v Yy =Yk
step 2: online prediction
< T T

24: X7y = fﬁ(TJrl)(g[(TJ:rl?) [T x mUS Y.

25: return i’qurg
26: T+ T+1
27: end while

13

LuAaN, SuN, WANG, AND ZHANG

Proof Denote W,gTO) = (g[%))k, @,gTO),%k(TU)). In terms of the alternative manner of

Algorithm 1, we have

Fr, (455 24 %) 2P, (9535, 280, 247 + ”%ﬂ) 7|5

> (451 24T %) + 51247 - 21

(25)
Tt (T¢
+ 1% - ™
> P, (G590 P, 2ED) + SIS~ W,

where the three inequalities are due to the optimization subproblems (9), (13), and (17),
respectively. Therefore, via recursion, we have

Tt Tt T Tt ik ik Tt
Fr, (950 28 ™) = Pry (950, 24, %, °>)+Z W — WD (26)

For any k and t < Tp, with the boundedness of X; and Ug‘;c), we have

M
T Tt
165012 < 1617 ~ H TNV |12, 12| 2%
\ 27
<oF, (41, 7™) L2} 27
Tt T T
<2Fy, (9550 26, °>) + 2] %3

Hence { To k}k is bounded. Therefore, {W } is bounded and has at least one limit point.
With (26) we have

Zuw o) _ w02, < o, (28)

which implies
ngol) - W(To) 0. (29)

For any limit point W) — (64[%?)*, @iTO) (1)) f{W } there exists a subsequence
{W,giTo)}i that converges to WﬁTO). With (29), we have ngﬁ)l N Wi o).

For any t and ¢, since QETkOl)Jrl is the solution to (17) with index k;, we have

OFr,
ag(To

T To) (T T T
(gg 01)],ki+1u{gtk YUGIN L L 2)+ (ggk)-i-l g§k0)> = 0. (30)

Let i — 400 in (30), we have
OFr, (w,ETO))

=0. (31)
aggTO)

14

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

Similarly, we have
OFr, (w£T°)>
—~__J . (32)
5.2 (To)
Then, (23) is proved.

For any m and 4, since UT(nT(;g)i 41 is the solution to (13) with index k;, by Theorem 8.15
in Rockafellar and Wets (2009), we have

-) ’ ’ {Uz ; m {Umo } U {U) } =m
aUTS’LTO) ([To],k; k +1 ki+1J4 ki+1 Gk; = +1> (33)

T T
—A (Uvgm (I)g)-i-l Ur(n,(lg) € N<Ur(n k)+1)

Let i — 400, with Proposition 6.6 in Rockafellar and Wets (2009) and (33), we obtain

OFr, (Th) (Th)
R (W) e N i) (34)
Hence, (24) holds. |

The computational complexity of TOPA-Stage II is dominated by updating joint projec-
tion matrices and core tensor series. For each iteration in online prediction, the total com-
putational complexity is O (2MTIM R+ M(M — 1)TRMI), where I = (I Lnepn I,)YM
and R = (I Lmep Ry)YM are the geometric average of the scale of TTS data and core
tensors, respectively.

For details, we list the computational complexity of each iteration during online predic-
tion by TOPA in Table 1. Here we denote the total order of AR model f is p, which is
assumed much less than the scale of tensor data.

Table 1: Computational Complexity of Stage II in TOPA

Step Computational Complexity
Line 4 of TOPA-Stage 11 O (MIMR)
Computing @,g_;rl) 0] (p3RM)
(15) O (MT((M —1)IMR + RMT))
(17) O (T(MIMR + pRM))
Total O (M?TIMR + MTRMI)

4 TOPA-AAW: TOPA with Automatically Adaptive Weights

In real-world scenarios, when streaming T'TS data are observed continuously over a relatively
long period, the effectiveness of stale data in revealing the latest statistical patterns in
streaming TTS gradually diminishes. This leads to an increasing cumulative prediction
error, such as wireless CSI (Letaief and Zhang, 2006), in which the intrinsic statistical
patterns evolve rapidly as observations continue, and the data becomes outdated quickly.
To address this issue, we propose an automatically adaptive weight (AAW) regularization

15

LuAaN, SuN, WANG, AND ZHANG

method with a time sliding window 7 for modifying (21). The AAW gradually decreases the
weights of stale data to reduce their impacts on prediction accuracy. To further eliminate
the interference caused by heavily noisy data, we introduce an automatic factor in AAW to
reduce the weights of heavily noisy data.

The optimization problem for online prediction, once X7y is observed at time T + 1,
is modified as:

FOAW) T+D) p(T41) /(141

ST (T 41, [T+1] 2

G (T+1)

[T+1]

s.t. U+ ¢ ylmxBy - wm e [M], (35)
where

AAW) /1, (T+1 & T+1 T+1
F:(F-H)(g[é“:l}) P THY) T+ = Z <”g§ +1) —fy(T+1)(g[i,E))H%’
t=T—71+2

(T+1 (T+1)
oG - H $m (U 3),

and wETH) is the AAW

(T+1) (1- at_(T_T‘H)) max{3,1 — egT—H)}, T—7+2<t<T, (36)
w. =
' 1, t=T+1
with Tucker-decomposition residual error
x, — gT+) M U (T+1)
€£T+1) _ H t gt Hm:l Xm ”F (37)

141

Here o € (0,1) is the damping parameter for reducing the accumulative prediction error
from stale data. The ‘max’ factor is inversely proportional to the residual error EETH) of
joint tensor decomposition for streaming TTS in the last prediction, while 8 € (0,1) is the

minimum residual factor.

Remark 3. The parameter [is configured as a threshold for checking the deviation of the
joint Tucker decomposition for each data in T'TS, which can help prevent the data with
significant decomposition residual errors from being entirely discarded. For stable TTS with
gently evolving joint subspaces, such as two real-world datasets in Section 5.2, 8 can be
broadly chosen from 0 to a positive number close to 1 since the threshold is inactive. For
unstable TTS with fast-evolving joint subspaces, such as the wireless channel discussed in
Section 5.1, 8 should be set properly to deal with fast-fading or noisy channel states. In
addition, we specifically discuss the effects of choice of o and ¢ in Section 5.2.

Since the structure of (35) is similar to (21) except for the sliding time window and
AAW, we solve (35) in a similar online manner as Algorithm 2. With AAW, the online
updating step in Algorithm 2 is modified as follows, while the prediction step is the same.

16

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

Estimate New Core Tensor (line 4 in Algorithm 2):

T 1 T+
Gl = (T+D(f@uvﬁﬁ%f)4-¢wé+1)ﬁhwq IT xm(fm)H>-
L+ pwp

m=1

Update Projection Matrices (line 8—11 in Algorithm 2): In (k + 1)-th iteration,

form =1 to M,
T+1
Ur(n,lj—i-i = Lm,k+1(Rm,k+1)H,
where L,, ;41 and R,, 41 are the left and right singular matrices of

T+1

H A
Z T+1 (X H i 13;1—11 H U(T+1))(m) % (gg?];+l))(m) * %UTSZ’:_U’

t=T—1+2 <m j>m

respectively.
Update core tensor series (line 12—17 in Algorithm 2): In (k + 1)-th iteration,
fort=T—-—74+2toT +1,

(T+1) 1 (T+1) (T+1) (T+1 (T+1)
Giki = Tl) [f%iﬁ” (G i) Tt Xy H X (Uns1)" +5 gt
With the time sliding window, TOPA-AAW further reduces the computational complex-

ity to 7/T times that of TOPA. In terms of Table 1, the total computational complexity of
each iteration in TOPA-AAW is O (MQTfMR + MTRMf).

5 Numerical Experiments

In this section, we evaluate the performance of TOPA in various scenarios, including syn-
thetic low-rank TTS, wireless channel simulations, and two real-world datasets. All numeri-
cal experiments are conducted using MATLAB R2018b on a Windows PC with a quad-core
Intel(R) Core(TM) 2.0GHz CPU and 8 GB RAM.

To the best of our knowledge, TOPA is the first method for online prediction of generic
streaming TTS. In order to provide a reference for comparing the performance of TOPA,
we also conduct five other non-online prediction methods:

e BHT-ARIMA (Shi et al., 2020) and MCAR (Jing et al., 2018): These are two
effective offline one-shot prediction methods for TTS. We run these offline methods
using the same online observations at each sampling time as the online methods by
building their predictors from scratch with multiple iterations to forecast the next
tensor data. BHT-ARIMA employs BHT, an Hankelized tensor expansion technique,
to further exploit the temporal relationships among TTS and uses a structure similar
to MCAR to formulate predictors. The offline methods perform sufficient iterations
until convergence in each prediction, thereby revealing good prediction performance.

e TOPA-init: To illustrate the importance of the online updating for predictors, we
test the performance of TOPA without model updating in some experiments. In
other words, we use the initial predictor obtained from Algorithm 1 and the streaming
observations to forecast upcoming data at each sampling time.

17

LuAaN, SuN, WANG, AND ZHANG

e LSTM (Hochreiter and Schmidhuber, 1997) and GMRL (Deng et al., 2023): These
are two neural-network-based prediction methods. Long Short-Term Memory (LSTM)
is a classical time-series forecasting method in the deep learning area, which utilizes
a type of recurrent neural network (RNN) architecture that is designed to process
and retain information over long sequences. GMRL is a latest work based on neural
networks equipped with the tensor decomposition framework.

When comparing the time costs of LSTM and GMRL, we did not account for the training
time costs of neural networks, though it may cost much time in practice. On the other hand,
owing to the predictor inheritance of TOPA, we conduct TOPA and TOPA-AAW with only
one iteration at each sampling time during the online prediction.

In addition, taking two real-world datasets in Section 5.2 as examples, we discuss the
effects of parameter choice for TOPA-AAW. We evaluate the prediction accuracy of algo-
rithms with the Normalized Root Mean Square Error (NRMSE) metric.

5.1 Synthetic Datasets

In this subsection, we evaluate the performance of TOPA in synthetic low-rank TTS and
wireless channel simulations. The numerical results indicate that TOPA and TOPA-AAW
have evident advantage on time-consuming and prediction accuracy.

Synthetic Low-Rank Streaming TTS: We generate a low-rank noisy streaming TTS
with a similar process as Sun et al. (2020, Sec. 6.3). The low-rank TTS structure follows
the joint Tucker decomposition. We first generate the core tensor series {G; € C**4x4}10,
with ARIMA(3,1,0) model. Then, we generate the joint feature subspace matrices {U,, €
U20x4}3 by orthogonalizing randomly generated matrices with ii.d. A(0,1) entries.
The generated noisy TTS are formulated as

M
Xy =G || xmUn + pllGil| pE; € COX20%2, (38)

m=1

where p = 0.1 is the noise parameter and €; is the noise tensor with i.i.d. A(0,1) entries.
Note that we have ||G¢||r = ||G: Hi\n/le XmUnm||F and p represents the ratio of noise in TTS.

The generated TTS with noise is divided into two sets: the first Ty = 20 data in the
training set, and the rest 50 in the test set. The regularization parameters for TOPA-AAW
are set as ¢ = 10,a = 0.4, 5 = 0.4. All numerical results are shown in Figure 2 and Table
2.

Figure 2 compares the average NRMSE of different prediction methods with 10000
Monte Carlo experiments, each independently and randomly generates a T'TS as (38). The
“TOPA-init” line in Figure 2 shows that prediction error increases as prediction continues
without model online updating due to the noises in TTS. With the online updating manner,
TOPA reveals almost the same performance as MCAR, while BHT-ARIMA has a little
advantage over these two methods. T'wo neural-network-based methods do not perform as
well as other algorithms, due to the implicit regression patterns of the core tensor series.

From Table 2, it is easy to see that among all these methods, TOPA and TOPA-AAW
are much more efficient owing to the one-loop algorithms, while also keep high prediction
accuracy similar to the offline methods.

18

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

04F
035 2R
03 ye® il tg
—— BHT-ARIMA
0251 |..a MCAR
—o—TOPA
w 02[|..o- TOPA-AAW
Q —*—LSTM
T) % GMRL
Z 015 TOPA-init

0.1

Prediction Time

Figure 2: Performance of different prediction methods on synthetic TTS (38). TOPA and
TOPA-AAW reveal almost the same performance as the offline methods.

Table 2: Average time costs and NRMSE of different algorithms on synthetic TTS
TOPA TOPA-AAW MCAR BHT-ARIMA GMRL LSTM
Time(ms) 47.8 25.1 774 238.4 2007 722
NRMSE 0.0776 0.0760 0.0778 0.0750 0.3299 0.1390

Wireless CSI Prediction: We consider the wireless channel prediction problem with
high-frequency observation and wild fluctuation of statistical features. For fifth-generation
wireless communication, many massive multiple-input multiple-output (MIMO) transmis-
sion techniques highly rely on accurate CSI acquisition, such as precoding and beamforming.
However, the observation of CSI and later data processing usually quickly become outdated
due to the short coherent time. CSI prediction is a natural way to tackle this issue. For
time-varying channels, the online manner is important to predict CSI in upcoming time
slots.

We use QuaDRiGa (Jaeckel et al., 2014) to generate realistic CSI streaming data for
single base-station (BS) and single user-equipment (UE) downlink transmission. BS and UE
are equipped with 16 and 2 antennas, respectively. The transmission occupies the 7T00MHz
frequency with 10MHz bandwidth and 50 subcarriers. During the CSI observation, BS is
static, and UE moves with 1.5m/s speed. The CSI observation frequency is configured as
fs = 25Hz, so we sample CSI per 40ms. Then, the CSI observation produces a streaming
TTS {X; € Cl6x2x501 00, " of which (X);;r denotes the channel state at time ¢ on k-th
subcarrier between BS’s i-th antenna and UE’s j-th antenna.

We run 1000 times Monte Carlo (MC) simulations to evaluate the performance of our
proposed algorithms. For each MC simulation, we randomly select a continuous part of
CSI TTS with 70 samples and let the first Ty = 20 CSI tensors be the training set, while
the last 50 tensors are the streaming data observed in the following 50 sampling time. The

19

LuaN, SUN, WANG, AND ZHANG

scale of core tensors is set as (10,2, 20), which significantly compresses the TTS data. The
regularization parameters for the residual of tensor decomposition are set as ¢ = 10, =
0.9, 8 = 0.6. Since the CSI fluctuates wildly, we shorten the time sliding window in TOPA-
AAW to 7 = 8. All prediction methods employ ARIMA (2,1, 1) model for building temporal
relations among core tensor series. To further improve the adaptability of TOPA/TOPA-
AAW for the time-varying property of CSI, we conduct two iterations instead in the online
updating step of Algorithm 2. All numerical results are shown in Figure 3 and Table 3.

B
—+—BHT-ARIMA
----- £ MCAR
—o—TOPA
“ge| |0 TOPA-AAW
—*—LSTM
------ % GMRL

TOPA-init

0.8

0.6

0.2

0.4

%
e
e B X

AR A S

DV NV o
“04; 3}«:. oo«

e

20 25 30 35 40 45 50 55 60 65 70
Prediction Time

Figure 3: Performance of different prediction methods on CSI prediction. TOPA-AAW has
the best performance, while TOPA performs as well as the offline methods.

Table 3: Average Time costs and NRMSE of different algorithms on CSI prediction
TOPA TOPA-AAW MCAR BHT-ARIMA GMRL LSTM
Time(ms) 186.8 37.6 915.8 2634.7 22.6 50.7
NRMSE 0.0636 0.0591 0.0635 0.0634 0.1295 0.9170

Figure 3 illustrates the average NRMSE of CSI online prediction for different prediction
methods. The “TOPA-init” line in Figure 3 reveals the extreme change in the wireless
environment, even in low-speed mobility scenarios. As an online method, TOPA shows
very close performance to two offline methods, while the prediction accuracy of TOPA-
AAW is much better than TOPA and MCAR, owing to the good adaptation of AAW to
the wireless channel evolution.

Table 3 presents the average time costs and NRMSE of six methods in each prediction.
It should be emphasised that the training of the GMRL and LSTM methods cost up to a
few minutes, which is not considered in Table 3. TOPA-AAW is much more efficient than
other methods except GMRL, while has the best prediction performance. Table 3 illustrates
that the difference in the number of necessary alternative iterations for building predictors
leads to a significant difference in the time costs between online and offline methods.

20

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

5.2 Real-world Datasets: USHCN and NASDAQ100

In this subsection, We apply our prediction algorithm to two real-world datasets:

e USHCN!': this dataset records the monthly climate data of 1218 weather stations
in the United States during the past 100 years, including four statistical features:
monthly mean maximum temperature, monthly mean minimum temperature, monthly
minimum temperature, and monthly total precipitation. 120 meteorological stations
with relatively complete data are screened for numerical experiments. With their
quarterly average observation data from 1940 to 2014, we establish a 75-length TTS
with the scale 120 x 4 x 4 of each tensor data.

e NASDAQ100?%: This dataset records the daily business data of 102 NASDAQ-listed
companies over 90 days in 2014, including five statistical features: opening quotation,
highest quotation, lowest quotation, closing quotation and adjusting the closing price.
Therefore, we obtain a 90-length TTS with the scale 102 x 5 of each matrix data.

We divide the screened USHCN TTS into two parts: the first Ty = 40 data are used for
finding the initial predictor and predicting the data at sampling time 41, and the last 35
data are regarded as the streaming observation of USHCN TTS. In terms of the discussion
in Jing et al. (2018, Sec. V), we choose AR(2) model to build the temporal correlations
among core tensor series. In the structure of joint tensor decomposition, the scale of core
tensors is given as 12 x 4 x 4. Since the statistical characteristics of data are nearly stable,
we configure a wide time sliding window in TOPA-AAW with length 7 = 20.

For the NASDAQ100 dataset, we find the initial predictor with the first Ty = 60 traffic
flow data, and observe the last 30 data stream. The ARIMA(3,1,0) model captures the
statistical characteristics in NASDAQ100 TTS. The time sliding window used in TOPA-
AAW is configured as 7 = 20.

We first research the effects of different choices of a and ¢ in (35). Figure 4 shows the
average NRMSE of the proposed TOPA-AAW algorithm with different values of parameters
¢ and a. Regarding Figure 4 (a), we can see that the best ¢ of USHCN and NASDAQ100
datasets are 0.2 and 20, respectively. For both two datasets, the prediction performance is
unsatisfactory when ¢ is relatively small, which manifests the necessity of regularization.
For stable TTS, small ¢ makes the regularization term close to 0 with sufficiently accu-
rate joint Tucker decomposition, hence the objective function in (35) is dominated by the
first term, which leads to inaccurate joint decomposition with online prediction continuing.
Furthermore, when ¢ is large enough, the accuracy of TOPA-AAW is improved to a stable
level. From Figure 4 (b), the best a for USHCN and NASDAQ100 datasets is close to 1,
which illustrates the effectiveness of reducing the weight of stale data. The prediction per-
formance is extremely poor when « is set as 1, since the regularization in (35) with a = 1
only retains the last term with time ¢t = T+ 1. In brief, when o < 1 and ¢ are large enough,
the accuracy of TOPA-AAW is not very sensitive to the choice of these parameters, which
allows us to choose the parameter more flexibly. In the following experiments, we configure
the regularization parameters for TOPA-AAW as: ¢ = 0.5 and o = 0.98 for USHCN, and
p =20 and a = 0.99 for NASDAQ100. Moreover, as discussed in Remark 3, we set 8 = 0.5.

1. This dataset is in https://www.ncei.noaa.gov/pub/data/ushcn/v2.5/
2. This dataset is in https://github.com/Karin-Karlsson/stockdata

21

LuaN, SUN, WANG, AND ZHANG

_ 013 . ; 0.02 §
Qoazjt \>_g_9_e_ 0.018 &
Boirpm 10.016 @
%'é 0.1 A ,*_x--*-*--x--*-"‘"“'*"""*"*'*"*'*"*'*"70'014i
& 009 e 7T 10012 £
0.08 ‘ ‘ ‘ oo1 £

0 5 10 15 20
_ 013 ¢ ‘ 0.02 §
Soi2f e—= N\%%i 0.018 ¥
Doa1t 40.016 @
B oo01r 10014 2
g 0.09 77T I I I e s ky 10,012 2
0.08 : : : : oo1 £

05 06 07 0.8 0.9 1

(b) a

--*-USHCN ——NASDAQ100

Figure 4: Effect of parameter ¢ and « for the TOPA-AAW algorithm on two real-world
datasets: (a) average NRMSE with a@ = 0.95 and different ¢, and (b) average
NRMSE with ¢unscn = 0.5, ¢naspaqioo = 20 and different o. When o < 1 and
@ are large enough, the accuracy of TOPA-AAW is not sensitive to the choice of
these parameters.

Figure 5 and Table 4 show the average NRMSE and time costs of the proposed TOPA-
AAW algorithm with different scales of core tensors, respectively. We implement the exper-
iments with three different sizes of the core tensors: large scale with dimensions of 80 x 4 x4,
medium scale with dimensions of 12 x 4 x 4, and small scale with dimensions of 3 x 3 x 3.
The results show that a larger scale of core tensors leads to higher prediction accuracy with
more time costs. Therefore, choosing the right size of core tensor is a trade-off between
prediction accuracy and time costs.

Table 4: Average time costs of different sizes of core tensors for TOPA-AAW algorithm on
USHCN dataset

Large scale Medium scale Small scale
Time(ms) 8.7 5.1 4.8

Next we focus on the impact of the length of the time sliding window on the prediction
performance of TOPA-AAW. As shown in Figure 6, a longer sliding time window (with
7 =5 and 7 = 10) leads to better prediction performance. On the other side, the complex-
ity analysis in Section 3.3 proposes that the computational complexity of TOPA-AAW is

22

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

0.18 T T T . : .
—©— Large-scale core
L - =+ - Medium-scale core | |
0.16
------ A+ Small-scale core

40 45 50 55 60 65 70 75
Prediction Time

Figure 5: Performance of different sizes of core tensors for TOPA-AAW algorithm on
USHCN dataset.

positively proportional to the time window length 7. With the trade-off between prediction
accuracy and time costs, we choose the length of time sliding window 7 = 20 in the following
experiments.

0.18

0.06

40 45 50 55 60 65 70 75
Prediction Time

Figure 6: Performance of different sliding time window lengths for TOPA-AAW algorithm
on USHCN dataset.

23

LuaN, SUN, WANG, AND ZHANG

Figure 7 depicts the comparison results of prediction performance. TOPA reveals nearly
the same accuracy for two real-world datasets as offline methods, though it runs much fewer
iterations than MCAR in each prediction. TOPA-AAW can further improve the accuracy
of TOPA by tracking the latest statistical patterns in TTS. In the NASDAQ100 dataset,
the prediction accuracy of TOPA-AAW is nearly 20% better than TOPA and MCAR, while
three methods show significant advantages over BHT-ARIMA and two neural-network-based
methods.

40 45 50 55 60 65 70 75
Prediction Time

01r
0.08 -
o006
S oo0ar

0.02 -

Prediction Time

—+—BHT-ARIMA =& MCAR —&—TOPA O TOPA-AAW —#—LSTM - GMRL

Figure 7: Performance of different prediction methods on two real-world datasets: (a)
USHCN, and (b) NASDAQ100. TOPA-AAW shows the best performance ow-
ing to AAW.

Table 5 presents the average time costs of six prediction methods. Owing to the online
manner, TOPA/TOPA-AAW can provide prediction results efficiently and accurately.

Table 5: Average time costs of different algorithms on USHCN and NASDAQ100 datasets
Time(ms) TOPA TOPA-AAW MCAR BHT-ARIMA GMRL LSTM
USHCN 59.2 5.1 328.7 1583.1 15.0 34.6
NASDAQ100 53.5 114 263.0 419.2 6.9 26.2

6 Conclusion

In this paper, we present a joint-tensor-factorization-based online prediction algorithm for
streaming tensor time series. By leveraging tensor factorization, our algorithm effectively
compresses the streaming data while capturing the underlying intrinsic correlations. The

24

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

proposed online updating scheme significantly enhances the speed of predictor updating and
can maintain high prediction accuracy. We also analyze the convergence of the proposed
algorithm. Additionally, we introduce automatically adaptive weights to address the chal-
lenge of data staleness in streaming data. Through the numerical experiments in various
scenarios, we observe promising results that validate the effectiveness and efficiency of our
approach.

Acknowledgements

The author Liping Zhang was supported by the National Natural Science Foundation of
China (Grant No. 12171271).

References

Dawon Ahn, Seyun Kim, and U Kang. Accurate online tensor factorization for tempo-
ral tensor streams with missing values. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pages 2822-2826, 2021.

Weitian Chen, Brian DO Anderson, Manfred Deistler, and Alexander Filler. Solutions of
yule-walker equations for singular ar processes. Journal of Time Series Analysis, 32(5):
531-538, 2011.

Xinyu Chen and Lijun Sun. Bayesian temporal factorization for multidimensional time
series prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(9):4659-4673, 2021.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM journal on Matriz Analysis and Applications, 21(4):1253-1278,
2000.

Jiewen Deng, Jinliang Deng, Renhe Jiang, and Xuan Song. Learning gaussian mixture
representations for tensor time series forecasting. arXiv preprint arXiw:2306.00390, 2023.

James D Hamilton. Time Series Analysis. Princeton University Press, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

Stephan Jaeckel, Leszek Raschkowski, Kai Borner, and Lars Thiele. Quadriga: A 3-d multi-
cell channel model with time evolution for enabling virtual field trials. IEEE Transactions
on Antennas and Propagation, 62(6):3242-3256, 2014.

Peiguang Jing, Yuting Su, Xiao Jin, and Chengqgian Zhang. High-order temporal correlation
model learning for time-series prediction. IEEE Transactions on Cybernetics, 49(6):2385—
2397, 2018.

Alexander Kaplan and Rainer Tichatschke. Proximal point methods and nonconvex opti-
mization. Journal of Global Optimization, 13:389—406, 1998.

25

LuAaN, SuN, WANG, AND ZHANG

Hwanjin Kim, Sucheol Kim, Hyeongtaek Lee, Chulhee Jang, Yongyun Choi, and Junil
Choi. Massive mimo channel prediction: Kalman filtering vs. machine learning. IEEE
Transactions on Communications, 69(1):518-528, 2020.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455-500, 20009.

Taehyung Kwon, Inkyu Park, Dongjin Lee, and Kijung Shin. Slicenstitch: Continuous cp
decomposition of sparse tensor streams. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE), pages 816-827. IEEE, 2021.

Khaled Ben Letaief and Ying Jun Zhang. Dynamic multiuser resource allocation and adap-
tation for wireless systems. IEEE Wireless Communications, 13(4):38-47, 2006.

Richard Lewis and Gregory C Reinsel. Prediction of multivariate time series by autoregres-
sive model fitting. Journal of Multivariate Analysis, 16(3):393-411, 1985.

Yaguang Li and Cyrus Shahabi. A brief overview of machine learning methods for short-
term traffic forecasting and future directions. Sigspatial Special, 10(1):3-9, 2018.

Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. Channel state
information prediction for 5g wireless communications: A deep learning approach. IEEFE
Transactions on Network Science and Engineering, 7(1):227-236, 2018.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow
prediction with big data: A deep learning approach. IEEE Transactions on Intelligent
Transportation Systems, 16(2):865-873, 2014.

Altti Ilari Maarala, Mika Rautiainen, Miikka Salmi, Susanna Pirttikangas, and Jukka
Riekki. Low latency analytics for streaming traffic data with apache spark. In 2015
IEEE International Conference on Big Data, pages 2855—-2858. IEEE, 2015.

Alessandra Pascale and Monica Nicoli. Adaptive bayesian network for traffic flow prediction.
In 2011 IEEE Statistical Signal Processing Workshop (SSP), pages 177-180. IEEE, 2011.

R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis, volume 317. Springer
Science & Business Media, 2009.

Ashish Sharma, Dinesh Bhuriya, and Upendra Singh. Survey of stock market prediction
using machine learning approach. In 2017 International Conference of Electronics, Com-
munication and Aerospace Technology (ICECA), volume 2, pages 506-509. IEEE, 2017.

Qiquan Shi, Jiaming Yin, Jiajun Cai, Andrzej Cichocki, Tatsuya Yokota, Lei Chen, Mingx-
uan Yuan, and Jia Zeng. Block Hankel tensor ARIMA for multiple short time series
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 5758-5766. AAAI, 2020.

Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. Temporal pattern attention for multivari-
ate time series forecasting. Machine Learning, 108:1421-1441, 2019.

26

ONLINE PREDICTION FOR STREAMING TENSOR TIME SERIES

Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, and Madeleine Udell. Low-rank tucker
approximation of a tensor from streaming data. SIAM Journal on Mathematics of Data
Science, 2(4):1123-1150, 2020.

Huachun Tan, Yuankai Wu, Bin Shen, Peter J Jin, and Bin Ran. Short-term traffic predic-
tion based on dynamic tensor completion. IFEFE Transactions on Intelligent Transporta-
tion Systems, 17(8):2123-2133, 2016.

Di Wang, Yao Zheng, and Guodong Li. High-dimensional low-rank tensor autoregressive
time series modeling. Journal of Econometrics, 238(1):105544, 2024.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization
for high-dimensional time series prediction. Advances in Neural Information Processing
Systems, 29, 2016.

Eric Zivot and Jiahui Wang. Vector autoregressive models for multivariate time series.
Modeling Financial Time Series with S-PLUS®), pages 385-429, 2006.

27

	Introduction
	Preliminaries
	Notation and Tensor Operators
	Problem Formulation
	Joint Tensor Factorization Strategy

	TOPA for Streaming TTS
	Stage i: Initial Predictor with Starting TTS
	Stage ii: Online Predictor Updating and Prediction
	Convergence and Complexity Analysis

	TOPA-AAW: TOPA with Automatically Adaptive Weights
	Numerical Experiments
	Synthetic Datasets
	Real-world Datasets: USHCN and NASDAQ100

	Conclusion

