
ar
X

iv
:2

30
3.

12
03

6v
1 

 [
m

at
h.

O
C

] 
 2

1 
M

ar
 2

02
3

manuscript No.
(will be inserted by the editor)

Solving polynomial variational inequality problems via Lagrange

multiplier expressions and Moment-SOS relaxations

Jiawang Nie · Defeng Sun · Xindong Tang · Min
Zhang

the date of receipt and acceptance should be inserted later

Abstract In this paper, we study variational inequality problems (VIPs) with involved map-
pings and feasible sets characterized by polynomial functions (namely, polynomial VIPs). We
propose a numerical algorithm for computing solutions to polynomial VIPs based on Lagrange
multiplier expressions and the Moment-SOS hierarchy of semidefinite relaxations. We also extend
our approach to finding more or even all solutions to polynomial VIPs. We show that the method
proposed in this paper can find solutions or detect the nonexistence of solutions within finitely
many steps, under some general assumptions. In addition, we show that if the VIP is given
by generic polynomials, then it has finitely many Karush-Kuhn-Tucker points, and our method
can solve it within finitely many steps. Numerical experiments are conducted to illustrate the
efficiency of the proposed methods.

Mathematics Subject Classification (2020) 90C23, 65K15, 90C22

Keywords Variational inequality, polynomial optimization, Lagrange multiplier expression,
Moment-SOS hierarchy

1 Introduction

Let Rn be the n-dimensional Euclidean space and X ⊆ Rn be a nonempty closed set. For a
tuple of functions F (x) := (F1(x), . . . , Fn(x)) where every Fi : X → R, the variational inequality
problem (VIP) is

Finding x ∈ X such that (y − x)TF (x) ≥ 0 for all y ∈ X. (1.1)

Jiawang Nie
Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA, 92093.
E-mail: njw@math.ucsd.edu

Defeng Sun
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: defeng.sun@polyu.edu.hk

Xindong Tang
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: xindong.tang@polyu.edu.hk

Min Zhang
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: min-opt.zhang@polyu.edu.hk

http://arxiv.org/abs/2303.12036v1


2 J. Nie, D. Sun, X. Tang and M. Zhang

Denote the problem (1.1) by VI (X,F ) and its solution set by SOL (X,F ). We call the VI (X,F )
a polynomial VIP if F1, . . . , Fn are polynomial functions in x and X is characterized by

X = {x ∈ Rn : gi(x) ≥ 0 (i ∈ I), gi(x) = 0 (i ∈ E)}, (1.2)

where E and I are two disjoint index sets and every gi (i ∈ E ∪ I) is a polynomial in x.
Variational inequalities were first proposed in the 1960s and have been in the central position

of the optimization field since then. As a uniform approach to handling optimization and equi-
librium problems, variational inequalities have various applications in decision-making, economy,
finance, engineering, and other fields. We refer to the monograph [6] for a general introduction
to VIPs.

Methods for solving VIPs have been extensively investigated in the literature (see [6,19] and
references therein). Most approaches are designed for handling the VI (X,F ) under the typical
assumption that the set X is convex. For such cases, it is well known that the VI (X,F ) can be
equivalently reformulated into the following equation:

F nat(x) := x−ΠX(x− F (x)) = 0, (1.3)

where ΠX(·) means the projection onto X . This reformulation leads to the popular projection-
type methods, such as the basic fixed-point method [51], the extragradient method [20], and
the hyperplane projection method [18]. Usually, the pseudomonotonicity of map F is required
to guarantee the convergence of the projection-type methods. Besides (1.3), another equivalent
equation reformulation of the VI (X,F ) is as follows [48]:

F nor(z) := F (ΠX(z)) + z −ΠX(z) = 0. (1.4)

With a change of variable, if x∗ ∈ SOL(X,F ), then z∗ := x∗ − F (x∗) is a solution to (1.4), and
conversely, if z∗ ∈ X solves (1.4), then x∗ := ΠX(z∗) is a solution to the VI (X,F ). Numerical
approaches such as the nonsmooth Newton method [44,47], the interior point method [17,53],
and the smoothing Newton method [3,46], were developed for solving the VI (X,F ) via dealing
with the equivalent nonsmooth equation (1.3) or (1.4).

However, when the set X is nonconvex, the projection map ΠX may not be single-valued
(e.g., consider the projection from the origin to a ring {x ∈ Rn : 1 ≤ ‖x‖2 ≤ 2}), which leads
the nonsmooth equations (1.3) and (1.4) to become general inclusion problems. To the best of
our knowledge, no well-developed algorithm is applicable to solve general inclusion problems
efficiently, especially when F lacks the monotonicity-like property. Fortunately, if the set X is
finitely representable as a system of equalities and inequalities, then the VI (X,F ) associates
with the Karush-Kuhn-Tucker (KKT) system (see details in Section 2) under certain constraint
qualification conditions (CQs). The KKT system can be viewed as a mixed complementarity
problem (MiCP), thus methods for solving MiCPs can be applied; see [5,6,29]. Every solution
of the KKT system solves the VI (X,F ) when X is convex. However, this is not true under
the nonconvex setting. Indeed, when X is nonconvex, solutions to the KKT system only provide
candidate solutions to the VI (X,F ). Furthermore, when X is bounded and convex, the existence
of solutions to the VI (X,F ) is guaranteed. However, without boundedness or convexity of X ,
the SOL (X,F ) may be empty, and there is no well-known result for the existence of solutions.
In fact, when X is nonconvex or unbounded, how to detect the nonexistence of solutions is still
open, to the best of the authors’ knowledge.

Recently, some studies on the theoretical properties of polynomial VIPs and their variations
have been developed. Hieu [14] studied the solution set of the polynomial VIP with a convex
feasible set. Tensor complementarity problems and tensor variational inequality problems were
considered in [1,52]. Further, weakly homogeneous variational inequality problems, as extensions



Polynomial VIPs 3

of polynomial VIPs and tensor VIPs, were studied in [9,27]. Moreover, the Moment-SOS hier-
archy of semidefinite relaxations was developed for solving polynomial optimization problems.
It can find global minimizers for nonconvex polynomial optimization problems with theoreti-
cal guarantees under mild conditions. It was also applied to solve many optimization-related
problems given by polynomials, such as bilevel optimization [15,31,32], saddle point problems
and generalized Nash equilibrium problems (GNEPs) [40,41,42], tensor (eigenvalue) complemen-
tarity problems [7,54], etc. We refer to [22,23,25,26,37] for more references about polynomial
optimization.

In this paper, we focus on numerical methods for solving polynomial VIPs without assuming
the monotonicity of the map F or the convexity of the set X . Our main contributions are listed
below.

– We propose an algorithm for solving polynomial VIPs using Lagrange multiplier expressions
and the Moment-SOS relaxations. Under some general assumptions, the proposed algorithm
can find a solution to the VIP or detect the nonexistence of solutions in finitely many steps.
Particularly, this computational goal can be achieved in the initial loop when X is convex.

– Based on the proposed algorithm for finding a solution to a polynomial VIP, we further
investigate how to find more (even all, if there are finitely many) solutions.

– We show that if the VIP is given by generic polynomial functions, then there are finitely
many KKT points, and all solutions to the polynomial VIP are KKT points. In this case, our
method is guaranteed to terminate within finitely many loops. Moreover, we give an upper
bound for the number of KKT points using the intersection theory.

– Even when the algorithms do not have finite convergence, we show the asymptotic convergence
under certain continuity assumptions. Numerical experiments are made and presented to show
the efficiency of our methods.

This paper is organized as follows. Some preliminaries about VIPs and the polynomial op-
timization problems are given in Section 2. In Section 3, the algorithm for finding a solution
to the polynomial VIP is developed. Based on the algorithm, we further introduce methods for
finding more solutions to the polynomial VIP. Section 4 studies the Moment-SOS hierarchy of
semidefinite relaxations. Numerical experiments are presented in Section 5. In the appendix, we
show the finiteness of KKT points for solution sets of VIPs given by generic polynomials and
study the algebraic degree of polynomial VIPs.

2 Preliminaries

Notation The symbol N (resp., R, C) stands for the set of nonnegative integers (resp., real
numbers, complex numbers). For a positive integer k, denote the set [k] := {1, . . . , k}. For a real
number t, the ⌈t⌉ represents the smallest integer not smaller than t. We use ei to denote the
vector such that the ith entry is 1 and all others are zeros. By writing A � 0 (resp., A ≻ 0), we
mean that the matrix A is symmetric positive semidefinite (resp., positive definite).

Let R[x] denote the ring of polynomials with real coefficients in x ∈ Rn, and R[x]d denote
its subset of polynomials whose degrees are not greater than d. The C[x] and C[x]d are defined
similarly. For a polynomial p ∈ R[x], the p = 0 means p(x) is identically zero on Rn. We say the
polynomial p is nonzero if p 6= 0. Let α := (α1, . . . , αn) ∈ Nn, and we denote

xα := xα1
1 · · ·xαn

n , |α| := α1 + · · ·+ αn.

For an integer d > 0, denote the monomial power set Nn
d := {α ∈ Nn : |α| ≤ d}. We use [x]d

to denote the vector of all monomials in x in the graded alphabetical order whose degree is at



4 J. Nie, D. Sun, X. Tang and M. Zhang

most d. For instance, if x = (x1, x2), then

[x]3 =
[
1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2

]T
.

Throughout the paper, a property is said to hold generically if it holds for all points in the space
of input data except for a set of Lebesgue measure zero.

2.1 Ideals and positive polynomials

Let F := R or C. For a polynomial p ∈ F[x] and subsets I, J ⊆ F[x], we define

p · I := {pq : q ∈ I}, I + J := {a+ b : a ∈ I, b ∈ J}.

The subset I is an ideal if p · I ⊆ I for all p ∈ F[x] and I + I ⊆ I. For a tuple of polynomials
h = (h1, . . . , hs), the set

Ideal[h] := h1 · F[x] + · · ·+ hs · F[x]

is the ideal generated by h, which is the smallest ideal containing every hi.

We review basic concepts in polynomial optimization. A polynomial σ ∈ R[x] is said to be a
sum of squares (SOS) if σ = p21 + · · ·+ p2k for polynomials pi ∈ R[x] (i ∈ [k]) . The set of all SOS
polynomials in x is denoted as Σ[x]. For a degree d, we denote the truncation

Σ[x]d := Σ[x] ∩ R[x]d.

For a tuple g = (g1, . . . , gt) of polynomials in x, its quadratic module is the set

Qmod[g] := Σ[x] + g1 ·Σ[x] + · · ·+ gt ·Σ[x].

Similarly, we denote the truncation of Qmod[g]

Qmod[g]2d := Σ[x]2d + g1 ·Σ[x]2d−deg(g1) + · · ·+ gt ·Σ[x]2d−deg(gt),

where deg(gi) means the degree of gi. The tuple g determines the basic closed semi-algebraic set

S(g) := {x ∈ Rn : g1(x) ≥ 0, . . . , gt(x) ≥ 0}. (2.1)

For a tuple h = (h1, . . . , hs) of polynomials in R[x], its real zero set is

Z(h) := {x ∈ Rn : h1(x) = · · · = hs(x) = 0}.

The set Ideal[h] + Qmod[g] is said to be archimedean if there exists ρ ∈ Ideal[h] + Qmod[g]
such that the set S(ρ) is compact. If Ideal[h] + Qmod[g] is archimedean, then Z(h) ∩ S(g) must
be compact. Conversely, if Z(h) ∩ S(g) is compact, say, Z(h) ∩ S(g) is contained in the ball
R − ‖x‖2 ≥ 0, then Ideal[h] + Qmod[g,R − ‖x‖2] is archimedean and Z(h) ∩ S(g) = Z(h) ∩
S(g,R − ‖x‖2). Clearly, if f ∈ Ideal[h] + Qmod[g], then f ≥ 0 on Z(h) ∩ S(g). The reverse is
not necessarily true. However, when Ideal[h]+Qmod[g] is archimedean, if f > 0 on Z(h)∩S(g),
then f ∈ Ideal[h] + Qmod[g]. This conclusion is referenced as Putinar’s Positivstellensatz [45].
Interestingly, if f ≥ 0 on Z(h)∩S(g), we also have f ∈ Ideal[h]+Qmod[g], under some standard
optimality conditions [35].



Polynomial VIPs 5

2.2 Localizing and moment matrices

Let RN
n
2d denote the space of all real vectors that are labeled by α ∈ Nn

2d. A vector y ∈ RN
n
2d is

labeled as y = (yα)α∈Nn
2d
. Such y is called a truncated multi-sequence (tms) of degree 2d. For a

polynomial f =
∑

α∈Nn
2d
fαx

α ∈ R[x]2d, define the operation

〈f, y〉 :=
∑

α∈Nn
2d

fαyα. (2.2)

The operation 〈f, y〉 is a bilinear function in (f, y). For a polynomial q ∈ R[x] with deg(q) ≤ 2d,
and the integer t = d − ⌈deg(q)/2⌉, the outer product q · [x]t([x]t)T is a symmetric matrix
polynomial in x, with length

(
n+t
t

)
. We write the expansion as

q · [x]t([x]t)T =
∑

α∈Nn
2d

xαQα,

for some symmetric matrices Qα. Then we define the matrix function

L(d)
q [y] :=

∑
α∈Nn

2d

yαQα. (2.3)

It is called the dth localizing matrix of q generated by y. For a given q, the matrix L
(d)
q [y] is

linear in y. Localizing and moment matrices are important for getting semidefinite relaxations
of polynomial optimization problems [21,33,34]. We refer to [22,23,25,26,37] for more references
about polynomial optimization and moment problems.

2.3 The KKT conditions and Lagrange multiplier expressions

Let x ∈ SOL (X,F ) with the set X given by (1.2). Suppose E ∪ I = [m]. Under the linear
independence constraint qualification condition (LICQ, see [2]), there exists a Lagrange multiplier
vector λ = (λ1, . . . , λm) such that

{
F (x) =

∑m
i=1 λi∇gi(x), gi(x) = 0 (i ∈ E),

λi ≥ 0, gi(x) ≥ 0, λi · gi(x) = 0 (i ∈ I). (2.4)

This is called the KKT conditions for the VI (X,F ). A solution (x, λ) to (2.4) is called a KKT
pair, and x is called a KKT point. Particularly, when the set X is convex, x solves the VI (X,F )
if and only if it is a KKT point. For the given VI (X,F ), every KKT pair (x, λ) satisfies




∇g1(x) ∇g2(x) · · · ∇gm(x)
g1(x) 0 · · · 0
0 g2(x) · · · 0
...

...
. . .

...
0 0 · · · gm(x)




︸ ︷︷ ︸
G(x)




λ1

λ2

...
λm




︸ ︷︷ ︸
λ

=




F (x)
0
...
0




︸ ︷︷ ︸
F̂ (x)

. (2.5)

We say the polynomial tuple g = (g1, . . . , gm) is nonsingular if the matrix of polynomials G(x)
has full column rank for all x ∈ Cn. By [39, Proposition 5.1], the tuple g is nonsingular if and
only if there exists a matrix of real coefficient polynomials L(x) such that

L(x)G(x) = Im. (2.6)



6 J. Nie, D. Sun, X. Tang and M. Zhang

When constraining polynomials g1, . . . , gm are generic, rankG(x) = m for all x ∈ Cn [39, Propo-
sition 5.7], and there exists an L(x) satisfying (2.6). In this case, the following identity holds at
all KKT pairs (x, λ):

λ = L(x) · F̂ (x). (2.7)

Denote the ith component of L(x) · F̂ (x) by λi(x), and let λ(x) := (λ1(x), . . . , λm(x)). Then
λ(x) is a tuple of real polynomials in x and λi = λi(x) for all i ∈ [m] at all KKT pairs (x, λ).
The λ(x) is called a polynomial Lagrange multiplier expression (LME) for the VI (X,F ).

For the polynomial VI (X,F ), suppose the LME λ(x) exists. Then the KKT system (2.4) can
be equivalently written as





F (x) =
∑m

i=1 λi(x)∇gi(x),
gi(x) = 0 (i ∈ E),

λi(x) ≥ 0, gi(x) ≥ 0, λi(x) · gi(x) = 0 (i ∈ I).
(2.8)

This is a system of polynomial equalities and inequalities in x. If we denote by K the set of points
satisfying (2.8), then SOL (X,F ) ⊆ K. For the convenience of our discussion, we denote

E := {F (x)−
∑m

i=1
λi(x)∇gi(x)} ∪ {λi(x) · gi(x) | i ∈ I} ∪ {gi(x) | i ∈ E},

I := {λi(x) | i ∈ I} ∪ {gi(x) | i ∈ I}.

Then, K = Z(E) ∩ S(I).

3 Finding solutions for polynomial VIPs

In this section, we first propose an algorithm for finding a solution to the polynomial VI (X,F ) by
solving a sequence of polynomial optimization problems. Then, based on the proposed algorithm,
we provide a method to find more solutions to the VI (X,F ). Throughout this section, we assume
the VI (X,F ) is given by polynomials and the constraining tuple g = (g1, . . . , gm) is nonsingular,
thus LMEs exist.

3.1 Finding one solution for the polynomial VIP

For the given polynomial VI (X,F ), let Θ be a generic positive definite matrix. Consider the
following polynomial optimization problem ([x]1 := (1, x1, x2, . . . , xn))

{
min
x∈Rn

[x]T1 Θ[x]1,

s .t . x ∈ K.
(3.1)

For the VI (X,F ) with a convex feasible set X , by solving (3.1), one gets a solution to the
VI (X,F ) if (3.1) has a nonempty feasible set, or detect the emptiness of SOL (X,F ) otherwise.
This is shown in the following proposition.

Proposition 3.1 Consider the polynomial VI (X,F ), where X is a convex set that is given by
(1.2) with a nonsingular polynomial tuple g. If the problem (3.1) is infeasible, then VI (X,F )
does not have any solution. Otherwise, the solution set of (3.1) is nonempty, and every minimizer
solves the VI (X,F ).



Polynomial VIPs 7

Proof. By [36, Proposition 5.1], the nonsingularity of the polynomial tuple g yields the existence
of the LMEs, which also infers that the LICQ holds. Thus SOL (X,F ) ⊆ K, and the infeasibility
of the problem (3.1) implies the emptiness of SOL (X,F ).

Suppose the problem (3.1) is feasible, i.e., K 6= ∅. Since Θ is a generic positive definite matrix,
the quadratic polynomial [x]T1 Θ[x]1 is strongly convex, which implies the existence of minimizers
for (3.1). In addition, under the nonsingularity condition of g and the convexity of X , we have
SOL (X,F ) = K, thus the minimizer of (3.1) solves VI (X,F ). ⊓⊔

However, when the setX is nonconvex, a minimizer of (3.1) may not solve the VI (X,F ). Consider
the gap function

ν(x) := inf
y∈X

(y − x)TF (x).

It is clear that ν(u) ≤ 0 for all u ∈ X , and u ∈ SOL (X,F ) if and only if ν(u) = 0. If u /∈
SOL (X,F ), the gap function can be used to construct an extra constraint to shrink the feasible
set of (3.1). That is, for a minimizer u of (3.1) such that u /∈ SOL (X,F ), we consider

{
ε := min

y∈Rn
(y − u)TF (u)

s .t . y ∈ X.
(3.2)

To our main interest, assume (3.2) has a minimizer v (otherwise, we may add some extra bound-
edness constraints, see Section 4.2). Let K′ := K ∩ {x ∈ Rn : (v − x)TF (x) ≥ 0}, then we have
SOL (X,F ) ⊆ K′ and u /∈ K′. Therefore, if we solve (3.1) with a replacement of K by the shrinked
feasible set K′, then another candidate solution to the VI (X,F ) will be obtained. Indeed, we
can repeat this procedure to remove KKT points that are not solutions, and get tighter approx-
imations to the solution set SOL (X,F ), until an actual solution is obtained or the nonexistence
of solutions is detected. Based on such a scheme, we propose the following algorithm for finding
a solution to the VI (X,F ):

Algorithm 3.2 For VI (X,F ) such that X is given by (1.2) with nonsingular g, do the following:

Step 0 Choose a generic positive definite matrix Θ of length n+ 1. Set k := 1 and V := ∅.
Step 1 Solve the following polynomial optimization problem





min
x∈Rn

[x]T1 Θ[x]1

s .t . x ∈ K,
(v − x)TF (x) ≥ 0 (v ∈ V ).

(3.3)

If (3.3) is infeasible, then SOL (X,F ) is empty and stop; otherwise, solve (3.3) for a minimizer
u(k).

Step 2 Solve the polynomial optimization problem (3.2) with u := u(k) for a set of minimizers
T (k).

Step 3 If ε = 0, then u(k) ∈ SOL (X,F ) and stop; otherwise, let V := V ∪ T (k) and k := k + 1,
then go back to Step 1.

Remark 3.3 (i) In Section 4, we will study how to solve the occurring polynomial optimization
subproblems in Algorithm 3.2. (ii) In Step 1, all feasible points of (3.3) are KKT points. Thus,
the objective function in (3.3) can be replaced by any polynomial function in x. However, using
[x]T1 Θ[x]1 gives us better convergence results for Algorithm 3.2, and makes (3.3) easier to solve;
see Theorem 3.4 and Section 4.1. (iii) For (3.3), we may also replace the constraint x ∈ K by the
KKT system (2.4), which means we treat all λi as new variables without using LMEs. However,
this is not computationally efficient, as shown in Examples 5.1 and 5.2 in Section 5.1. (iv) We
do not need the set T (k) in Step 2 to contain all minimizers of (3.2). Indeed, one minimizer is



8 J. Nie, D. Sun, X. Tang and M. Zhang

enough to get another solution candidate. However, we can usually get a tighter approximation
to SOL (X,F ) if there are more points in T (k). When (3.2) has more than one minimizer, the
flat truncation can be applied to find them; see Section 4 for more details.

We say Algorithm 3.2 terminates within finitely many steps if the algorithm finds a solution
to VI (X,F ) or detects the nonexistence of solutions at some iteration loop k. In the following,
we establish the convergence property for Algorithm 3.2.

Theorem 3.4 Consider the VI (X,F ) where X is given by (1.2) with a nonsingular polynomial
tuple g. Let s := |K \ SOL (X,F ) |.
(i) If SOL (X,F ) = ∅ and s < ∞, then Algorithm 3.2 will detect nonexistence of solutions to

the VI (X,F ) with k ≤ s+ 1.
(ii) If SOL (X,F ) 6= ∅ and s < ∞, then Algorithm 3.2 will find a solution to the VI (X,F ) with

k ≤ s+ 1.
(iii) Suppose s = ∞ and Algorithm 3.2 does not terminate within finitely many steps. If u∗

is an accumulation point of {u(k)}∞k=1, the gap function ν(u) is continuous at u∗, and
lim supk→∞ T (k) is bounded, then u∗ ∈ SOL (X,F ).

Proof. We assume K is nonempty. Otherwise, the conclusion follows directly from the fact that
|K| = 0 implies the infeasibility for (3.1). Denote by Kk the feasible set of (3.3) at the kth
iteration. Then, Kk+1 ⊆ Kk for all k ∈ N+. In addition, if Algorithm 3.2 does not terminate at
the kth loop, then u(k) /∈ Kk+1. Thus, we have the following strictly descent chain:

K = K1 ) K2 · · · ) Kk ) · · · ) SOL (X,F ) .

Since s = |K\SOL (X,F ) | < ∞, there exists k1 ∈ N+ such that k1 ≤ s+1 and Kk1 = SOL (X,F ).
(i) If SOL (X,F ) = ∅, then problem (3.3) with k = k1 is infeasible, which means the VI (X,F )

does not have any solution. Therefore, Algorithm 3.2 can detect the nonexistence of solutions to
VI (X,F ) in at most k1 loops.

(ii) If SOL (X,F ) 6= ∅, then every feasible point of (3.3) with k = k1 is a solution to VI (X,F ).
Therefore, Algorithm 3.2 can find a solution to VI (X,F ) in at most k1 loops.

(iii) Assume that Algorithm 3.2 does not terminate within finitely many steps, and there
exists an accumulation point u∗ of sequence {u(k)}∞k=1. Without loss of generality, we assume
u(k) → u∗ as k → ∞. Note that u∗ is a solution to VI (X,F ) if and only if ν(u∗) = 0. For each
i = 1, 2, . . . , let v(i) be a minimizer of (3.2) for u := u(i). Since u(i) /∈ SOL (X,F ), we have

(v(i) − u(i))TF (u(i)) = ν(u(i)) < 0.

For each j > i, based on the feasibility of (3.3) at u(j), we have

(v(i) − u(j))TF (u(j)) ≥ 0.

Due to the continuity of F , we have the (v(i) − x)TF (x) is continuous in x for every given v(i).
Hence,

(v(i) − u∗)TF (u∗) ≥ 0 for all i ∈ N+.

Moreover, we have the following for all i ∈ N+.

ν(u∗) = ν(u∗)− ν(u(i)) + ν(u(i))

≥ ν(u∗)− ν(u(i)) + (v(i) − u(i))TF (u(i))− (v(i) − u∗)TF (u∗).

From the assumption that lim supk→∞ T (k) is bounded, there exists a subsequence of {v(j)}∞j=1,

say {v(kj)}∞j=1, being convergent. Denote by v∗ the limit point of {v(kj)}∞j=1. Then, we have

ν(u∗) ≥ ν(u∗)− ν(u(kj)) + (v(kj) − u(kj))TF (u(kj))− (v(kj) − u∗)TF (u∗) (3.4)



Polynomial VIPs 9

hold for all j ∈ N+. Let j → ∞, the right hand side of (3.4) equals to 0, because ν is continuous
at u∗, and (v − u)TF (u) is continuous in variable of (u, v). So, we have that ν(u∗) ≥ 0. Besides,
ν(u) ≤ 0 for all u ∈ X based on the definition. Therefore, we conclude that ν(u∗) = 0, which
means u∗ ∈ SOL (X,F ). ⊓⊔

We remark that if the sequence {u(k)}∞k=1 generated by Algorithm 3.2 has no accumulation
point, then SOL (X,F ) = ∅. To see this, if {u(k)}∞k=1 does not have any accumulation point,
then it must be unbounded. Note that the objective function θ(x) := [x]T1 Θ[x]1 is a quadratic
positive definite polynomial. The θ(u(k)) goes to ∞ as k → ∞. Suppose x∗ ∈ SOL (X,F ).
Then, we have ∞ > θ(x∗) ≥ θ(u(1)), otherwise u(1) cannot be the minimizer for (3.1). Since
limk→∞ θ(u(k)) = ∞, there exists k1 ∈ N such that θ(u(k1)) ≤ θ(x∗) < θ(u(k1+1)). Because
x∗ ∈ SOL (X,F ), x∗ satisfies the KKT condition and for any v ∈ X the following holds

(v − x∗)TF (x∗) ≥ 0.

It means that x∗ is feasible for (3.3) at the (k1 + 1)th loop, which contradicts to u(k1+1) being
a minimizer of (3.3). So such x∗ does not exist and we conclude the emptiness of SOL (X,F ) if
the sequence {u(k)}∞k=1 has no accumulation point.

The continuity condition of ν(x) holds under certain conditions, for example, the restricted
inf-compactness (RIC) condition; see [10, Definition 3.13]. However, to implement Algorithm 3.2
does not require any a priori knowledge on the finiteness of s or the continuity of ν. Indeed, even
if s = ∞, Algorithm 3.2 may still terminate in finitely many steps. In all numerical experiments
in Section 5, our method finds solutions to the VIPs or detects the nonexistence of solutions in
finitely many steps. To end this section, we demonstrate the following result saying that if the
VI (X,F ) is given by generic polynomials F and g, then K is a finite set, which guarantees the
finite termination for Algorithm 3.2. The proof is given in the appendix.

Theorem 3.5 Let a1, a2, . . . , an, b1, b2, . . . , bm ∈ N+ be degrees. Suppose the VI (X,F ) is defined
by polynomials such that Fi(x) is a generic polynomial in C[x]ai

for all i ∈ [n], and gj(x) is a
generic polynomial in C[x]bj for all j ∈ [m]. Then, every x ∈ SOL (X,F ) is a KKT point of the
VI (X,F ), and we have |K| < ∞.

3.2 Finding more solutions to the polynomial VIP

In this subsection, we further investigate how to find more solutions or check the completeness
of the computed solution set for the VI (X,F ), based on Algorithm 3.2.

Suppose Algorithm 3.2 terminates at a solution x∗, and x∗ is an isolated point in the feasible
region at the last iteration of Algorithm 3.2. Since the matrix Θ in the objective function of
(3.3) is generic and positive definite, by [36, Proposition 5.2], there exists δ > 0 such that for all
x ∈ SOL (X,F ) \ {x∗},

[x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ. (3.5)

Therefore, if we add (3.5) as an extra constraint to (3.3), then we will get a new candidate
solution for the VI (X,F ) other than x∗. That is, we solve the following polynomial optimization
problem: {

min
x∈Rn

[x]T1 Θ[x]1

s .t . x ∈ Kx∗ ,
(3.6)

where

Kx∗ := {x ∈ K | (v − x)TF (x) ≥ 0 (v ∈ V ), [x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ}.



10 J. Nie, D. Sun, X. Tang and M. Zhang

If (3.6) is infeasible, then SOL (X,F ) = {x∗}. Otherwise, (3.6) must have a minimizer u due to
the positive definiteness of Θ, and we can check whether u ∈ SOL (X,F ) or not by solving (3.2).

In practical implementation, one needs a suitable δ to formulate (3.6). Given x∗ and Kx∗ , the
following trick is useful for finding the δ. By [40, Proposition 3.5] (see also [37]), if x∗ is isolated

in Kx∗ , then there exists δ̂ > 0 such that

Kx∗ ∩ {x ∈ Rn : [x]T1 Θ[x]1 ≤ [x∗]T1 Θ[x∗]1 + δ̂} = {x∗}.

Moreover, since SOL (X,F ) ⊆ Kx∗ , all δ satisfying 0 < δ ≤ δ̂ is available for (3.6). For a priori
δ0 > 0, let δ = δ0 and consider the following maximization problem





γ∗ := max
x∈Rn

[x]T1 Θ[x]1

s .t . x ∈ K, (v − x)TF (x) ≥ 0 (v ∈ V ),
[x]T1 Θ[x]1 ≤ [x∗]T1 Θ[x∗]1 + δ.

(3.7)

If γ∗ = [x∗]T1 Θ[x∗]1, then δ is applicable for (3.6). Otherwise, we update δ := ρ · δ for some ρ < 1
and solve (3.7) again. Repeating these steps, we may find more solutions to the VI (X,F ).

Algorithm 3.6 Under the same assumptions as in Algorithm 3.2, suppose we have found a
solution x∗ to the VI (X,F ). Do the following:

Step 0 Choose a δ0 > 0 and a positive ρ < 1. Let δ := δ0.
Step 1 Solve the polynomial optimization (3.7) for the maximal value γ∗.
Step 2 If γ∗ = [x∗]T1 Θ[x∗]1, then proceed to the next step; otherwise, let δ := δ · ρ and go back

to Step 1.
Step 3 Solve the polynomial optimization (3.6). If it is infeasible, then there does not exist any

other solution for VI (X,F ). Otherwise, solve (3.6) for a minimizer u.
Step 4 Solve the linear optimization problem (3.2) with u for a set of minimizers T .
Step 5 If ε = 0, then u ∈ SOL (X,F ) is another solution and stop; otherwise, let V := V ∪ T ,

then go back to Step 3.

When x∗ ∈ SOL (X,F ) is isolated in Kx∗ , we can always find a suitable δ for (3.3) by solving
(3.7) for finitely many times. Therefore, if |K \ SOL (X,F ) | is finite, Algorithm 3.6 will surely
produce a new solution within finitely many steps, by Theorem 3.4. Indeed, when Θ is generic
and all points in SOL (X,F ) are isolated, we have the following hierarchy of solutions

[x(1)]T1 Θ[x(1)]1 < [x(2)]T1 Θ[x(2)]1 < [x(3)]T1 Θ[x(3)]1 < · · ·
with SOL (X,F ) = {x(1), x(2), x(3), . . . }. (3.8)

As listed in (3.8), the solution first obtained by Algorithm 3.2 is x(1), and Algorithm 3.6 finds
x(k) with x∗ := x(k−1). Particularly, when |SOL (X,F ) | =: r < ∞, such a scheme finds all
solutions to VI (X,F ), as long as x(k) is isolated in Kx(k−1) for each k < r. Furthermore, if
we apply Algorithm 3.6 with x∗ := x(r), then the algorithm terminates at Step 3 because the
feasible set Kx∗ of (3.6) must be empty for some V , and we conclude that a complete solution
set is obtained.

Theorem 3.7 Consider the VI (X,F ) where X is given by (1.2) with a nonsingular polynomial
tuple g. If |K| < ∞, then all solutions to VI (X,F ) can be obtained by running Algorithm 3.6
finitely many times.

It is clear that when the VI (X,F ) is given by generic polynomials, we can find all solutions to
the VI (X,F ) because |K| < ∞, by Theorems 3.5 and 3.7.



Polynomial VIPs 11

4 Solving the polynomial optimization subproblems

In this section, we study the method for handling polynomial optimization subproblems appear-
ing in Algorithms 3.2 and 3.6. In general, we consider a polynomial optimization problem in the
following form 




ϑ := min
x∈Rn

θ(x)

s .t . p(x) = 0 (p ∈ Φ),
q(x) ≥ 0 (q ∈ Ψ),

(4.1)

where θ(x) is a polynomial function in x, and Φ, Ψ are tuples of polynomials in x.
We introduce the Moment-SOS hierarchy of semidefinite relaxations for (4.1). Denote

d0 := max{⌈deg(p)/2⌉ : p ∈ Φ ∪ Ψ ∪ {θ}}. (4.2)

For a degree k ≥ d0, the kth order moment relaxation for solving (4.1) is





ϑk := min
y

〈θ, y〉
s .t . y0 = 1, L

(k)
p [y] = 0 (p ∈ Φ),

Mk[y] � 0, L
(k)
q [y] � 0 (q ∈ Ψ),

y ∈ RN
n
2k ,

(4.3)

whereMk[y] is the kth order moment matrix generated by y, and L
(k)
p [y], L

(k)
q [y] are kth localizing

matrices of p, q generated by y. Its dual problem is the kth order SOS relaxation for (4.1)

{
γk := max γ

s .t . θ − γ ∈ Ideal[Φ]2k +Qmod[Ψ ]2k.
(4.4)

For relaxation orders k = d0, d0 + 1, . . ., we get the Moment-SOS hierarchy of semidefinite
relaxations (4.3)-(4.4). The optimization (4.3) is a relaxation of (4.1). In fact, if x is a feasible
point of (4.1), then y = [x]2k is feasible for (4.3), while the infeasibility of (4.3) implies the
infeasibility of (4.1). On the other hand, ϑk and γk provide lower bounds for ϑ for every k, that

γk ≤ ϑk ≤ ϑ.

Let ei be the labeling vector such that its ith entry is 1 while all other entries are 0s, and
yei be the subvector of the tms y whose entries are labeled by ei (for instance, when n = 4,
ye3 = y0010). For a given k, let y(k) be a minimizer of the kth moment relaxation (4.3), and

u(k) := (y
(k)
e1 , . . . , y

(k)
en ). Then u(k) must be a minimizer of (3.3) if (we refer to Section 2 for

definitions of Z and S)
u(k) ∈ Z(Φ) ∩ S(Ψ), ϑk = θ(u(k)). (4.5)

However, (4.5) usually does not hold when there is more than one minimizer. For such cases,
the flat truncation can be applied to certify global optimality and obtain minimizers. To con-
clude, we summarize the following algorithm, namely, the Moment-SOS hierarchy of semidefinite
relaxations, for solving polynomial optimization problems:

Algorithm 4.1 For the polynomial optimization problem (4.1). Initialize k := d0.

Step 1 Solve the moment relaxation (4.3) for the minimum value ϑk. If (4.3) is infeasible, then
the polynomial optimization problem is infeasible. Otherwise, solve (4.3) for a minimizer y∗

and let t := d0.
Step 2 Let u∗ := (y∗e1 , . . . , y

∗
en
). If u∗ satisfies (4.5), then u∗ is the minimizer for (4.1) and stop.



12 J. Nie, D. Sun, X. Tang and M. Zhang

Step 3 If y∗ satisfies the rank condition

rankMt[y
∗] = rankMt−d0 [y

∗], (4.6)

then extract a set Ui of r := rankMt[y
∗] minimizers for (4.1) and stop.

Step 4 If (4.6) fails to hold and t < k, let t := t+1 and then go to Step 3; otherwise, let k := k+1
and go to Step 1.

For Algorithm 4.1, we say it has asymptotic convergence if ϑk → ϑ as k → ∞, and we say it
has finite convergence if there exists K ∈ N such that ϑk = ϑ for all k ≥ K. In Step 3, the rank
condition (4.6) is called flat truncation [33]. It is a sufficient (and almost necessary) condition to
check the finite convergence of moment relaxations. When (4.6) holds, the method in [12] can be
used to extract r minimizers for (4.1). This method and Algorithms 4.1 are implemented in the
software GloptiPoly 3 [13]. In the following subsections, we discuss how to use Algorithm 4.1
for solving polynomial optimization problems (3.2-3.3) and (3.6-3.7), respectively.

4.1 Finding solution candidates to polynomial VIPs

In this subsection, we discuss how to solve the polynomial optimization for obtaining candidate
solutions to polynomial VIPs, particularly for solving the problem (3.3). Note that (3.3) can be
rewritten as (4.1) with {

Φ := E, θ(x) := [x]T1 Θ[x]1,

Ψ := I ∪ {(v − x)TF (x) : v ∈ V }.
(4.7)

Since the θ(x) is a generic positive definite quadratic polynomial, the problem (3.3) has a unique
minimizer, as we show in Theorem 4.2. In practice, we usually let θ(x) := [x]T1 R

TR[x]1 with R
being a randomly generated (n+1)× (n+1) matrix. As we mentioned before, the infeasibility of
(4.3) infers the infeasibility of (3.3), which further implies the nonexistence of the KKT points.
Moreover, when (3.3) is feasible, the optimal value ϑk of (4.3) is a lower bound for the minimum
value of (3.3), i.e., ϑk ≤ [x]T1 Θ[x]1 for all x that is feasible for (3.3).

The convergence of Algorithm 4.1 for solving (3.3) is shown as follows.

Theorem 4.2 Assume the set Ideal[Φ] +Qmod[Ψ ] ⊆ R[x] is archimedean.

(i) If (3.3) is infeasible, then the moment relaxation (4.3) is infeasible when k is big enough.
(ii) Suppose (3.3) is feasible and Θ is a generic positive definite polynomial. Then (3.3) has a

unique minimizer u, and u(k) → u as k → ∞. Furthermore, if Φ(x) = 0 have finitely many
real solutions, then Algorithm 4.1 has finite convergence with (4.6) satisfied.

Proof. (i) If (3.3) is infeasible, the constant polynomial−1 can be viewed as a positive polynomial
on the feasible set of (3.3). Since Ideal[Φ] +Qmod[Ψ ] is archimedean, we have −1 ∈ Ideal[Φ]2k +
Qmod[Ψ ]2k, for k big enough, by the Putinar Positivstellensatz [45]. For such a big k, the SOS
relaxation (4.4) is unbounded from above, hence the moment relaxation (4.3) must be infeasible.

(ii) When the problem (3.3) is feasible and Θ is generic positive definite, it must have a
unique minimizer, by [36, Proposition 5.2]. Let u be this minimizer. The convergence of u(k) to
u is shown in [49] or [33, Theorem 3.3]. For the special case that Φ(x) = 0 has finitely many
real solutions, the point u(k) must be equal to u and (4.6) holds, when k is large enough. This is
shown in [24] (see also [34]). ⊓⊔

Remark 4.3 (i) By Theorem 4.2, when Ideal[Φ] + Qmod[Ψ ] ⊆ R[x] is archimedean, u(k) con-
verges to the minimizer of (3.3). If the point u(k) is feasible and ϑk = θ(u(k)), then u(k) must be



Polynomial VIPs 13

a minimizer of (3.3), regardless of the archimedeaness holds or not. Moreover, the infeasibility
of (4.3) always implies the infeasibility of (3.3), regardless of the archimedeaness holds or not.

(ii) We would like to remark that if flat truncation (4.6) is satisfied, then (4.5) holds and
rankMt[y

∗] = 1. However, it is possible that the u(k) is a minimizer for (3.3), while (4.6) does
not hold (see [34]). When Φ(x) = 0 has finitely many real solutions (even when archimedeaness
does not hold), flat truncation holds for all k that is big enough with rankMt[y

∗] = 1 [24]. In
the actual implementation of solving (3.3), we usually skip Step 3 in Algorithm 4.1.

(iii) By Theorem 3.5, the Φ(x) = 0 defines a finite set in Rn when the VI (X,F ) is given by
general polynomials. For such cases, finite convergence of Algorithm 4.1 is guaranteed. Moreover,
in our computational practice, Algorithm 4.1 always has finite convergence.

The polynomial optimization subproblem (3.6) can be solved in the same way by the Moment-
SOS hierarchy like (4.3)-(4.4). The convergence property is the same. For the cleanness of the
paper, we omit the details.

4.2 Verifying solution candidates for polynomial VIPs

In this subsection, we study how to solve the polynomial subproblem (3.2) for verifying whether
a given solution candidate u solves VI (X,F ) or not. When X is compact, problem (3.2) exists
at least one minimizer. Moreover, if (3.2) is unbounded from below, then u cannot be a solution.
In these cases, it suffices to choose an appropriate positive R such that (3.2) with the extra
boundedness constraint ‖x− u‖2 ≤ R has a negative minimum. For the rest of this subsection,
we suppose (3.2) has at least one minimizer.

Under the assumption that X is given by (1.2) with nonsingular tuple g, the LICQ holds
for every x ∈ X . Thus, if v ∈ X is a minimizer of (3.2), then it must be a KKT point of (3.2).
Introducing dual variables λ(x), problem (3.2) can be equivalently reformulated to (4.1), with





θ(x) := (x− u)TF (u),

Φ(x) := {F (u)−
∑m

i=1
λi(x)∇gi(x)}

∪ {λi(x)gi(x) : (i ∈ I)} ∪ {gi(x) : (i ∈ E)},
Ψ(x) := {gi(x) (i ∈ I)} ∪ {λi(x) (i ∈ I)},

(4.8)

Therefore, Algorithm 4.1 can be applied to solve (3.2). Note that under our assumption, (3.2)
must be feasible, so there is no need to check the feasibility in Step 1. The following convergence
result for Algorithm 4.1 is straightforward by [39, Theorems 3.3] and [42, Theorems 4.4]:

Theorem 4.4 Suppose (3.2) has a minimizer. Let θ, Φ, Ψ be given as in (4.8), and let (4.1) be
the polynomial optimization reformulation for (3.2). If either one of the following holds:

(i) Ideal[Φ] + Qmod[Ψ ] is archemedean; or
(ii) Ideal[(gi)i∈E ] +Qmod[(gi)i∈I ] is archemedean; or
(iii) The q(x) = 0 (q ∈ Φ) has finitely many real solutions;

then Algorithm 4.1 has finite convergence. Moreover, if we further assume that every minimizer
of (4.1) is an isolated critical point of (3.2), then (4.6) holds at each minimizer of (4.1) for all
k that is big enough.



14 J. Nie, D. Sun, X. Tang and M. Zhang

4.3 Solving the maximization problem (3.7)

For the maximization problem (3.7) in Algorithm 3.6, we let
{

θ(x) := −[x]T1 Θ[x]1, Φ := E,
Ψ := I ∪ {(v − x)TF (x) : v ∈ V } ∪ {Θ(x∗) + δ − [x]T1 Θ[x]1}. (4.9)

Then the maximization problem (3.7) can be equivalently rewritten as the polynomial mini-
mization problem (4.1), and their kth order Moment-SOS relaxations are given by (4.3-4.4).
Algorithm 4.1 can be applied to implement the Moment-SOS hierarchy to solve (3.7).

For (3.7), its feasible set is always nonempty since x∗ is a feasible point, so there is no need
to check its feasibility. Moreover, if the optimal value of (3.7) is nonnegative, then the δ which
defines (3.7) is applicable for (3.6). For the kth ordered moment relaxation (4.3) of (3.7), if
its minimum value ϑk satisfies ϑk ≥ Θ(x∗), then the optimal value of (3.7) is nonnegative and
we may terminate Algorithm 4.1 directly. This is because the ϑk provides a lower bound for
the maximum of (3.7). However, if ϑk < 0, then we still need (4.6) to hold for the guaranteed
optimality. Moreover, the archimedeanness is always satisfied by (3.7), since it has the inequality
constraint [x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ.

The convergence of Algorithm 4.1 is as follows. If (4.3) is infeasible, then (4.1) has an empty
feasible set. This is because the [x]d is feasible for (4.3) for every feasible point x of (4.1). Suppose
(4.1) has a nonempty feasible set and Ideal[Φ] + Qmod[Ψ ] is archimedean. Then ϑk → ϑmin as
k → ∞ [21]. Furthermore, under some classical optimality conditions, the finite convergence is
guaranteed [35]. Lastly, if Φ = 0 has finitely many real solutions, then Algorithm 4.1 has finite
convergence, even if the archimedeanness is not satisfied. Note that by Theorem 3.5, when the
VI (X,F ) is given by general polynomials, the Φ = 0 has at most finitely many complex solutions.

5 Numerical Experiments

In this section, we apply our methods to solve polynomial VIPs. We apply the software GloptiPoly 3

[13] and Mosek [28] to implement Moment-SOS relaxations for solving polynomial optimization
problems. The computation is implemented in a Dell OptiPlex 7090 desktop, with an Intel®

Core(TM) i9-10900 CPU at 2.80GHz×10 cores and 64GB of RAM, in a Windows 10 operating
system. For the neatness of the paper, only four decimal digits are shown for computational
results.

5.1 Explicit polynomial VIPs

First, we apply Algorithm 3.2 and Algorithm 3.6 to solve polynomial VIPs. In Step 3 of Al-
gorithm 3.2, if the optimal value ε = 0, then u(k) is a solution to the VI (X,F ). In numerical
computations, we may not have ε = 0 exactly due to round-off errors. Typically, we accept the
computed candidate as a solution when |ε| ≤ 10−6. Similarly, in Step 2 of Algorithm 3.6, if the
optimal value γ∗ satisfying |γ∗−[x∗]T1 Θ[x∗]1| ≤ 10−6, then we regard the value δ being applicable
for (3.6). Unless specifically mentioned, we compute a complete set of solutions if it is nonempty,
for every example in this subsection.

Example 5.1 Consider the nonlinear complementarity problem (NCP) in [43]:

0 ≤ F (x) :=




3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6
2x2

1 + x1 + x2
2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9
x2
1 + 3x2

2 + 2x3 + 3x4 − 3


 ⊥ x ≥ 0.



Polynomial VIPs 15

This NCP is equivalent to VI(R4
+, F ), whose feasible set X := R4

+. There are two solutions

(
√
6/2, 0, 0, 1/2), (1, 0, 3, 0) to the NCP. Let Fi(x) be the ith entry of F (x). Then, the LMEs are

λi = Fi(x) for all i = 1, 2, 3, 4.

We ran Algorithm 3.6 and it took around 0.55 second to find solutions u(1), u(2) as follows:

u(1) = (1.2247, 0.0000, 0.0000, 0.5000), ε = −1.5499 · 10−8;

u(2) = (1.0000, 0.0000, 3.0000, 0.0000), ε = −3.7262 · 10−8.

We also tested solving the KKT system (2.4) without LMEs. Treating (λ1, . . . , λ4) as ad-
ditional variables, we formulated the polynomial optimization problem similar to (3.1) with a
feasible set given by (2.4). Then, we found solutions to VI(R4

+, F ) under the same framework
as in Algorithms 3.2 and 3.6. We presented the comparison of the time consumption for ap-
proaches with or without LMEs in Table 1. In the table, the first and the second row show the
time consumption for finding the first and second solution, respectively, and the last row is for
checking the completeness of the solution set {u(1), u(2)}. It should be pointed out that the time
consumption of solving (3.7) and (3.6) for finding each solution or checking the completeness is
included.

with LMEs without LMEs
the first solution 0.12s 2.97s

the second solution 0.20s 8.49s

the completeness of {u(1), u(2)} 0.23s 10.23s

Table 1 Computational results for Example 5.1

Example 5.2 Consider the VI (X,F ) with

F (x) =




−x1 + 4x1x2 + x2
2 + x3 − x4 + 1

2x2
1 + x1 − x3

2 − 10x3 + 2x4

3x3
1 + x1x2 + 2x2

2 − 2x3 + 9x4

x2
1 − 3x2

2 + 2x3 − 3x4 − 4


 , X = {x ∈ R4

+ : x1x2x3x4 = 2}.

In this example, the set X is unbounded and nonconvex. Let Fi(x) be the ith entry of F (x).
Then, the LMEs are

λ0 =
xTF (x)

−8
, λi = Fi(x) + λ0 (i = 1, 2, 3, 4).

We ran Algorithm 3.2 and the infeasibility of (3.1) was detected at the 3rd ordered moment
relaxation, hence this VIP has no solution. It took around 0.31 seconds.

Similarly to Example 5.1, we tested solving the KKT system (2.4) without LMEs under
the framework of Algorithms 3.2. For this VIP, since we only need to check the infeasibility of
(3.1) to detect the nonexistence of solutions, we presented the comparison for solving moment
relaxations (4.3) with various relaxation orders d. In Table 2, the first column is the relaxation
order; and the second and third columns represent the time consumption and whether the dth
order moment relaxation successfully detects the nonexistence of solutions or not. When LMEs
are applied, the 2nd order moment relaxation is not well-defined, and the 4th order moment
relaxation is unnecessary for checking the emptiness of SOL (X,F ), since the 3rd order moment
relaxation is already infeasible.



16 J. Nie, D. Sun, X. Tang and M. Zhang

d
with LMEs without LMEs

time nonexistence of solutions time nonexistence of solutions
2 n.a. n.a. 4.52s not detected
3 0.31s detected 32.45s not detected
4 1.28s detected 2031.27s detected

Table 2 Computational results for Example 5.2

Example 5.3 Consider the two-player jointly convex generalized Nash equilibrium problem in
[41]:

1st player:

{
min
x1∈R3

10xT
1 x2 −

∑3
j=1 x1,j

s .t . xT
1 x1 + xT

2 x2 ≤ 1;

2nd player:

{
min
x2∈R3

∑3
j=1(x1,jx2,j)

2 + (3
∏3

j=1 x1,j − 1)
∑3

j=1 x2,j

s .t . xT
1 x1 + xT

2 x2 ≤ 1,

where x1 := (x1,1, x1,2, x1,3) and x2 := (x2,1, x2,2, x2,3) are decision variables of the first and
the second player respectively. Let x := (x1, x2) and denote the first (resp., second) player’s
objective functions by f1(x) (resp., f2(x)). Then, finding the normalized equilibria for this GNEP
is equivalent to solving VI (X,F ) with

F :=

(
∂f1
∂x1,1

,
∂f1
∂x1,2

,
∂f1
∂x1,3

,
∂f2
∂x2,1

,
∂f2
∂x2,2

,
∂f2
∂x2,3

)T

,

X := {x ∈ R4 : 1− xTx ≥ 0}.
We refer to [6,41] for more details about GNEPs. One can check that the map F is nonmonotone
on X . For this polynomial VIP, the LME is

λ = −xTF (x)

2
.

We ran Algorithm 3.6 and obtained the unique solution u := (u1, u2) with

u1 = (−0.4934,−0.4934,−0.4934), u2 = (0.2998, 0.2998, 0.2998),

and ε = −2.5461 · 10−8. It took around 4.21 seconds.

Example 5.4 (i) Consider the VI (X,F ) with

F (x) =




x1 + x2 + x3 + x4

x1 − x2
2 + x3 − x4

−x3 − x1x2

x4 − x1x2


 , X =

{
x ∈ R4 : xTx− 1 ≥ 0, 2− xTx ≥ 0

}
, (5.1)

where F (x) is nonmonotone and X is nonconvex. For this problem, the LMEs are

λ1 = (2− xTx) · x
TF (x)

2
, λ2 = (1− xTx) · x

TF (x)

4
.

We ran Algorithm 3.6 and obtained all solutions to the VI (X,F ), which are

u = (−0.2639, 1.3073,−0.4537,−0.1250), with ε = −2.7460 · 10−9;
u = (0.4365,−1.0536, 0.7694,−0.3279), with ε = −7.2553 · 10−9;
u = (−0.4108,−0.4710, 1.2655, 0.0899), with ε = −1.1356 · 10−8;
u = (−0.8126, 0.7417, 0.7227,−0.5169), with ε = −9.7235 · 10−9.



Polynomial VIPs 17

It took around 9.56 seconds.

(ii) In (5.1), if we change F (x) to




−x1 − x2 − x3 − x4

x1 − x2 + x3 − x4

x3 − x1x2

x4 − x1x2


, then Algorithm 3.2 took around 1.52

seconds to detect the emptiness of the SOL (X,F ).

Example 5.5 Let A,B ∈ Rn×n be a pair of matrices such that B is symmetric positive definite,
and let C be a closed convex cone in Rn. Consider the reformulation VI (X,F ) for the constrained
eigenvalue problem (see [6]) of A over the cone C, where

F (x) := Ax, X := {x ∈ C : xTBx = 1}. (5.2)

(i) Suppose

C := {x ∈ Rn
+ : x1 ≥ x2 + · · ·+ xn}. (5.3)

Then X = {x ∈ Rn : g0(x) = 0, g1(x) ≥ 0, . . . , gn(x) ≥ 0}, where

g0(x) = xTBx− 1, g1(x) = x1 − x2 − · · · − xn, gi = xi (i = 2, . . . , n).

The LMEs for VI (X,F ) are

λ0 = xTF (x)
2 , λ1 = F1(x) − 2λ0 ·

∑n

j=1 B1,jxj ,

λi = Fi(x)− 2λ0 ·
∑n

j=1 Bi,jxj + λ1 (i = 2, . . . , n),

where Fi(x) is the ith entry of F (x) and Bi,j means the element in the ith row and jth column
of B. If we let

A =




−8 −4 8 −6
−8 −4 4 −9
−7 −6 1 9
−6 −5 −7 4


 , B =




4 0 3 −1
0 4 −1 −2
3 −1 4 0

−1 −2 0 2


 , (5.4)

then we obtained the unique solution u to VI (X,F ) by Algorithm 3.6 with

u = (0.5534, 0.2372, 0.0000, 0.3162), ε = −1.3994 · 10−8.

It took around 0.50 seconds.
(ii) Suppose C is the second order cone, i.e.,

C := {x ∈ Rn : ‖x̄‖2 ≤ xn}, x̄ = (x1, x2, . . . , xn−1). (5.5)

Then X = {x ∈ Rn : g0(x) = 0, g1(x) ≥ 0}, where g0(x) = xTBx − 1, g1(x) = x2
n − x̄T x̄. We

remark that in this case, polynomial LMEs do not exist since the constraints are not nonsingular.
However, there exist rational Lagrange multiplier expressions

λ0 =
xTF (x)

2
, λ1 =

Fn(x) − 2λ0

∑n

i=1 Bn,ixi

2xn

.

One may check that the denominator xn is strictly positive over X , thus we may cancel it in the
KKT system. We refer to [41] for more details about rational LMEs and how to reformulate the
KKT system with them. We ran Algorithm 3.6 with matrices A and B given as in (5.4). It took
around 4.24 seconds and find the unique solution

u = (0.6906, 0.5866,−0.3661, 0.9773), ε = −5.8198 · 10−7.



18 J. Nie, D. Sun, X. Tang and M. Zhang

Example 5.6 Consider the invariant capital stock problems [16]. Let A ∈ Rn2×n1 , B ∈ Rn2×n1
+ ,

b ∈ Rn2 , ρ ∈ (0, 1) be the discount rate, and let f(x) be a convex loss function. For a given vector
b0 ∈ Rn2 , we denote by P (b0) the problem of finding a sequence of activity levels {x(t)}∞t=1 to
solve 




min
x(1),x(2),x(3),...

∑∞
t=1 ρ

t−1f(x(t))

s .t . Ax(1) ≤ b0 + b,

Ax(t) ≤ Bx(t−1) + b, t = 2, 3, . . .

x(t) ∈ Rn1
+ . t = 1, 2, . . .

(5.6)

Then, the invariant capital stock problem is to find u ∈ Rn such that {x(t)}∞t=1 with every
x(t) = u solves P (Bu). By [6, Proposition 1.4.5], if there exists v ∈ Rm such that (u, v) solves
VI(Rn1+n2

+ , F ), where

F (x, y) =

[
∇f(x) + (AT − ρBT )y

b+ (B −A)x

]
, (5.7)

then u is an invariant capital stock.
We ran Algorithm 3.6 with n1 = 4, n2 = 3, ρ = 0.7, and

f(x) =
∑

1≤i≤j≤4

x2
i x

2
j + 2x3

1x2 + 2x1x
3
2 + x3

3 + x3
4 −

4∑

i=1

xi,

A =



−3 1 1 −3
1 −1 3 1
1 0 −3 2


 , B =



5 4 1 1
0 2 0 5
2 5 4 4


 , b =




1
−3
2


 .

We obtained the unique solution

u = (0.1861, 0.5845, 0.1715, 0.4868), v = (−0.0000, 0.2270, 0.0000).

The error ε = −7.3551 · 10−9. It took around 5.54 seconds.

Comparison with the PATH Solver. There exist many numerical algorithms for solving VIPs.
Since there is no monotonicity or convexity assumption in general for the polynomial VIPs in
Section 5.1, we only compared Algorithm 3.2 with the damped Newton’s method for solving
the MiCP (the KKT system (2.4)) via the path search [5,47], which is implemented with the
well-developed Matlab software: the PATH Solver [8]. We remark that we also tried some other
numerical methods introduced in [6], such as the hyperplane-projection method, interior point
method, etc. However, they usually cannot solve the VIPs in Section 5.1, especially when the
problem is nonmonotone or nonconvex. So we omit the numerical results of these methods for the
cleanness of this paper. We used the default parameter setting, which can be found in [8, Table
6&7]. Feasible initial points are applied for these methods, that we use (2, 1, 1, 1) for Example 5.2,
the (1, 0, 1, 0) for Examples 5.4(i-ii), the 0.5e1 for Example 5.5(i), and the zero vector for other
problems. Besides that, we use the zero vector as the initial point corresponding to Lagrange
multipliers.

Numerical results are presented in Table 3. The column ‘time’ is the consumed time in seconds
for solving the VI (X,F ) and verifying if a solution is obtained, and the column ‘error’ stands
for the minimum of (3.2) at the computed solution. Here, we only compute one solution for each
problem, hence the time consumption in rows ‘Alg. 3.2’ may be much smaller than that in the
last subsection, since we do not find more solutions or check the completeness of the solution
sets.

The observations are summarized as follows:



Polynomial VIPs 19

Example
PATH Alg. 3.2

time error time error

5.1 0.48 2 · 10−7 0.12 1 · 10−8

5.2 fail no solution

5.3 0.79 6 · 10−9 1.54 2 · 10−8

5.4(i) 0.40 2.98 0.46 2 · 10−9

5.4(ii) 0.13 2.41 no solution

5.5(i) fail 0.14 1 · 10−8

5.5(ii) fail 1.51 6 · 10−7

5.6 0.46 8 · 10−9 5.54 8 · 10−9

Table 3 Comparison with PATH

– The software PATH failed to converge for Example 5.2 since the set of KKT points is empty.
For Example 5.5(i), the PATH solver fails to solve the problem, because the Jacobian is singu-
lar at the solution. Besides that, PATH found the KKT point (0.2301,−0.6948, 0.0715, 0.6776)
for Example 5.4(i), and found the KKT point (0.5345, 0.0000,−0.8018,−0.2673) for Exam-
ple 5.4(ii). However, these KKT points obtained by the PATH solver are not solutions to
the VI (X,F ), since the feasible sets in these two examples are nonconvex.

– The damped Newton’s method may be sensitive to the choice of initial points. For example,
if we use e1 as the initial point for Example 5.3, then the PATH Solver do not converge. In
contrast, Algorithm 3.2 can efficiently find solutions for all examples in Section 5.1 if there
exists any, or certify the emptiness of the SOL (X,F ).

5.2 Randomly generated polynomial VIPs

In this subsection, we tested our method on VIPs that are given by polynomials with randomly
generated coefficients. For all randomly generated VIPs, we only ran Algorithm 3.2, i.e., the
algorithm for finding one solution, and we do not check the uniqueness of the solution.

For all instances in the following, we randomly generated 100 polynomial VIPs and solved
them by Algorithm 3.2. In the experiment, a computed point is regarded as a solution to the
VIP if the error |ε| ≤ 10−6. We allow 10 maximum iterations (i.e., ℓ = 10) in Algorithm 3.2 for
each VIP. We remark that for VIPs with convex feasible sets, Algorithm 3.2 guarantees to find
a solution to the VIP at the initial loop (see Proposition 3.1). However, the computed solution
may not satisfy |ε| ≤ 10−6 due to the numerical error. For such cases, we proceed to new loops
of Algorithm 3.2 until a solution satisfying |ε| ≤ 10−6 is computed or the maximum ℓ is reached.
All polynomial optimization subproblems in Algorithm 3.2 are solved by Algorithm 4.1 with the
relaxation order k = d0, d0 +1, . . . , d0 + 4. If the (d0 +4)th Moment-SOS relaxation cannot find
a solution for the polynomial optimization, then we stop the algorithm and report a failure of
solving this polynomial VIP.

5.2.1 Randomly generated ball constrained VIPs

Consider the VI(Bn, F ) with Bn := {x ∈ Rn : xTx ≤ 1}. Since Bn is convex and compact, the
SOL(Bn, F ) 6= ∅. For the given dimension n and degree d, we randomly generate the matrix
A ∈ Rn×N with N =

(
n+d
n

)
using the Matlab function randn, and let F (x) = A · [x]d. We report

the numerical results in Table 4. In the table, (n, d) is the pair of the dimension of x and the
degree of every Fi(x), ‘SR’ (success rate) is the rate of finding a solution for the VIP successfully,
and ‘time’ is the average consumed time (in seconds) of finding solutions.



20 J. Nie, D. Sun, X. Tang and M. Zhang

(n, d) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8) (4,9)
SR 100% 100% 100% 100% 100% 100% 100% 100%
time 0.25s 0.28s 0.34s 0.67s 1.03s 2.51s 3.95s 8.34s
(n, d) (4,10) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)
SR 100% 100% 100% 99% 100% 100% 100% 100%
time 20.49s 0.28s 0.43s 1.22s 3.82s 9.26s 24.63 70.79s
(n, d) (6,2) (6,3) (6,4) (6,5) (6,6) (7,2) (7,3) (7,4)
SR 100% 100% 100% 99% 100% 100% 100% 100%
time 0.92s 1.52s 7.43s 35.38s 99.51s 1.58s 9.79s 41.18
(n, d) (7,5) (8,2) (8,3) (8,4) (9,2) (9,3) (10,2) (11,2)
SR 100% 100% 100% 100% 100% 100% 99% 100%
time 365.49s 4.60 43.98s 213.74s 12.44s 188.38s 47.22s 121.70s

Table 4 Computational results for randomly generated ball constrained VIPs

For this problem, we would like to remark on the following:

– When (n, d) = (5, 4), there is one case of VIP where Algorithm 3.2 can only find a solution
whose error |ε| = 9.04 · 10−6 > 10−6.

– When (n, d) = (6, 5), there is one case of VIP where Algorithm 3.2 can only find a solution
whose error |ε| = 5.78 · 10−6 > 10−6.

– When (n, d) = (10, 2), there is one case of VIP where we cannot find a minimizer for (3.3)
due to the limit of memory.

5.2.2 Randomly generated constrained eigenvalue problems

Consider the constrained eigenvalue problem in Example 5.5. For the given dimension n, we
randomly generate matrices A ∈ Rn×n and B̂ ∈ Rn×n using the Matlab function randn, and
let B := B̂T B̂. Then x ∈ Rn solves the constrained eigenvalue problem defined by A and B
if it solves the VI (X,F ) given by (5.2). We ran Algorithm 3.2 for the cone given in (5.3) and
the second order cone as in (5.5), and reported numerical results in Tables 5. In the table, the
column ‘C’ is the cone C we use for the constrained eigenvalue problem, ‘n’ is the dimension for
x, ‘SR’ is the rate of solving the VI (X,F ) successfully, that either a solution is obtained or the
nonexistence of solutions is detected, and ‘time’ has the same meaning as in Table 4.

C n 3 4 5 6 7 8

(5.3)
SR 100% 100% 98% 100% 100% 98%
time 0.60s 0.81s 0.82s 1.46s 8.03 20.85

(5.5)
SR 100% 100% 100% 99% 98%
time 0.98s 1.31s 2.21s 7.04s 45.24

Table 5 Computational results for randomly generated constrained eigenvalue problems

For the case that C is given by (5.3), we would like to remark on the following

– When n = 5, there is one case of VIPs where Algorithm 3.2 can only find a solution whose
error |ε| = 9.50 · 10−6 > 10−6. Moreover, there is another VIP where the Moment-SOS
hierarchy cannot find a global minimizer for (3.3).

– When n = 7, there are two cases of VIPs where we cannot find a minimizer for (3.3) due to
the limit of memory.

– When n = 8, there is one VIP where we cannot find a minimizer for (3.3) due to the
limit of memory, and there is another VIP where we can only find a solution whose error
|ε| = 5.04 · 10−6 > 10−6.



21

For the case that C is given by (5.5), we would like to remark the following

– When n = 6, there is one case of VIPs where we can only find a solution whose error
|ε| = 2.65 · 10−6 > 10−6.

– When n = 7, there are two cases of VIPs where we cannot find a minimizer for (3.3) due to
the limit of memory.

5.2.3 Randomly generated invariant capital stock problems

Consider the invariant capital stock problems (5.6) in Example 5.6. For the given dimensions
n1, n2, we randomly generate A ∈ Rn2×n1 , C ∈ Rn1×n1 , b ∈ Rn2 using the Matlab function
randn, and randomly generate B ∈ Rn2×n1

+ using rand, and let ρ = 0.8, f(x) := [x]T1 C
TC[x]1.

Then, the VI(Rn1+n2
+ , F ) is given by (5.7). Note that although the feasible set of this VIP is

convex, it is unbounded. It is possible that SOL(Rn1+n2
+ , F ) = ∅. We reported the numerical

results in Table 6. In the table, (n1, n2) is the pair of dimensions, ‘SR’ (success rate) and ‘time’
have the same meaning with them in Table 4. We remark that the VI (X,F ) computed in
Example 5.6 has higher degrees, and we checked the uniqueness of the computed solution, thus
the time consumption is larger than that in Table 6.

(n1, n2) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2)
SR 100% 100% 100% 100% 100% 99%
time 0.25s 0.26s 0.28s 0.26s 0.32s 0.29s

(n1, n2) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)
SR 100% 100% 100% 100% 100% 100%
time 0.26s 0.29s 0.30s 0.34s 0.40s 0.42s

(n1, n2) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4)
SR 100% 100% 100% 100% 99% 100%
time 0.35s 0.33s 0.43s 1.03s 0.47s 51.75s

Table 6 Computational result for randomly generated invariant capital stock problems

For this problem, we would like to remark on the following:

– When (n1, n2) = (9, 2), there is a VIP where we can only find a solution whose error |ε| =
5.22 · 10−6 > 10−6.

– When (n1, n2) = (8, 4), there is a VIP where the Moment-SOS hierarchy cannot find a global
minimizer for (3.3).

– When (n1, n2) = (9, 4), there are two VIPs where Algorithm 3.2 took more than 2000 sec-
onds to solve each one of them (2371.65s and 2740.15s respectively), and the average time
consumption for solving all other VIPs is 0.65s.

Acknowledgements The research of Defeng Sun is supported in part by the NSFC/RGC Joint Research
Scheme under grant N PolyU504/19. The research of Xindong Tang is partially supported by the Start-up Fund
P0038976/BD7L from The Hong Kong Polytechnic University. The research of Min Zhang is partially supported
by the National Natural Science Foundation of China under grant 12101598.

Appendices

A Generic properties of polynomial VIPs

First, we review some basics of algebraic geometry. Let C be the complex field and C[x] be the
ring of polynomials in the variable x = (xi,j). An ideal I of C[x] is a subset of C[x] such that



22

a + b ∈ I for all a, b ∈ I and q · p ∈ I for all p ∈ I and q ∈ C[x]. Given the ideal I, we say the
polynomial tuple (p1, . . . , pm) is a generator for I if for every p ∈ I, we have

p = p1 · q1 + · · ·+ pm · qm for some q1, . . . , qm ∈ C[x].

Every ideal is generated by finitely many polynomials. For an ideal I, the set V (I) := {x ∈ Cn :
p(x) = 0, ∀ p ∈ I} is called the variety of I. Such a set is called an affine variety.

Let x̃ := (x0, x1, . . . , xn) be the tuple of variables in Cn+1. The n-dimensional complex
projective space Pn is the set of all lines passing through the origin of Cn+1. A point x̃ in Pn has
the coordinate [x0 : x1 : · · · : xn] such that at least one of xi is nonzero. An ideal generated by
homogeneous polynomials in C[x] is called a homogeneous ideal. Given the homogeneous ideal
Ĩ, the set of all x̃ ∈ Pn such that p(x̃) = 0 for all p ∈ Ĩ is called the projective variety of Ĩ.
Moreover, the Zariski topology over Pn (resp., Cn) is the topology space such that all closed sets
are given by projective (resp., affine) varieties, and open subsets of projective varieties are called
quasi-projective varieties. For the given quasi-projective varieties X , closed subsets are given by
intersections of X with a projective variety. It is clear that both projective and affine varieties
are quasi-projective. Besides that, we say a variety being irreducible if it is not the union of two
proper closed subsets. Any variety can be decomposite as the union of finitely many irreducible
varieties, which are called irreducible components.

For the irreducible quasi-projective variety X in Pn, its dimension dimX is the largest non-
negative integer k such that the intersection of X and k general hyperplanes is nonempty. The
dimension of a reducible variety is defined by the maximum dimensions of all its irreducible com-
ponents. The codimension codim (X ) for the quasi-projective variety X in Pn equals n−dim(X ).
It is clear that dimPn = n, and the dimension of all hypersurfaces in Pn equals n − 1. If Y is
the hypersurface defined by a homogeneous polynomial p(x̃) that is not identically zero on any
irreducible component of X and X ∩ Y 6= ∅, then

codim (X ∩ Y) = codimX + 1.

A.1 Proof of Theorem 3.5

Now, we show the finiteness of K defined in Subsection 2.3 and the algebraic degree of the
VI (X,F ). Recall that when some constraint qualification condition holds at x ∈ SOL (X,F ), x
satisfies the KKT conditions (2.4) for the VI (X,F ). Consider the following polynomial system

{
F (x) =

∑m

i=1 λi∇gi(x),
λ1 · g1(x) = · · · = λm · gm(x) = 0, gi(x) = 0 (i ∈ E). (A.1)

Then, the (A.1) consists of all equalities in (2.4). We show the finiteness of complex solutions
to (A.1) when all F1, . . . , Fn, g1, . . . , gm are generic polynomials. Let A be an active constraint
labelling set. Without loss of generality, assume A = {1, . . . , m̂} with m̂ ≤ m. From the generality
of g1, . . . , gm, the m̂ cannot be greater than n. This is because the intersection of more than n
hypersurfaces in Cn given by general polynomials in x is empty. Moreover, if we let

J(x) := [ F (x) ∇g1(x) . . . ∇gm̂(x) ] , V := {x ∈ Cn : rankJ(x) ≤ m̂} ,

then V is a complex variety defined by vanishing all (m̂+ 1)× (m̂+ 1) minors of J(x). Denote

U := {x ∈ Cn : g1(x) = · · · = gm̂(x) = 0}.

If V ∩ U = ∅, then there does not exist x satisfying (A.1) with active labeling set A.



23

Proof. (Proof of Theorem 3.5) For any given active labeling set A, when all (gi(x))i∈A are
general polynomials, the Jacobian matrix [∇gi(x) ]i∈A is full column ranked over Cn, by [30,
Proposition 2.1] (see also [38, Theorem 3.2]). Therefore, when g1, . . . , gm are all general, the
LICQ holds at every point in Cn, and the x ∈ SOL (X,F ) only if there exist λ1, . . . , λm such
that (2.4) holds. Moreover, the finiteness of |SOL (X,F ) | is implied by the finiteness of solutions
to (A.1).

If the solution set for (A.1) is finite for any given active labelling set A, then (A.1) has finitely
many solutions by enumerating all possibilities ofA. Without loss of generality, we assumem < n
and all constraints are active, i.e., A = [m], for convenience of our discussion.

For each gi(x), its homogenization is

g̃i(x̃) := xbi
0 · g

(
x1

x0
, . . . ,

xn

x0

)
. (A.2)

Denote Ũ := {x̃ ∈ Pn : g̃1(x̃) = · · · = g̃m(x̃) = 0}. It is a projective variety which contains U
up to the natural embedding from Cn to Pn; see [50]. When g1, . . . , gm are general polynomials,

we have dim Ũ = n −m by Bertini’s theorem [30, Theorem A.1]. Moreover, since gi is general,

we have ∇xg̃(x̃) = xdi−1
0 ∇xg

(
x1

x0
, . . . , xn

x0

)
and the homogenization of ∇gi equals the last n

components of ∇xg̃(x̃). For each i ∈ [N ], we let

F̃i(x̃) := xa1
0 · Fi

(
x1

x0
, . . . ,

xn

x0

)
, F̃ (x̃) := (F̃1(x̃), F̃2(x̃), . . . , F̃n(x̃)),

J̃(x̃) :=
[
F̃ (x̃) ∇g̃1(x̃) . . . ∇g̃m(x̃)

]
.

Then Ṽ :=
{
x̃ ∈ Pn : rankJ̃(x) ≤ m

}
is a projective variety that is given by homogeneous

polynomials whose degrees are c := a1 + b1 + · · · + bm − m. Indeed, V is a quasi-projective
variety that is given by Ṽ \ {x0 6= 0} and dimV = dim Ṽ . Let W̃ := V ∩ Ũ . Then, W̃ is an open

subset of Ũ , and the finiteness of the solution set to (A.1) follows directly if dim W̃ = 0.

Note that under our assumption, ∇g̃1(x̃), . . . ,∇g̃m(x̃) are linearly independent for all x̃ ∈ Ũ ,

i.e., J̃(x̃) = m. For each tuple of indices σ = (s1, . . . , sm) ⊂ [n], if we let

J̃σ :=




∂g̃1
∂xs1

∂g̃2
∂xs1

. . . ∂g̃m
∂xs1

∂g̃1
∂xs2

∂g̃2
∂xs2

. . . ∂g̃m
∂xs2

...
... . . .

...
∂g̃1

∂xsm

∂g̃2
∂xsm

. . . ∂g̃m
∂xsm



, Xσ = {x̃ ∈ Ũ : det J̃σ 6= 0},

then all Xσ are quasi-projective varieties and

Ũ =
⋃

σ

Xσ, W̃ =
⋃

σ

Xσ ∩ V . (A.3)

For the given σ and constraining polynomials g1, . . . , gm, we consider the intersection W̃σ :=
Xσ ∩ V . Since rank J̃σ = m on Xσ, the W̃σ is given by vanishing all (m+ 1)× (m+ 1) minors of

J̃(x̃) containing rows indexed by σ, over the quasi-projective variety Xσ \ {x0 = 0}. There are
n − m such minors in total, and each one of them has exactly one row that is not indexed by
entries in σ. Denote this row by s0, and the according minor by ms0 . Then ms0 is a homogeneous



24

polynomial parameterized by the coefficients of Fs0 . Let Λ be a subset of [n]\σ (possibly empty).
For all s0 /∈ σ ∪ Λ, the ms0 being identically zero on some irreducible components of

L := (
⋂

s∈Λ

{ms = 0}) ∩ (Xσ \ {x0 = 0})

gives a proper closed subset in the space of coefficients for Fs0 , which can be regarded as a
projective space. Therefore, by [50, Theorem 1.22], if Fs0 is a general polynomial in C[x]as0

, then

dim L ∩ {ms0 = 0} = dim L − 1.

Note that dimXσ = n−m since Xσ is open in U . We conclude dim W̃σ = 0 when F1, . . . , Fn are
general polynomials by induction, and the finiteness of W̃ follows from (A.3). ⊓⊔

A.2 The algebraic degree of polynomial VIPs

When |K| is finite, Algorithms 3.2 and 3.6 terminate within finitely many steps. Moreover, the
quantity |K| + 1 gives an upper bound for the number of iterations needed for these algorithms
to terminate. In general, it is difficult to characterize the number of real solutions to the KKT
system. As we mentioned before, the K is a subset of the intersection of quasi-projective vari-
eties U ∩ V , which is zero-dimensional when all defining polynomials for VI (X,F ) are general.
Therefore, we may estimate the quantity |K| by |U ∩ V|, if the latter one is also finite.

Let X be a k-dimensional irreducible projective variety. The algebraic degree of X , denoted
by degX , is the number of points in X ∩ Z, where the Z is a general (n − k)-dimensional
hyperplane. In particular, if dimX = 0, the degX counts the number of points in X (counting
multiplicities). When X is reducible and dimX = k, the degX is the sum of degrees of all
k-dimensional irreducible components for X .

For two projective varieties X and Y, we say they intersect properly if dimX ∩Y = dimX +
dimY − n. The following result, called Bézout’s Theorem [11], is useful when considering the
algebraic degree for intersections. We refer to the textbook [11] for the definition of smooth
varieties and transversal intersections.

Theorem A.1 Let X and Y be projective varieties in Pn with dimensions k and l respectively.
If k+ l ≥ n and X intersect Y properly, then degX ∩Y ≤ degX ·degY. In particular, the equality
holds when X and Y intersect transversely.

For the positive integer r, denote by Sr the rth complete symmetric function on k letters
(n1, n2, ..., nk), that

Sr :=
∑

i1+i2+···+ik=r

ni1
1 n

i2
2 . . . nik

k .

Theorem A.2 For the VI (X,F ), let a1, . . . , an ∈ N and b1, . . . , bm ∈ N+ be degrees for F1, . . . , Fn

and g1, . . . , gm respectively. If (A.1) is zero-dimensional, and all constraints are active, then the
number of complex KKT points is bounded by

b1b2 . . . bm · Sn−m

(
max

i
{ai}, b1, . . . , bm

)
. (A.4)

Proof. Without loss of generality, assume a1 = maxi{ai}. Given an ǫ > 0, let ∆Fi ∈ (C[x]a1 ) be
a tuple of general perturbations to Fi(x) for each i ∈ [n], ∆gi ∈ (C[x]bi) be a vector of general
perturbations to ∇gi(x) for each i ∈ [m]. For the parameter ǫ, denote (Fi)ǫ := Fi + ǫ∆Fi ,



25

(∇gi)ǫ := ∇gi + ǫ∆gi for every i ∈ [m], and Fǫ := ((F1)ǫ, . . . , (Fn)ǫ). Let (F̃i)ǫ and (∇g̃i)ǫ be
homogenizations of (Fi)ǫ and (∇gi)ǫ, and let

Jǫ(x̃) :=
[
Fǫ(x̃) (∇g̃1)ǫ(x̃) . . . (∇g̃m)ǫ(x̃)

]
,

Ṽǫ :=
{
(x̃, ǫ) ∈ Pn × C : rank J̃ǫ(x̃) ≤ m

}
.

The Ṽǫ is a quasi-projective variety with a projection π : Ṽǫ → C such that for all ǫ̂ ∈ C, the
fiber π−1(ǫ̂) ⊆ Pn is a projective variety. Since the perturbations are general, there exists at
most finitely many ǫ̂ such that π−1(ǫ̂) ∩ K being 1-dimensional, and all other fibers intersection

Ũ transversely at finitely many points. Thus dim(Ṽǫ ∩ Ũ) = 1. Furthermore, every irreducible

component of Ṽǫ ∩ Ũ has a dimension equal to 1, by [11, Proposition 17.24]. Note that for

every u ∈ V ∩ Ũ = π−1(0) ∩ Ũ , it is contained in an irreducible component, thus there exists

a curve u(t) ⊆ Ṽǫ ∩ Ũ such that the graph of u(t) maps onto C and u(0) = u. For the general
t ∈ C, by genericity of every ∆Fi and ∆gi and the elimination theory (see [4]), we have u(t) =
(u1(t), . . . , un(t)) satisfies

aξ(t)ui(t)
ξ + aξ−1(t)ui(t)

ξ−1 + · · ·+ a1(t)ui(t)
1 + a0(t) = 0,

for every i ∈ [n], where ξ = deg(Ṽǫ∩Ũ) and all aξ(t) are rational functions of the coefficients of Fi,
gi, ∆Fi and ∆gi. This is a univariate polynomial equation which has at most ξ many solutions.
So there exist at most ξ many curves u(t) described in above. Therefore, the intersection Ṽ ∩ Ũ
has at most ξ points, and deg(Ṽǫ ∩ Ũǫ) gives an upper bound for the number of complex KKT
points.

For the intersection deg(Ṽǫ ∩ Ũ), we have

deg(Ṽǫ ∩ Ũ) ≤ deg Ṽǫ · deg Ũ .
The Ũ is given by vanishing m general homogeneous polynomials g1, . . . , gm, and the degree of
each gi is bi. Therefore, the algebraic degree for the complete intersection Ũ is at most b1b2 . . . bm.
In Jǫ(x̃), the degree for the 1st column is a1, and the degree for the ith column equals bi−1 − 1
when i ≥ 2. By [30, Proposition A.6],

dim Ṽǫ = n−m, deg Ṽǫ ≤ Sn−m (a1, b1, . . . , bm) .

So by Theorem A.1, we have

deg(Ṽǫ ∩ Ũ) ≤ d1d2 . . . dnSn−m (a1, b1, . . . , bm) .

And we conclude the upper bound for |K| by noticing that a1 = maxi{ai} from our assumption.
⊓⊔
Remark A.3 For the VI (X,F ), when there exist inequality constraints, some of them may not
be active, and we can get an upper bound for K by enumerating all possible active labeling sets.

Remark A.4 When a1 = a2 = · · · = an and every Fi(x) is a general polynomial in x with
degree equal to ai, and each gj(x) is a general polynomial in x with degree equal to aj , then
the upper bound (A.4) for the algebraic degree is tight. However, the upper bound (A.4) is large
and usually much greater than |K|, since it only provides an upper bound for all complex KKT
points. Moreover, when there exists some j ∈ [n] such that aj < maxi{ai}, then the number of
complex KKT points is smaller than the upper bound given by (A.4).

Declaration

Conflict of interest The authors declare that they have no conflict of interest.



26

References

1. X. Bai, Z. Huang, and Y. Wang. Global uniqueness and solvability for tensor complementarity problems, J.
Optim. Theory Appl., 170(1) (2016): 72–84.

2. D. Bertsekas. Nonlinear programming, second edition, Athena Scientific, 1995.
3. X. Chen, L. Qi, and D. Sun. Global and superlinear convergence of the smoothing Newton method and its

application to general box constrained variational inequalities, Math. Comput., 67 (1998): 519–540.
4. D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic

geometry and commutative algebra, Springer Science & Business Media, 2013.
5. S.P. Dirkse, M.C. Ferris. The path solver: A nommonotone stabilization scheme for mixed complementarity

problems, Optim. Methods Softw., 5(2) (1995): 123–156.
6. F. Facchinei and J.S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems,

Springer Science & Business Media, 2007.
7. J. Fan, J. Nie, and A. Zhou, Tensor eigenvalue complementarity problems, Math. Program., 170(2) (2018):

507–539.
8. M. Ferris, and T.S. Munson. Interfaces to PATH 3.0: Design, implementation and usage, Comput. Optim.

Appl., 12(1) (1999): 207–227.
9. M.S. Gowda, and D. Sossa. Weakly homogeneous variational inequalities and solvability of nonlinear equations

over cones, Math. Program., 177(1) (2019): 149–171.
10. L. Guo, G. Lin, J.J. Ye and J. Zhang. Sensitivity analysis of the value function for parametric mathematical

programs with equilibrium constraints, SIAM J. Optim., 24 (2014): 1206–1237.
11. J. Harris, Algebraic Geometry A First Course., Springer Verlag, Berlin, 1992.
12. D. Henrion and J. Lasserre. Detecting global optimality and extracting solutions in GloptiPoly, Positive

polynomials in control, 293–310, Lecture Notes in Control and Inform. Sci., 312, Springer, Berlin, 2005.
13. D. Henrion, J. Lasserre, and J. Löfberg. Gloptipoly 3: moments, optimization and semidefinite programming,

Optim. Methods Softw., 24(4-5) (2009): 761–779.
14. V.T. Hieu. Solution maps of polynomial variational inequalities, J. Global Optim., 77(4) (2020): 807–824.
15. V. Jeyakumar, JB. Lasserre, G. Li, and TS. Pham. Convergent semidefinite programming relaxations for

global bilevel polynomial optimization problems. SIAM J. Optim. 26(1) (2016): 753–780.
16. P.C. Jones. Computing an optimal invariant capital stock, SIAM J. Algebr. Discret. Methods, 3(2) (1982):

145–150.
17. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior Point Algorithms for

Linear Complementarity Problems, Lecture Notes in Computer Science 538, Springer-Verlag, Berlin, 1991.
18. I.V. Konnov. A class of combined iterative methods for solving variational inequalities, J. Optim. Theory

Appl., 94 (1997): 677–693.
19. I.V. Konnov. Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001.
20. G.M. Korpelevich. The extragradient method for finding saddle points and other problems, Ekonomie i

Mathematik Metody, 12 (1976): 747–756.
21. J. Lasserre. Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2001):

796–817.
22. J. Lasserre, An introduction to polynomial and semi-algebraic optimization, Cambridge University Press,

Volume 52, 2015.
23. J. Lasserre. The Moment-SOS Hierarchy, Proceedings of the International Congress of Mathematicians (ICM

2018), vol. 3, B. Sirakov, P. Ney de Souza and M. Viana (Eds.), pp. 3761–3784, World Scientific, 2019.
24. J. Lasserre, M. Laurent and P. Rostalski. Semidefinite characterization and computation of zero-dimensional

real radical ideals, Found. Comput. Math., 8(5) (2008): 607–647.
25. M. Laurent. Sums of squares, moment matrices and optimization over polynomials, Emerging Applications of

Algebraic Geometry of IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270, Springer,
2009.

26. M. Laurent. Optimization over polynomials: Selected topics, Proceedings of the International Congress of

Mathematicians, ICM 2014, S. Jang, Y. Kim, D-W. Lee, and I. Yie (eds.), pp. 843–869, 2014.
27. X. Ma, M. Zheng, and Z. Huang. A note on the nonemptiness and compactness of solution sets of weakly

homogeneous variational inequalities, SIAM J. Optim., 30(1) (2020): 132–148.
28. MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 10.0. (2022).

http://docs.mosek.com/9.0/toolbox/index.html
29. S. Z. Németh, G. Zhang. Conic optimization and complementarity problems, Preprint, 2016.

arXiv:1607.05161

30. J. Nie and R. Kristian. Algebraic degree of polynomial optimization, SIAM J. Optim., 20(1) (2009): 485–502.
31. J. Nie, L. Wang, and J.J. Ye. Bilevel polynomial programs and semidefinite relaxation methods, SIAM J.

Optim., 27(3) (2017): 1728-1757.
32. J. Nie, L. Wang, J.J. Ye, and S. Zhong. A Lagrange multiplier expression method for bilevel polynomial

optimization, SIAM J. Optim., 31(3) (2021): 2368-2395.
33. J. Nie. Certifying convergence of Lasserre’s hierarchy via flat truncation, Math. Program., 142(1-2) (2013):

485–510.

http://docs.mosek.com/9.0/toolbox/index.html
arXiv:1607.05161


27

34. J. Nie. Polynomial optimization with real varieties, SIAM J. Optim., 23(3) (2013): 1634–1646.
35. J. Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy, Math. Program., 146(1-2) (2014):

97–121.
36. J. Nie. The A-Truncated K-Moment Problem, Found. Comput. Math., 14(6) (2014): 1243–1276.
37. J. Nie. The hierarchy of local minimums in polynomial optimization, Math. Program., 151(2) (2015): 555–583.
38. J. Nie. Discriminants and nonnegative polynomials, J. Symb. Comput., 47(2) (2012): 167–191.
39. J. Nie. Tight relaxations for polynomial optimization and Lagrange multiplier expressions, Math. Program.,

178(1-2) (2019): 1–37.
40. J. Nie and X. Tang. Nash Equilibrium problems of polynomials, Preprint, 2020. arXiv:2006.09490
41. J. Nie and X. Tang. Convex generalized Nash equilibrium problems and polynomial optimization, Math.

Program., 2021. https://doi.org/10.1007/s10107-021-01739-7
42. J. Nie, Z. Yang and G. Zhou. The saddle point problem of polynomials, Found. Comput. Math., 22(4)

(2022):1133–1169.
43. J.-S. Pang, and S. Gabriel. NE/SQP: A robust algorithm for the nonlinear complementarity problem, Math.

Program., 60(1) (1993): 295–337.
44. J.-S. Pang. Newton’s method for B-differentiable equations, Math. Oper. Res., 15 (1990): 311–341.
45. M. Putinar. Positive polynomials on compact semi-algebraic sets, Indiana U. Math. J., 42(3) (1993): 969–984.
46. L. Qi, D.F. Sun, G.L. Zhou. A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequalities, Math. Program., 87(1) (2000): 1–35.
47. D. Ralph. Global convergence of damped Newton’s method for nonsmooth equations via the path search,

Math. Oper. Res., 19(2) (1994): 352–389.
48. S.M. Robinson. Normal maps induced by linear transformations, Math. Oper. Res., 17(3) (1992): 691–714.
49. M. Schweighofer. Optimization of polynomials on compact semialgebraic sets, SIAM J. Optim., 15(3) (2005):

805–825.
50. I. R. Shafarevich, Basic Algebraic Geometry 1, Springer-Verlag Berlin Heidelberg, 2013.
51. M. Sibony. Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type

monotone, Calcolo, 7(1) (1970): 65–183.
52. Y. Wang, Z. Huang, and L. Qi. Global uniqueness and solvability of tensor variational inequalities, J. Optim.

Theory Appl., 177(1) (2018): 137–152.
53. Y. Ye, Interior Point Algorithms. Theory and analysis. John Wiley & Sons, Inc., New York, 1997.
54. X. Zhao, and J. Fan. A semidefinite method for tensor complementarity problems, Optim. Methods Softw.,

34(4) (2019): 758–769.

arXiv:2006.09490
https://doi.org/10.1007/s10107-021-01739-7

	1 Introduction
	2 Preliminaries
	3 Finding solutions for polynomial VIPs
	4 Solving the polynomial optimization subproblems
	5 Numerical Experiments
	Appendices
	A Generic properties of polynomial VIPs

