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Abstract. In this paper, we propose a novel adaptive sieving (AS) technique and an enhanced
AS (EAS) technique, which are solver independent and can accelerate optimization algorithms for
solving large-scale convex optimization problems with intrinsic structured sparsity. We establish the
finite convergence property of the AS and EAS techniques with inexact solutions of the reduced
subproblems. As an important application, we apply the AS and EAS techniques to the convex
clustering model, which can accelerate the state-of-the-art algorithm Ssnal by more than 7 times
and the algorithm ADMM by more than 14 times.

Key words. adaptive sieving, structured sparsity, dimension reduction, convex optimization,
convex clustering

MSC codes. 90C06, 90C25, 90C90

DOI. 10.1137/21M1441080

1. Introduction. Clustering is one of the core problems in data science. It plays
an important role in numerous applications. Significant advances have been achieved
in clustering during the last few decades, including K-means [18, 1], spectral clustering
[23, 28], subspace clustering [29, 35], and so on. Despite these developments, some
known drawbacks of these centroid based models are still challenging to overcome,
such as sensitivity to the initialization, limited effectiveness in high dimensional prob-
lems, and the requirement on prior knowledge of the number of clusters. Here, we
want to emphasize that the requirement on prior knowledge of the number of clusters
is impractical for most real applications. Indeed, estimating the number of clusters
itself is as challenging as clustering. One may argue that we can run classical cluster-
ing algorithms, such as K-means, with a few guesses on the number of clusters, but
these clustering results are usually independent. Thus, users still need to determine
the final clustering results subjectively based on their own preference.

The convex clustering model was proposed in [10, 17, 25]. Since then, it has
become increasingly popular due to its good empirical performance and convincing
theoretical guarantees [5, 13, 24, 30, 31, 42]. Specifically, for a given data matrix
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A ∈ Rd×N of N data points, the convex clustering model is to solve the following
optimization problem:

(1.1) min
X∈Rd×N

1

2

N∑
i=1

∥X:i −A:i∥2 + λ
∑

1≤i<j≤N

wij∥X:i −X:j∥q,

where X:i (or A:i) is the ith column of X (or A), wij = wji ≥ 0 are given weights,
and λ ≥ 0 is the hyperparameter to control the effect of the diffusion penalty. Here
∥ · ∥q is the vector q-norm, and we require q ≥ 1 to guarantee the convexity of the
model. After solving the model (1.1) with the optimal solution X∗, we assign the
data points A:i and A:j to the same cluster if X∗

:i = X∗
:j . Readers who are interested

in more details about cluster identification based on the convex clustering model with
an inexact solution are referred to [4, 12, 30]. It has been proved in [4] that the convex
clustering model (1.1) can generate a continuous clustering path with respect to the
hyperparameter λ. Thus, prior knowledge on the number of clusters is not required.
Instead, we will generate a clustering path by solving the convex clustering model
(1.1) for a sequence of values of λ.

Motivated by the convex clustering model (1.1), in this paper, we consider struc-
tured optimization problems of the following form:

(1.2) min
x∈Rn

Fλ(x) := f(x) + λp(Bx),

where λ > 0 is a hyperparameter, f : Rn → R is a twice continuously differentiable
convex function, p : Rm → (−∞,+∞] is a closed proper convex function, and B :
Rn → Rm is a linear map. In many real applications, p is a regularizer which can
enforce sparsity, and the linear map B encodes desirable structures of x. This indicates
the meaning of structured sparsity. The optimization problem (1.2) includes many
important models, such as the convex clustering model (1.1),1 fused lasso model [34],
clustered lasso model [27], and so on.

When the linear map B in (1.2) is an identity map, various feature screening
rules have been proposed to reduce the computational cost for generating the solu-
tion path. The feature screening rules attempt to exploit the sparsity induced by the
regularization function p on the variable x and to drop some inactive features based
on prior analysis before we solve the optimization problem [3, 7, 8, 14, 33, 36, 37].
More recently, Lin et al. [16] proposed an adaptive sieving (AS) technique to reduce
the dimension of the optimization problem with sparse solutions for a general reg-
ularization function p(·). Here, we briefly compare the AS technique and the fast
reduced space algorithm (FaRSA) for the lasso problem [3] and the nonoverlapping
group lasso problem [7]. The feature screening ideas behind the AS technique and
the FaRSA share some similarities. However, the FaRSA is more akin to the active
set method [14], and the reduced subproblems are constructed based on a quadratic
approximation of the smooth function f(·). Instead, the AS technique constructs the
reduced subproblem without any approximation. Readers can refer to [16] and the
references therein for more details about the AS technique and its comparison with
other feature screening rules. But note that all the existing feature screening rules and
dimension reduction techniques are not applicable to (1.2) with structured sparsity,
when the solution x itself may not be sparse.

1We can take x = vec(X) ∈ RdN , where vec(X) is the vectorization of the matrix X by stacking
its columns one by one.
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In this paper, we will generalize the ideas in [16] to propose new dimension reduc-
tion techniques, which can be used to solve the optimization problem (1.2) via solving
a sequence of subproblems with much smaller problem size. Here, we briefly discuss
the challenges to generalize the AS technique to (1.2). First, the optimal solutions of
(1.2) may be dense, only with some special structures, such as being blockwise con-
stant. Thus, the AS technique in [16] could not be applied to x. Second, one may try
to apply AS directly to Bx by introducing a new variable y = Bx. Although this idea
may work for reducing the dimension of y (or Bx), it cannot reduce the dimension of
x simultaneously. As a result, we still need to solve large-scale subproblems. Third,
in order to apply the AS technique, we need to check the optimality condition of (1.2)
for a given x̄ ∈ Rn. However, as one may see later, this is highly nontrivial if the
inverse of B is not available. In this paper, we will propose a new AS technique and
an enhanced AS (EAS) technique to tackle these issues.

To demonstrate the effectiveness of the proposed idea, we evaluate the empirical
performance of the AS and EAS techniques with the state-of-the-art algorithms Ssnal
(a semismooth Newton-CG augmented Lagrangian method) [39], ADMM (alternating
direction method of multipliers) [4], and AMA (alternating minimization algorithm)
[4] for solving the convex clustering model (1.1). As the readers will see later, the
numerical results on both simulated and real datasets demonstrate that the proposed
AS and EAS techniques could substantially reduce the dimension of the optimization
problems. As a result, the AS and EAS techniques can accelerate the state-of-the-art
algorithm Ssnal by more than 7 times and the algorithm ADMM by more than 14
times for solving the convex clustering model. To further demonstrate the generality
of the AS and EAS techniques, we conduct additional numerical experiments on the
overlapping group lasso model [11]; the details can be found in Appendix A.

We summarize our main contributions of this paper as follows:
• We propose a new AS technique which can solve large-scale optimization
problems of the form (1.2) with structured sparsity by solving a sequence of
reduced subproblems with smaller sizes.

• The proposed AS technique can reduce the dimension of x and Bx simulta-
neously. We show how to construct the corresponding reduced subproblem
of (1.2) based on the structured sparsity of x (i.e., the sparsity of Bx).

• The proposed AS technique allows the reduced subproblems to be solved inex-
actly. We prove the finite convergence property of the proposed AS technique
for obtaining an ϵ-optimal solution to (1.2) for a given tolerance ϵ > 0.

• Although the AS technique will converge in finite iterations, the sieving pro-
cedure of the AS technique may continue even if we only want to obtain
an ϵ-optimal solution of (1.2). To address this issue, we propose an EAS
technique, which can certify the ϵ-optimality of an obtained solution with af-
fordable computation cost. This can potentially reduce the sieving iterations
and further accelerate the algorithms. The finite convergence of the EAS
technique is also proved.

• Both the AS and EAS techniques are extended to obtain a solution path of
the structured sparse optimization problem (1.2) for a sequence of hyper-
parameters +∞ > λ1 > λ2 > · · · > λk > 0.

• As an application, extensive numerical experiments on the convex clustering
model for both simulated and real datasets are provided. The superior numer-
ical experiment results demonstrate the power of the AS and EAS techniques
for accelerating numerical optimization algorithms to generate the solution
path for the convex clustering model (1.1).
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The rest of this paper is organized as follows. In section 2, we introduce the AS
technique and the EAS technique for convex optimization problems with structured
sparsity. The application of the AS and EAS techniques on the convex clustering
model will be shown in section 3. Numerical results on the convex clustering are
presented in section 4. We conclude the paper in section 5. Additional numerical
results on the overlapping group lasso model [11] are presented in Appendix A.

Notation. We use Rm×n (Rn) to denote the set of all real m × n matrices (n-
dimensional vectors). We denote column vectors by lowercase letters, e.g., v ∈ Rn,
and matrices by capital letters, e.g., A ∈ Rm×n. We denote the transpose of the
matrix A as AT and the ith (ijth) element of a vector v (matrix A) by vi (Aij). For
a given integer n ≥ 1, we denote the collection of integers from 1 to n by [n]. We
denote the complement of an index set I ⊆ [m] as Ic. For given index sets I ⊆ [m]
and J ⊆ [n], we denote the submatrix consisting with rows (columns) indexed by
I (J) as AI: (A:J). We denote the range space and null space of A by Range(A)
and Null(A), respectively. For a vector x ∈ Rn and a scalar p > 0, we define the
vector p-norm as ∥x∥p := (

∑n
i=1 |xi|p)1/p. We use ∥ · ∥ to denote the vector 2-norm.

For a closed proper convex function f : Rn → (−∞,+∞], the conjugate of f is
f∗(z) := supx∈Rn{⟨x, z⟩− f(x)}. In addition, we define the proximal mapping of f as
Proxf (x) := argminz∈Rn f(z)+ 1

2∥z−x∥2. For a closed convex set C ⊆ Rn and a given
vector a ∈ Rn, the projection of a onto the set C is ΠC(a) := argminx∈C

1
2∥x− a∥2.

2. An AS technique for structured sparsity. In this section, we will intro-
duce a novel AS technique for obtaining the solution path for the structured sparse
convex programming problem (1.2). Equivalently, we can reformulate (1.2) as follows:

(Pλ)
minx∈Rn,y∈Rm f(x) + λp(y)
s.t. Bx− y = 0.

Throughout this paper, we assume that the following constraint qualification for (Pλ)
holds:

(CQ) 0 ∈ ri(dom(p)),

where ri(dom(p)) is the relative interior of dom(p), the domain of p. The Lagrangian
function corresponding to (Pλ) is defined as

(2.1) l(x, y; z) := f(x) + λp(y) + ⟨z,Bx− y⟩,

where z ∈ Rm is the Lagrange multiplier. The corresponding dual problem is

(Dλ) max
z∈Rm

Dλ(z) := −f∗(−BT z)− λp∗(z/λ).

Here, f∗ and p∗ are the conjugate of f and p, respectively. Let Ωλ be the optimal
solution set of(Pλ). Under (CQ), it follows from [26, Corollaries 28.2.2 and 28.3.1]
that (x∗, y∗) ∈ Ωλ if and only if there exists z∗ ∈ Rm such that

(KKT)

 ∇f(x∗) +BT z∗ = 0,
z∗ ∈ λ∂p(y∗),
Bx∗ − y∗ = 0.

Thus, we can define the KKT residual function for problem (Pλ) as

(2.2) Rλ(x, y, z) :=

 ∇f(x) +BT z
y − Proxλp(y + z)

Bx− y

 ∀ (x, y, z) ∈ Rn × Rm × Rm.
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We know that (x∗, y∗) ∈ Ωλ if and only if there exists z∗ ∈ Rm such that

Rλ(x
∗, y∗, z∗) = 0.

For a given ϵ > 0, we call (x̄, ȳ) an ϵ-optimal solution to (Pλ) if there exists z̄ ∈ Rm

such that ∥Rλ(x̄, ȳ, z̄)∥ ≤ ϵ. We also call such a (x̄, ȳ, z̄) an ϵ-KKT point to (Pλ).
In this paper, we make the following two mild assumptions.

Assumption 2.1. For any given λ > 0, the optimal solution set Ωλ to the opti-
mization problem (Pλ) is nonempty and compact.

Assumption 2.2. For any given λ > 0 and y ∈ Rm, if Ic0 ̸= ∅, then (∂(λp(y)))Ic
0
is

a singleton, where
Ic0 := {i ∈ [m] | yi ̸= 0}.

Remark 2.1. We make some remarks on Assumption 2.2. For most of the com-
monly used regularizers, such as lasso [32], group lasso [38], and exclusive lasso [41],
Assumption 2.2 is satisfied. Let us take the lasso regularizer as an example. If
p(y) = ∥y∥1, then

(∂(λp(y)))i =

{
λsign(yi) if yi ̸= 0,
[−λ, λ] if yi = 0.

Thus, we know that for any y ̸= 0, (∂(λp(y)))Ic
0
= (λsign(y))Ic

0
is a singleton. Here

sign(·) is the signum function.

The theme of this paper is to design a technique which can reduce the dimension
of a class of optimization problems of the form (Pλ) with structured sparsity by
exploring the intrinsic structure of the problem in an explicit way.

We first introduce our principal idea in a general way. Then, we will propose
a new AS technique to rigorously implement the idea. We fix the parameter λ in
(Pλ) for now. For a given index set I ⊆ [m], if there is some prior knowledge for
us to assume that yI = 0, then it is natural to consider the following constrained
optimization problem generated by the index set I:

(Pλ(I))
minx∈Rn,y∈Rm f(x) + λp(y)
s.t. Bx− y = 0,

yI = 0.

We denote this problem as (Pλ(I)) to indicate its dependence on the index set I.
Our principal idea is to obtain a solution to the original optimization problem

(Pλ) by solving a sequence of subproblems with lower dimension, which are induced by
(Pλ(I)). The keys to achieve this goal depend on answering the following questions:

Q1: For a given index set I ⊆ [m], how can we effectively reduce the dimension
of (Pλ) and construct a proper reduced problem (RPλ(I)) (the exact form of
(RPλ(I)) is given in section 2.1)?

Q2: If the current obtained solution pair (x̄, ȳ) of (Pλ(I)) is not yet an ϵ-optimal
solution to (Pλ), how can we update the index set I to construct a new
problem in the form of (Pλ(I))?

Q3: If an obtained solution pair (x̄, ȳ) of (Pλ(I)) is indeed an ϵ-optimal solution
to (Pλ), can we certify this and stop the whole procedure?

Q4: Is the proposed technique robust to the inexactness of the obtained solution
pair? In other words, if we can only obtain an inexact solution of (RPλ(I))
under a given tolerance ϵ > 0, can we obtain an inexact solution of (Pλ)
under the tolerance O(ϵ)?
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Q5: Is it possible to apply the proposed technique to any algorithms that can
obtain an ϵ-KKT point of (RPλ(I)) under a given tolerance ϵ > 0?

Remark 2.2. We make some remarks before we describe the AS technique.
1. Although designing an efficient and convergent algorithm for solving (Pλ(I))

is also an important task, it is not the main purpose of this paper. There
are also existing algorithms which can solve (RPλ(I)) and obtain an ϵ-KKT
point with a moderate accuracy [4, 30, 39].

2. Question Q3 is essential for applying a dimension reduction technique to solv-
ing (Pλ) based on (Pλ(I)). In order to check the optimality (or ϵ-optimality)
of the solution pair (x̄, ȳ), we need to construct the corresponding dual so-
lution and check the KKT conditions. This is highly nontrivial since the
dual solutions are not unique if structured sparsity exists. This is also one
of the main difficulties for applying the AS technique to problem (Pλ) with
structured sparsity as compared to [16].

3. The robustness mentioned in Q4 is necessary, since the best we can expect in
general is to obtain an inexact solution to (RPλ(I)).

2.1. A dimension reduction technique for (Pλ) based on (Pλ(I)). We
first show how we can reduce the dimension of the variables x and y simultaneously
for the problem (Pλ) based on the constrained optimization problem (Pλ(I)). This
will answer the question Q1.

Assume that the rank of BI: is r > 0. Then there exist three index sets α, β, and
γ with |γ| = r that form a partition of [n] such that BIβ = 0 and BIγ has full column
rank. Here, we assume that the index set α is nonempty; otherwise, we must have
xγ = 0.

Since BIγ has full column rank, there is a unique |γ|× |α| matrix Mγα such that2

(2.3) BIα +BIγMγα = 0.

Then, we can eliminate xγ by yI = 0 of (Pλ(I)) as

xγ = Mγαxα.

Define
φ(xα, xβ) = f(ẋ), q(yIc) = p(ẏ),

where
ẋα = xα, ẋβ = xβ , ẋγ = Mγαxα,

and

ẏi =

{
yi if i ∈ Ic,
0 if i ∈ I.

Then, we can obtain a solution to (Pλ(I)) via solving the following reduced optimiza-
tion problem:

(RPλ(I))
minxα∈R|α|,xβ∈R|β|,yIc∈R|Ic| φ(xα, xβ) + λq(yIc)

s.t. (BIcα +BIcγMγα)xα +BIcβxβ − yIc = 0.

The Lagrange function corresponding to (RPλ(I)) is given by

l(xα, xβ , yIc , ξ) = φ(xα, xβ) + λq(yIc) + ⟨ξ, (BIcα +BIcγMγα)xα +BIcβxβ − yIc⟩,

where ξ ∈ R|Ic| is the Lagrange multiplier.

2Here, we slightly abuse the notation to indicate the dependence of Mγα on the index sets α and
γ. The uniqueness is in the sense of a given partition.
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Now, if we solve (RPλ(I)) to obtain a solution (x̂α, x̂β , ŷIc), then there exists a ξ̂
that satisfies the following KKT conditions:

(2.4)


(∇f(x̂))α +MT

γα(∇f(x̂))γ + (BIcα +BIcγMγα)
T ξ̂ = 0,

(∇f(x̂))β +BT
Icβ ξ̂ = 0, ξ̂ ∈ (∂(λp(ŷ)))Ic ,

(BIcα +BIcγMγα)x̂α +BIcβ x̂β − ŷIc = 0,

where x̂ and ŷ are defined as

x̂α = x̂α, x̂β = x̂β , x̂γ = Mγαx̂α

and
ŷIc = ŷIc , ŷI = 0,

respectively. Then (x̄, ȳ), which is constructed by

(2.5)

{
x̄α = x̂α, x̄β = x̂β , x̄γ = Mγαx̂α,
ȳIc = ŷIc , ȳI = 0,

is a solution to problem (Pλ(I)). Thus, in order to obtain a solution to (Pλ(I)), we
only need to solve a corresponding reduced problem (RPλ(I)) whose dimension can
be much smaller.

Remark 2.3. We make some remarks to close this subsection.
1. We reduce the dimension of the problem from Rn × Rm to Rn−|γ| × Rm−|I|,

which can be a substantial reduction. For example, if the solution of (Pλ)
is indeed sparse (this is an intrinsic property since we can obtain a sparse
solution in general for large λ), then |I| is close to m and |γ| is close to n
simultaneously.

2. In general, it is nontrivial to identify α, β, and γ and to construct the matrix
Mγα. However, in many real applications, the construction can be done at a
low cost due to the special structure of the matrix B. Some examples can be
found in section 3 and Appendix A, respectively.

2.2. An AS technique for (Pλ) with a fixed λ > 0. We move on to present
the details of the AS technique. We fix the parameter λ for now, and we will generalize
it to handle the case for a sequence of λ > 0 later. Also, for simplicity, we first present
the idea with the assumption that we can solve (RPλ(I)) exactly. The same idea will
be generalized to the inexact setting without much difficulties later.

We first show how we can update the index set I if the current obtained solution
(x̄, ȳ) via solving (Pλ(I)) is not an optimal solution to (Pλ). The key idea is to
construct a corresponding dual variable pair (ū, w̄) ∈ Rm × R|I| which satisfies the
following KKT conditions for (Pλ(I)):

(2.6)


(∇f(x̄))α +BT

IαūI +BT
IcαūIc = 0,

(∇f(x̄))β +BT
Icβ ūIc = 0, (∇f(x̄))γ +BT

Iγ ūI +BT
Icγ ūIc = 0,

ūI − w̄ ∈ λ(∂p(ȳ))I , ūIc ∈ λ(∂p(ȳ))Ic ,

Bx̄− ȳ = 0, ȳI = 0.

Since (x̄, ȳ) = (x̂, ŷ) and (x̂, ŷ, ξ̂) is a solution to (2.4), we must have

BT
Icβ ξ̂ = BT

Icβ ūIc , ξ̂ ∈ (∂(λp(ŷ)))Ic , ūIc ∈ (∂(λp(ȳ)))Ic .
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Aggressively, we construct ūIc as

(2.7) ūIc = ξ̂.

By the above construction of ūIc and (2.3), the first equation of (2.6) is implied by
the third equation of (2.6) and the first equation of (2.4). Thus, we can construct the
pair (ūI , w̄) via solving the following equations for (uI , w):

(2.8)

{
(∇f(x̄))γ +BT

IγuI +BT
Icγ ūIc = 0,

uI − w ∈ (∂(λp(ȳ)))I .

Since w is an unconstrained variable, for any ûI satisfying the first equation of (2.8),
there exists a ŵ such that the inclusion in (2.8) is satisfied. Then, consider the fact
that if there exists a ũI such that (ũI , 0) is a solution to (2.8), then the current
solution pair (x̄, ȳ) is an optimal solution to (Pλ). Motivated by this fact, we propose
to construct the pair (ūI , w̄) such that w̄ achieves the minimum Euclidean norm.
Since BIγ has full column rank, we can construct a particular solution to the first
equation of (2.8) as

(2.9) (ūI)0 = −BIγ(B
T
IγBIγ)

−1((∇f(x̄))γ +BT
Icγ ūIc).

Thus, all the solutions to the first equation of (2.8) are given by

uI = (ūI)0 + d,

where d ∈ Null(BT
Iγ). In summary, we construct the solution pair (ūI , w̄) as follows:

(2.10) ūI = (ūI)0 + d̄, w̄ = ūI −Π(∂(λp(ȳ)))I (ūI),

where d̄ is a solution to the following auxiliary optimization problem:

(2.11)
mind∈R|I|

1
2∥((ūI)0 + d)−Π(∂(λp(ȳ)))I ((ūI)0 + d)∥2

s.t. d ∈ Null(BT
Iγ).

Up to this point, we have completed the construction of a dual solution pair (ū, w̄).
We show the properties of the constructed (ū, w̄) in Theorem 2.4 and Theorem 2.6.

Theorem 2.4. Assume that (x̂α, x̂β , ŷIc) is an optimal solution to the optimiza-
tion problem
(2.12)

minxα∈R|α|,xβ∈R|β|,yIc∈R|Ic| φ(xα, xβ) + λq(yIc) + ⟨xα, δ̂1⟩+ ⟨xβ , δ̂2⟩ − ⟨yIc , δ̂3⟩
s.t. (BIcα +BIcγMγα)xα +BIcβxβ − yIc = 0

and ξ̂ is the corresponding Lagrange multiplier. Here, (δ̂1, δ̂2, δ̂3) ∈ R|α| ×R|β| ×R|Ic|

are given error terms satisfying ∥δ̂1∥ + ∥δ̂2∥ + ∥δ̂3∥ ≤ ϵ. Then, (x̂α, x̂β , ŷIc) is an ϵ-
optimal solution to (RPλ(I)). Let (x̄, ȳ, ūIc , ūI , w̄) be the solution that is constructed
from (2.5), (2.7), and (2.10). Define J(λ) as follows:

(2.13) J(λ) := {j ∈ I | ūj ̸∈ (∂(λp(ȳ)))j}.

Then, J(λ) ̸= ∅ if

∥Rλ(x̄, ȳ, ū)∥ > ϵ.
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Proof. Since (x̂α, x̂β , ŷIc) is an optimal solution to (2.12) and ξ̂ is the correspond-
ing Lagrange multiplier, the following KKT system holds:

(2.14)


(∇f(x̂))α +MT

γα(∇f(x̂))γ + (BIcα +BIcγMγα)
T ξ̂ + δ̂1 = 0,

(∇f(x̂))β +BT
Icβ ξ̂ + δ̂2 = 0,

ξ̂ + δ̂3 ∈ (∂(λp(ŷ)))Ic ,

(BIcα +BIcγMγα)x̂α +BIcβ x̂β − ŷIc = 0.

Since ∥δ̂1∥ + ∥δ̂2∥ + ∥δ̂3∥ ≤ ϵ, by (2.4), (2.14), and the property that the proximal
mapping is Lipschitz continuous with modulus 1, we can verify that (x̂α, x̂β , ŷIc) is
an ϵ-optimal solution to (RPλ(I)).

By construction, (x̄, ȳ, ūIc , ūI , w̄) is a solution to

(2.15)



(∇f(x̄))α +BT
IαūI +BT

IcαūIc + δ̂1 = 0,

(∇f(x̄))β +BT
Icβ ūIc + δ̂2 = 0,

(∇f(x̄))γ +BT
Iγ ūI +BT

Icγ ūIc = 0,

ūI − w̄ ∈ λ(∂p(ȳ))I ,

ūIc + δ̂3 ∈ λ(∂p(ȳ))Ic ,

Bx̄− ȳ = 0, ȳI = 0.

Now, we prove that J(λ) ̸= ∅ provided ∥Rλ(x̄, ȳ, ū)∥ > ϵ. We prove it by contradiction.
Assume that

J(λ) = ∅.

Then we have

ū+ δ̂ ∈ ∂(λp(ȳ)),

where δ̂ = (δ̂I , δ̂Ic) = (0, δ̂3). This implies that

ȳ − Proxλp(ȳ + (ū+ δ̂)) = 0.

Then,

∥Rλ(x̄, ȳ, ū)∥ = ∥(∇f(x̄) +BT ū, ȳ − Proxλp(ȳ + ū), Bx̄− ȳ)∥
= ∥((−δ̂1,−δ̂2, 0),Proxλp(ȳ + (ū+ δ̂))− Proxλp(ȳ + ū), 0)∥
≤ ∥δ̂1∥+ ∥δ̂2∥+ ∥δ̂3∥
≤ ϵ.

Here, we use the property that the proximal mapping is Lipschitz continuous with
modulus 1. This is a contradiction. Thus J(λ) ̸= ∅.

Remark 2.5. We do not need to specify a priori error terms δ̂1, δ̂2, δ̂3 in Theorem
2.4. They should be interpreted as the errors incurred when we solve the problem
(RPλ(I)) inexactly with a given tolerance.

An implication of Theorem 2.4 is that, if the current obtained solution pair (x̄, ȳ)
is not an ϵ-optimal solution to (Pλ) under the given tolerance, we can update the
index set I by removing the identified violated index set J(λ). This motivates us to
propose the AS technique for (Pλ) with a given fixed λ > 0, which is presented in
Algorithm 2.1.
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Algorithm 2.1 AS for solving (Pλ) with a fixed λ > 0

1: Input: a given hyperparameter λ > 0 and a given tolerance ϵ > 0.
2: Output: (x∗(λ), y∗(λ), z∗(λ)).
3: Initialization: Generate an initial index set by a predefined initialization strategy:

I0(λ) ⊆ [m].
4: for i = 0, 1, 2, . . . do
5: 1. For the given index set Ii(λ), construct the index partition {αi, βi, γi} and the

corresponding Mγiαi .
6: 2. Apply any well designed algorithm to solving problem (RPλ(I)) with the con-

structed {Ii(λ), αi, βi, γi,Mγiαi}, and obtain an inexact solution (x̂i
αi
, x̂i

βi
, ŷi

(Ii)c(λ), ξ̂
i)

which satisfies the corresponding KKT system (2.14) with the latent error terms
(δ̂i1, δ̂

i
2, δ̂

i
3) such that ∥δ̂i1∥+ ∥δ̂i2∥+ ∥δ̂i3∥ ≤ ϵ.

7: 3. Recover a solution (x̄i, ȳi, ūi, w̄i) by the construction of (2.5), (2.7), and (2.10),
respectively.

8: if ∥Rλ(x̄
i, ȳi, ūi)∥ ≤ ϵ then

9: Set (x∗(λ), y∗(λ), z∗(λ)) = (x̄i, ȳi, ūi).
10: break.
11: else
12: Create J i(λ):

(2.16) J i(λ) = {j ∈ Ii(λ) | ūi
j ̸∈ ∂(λp(ȳi))j}.

13: Update Ii+1(λ) as
Ii+1(λ)← Ii(λ)\J i(λ).

14: end if
15: end for
16: return (x∗(λ), y∗(λ), z∗(λ)).

Theorem 2.6. For a given ϵ > 0, with any well designed algorithm which can
solve the reduced subproblem (RPλ(I)) to the given accuracy, Algorithm 2.1 is guar-
anteed to converge in a finite number of iterations. Moreover, the obtained pair
(x∗(λ), y∗(λ), z∗(λ)) is a solution to (Pλ) in the sense that

∥Rλ(x
∗(λ), y∗(λ), z∗(λ))∥ ≤ ϵ.

We omit the proof of Theorem 2.6 as it is a byproduct of Theorem 2.4.

Remark 2.7. We close this subsection by making some remarks here.
1. The proposed AS technique is an implementation of the aforementioned prin-

cipal idea, which simultaneously answers the questions Q1, Q2, Q4, and Q5.
2. The AS technique can be applied to any algorithm which can obtain an ϵ-KKT

point to (RPλ(I)). In particular, classical algorithms such as the augmented
Lagrangian method and ADMM are applicable.

3. However, it may fail to answer the question Q3. The whole procedure de-
scribed in Algorithm 2.1 is not guaranteed to certify the ϵ-optimality of a
given solution pair (x̄, ȳ) for (Pλ). The main reason is that we have aggres-

sively set ūIc = ξ̂ in (2.7).
4. Although Algorithm 2.1 may fail to answer the question Q3 and it may need

additional sieving iterations, the practical performance of Algorithm 2.1 is
promising. Readers can find the numerical performance in section 4 and
Appendix A.
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2.3. An EAS technique. Now, we introduce an EAS technique, which can
certify the ϵ-optimality of the obtained pair (x̄, ȳ) via solving (RPλ(I)) if it is an
ϵ-optimal solution to (Pλ). Thus, we can potentially reduce the number of sieving
iterations of Algorithm 2.1.

The key idea is to deal with the issues we mentioned in Remark 2.7. Now, assume
that (x̄, ȳ) is an optimal solution to (Pλ(I)), which could be recovered by (2.5) with
a solution of (RPλ(I)). We can then define a new index set Ĩ as follows:

(2.17) Ĩ := {i ∈ [m] | ȳi = 0}.

By the construction, we have I ⊆ Ĩ. It is not difficult to see that (x̄, ȳ) is an optimal
solution to the following constrained optimization problem:

(Pλ(Ĩ))
minx∈Rn,y∈Rm f(x) + λp(y)
s.t. Bx− y = 0,

yĨ = 0.

In a similar manner, we can define the index sets α̃, β̃, and γ̃ with |γ̃| = r̃, which
form a partition of [n], such that BĨβ̃ = 0 and BĨγ̃ has full column rank. Again, we

assume that α̃ ̸= ∅. Thus, there exists an Mγ̃α̃ ∈ R|γ̃|×|α̃| such that

BĨα̃ +BĨγ̃Mγ̃α̃ = 0.

Then, we can eliminate xγ̃ by the constraints of (Pλ(Ĩ)) as

xγ̃ = Mγ̃α̃xα̃.

The Lagrangian function corresponding to (Pλ(Ĩ)) is

l(x, y, v, s) = f(x) + λp(y) + ⟨v,Bx− y⟩+ ⟨s, yĨ⟩,

where v ∈ Rm and s ∈ R|Ĩ| are the Lagrange multipliers. For notational consistency,
we denote (x̃, ỹ) = (x̄, ȳ). Since (x̃, ỹ) is an optimal solution to (Pλ(Ĩ)), there exists
(ṽ, s̃) satisfying the following KKT conditions for (Pλ(Ĩ)):

(2.18)


(∇f(x̃))α̃ +BT

Ĩα̃
ṽĨ +BT

Ĩcα̃
ṽĨc = 0, (∇f(x̃))β̃ +BT

Ĩcβ̃
ṽĨc = 0,

(∇f(x̃))γ̃ +BT
Ĩγ̃
ṽĨ +BT

Ĩcγ̃
ṽĨc = 0,

ṽĨ − s̃ ∈ λ(∂p(ỹ))Ĩ , ṽĨc ∈ λ(∂p(ỹ))Ĩc ,

Bx̃− ỹ = 0, ỹĨ = 0.

On the other hand, we know that (x̃α̃, x̃β̃ , ỹĨc) is an optimal solution to the following

reduced problem corresponding to (Pλ(Ĩ)):

(RPλ(Ĩ))
minxα̃∈R|α̃|,xβ̃∈R|β̃|,yĨc∈R|Ĩc| φ̃(xα̃, xβ̃) + λq̃(yĨc)

s.t. (BĨcα̃ +BĨcγ̃Mγ̃α̃)xα̃ +BĨcβ̃xβ̃ − yĨc = 0,

where
φ̃(xα̃, xβ̃) = f(ẋ), q̃(yĨc) = p(ẏ).

Here
ẋα̃ = xα̃, ẋβ̃ = xβ̃ , ẋγ̃ = Mγ̃α̃xα̃,
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and

ẏi =

{
yi if i ∈ Ĩc,

0 if i ∈ Ĩ .

Then, there exists a θ̃ ∈ R|Ĩc| such that the following KKT conditions are satisfied:

(2.19)


(∇f(x̃))α̃ +MT

γ̃α̃(∇f(x̃))γ̃ + (BĨcα̃ +BĨcγ̃Mγ̃α̃)
T θ̃ = 0,

(∇f(x̃))β̃ +BT
Ĩcβ̃

θ̃ = 0, θ̃ ∈ λ(∂p(ỹ))Ĩc ,

(BĨcα̃ +BĨcγ̃Mγ̃α̃)x̃α̃ +BĨcβ̃ x̃β̃ − ỹĨc = 0.

Again, the key is to construct a dual pair (ṽ, s̃) from the KKT system (2.19) such
that (x̃, ỹ, ṽ, s̃) is a solution to (2.18). Fortunately, by Assumption 2.2 and the fact
Ĩc = {i ∈ [m] | ỹi ̸= 0}, we have

ṽĨc = (∂(λp(ỹ)))Ĩc = θ̃.(2.20)

Thus, by the uniqueness of ṽĨc , the second equation of (2.18) must be satisfied.
Similarly, we construct (ṽĨ , s̃) as follows:

(2.21) ṽĨ = (ṽĨ)0 + d̃, s̃ = ṽĨ −Π(∂(λp(ȳ)))Ĩ
(ṽĨ),

where

(ṽĨ)0 = −BĨγ̃(B
T
Ĩγ̃
BĨγ̃)

−1
(
(∇f(x̃))γ̃ +BT

Ĩcγ̃
ṽĨc

)
and d̃ is an optimal solution to the following auxiliary optimization problem:

(2.22)
mind∈R|Ĩ|

1
2∥((ṽĨ)0 + d)−Π(∂(λp(ỹ)))Ĩ

((ṽĨ)0 + d)∥2

s.t. d ∈ Null(BT
Ĩγ̃
).

For the above constructed (ṽ, s̃), it has a nice property to be summarized in the
following theorem. It shows that the constructed dual variable ṽ can certify the
ϵ-optimality of x̃.

Theorem 2.8. For a given ϵ > 0, if the current solution x̃ obtained by solving
(RPλ(I)) is an optimal solution to the perturbed optimization problem

(2.23) minx∈Rn f(x) + λp(Bx) + ⟨x, δ̃⟩,

where δ̃ ∈ Rn is a latent error vector such that ∥δ̃∥ ≤ ϵ
1+2Lγ̃

, and the constant

Lγ̃ = ∥BĨγ̃(B
T
Ĩγ̃
BĨγ̃)

−1∥, then, we must have

∥Rλ(x̃, ỹ, ṽ)∥ ≤ ϵ,

where ỹ = Bx̃ and ṽ is constructed in (2.20), (2.21), and (2.22). Thus we certify the
ϵ-optimality of x̃.

Proof. If x̃ is an optimal solution to (2.23), then (x̃, ỹ) is an optimal solution to

(2.24)
minx∈Rn,y∈Rm f(x) + λp(y) + ⟨x, δ̃⟩
s.t. Bx− y = 0.
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Then, there exists a z̃ ∈ Rm, which satisfies the following KKT conditions:

(2.25)



(∇f(x̃))α̃ +BT
Ĩα̃
z̃Ĩ +BT

Ĩcα̃
z̃Ĩc + δ̃α̃ = 0,

(∇f(x̃))β̃ +BT
Ĩcβ̃

z̃Ĩc + δ̃β̃ = 0,

(∇f(x̃))γ̃ +BT
Ĩγ̃
z̃Ĩ +BT

Ĩcγ̃
z̃Ĩc + δ̃γ̃ = 0,

z̃ ∈ ∂(λp(ỹ)),
Bx̃− ỹ = 0.

By Assumption 2.2 and the fact Ĩc = {i ∈ [m] | ỹi ̸= 0}, (∂(λp)(ỹ))Ĩc is a singleton.
Thus we must have

z̃Ĩc = ṽĨc .

Therefore, v̄Ĩ = z̃Ĩ −BĨγ̃(B
T
Ĩγ̃
BĨγ̃)

−1δ̃γ̃ is a solution to

(∇f(x̃))γ̃ +BT
Ĩγ̃
vĨ +BT

Ĩcγ̃
ṽĨc = 0.

Thus, there exists a vector d̄ ∈ Null(BT
Ĩγ̃
) such that

v̄Ĩ = (ṽĨ)0 + d̄.

Since d̃ is a solution to (2.22) and ṽĨ = (ṽĨ)0 + d̃, we have

∥s̃∥ = ∥ṽĨ −Π(∂(λp(ỹ)))Ĩ
(ṽĨ)∥

≤ ∥v̄Ĩ −Π(∂(λp(ỹ)))Ĩ
(v̄Ĩ)∥

= ∥(z̃Ĩ −BĨγ̃(B
T
Ĩγ̃
BĨγ̃)

−1δ̃γ̃)−Π(∂(λp(ỹ)))Ĩ
(z̃Ĩ −BĨγ̃(B

T
Ĩγ̃
BĨγ̃)

−1δ̃γ̃)∥
= ∥ −BĨγ̃(B

T
Ĩγ̃
BĨγ̃)

−1δ̃γ̃ + (Π(∂(λp(ỹ)))Ĩ
(z̃Ĩ)

−Π(∂(λp(ỹ)))Ĩ
(z̃Ĩ −BĨγ̃(B

T
Ĩγ̃
BĨγ̃)

−1δ̃γ̃))∥
≤ 2∥BĨγ̃(B

T
Ĩγ̃
BĨγ̃)

−1δ̃γ̃∥
≤ 2Lγ̃∥δ̃γ̃∥.

On the other hand, by the construction, we know that (x̃, ỹ, ṽ, s̃) satisfies the following
KKT system: 

(∇f(x̃))α̃ +BT
Ĩα̃
ṽĨ +BT

Ĩcα̃
ṽĨc + δ̃α̃ = 0,

(∇f(x̃))β̃ +BT
Ĩcβ̃

ṽĨc + δ̃β̃ = 0,

(∇f(x̃))γ̃ +BT
Ĩγ̃
ṽĨ +BT

Ĩcγ̃
ṽĨc = 0,

ṽĨ − s̃ ∈ (∂(λp(ỹ)))Ĩ , ṽĨc ∈ (∂(λp(ỹ)))Ĩc .
Bx̃− ỹ = 0.

Then, we have

∥Rλ(x̃, ỹ, ṽ)∥ = ∥(∇f(x̃) +BT ṽ, ỹ − Proxλp(ỹ + ṽ), Bx̃− ỹ)∥
≤ ∥(δ̃α̃, δ̃β̃ , 0)∥+ ∥s̃∥
≤ ∥δ̃∥+ 2Lγ̃∥δ̃∥
≤ ϵ.

This completes the proof of the theorem.

Now, we present the EAS technique in Algorithm 2.2. As a byproduct of Theorem
2.4, Theorem 2.6, and Theorem 2.8, we have the following theorem.
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Algorithm 2.2 An EAS for solving (Pλ) with a fixed λ > 0

1: Input: a given hyperparameter λ > 0 and a given tolerance ϵ > 0.
2: Output: (x∗(λ), y∗(λ), z∗(λ)).
3: Initialization: Generate an initial index set by a predefined initialization strategy:

I0(λ) ⊆ [m].
4: for i = 0, 1, 2, . . . do
5: 1. For the given index set Ii(λ), construct the index partition {αi, βi, γi} and the

corresponding Mγiαi .
6: 2. Apply any well designed algorithm to solving problem (RPλ(I)) with the con-

structed {Ii(λ), αi, βi, γi,Mγiαi}, and obtain an inexact solution (x̂i
αi
, x̂i

βi
, ŷi

(Ii)c(λ), ξ̂
i)

which satisfies the corresponding KKT system (2.14) with the latent error terms
(δ̂i1, δ̂

i
2, δ̂

i
3) such that ∥δ̂i1∥+ ∥δ̂i2∥+ ∥δ̂i3∥ ≤ ϵ.

7: 3. Recover a solution (x̄i, ȳi) by (2.5).
8: if i > 1 and |Fλ(x̄

i)− Fλ(x̄
i−1)| ≤ ϵ then

9: Define (x̃i, ỹi) = (x̄i, Bx̄i) and Ĩi = {i ∈ [m] | ỹi = 0}. Construct
{α̃i, β̃i, γ̃i,Mγ̃iα̃i}.

10: Construct (ṽi, s̃i) by (2.20), (2.21), and (2.22).
11: if ∥Rλ(x̃

i, ỹi, ṽ)∥ ≤ ϵ then
12: Set (x∗(λ), y∗(λ), z∗(λ)) = (x̃i, ỹi, ṽi).
13: break.
14: end if
15: end if
16: 4. Recover a pair (ūi, w̄i) by (2.7) and (2.10), respectively.
17: if ∥Rλ(x̄

i, ȳi, ūi)∥ ≤ ϵ then
18: Set (x∗(λ), y∗(λ), z∗(λ)) = (x̄i, ȳi, ūi).
19: break.
20: else
21: Create J i(λ):

(2.26) J i(λ) = {j ∈ Ii(λ) | ūi
j ̸∈ ∂(λp(ȳi))j}.

22: Update Ii+1(λ) as
Ii+1(λ)← Ii(λ)\J i(λ).

23: end if
24: end for
25: return (x∗(λ), y∗(λ), z∗(λ)).

Theorem 2.9. For a given ϵ > 0, Algorithm 2.2 is guaranteed to converge in a
finite number of iterations. The number of sieving iterations of Algorithm 2.2 is no
more than that of Algorithm 2.1. Moreover, the obtained pair (x∗(λ), y∗(λ), z∗(λ)) is
a solution to (Pλ) in the sense that

∥Rλ(x
∗(λ), y∗(λ), z∗(λ))∥ ≤ ϵ.

Remark 2.10. We close this subsection by making some remarks.
1. The EAS technique described in Algorithm 2.2 is a rigorous implementation

of the aforementioned principal idea which simultaneously answers all the five
questions posed earlier in section 2.

2. A natural question is, Why should we still perform the sieving based on ū
instead of ṽ directly? The reason is that if we define

J̃(λ) = {j ∈ Ĩ | ṽj ̸∈ (∂(λp(ỹ)))j},
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assuming that J̃(λ) ̸= ∅, we cannot guarantee that J̃(λ)
⋂

I ̸= ∅, which is
required to update the index set I.

3. The EAS algorithm has an additional procedure to certify the ϵ-optimality
of the obtained solution. Thus, we may stop the sieving procedure earlier,
compared to Algorithm 2.1. It is a natural idea that we only try to certify the
ϵ-optimality of the current obtained solution when |Fλ(x̄

i) − Fλ(x̄
i−1)| < ϵ.

The reason we use the difference of consecutive function values instead of the
solution vectors is because the optimal solutions of (Pλ) may not be unique,
but they all have the same objective function value.

4. In practice, the AS technique is sometimes better than the EAS technique
in terms of running time. But the EAS technique is the one with a better
theoretical guarantee. Detailed empirical comparison of these two techniques
can be found in section 4.

2.4. An accelerated proximal gradient algorithm for dual variable re-
covery. As aforementioned, a key step to apply the AS (or EAS) technique is re-
covering the dual variable ū (or ṽ) via solving the optimization problem (2.11) (or
(2.22)). In this paper, we adopt the accelerated proximal gradient (APG) algorithm
[2, 22] to solve the optimization problems (2.11) and (2.22). Since the optimization
problem (2.22) has the same form as (2.11), we use the problem (2.11) as an example.

First of all, we could rewrite the constrained optimization problem (2.11) equiv-
alently as

(2.27) min
d

h(d) + δNull(BT
Iγ)

(d),

where h(d) = 1
2∥((ūI)0 + d)−Π∂(λp(ȳ))I ((ūI)0 + d)∥2 and δNull(BT

Iγ)
(·) is the indicator

function of the null space of BT
Iγ .

In order to apply the APG algorithm, we need to derive the proximal mapping
of the indicator function δNull(BT

Iγ)
(·), which is the projection operator onto the null

space of BT
Iγ . Since BT

Iγ is of full row rank, the projection of a given vector a ∈ R|I|

onto the null space of BT
Iγ is computed by

ΠNull(BT
Iγ)

(a) = (I −BIγ(B
T
IγBIγ)

−1BT
Iγ)a.

On the other hand, the function h(·) is continuously differentiable, and the gradient
of h(·) is

∇h(d) = ((ūI)0 + d)−Π∂(λp(ỹ))I ((ūI)0 + d) = Π(∂(λp(ȳ))I)◦((ūI)0 + d).

Here, (∂(λp(ȳ))I)
◦ is the polar of the closed convex set ∂(λp(ȳ))I , and the second

equality comes from the Moreau identity [20]. Thus, ∇h(·) is Lipschitz continuous
with modulus 1 [40]. The APG algorithm for solving the optimization problem (2.27)
is shown in Algorithm 2.3.

It is well known that the sequence {dk} generated by the APG algorithm has the
following O(1/k2) complexity [2, 22].

Theorem 2.11. Let {dk} and {tk} be the sequences generated by Algorithm 2.3.
Then for any k ≥ 1, we have

(2.28) h(dk)− h(d∗) ≤ 2∥d∗∥2

(k + 1)2
,

where d∗ is any optimal solution to (2.27).
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Algorithm 2.3 APG algorithm for (2.27)

Input: ϵ > 0 and maxiter.
Output: d̄.
Initialization: L = 1, d0 = 0, d̂1 = d0, k = 0, and t1 = 1.
while k < maxiter do

k = k + 1,
dk = ΠNull(BT

Iγ
)(d̂

k − 1
L
∇h(d̂k)).

if max(∥dk − dk−1∥, ∥((ūI)0 + dk)−Π∂(λp(ȳ))I ((ūI)0 + dk)∥) ≤ ϵ then
break.

end if

tk+1 =
1+
√

1+4t2
k

2
,

d̂k+1 = dk + ( tk−1
tk+1

)(dk − dk−1).

end while
d̄ = dk.
return d̄.

Remark 2.12. We make some remarks to close this subsection.
1. The optimal solution set for (2.27) is nonempty under the mild assumption

that (∂(λp(ȳ)))I is nonempty and compact. This assumption is satisfied for
any ȳ ∈ Rm and nonempty set I ⊆ [m] and for many regularization functions,
such as ℓ1 norm, ℓ2 norm, ℓ∞ norm, and so on.

2. The computational cost for solving (2.27) in the AS and EAS techniques is
affordable. We explain some insights behind this remark. On the one hand,
in the EAS technique, if we do obtain an optimal solution of (Pλ) via solving

the current subproblem (Pλ(I)), then we must have h(d∗) < ϵ2

2 by Theorem
2.8. Moreover, ∥d∗∥ must be relatively small. By the above complexity result,
we could obtain an inexact solution to the problem (2.27) in several cheap
iterations. On the other hand, if the objective function value of (2.27) is
still large after several iterations (say 10 iterations), we can terminate the
algorithm since this phenomenon indicates that we have not yet obtained an
optimal solution to the problem (Pλ). In other words, the current index set I
is incorrect, and we need to update it by removing violating indices. In short,
although we need to solve an additional optimization problem, we only need
to run APG for several iterations.

3. The main computational cost for each iteration of APG is from two pro-
jections. On the one hand, for most of the commonly used regularization
functions p (for example, ℓ1 norm, ℓ2 norm), the projection of a given vector
onto the subdifferential set is cheap. On the other hand, in order to compute
the projection onto the null space of BT

Iγ , the main computational cost is

from computing (BT
IγBIγ)

−1. However, as we mentioned earlier, the matrix
B is very sparse in many applications, and the sparse Cholesky decomposi-
tion is not costly. Thus, the computational cost for one iteration of APG is
affordable, even for large-scale problems. This is also one of the main reasons
for us to adopt APG to solve the optimization problem (2.27).

2.5. An AS technique for solution path. Now, we generalize Algorithm 2.1
and Algorithm 2.2 to obtain a solution path for problem (Pλ) with a sequence of
parameters λ1 > λ2 > · · · > λl > 0. If we obtain a solution (x∗(λi), y

∗(λi), z
∗(λi))

for (Pλ) with λ = λi, then we can initialize the index set I0(λi+1) in Algorithm 2.1
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or Algorithm 2.2 for λ = λi+1 as

(2.29) I0(λi+1) := {k ∈ [m] | |(Bx∗(λi))k| < ϵ̂},

where ϵ̂ > 0 is a given tolerance. The algorithm for applying the AS technique (or
the EAS technique) to generate a solution path is shown in Algorithm 2.4.

Algorithm 2.4 Generate solution path for (Pλ) with the AS technique (or the EAS
technique)

Input: ϵ > 0, ϵ̂ > 0 and a sequence λ1 > λ2 > · · · > λl > 0.
Output: A solution path for (Pλ): {(x∗(λ1), y

∗(λ1), z
∗(λ1)), . . . , (x

∗(λl), y
∗(λl), z

∗(λl))}.

Initialization: Initialize index set I0(λ1) ⊆ [m] by a predefined initialization strategy.
for k = 1, 2, . . . , l do

Step 1. Obtain (x∗(λk), y
∗(λk), z

∗(λk)) by calling Algorithm 2.1 (or Algorithm 2.2)
with {λ, ϵ, I0(λ)} = {λk, ϵ, I

0(λk)}.
if k < l then

Step 2. Define
I0(λk+1) := {j ∈ [m] | |(Bx∗(λk))j | < ϵ̂}.

end if
end for
return {(x∗(λ1), y

∗(λ1), z
∗(λ1)), . . . , (x

∗(λl), y
∗(λl), z

∗(λl))}.

Remark 2.13. We give some remarks to close this subsection.
1. First, we make some remarks on the choice of I0(λi), which is defined by

(2.29). Note that for λ = λi, Algorithm 2.1 and Algorithm 2.2 can both
obtain an ϵ-optimal solution of (Pλ) with any initial index set I0(λi). We
define I0(λi) (i ≥ 2) as in (2.29) because the solution for (Pλ) with λ = λi−1

will provide better prior information. The index set I0(λ1) is indeed problem
dependent; however, since λ1 is the largest value of λ on the solution path, it
will generate a highly structured sparse solution. Thus, we can choose I0(λ1)
in an aggressive way.

2. For the convex clustering model with uniform weights (wij = 1, 1 ≤ i < j ≤
N), it has the agglomeration property [6]. For the convex clustering model
with general weights, the agglomeration property may not hold. However,
Chi and Steinerberger [5] proved the tree structure of the solution path un-
der affinity weights. In these cases, we know that Ĩ(λi+1) ⊆ Ĩ(λi), i =
1, 2, . . . , l − 1, where Ĩ(λi) := {j ∈ [m] | (y∗(λi))j = 0}. Thus, the solution
(x∗(λi), y

∗(λi), z
∗(λi)) includes prior information for the next problem in the

solution path.
3. Another natural question is, Why not solve a solution path in the reverse

order (i.e., starting from λ = λl)? On the one hand, the agglomeration
property may not hold. On the other hand, the solution to (Pλ) with λ = λl

is the densest. If we start from this problem, then it could be challenging to
choose an appropriate initial index set I0(λl).

3. AS and EAS techniques for convex clustering model. In this section,
we will show how to apply the AS and EAS techniques to the convex clustering model
(1.1).

Denote E := {(i, j) | wij > 0, 1 ≤ i < j ≤ n}. Then G = ([n], E) forms an
undirected graph, and the weighted convex clustering model (1.1) is equivalent to
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(3.1) min
X∈Rd×N

1

2

N∑
i=1

∥X:i −A:i∥22 + λ
∑

(i,j)∈E

wij∥X:i −X:j∥p.

We enumerate the index pairs in E by the lexicographic order and denote by l(i, j)
the pair (i, j). Define the linear map B : Rd×N → Rd×|E| as

(B(X)):,l(i,j) = X:i −X:j ,

and define the node-arc incidence matrix J ∈ RN×|E| as

(3.2) Jk,l(i,j) =

 1 if k = i,
−1 if k = j,
0 otherwise.

Then, for any given X ∈ Rd×N and Z ∈ Rd×|E|, we have

(3.3) B(X) = XJ, B∗(Z) = ZJT .

It is clear that the convex clustering model (3.1) is a special case of (1.2).

3.1. A construction of the reduced problem. The main step for construct-
ing the reduced subproblem is to construct the index sets α, β, γ and the corresponding
matrix Mγα. For a given index set

(3.4) I := {l(i, j)} ⊆ {1, 2, . . . , |E|},

we can construct a subgraph Ĝ ⊆ G with edges Ê := {(i, j) | l(i, j) ∈ I} and all the
corresponding nodes. Then, we can decompose the graph Ĝ as

Ĝ = Ĝ1 ∪ Ĝ2 ∪ · · · ∪ Ĝs,

where Ĝi are disjoint connected subgraphs of Ĝ. Denote the node index set of Ĝi as
N̂i, and we define

αi = min{k | k ∈ N̂i}, i = 1, 2, . . . , s.

Then, we can uniquely determine the index sets α, β, and γ as

α = {α1, . . . , αs}, β = [N ]\(N̂1 ∪ · · · ∪ N̂s), and γ = (N̂1 ∪ · · · ∪ N̂s)\α.

The index sets α, β, and γ have clear meanings in the convex clustering model. For
a given index set I ⊆ [|E|] and the generated graph Ĝ, αi is the index of the selected
representative point for the ith cluster identified by the connected component Ĝi. On
the other hand, β is the collection of the indices of the isolated clusters which contain
only a singleton.

Furthermore, we could have an explicit formula for Mγα ∈ R|α|×|γ|, which is given
by

(Mγα)ij =

{
1 if j ∈ N̂i,
0 otherwise.

Then
X:γ = X:αMγα,

which actually maps the data points indexed by γ to the corresponding representative
points with indices in the set α.
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4. Numerical experiments. In this section, we demonstrate the efficiency of
the proposed AS and EAS techniques via the convex clustering model (3.1) (with
p = 2). In this paper, we mainly focus on the numerical efficiency of the AS and
EAS techniques; readers can refer to [30, 10, 17] and the references therein for the
performance of clustering by the convex clustering model (3.1). We test the AS and
EAS techniques with AMA [4], ADMM [4], and Ssnal [39], which are three of the
most popular algorithms for solving (3.1). Due to the limited length of the paper, we
omit the details of these three algorithms but refer the readers to the aforementioned
references. In our experiments, by default, we will generate the clustering path with
λ =: [10 : −0.2 : 1]. The weights wij will be defined by the following Gaussian kernel
with k-nearest neighbors (we choose k = 10 in our experiments):

(4.1) wij =

{
exp(− 1

2∥A:i −A:j∥2) if (i, j) ∈ E ,
0 if (i, j) ̸∈ E ,

where E = {(i, j) | A:i is among A:j ’s k nearest neighbors}.
The choice of I0(λ1) also has impact on the numerical performance of the AS and

EAS techniques. For the convex clustering model, it is more likely that X∗
:i(λ1) =

X∗
:j(λ1) if ∥A:i −A:j∥ is smaller. Thus, we choose I0(λ1) as

I0(λ1) = {l(i, j) | (i, j) ∈ E , wij is among the top 20% largest weights}.

For a fair comparison with the fast AMA algorithm, in this paper, we terminate
all the algorithms based on the relative duality gap:

(4.2) η = Fλ(X)−Dλ(Z)
1+|Fλ(X)|+|Dλ(Z)| ≤ ϵ.

Here, ϵ > 0 is a given tolerance, and Fλ(X) and Dλ(Z) are the objective function
values of the primal problem (1.2) and the dual problem (Dλ), respectively. We set
ϵ = 10−6 in (4.2) and ϵ̂ = 2e-16 in (2.29) by default. All our numerical results are
obtained by running MATLAB on a Windows workstation (Intel Xeon E5-2680 @
2.50GHz).

4.1. Simulated datasets. In this subsection, we provide some numerical results
on the simulated two half-moon data, which is one of the most popular datasets for
clustering.

First, we revisit the performance of fast AMA [4], ADMM [4], and Ssnal [39]
for generating the clustering path directly. We implemented the three algorithms in
MATLAB and tried our best to optimize the computations for a fair comparison.3

We summarize some numerical results in Table 1. We can see that Ssnal is the
most efficient algorithm on this dataset. Chi and Lange claimed in [4] that fast AMA
is much better than ADMM for solving the convex clustering model. However, we
observe some discrepancies in our own numerical experiments. Fast AMA could not
achieve the accuracy (ϵ = 10−6) when n is relatively large. For a fairer comparison,
we revisit the numerical performance of the three algorithms under a low accuracy
setting with ϵ = 10−4. Our numerical results show that ADMM is still better than
fast AMA. Since fast AMA has difficulty in solving medium-scale convex clustering
model, we focus on applying the AS and EAS techniques with ADMM and Ssnal.

Now, we move on to present the numerical performance of the proposed AS tech-
nique. The details can be found in Figure 1. Our numerical results on the two half-
moon dataset show that the AS technique could accelerate the Ssnal and the ADMM

3Readers can find the code at https://blog.nus.edu.sg/mattohkc/softwares/convexclustering/.
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Table 1
Numerical results for Ssnal, ADMM, and fast AMA on the two half-moon dataset with k = 10

and λ = [10 : −0.2 : 1] (46 problems in total).

Time (s) # unsolved problems
(d,N) ϵ Ssnal | ADMM | Fast AMA Ssnal | ADMM | Fast AMA

(2, 1000)
1e-4 2.2 | 2.4 | 65.3 0 | 0 | 0
1e-6 10.3 | 43.0 | 218.4 0 | 0 | 2

(2, 3000)
1e-4 8.4 | 9.1 | 226.3 0 | 0 | 1
1e-6 55.5 | 171.1 | 945.5 0 | 0 | 11

(2, 5000)
1e-4 15.3 | 17.3 | 387.5 0 | 0 | 1
1e-6 103.9 | 193.2 | 1479.5 0 | 0 | 29

(2, 10000)
1e-4 43.3 | 47.3 | 806.2 0 | 0 | 1
1e-6 217.9 | 693.4 | 2465.7 0 | 0 | 46
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Fig. 1. Numerical performance on the two half-moon dataset with k = 10.

Table 2
Numerical results for AS and EAS on the two half-moon dataset with k = 10 and λ = [10 :

−0.2 : 1] (46 problems in total). In the table, “a”: direct, “b”: with AS, “c”: with EAS.

Time (s) Sieving rounds Average problem dimension
(d,N) Algorithm a | b | c a | b | c a | b | c

(2, 1000)
Ssnal 10.3 | 1.97 | 1.97 0 | 10 | 10 1000 | 19 | 19
ADMM 43.0 | 4.5 | 3.1 0 | 22 | 18 1000 | 39 | 19

(2, 2000)
Ssnal 22.8 | 4.3 | 4.3 0 | 18 | 18 2000 | 162 | 162
ADMM 84.1 | 15.6 | 11.6 0 | 33 | 18 2000 | 175 | 162

(2, 4000)
Ssnal 79.3 | 12.6 | 12.1 0 | 44 | 38 4000 | 304 | 301
ADMM 123.8 | 20.1 | 15.1 0 | 45 | 37 4000 | 463 | 429

(2, 7500)
Ssnal 120.2 | 32.4 | 32.4 0 | 44 | 44 7500 | 1276 | 1276
ADMM 317.4 | 48.4 | 40.8 0 | 51 | 45 7500 | 1336 | 1295

(2, 10000)
Ssnal 218.0 | 44.7 | 45.9 0 | 52 | 52 10000 | 1525 | 1525
ADMM 693.4 | 84.6 | 80.9 0 | 54 | 52 10000 | 1868 | 1820

by up to 4.8 times (Figure 1(a)) and 12.8 times (Figure 1(b)), respectively. With
the help of the AS technique, AS+ADMM could even be comparable to AS+Ssnal
(Figure 1(c)), which demonstrates the power of the AS technique for capturing the
intrinsic structured sparsity of the convex clustering model. Since the AS technique
can take advantage of the sparse structure to substantially reduce the dimension of
the problem, we can apply the sparse Cholesky decomposition to solving the linear
system involved in ADMM in a highly efficient way. This also partially demonstrates
that ADMM is efficient to solve-small scale convex clustering problems.

Next, we move on to present the empirical comparison between the AS and EAS
techniques on the two half-moon dataset. The results can be found in Table 2. We can
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observe that the AS and EAS techniques perform well and the total sieving rounds
are small, even for large-scale problems. The average size of the reduced problems is
much smaller than that of the original problems. These are the main reasons why the
AS and EAS techniques can accelerate the algorithms. On the other hand, the EAS
technique could potentially stop the sieving procedure early; thus the EAS technique
can have fewer sieving rounds than the AS technique. This phenomenon is indeed
observed in the numerical experiments. The numerical results are consistent with our
expectation.

Remark 4.1. We close this subsection by making some remarks.
1. From the numerical results in Table 2, we can observe two phenomena: (1)

The average problem dimensions of AS/EAS + Ssnal are smaller than those
of AS/EAS +ADMM. (2) Compared to AS, EAS can further accelerate
ADMM, but not so much for Ssnal. Here, we try to give some explana-
tions. On the one hand, although we set the same tolerance to terminate
both Ssnal and ADMM, Ssnal will usually achieve higher accuracy with
respect to the relative KKT residual due to its faster convergence rate. The
more accurate solution will help the sieving procedure to be more effective.
On the other hand, Ssnal is efficient for solving the convex clustering model.
As a result, the computational cost of a few more iterations of Ssnal could
be comparable to the computational cost of the ϵ-optimality certification pro-
cedure of the EAS technique.

2. One may naturally expect the AS and EAS techniques to be more powerful
when λ is larger. To verify this expectation, we generate a new clustering
path with larger values of λ. The results can be found in Table 3.

4.2. Real datasets. In this subsection, we will present the performance of the
AS and EAS techniques for generating the clustering path on the Modified National
Institute of Standards and Technology (MNIST ) database [15]. We adopt the pre-
processing method described in [19], which applies a one hidden layer linear neural
network to preprocess the raw images. Then, we apply the convex clustering model
(3.1) to the preprocessed data. Our experiments are on the testing set of MNIST
data, and the dimension of the preprocessed data is 10 × 10000. The details can be
found in Table 4.

Table 3
Numerical results for AS and EAS on the two half-moon dataset with k = 10 and λ = [20 :

−0.2 : 10] (51 problems in total). In the table, “a”: direct, “b”: with AS, “c”: with EAS.

Time (s) Sieving rounds Average problem dimension
(d,N) Algorithm a | b | c a | b | c a | b | c

(2, 7500)
Ssnal 47.0 | 19.7 | 19.7 0 | 34 | 34 7500 | 481 | 481
ADMM 49.5 | 25.3 | 20.6 0 | 47 | 35 7500 | 505 | 482

(2, 10000)
Ssnal 107.8 | 29.0 | 29.0 0 | 33 | 33 10000 | 588 | 588
ADMM 117.5 | 42.1 | 37.9 0 | 34 | 33 10000 | 714 | 693

Table 4
Numerical performance on the MNIST dataset with k = 10 and λ = [10 : −0.2 : 1] (46 problems

in total).

Ssnal ADMM
Direct | With AS | With EAS Direct | With AS | With EAS

Time (seconds) 1207.7 | 156.3 | 157.3 1823.8 | 128.5 | 132.2
Total sieving round 0 | 45 | 45 0 | 47 | 47

Average problem dimension 10000 | 1377 | 1377 10000 | 1389 | 1389
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From the results, we observe that the AS technique could accelerate the ADMM
by up to 14.2 times and the Ssnal by up to 7.7 times. It is understandable that
AS could be more attractive for ADMM, since the second-order sparsity embedded
in the algorithm Ssnal has partially captured the structured sparsity already. More-
over, since the EAS technique does not reduce the sieving iterations on this dataset,
compared to the AS technique, the EAS technique will spend more time than the AS
technique.

5. Conclusion. In this paper, we propose an AS technique and an EAS tech-
nique, which can be applied to various optimization algorithms for convex optimiza-
tion problems with structured sparsity. The proposed techniques can accelerate op-
timization algorithms by reducing the dimension of the problems that need to be
solved. Numerical performance on the convex clustering model has demonstrated the
high efficiency of the proposed dimension reduction techniques. We also established
a finite convergence property of the AS and EAS techniques. To better demonstrate
the generality of the AS and EAS techniques, we conduct additional numerical ex-
periments on the overlapping group lasso regression model [11]; more details can be
found in Appendix A. However, we should note that, in the worst case, the AS and
EAS techniques may sieve all the indices. But based on our empirical evaluation, one
can say that the AS and EAS techniques work well in practice. As a future research
topic, we will make efforts to analyze the average-case complexity of the AS and EAS
techniques.

Appendix A. Additional numerical results on overlapping group lasso
regression problem. We conduct additional numerical experiments on the over-
lapping group lasso regression model [11] to further demonstrate the applicability
and generality of the AS and EAS techniques. The overlapping group lasso regression
model has the following form:

(A.1) min
x∈Rn

1

2
∥Ax− b∥2 + λ

L∑
l=1

wl∥xGl
∥2,

where A ∈ Rm×n and b ∈ Rm are given data, wl > 0 are given weights and λ > 0
is the hyperparameter, and Gl ⊆ {1, 2, . . . , n} is the set of indices for the lth group.
Here we assume that G1 ∪ G2 ∪ · · · ∪ GL = {1, 2, . . . , n} and overlapping indices are
allowed. In other words, there may exist 1 ≤ i < j ≤ L such that Gi

⋂
Gj ̸= ∅.

We denote the cardinality of the set Gl as |Gl|. We denote s =
∑L

i=1 |Gl|. We set

wl =
√
|Gl|.

We can rewrite (A.1) in a compact form as

(A.2) min
x∈Rn

Fλ(x) = f(Ax) + λp(Bx),

where f(Ax) = 1
2∥Ax − b∥2, p(Bx) =

∑L
l=1 wl∥Blx∥2, B = [BT

1 , B
T
2 , . . . , B

T
L ]

T , and

Bl ∈ R|Gl|×n are defined as

(Bl)ij =

{
1 if j = ilj ,
0 otherwise.

Here, without loss of generality, we denote Gl = {il1, . . . il|Gl|} and il1 ≤ · · · ≤ il|Gl|.

The dual problem of (A.2) is given by

(A.3)
maxu∈Rm,v∈Rs Dλ(u, v) = −f∗(u)− λp∗(v/λ)
s.t. ATu+BT v = 0,

where f∗ and p∗ are the conjugates of f and p, respectively.
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A.1. A construction of the reduced problem. For any given index set I ⊆
[s], we can construct the index set α, β and γ as follows:

α = ∅, β =

{
j ∈ [n] |

∑
i∈I

Bij = 0

}
, γ = [n]\β.

Moreover, xγ = 0, and it is not necessary to construct the matrix Mγα. Without loss
of generality, we can remove the zero rows of BIcβ by redefining the index set I as

I =

i ∈ [s] |
|γ|∑
j=1

(B:γ)ij = 1

 .

A.2. Numerical results. We demonstrate the numerical efficiency of the pro-
posed AS and EAS techniques on the Columbia Object Image Library (COIL-100)
dataset [21], which contains color images of 100 objects. The dataset contains 72
images taken from different angles for each object. In particular, we select object 10
in our experiments. We denote D ∈ R72×49152 as the matrix representation of the 72
images, where each row of D is for one image. Then, we generate the response vector
b ∈ R72 by randomly choosing a feature (column) in D, and the rest of the features
(columns) are concatenated to be the design matrix A ∈ R72×49151. We generate over-
lapping groups where each group contains 20 features and consecutive groups overlap
by 5 features; the last group will contain 10 features due to the number of features for
this dataset. We can generate overlapping groups for the image dataset because the
pixels of a natural image are approximately blockwise constant. We apply an ADMM
algorithm [9] to solving the dual problem (A.3). We terminate all algorithms based
on the relative duality gap and dual feasibility:

η = max

{
|Fλ(x)−Dλ(u, v)|

1 + |Fλ(x)|+ |Dλ(u, v)|
, ∥ATu+BT v∥

}
≤ ϵ.

We set ϵ = 10−5 and ϵ̂ = 10−10 in Algorithm 2.4. We generate a solution path
with λ ∈ {0.90, 0.91, . . . , 0.930}. Now, we describe the construction of I0(λ1). We set
the number of initial active features (which is the cardinality of the index set β) to
be ⌈0.01 ∗ n⌉. Since this is a linear regression problem, we choose the initial active
features based on the correlation test between each feature vector A:i and the response

vector b. That is, we compute c0i := |⟨A:i,b⟩|
∥A:i∥∥b∥ for i = 1, 2, . . . , n and choose the initial

index set β and I0(λ1) as

β := {i ∈ [n] | c0i is among the first ⌈0.01 ∗ n⌉ largest values in c01, . . . , c
0
n}

and

I0(λ1) :=

i ∈ [s] |
|β|∑
j=1

(B:β)ij = 0

 .

To get more robust results, we run the experiment 5 times (randomly choos-
ing the response vector b each time) and report the performance in Table 5. The
numerical results show that the AS and EAS techniques can accelerate ADMM by
more than 100 times for generating the solution path of the overlapping group lasso
model.
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Table 5
Numerical results for overlapping group lasso regression model on the COIL-100 dataset with

λ ∈ {0.90, 0.91, . . . , 0.930} (31 problems in total). “ib” is the column index of the response vector b
in the matrix D. Input problem dimensions (m,n, s) = (72, 49151, 65531). In the table, “a”: direct,
“b”: with AS, “c”: with EAS.

Time (s) Sieving rounds Average problem dimensions (n, s)
ib a | b | c a | b | c a | b | c

1129 5141.2 | 86.7 | 86.8 0 | 21 | 21 (49151, 65531) | (267, 373) | (267,373)
1793 6763.2 | 67.0 | 68.3 0 | 15 | 15 (49151, 65531) | (235, 323) | (235, 323)
6834 5952.6 | 39.0 | 39.5 0 | 18 | 18 (49151, 65531) | (261, 362) | (261,362)
10493 2755.7 | 109.8 | 110.0 0 | 34 | 34 (49151, 65531) | (302, 413) | (302, 413)
18230 5366.4 | 38.5 | 38.8 0 | 13 | 13 (49151, 65531) | (211, 289) | (211, 289)
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