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AN INEXACT AUGMENTED LAGRANGIAN METHOD FOR
SECOND-ORDER CONE PROGRAMMING WITH APPLICATIONS\ast 

LING LIANG\dagger , DEFENG SUN\ddagger , AND KIM-CHUAN TOH\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we adopt the augmented Lagrangian method (ALM) to solve convex
quadratic second-order cone programming problems (SOCPs). Fruitful results on the efficiency of
the ALM have been established in the literature. Recently, it has been shown in [Cui, Sun, and
Toh, Math. Program., 178 (2019), pp. 381--415] that if the quadratic growth condition holds at
an optimal solution for the dual problem, then the KKT residual converges to zero R-superlinearly
when the ALM is applied to the primal problem. Moreover, Cui, Ding, and Zhao [SIAM J. Optim.,
27 (2017), pp. 2332--2355] provided sufficient conditions for the quadratic growth condition to hold
under the metric subregularity and bounded linear regularity conditions for solving composite matrix
optimization problems involving spectral functions. Here, we adopt these recent ideas to analyze the
convergence properties of the ALM when applied to SOCPs. To the best of our knowledge, no similar
work has been done for SOCPs so far. In our paper, we first provide sufficient conditions to ensure the
quadratic growth condition for SOCPs. With these elegant theoretical guarantees, we then design an
SOCP solver and apply it to solve various classes of SOCPs, such as minimal enclosing ball problems,
classical trust-region subproblems, square-root Lasso problems, and DIMACS Challenge problems.
Numerical results show that the proposed ALM based solver is efficient and robust compared to the
existing highly developed solvers, such as Mosek and SDPT3.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . second-order cone programming, augmented Lagrangian method, quadratic growth
condition, trust-region subproblem, minimal enclosing ball problem, square-root Lasso problem
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1. Introduction. Denote the standard d-dimensional second-order cone (also
called ice cream cone or Lorentz cone) in \BbbR d (d \geq 1) as

\scrK d :=
\bigl\{ 
x = (x0, xt)

\top \in \BbbR \times \BbbR d - 1 | x0 \geq \| xt\| 
\bigr\} 
.

Let \scrK be the Cartesian product of r second-order cones, i.e.,

\scrK = \scrK n1 \times \cdot \cdot \cdot \times \scrK nr \subseteq \BbbR n,

where n = n1+ \cdot \cdot \cdot +nr. In this paper, we consider the convex quadratic second-order
cone programs (SOCPs)

(P) min
x=(x1;x2;x3)

f0(x) :=
1

2
\langle x1, Hx1\rangle  - \langle b, x2\rangle + \delta \scrK (x3)

s.t.  - Hx1 +A\top x2 + x3 = c, x1 \in Ran (H) \subseteq \BbbR n, x2 \in \BbbR m, x3 \in \BbbR n,
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AN INEXACT ALM FOR SOCPs WITH APPLICATIONS 1749

where H \in \BbbS n+ (the cone of n \times n symmetric positive semidefinite matrices) and
A \in \BbbR m\times n are given matrices, Ran(H) denotes the range space of H, c \in \BbbR n and
b \in \BbbR m are given vectors, and \delta \scrK (\cdot ) is the indicator function for the symmetric cone
\scrK . In the above, (x1;x2;x3) denotes the concatenation of the vectors x1, x2, x3. For
notational simplicity, we denote \BbbX := Ran(H) \times \BbbR m \times \BbbR n for the rest of this paper.
The dual problem associated with (P) is given by

(D) max
y

g0(y) :=  - 1

2
\langle y, Hy\rangle  - \langle c, y\rangle  - \delta \scrK (y)

s.t. Ay = b, y \in \BbbR n.

We should mention that in this paper, our naming convention of the primal and dual
problems is opposite of the convention adopted in the interior-point methods (IPMs)
literature.

Let SOLP and SOLD be the solution sets of (P) and (D), respectively. The KKT
optimality condition for (P) and (D) is given as follows:

(1.1)  - Hx1 +A\top x2 + x3 = c, Ay  - b = 0, H(x1  - y) = 0, \scrK \ni x3 \bot y \in \scrK .

We assume for the rest of this paper that the KKT condition (1.1) admits at least
one solution. Under this assumption, it is well known that (\=x, \=y) solves the KKT
condition (1.1) if and only if \=x \in SOLP and \=y \in SOLD.

Note that problems (P) and (D) cover the standard primal and dual linear SOCP
problems by simply dropping the quadratic term in the objective function, respec-
tively. One may also observe that problem (P) or (D) can be reformulated as a
linear SOCP with additional affine and rotated quadratic cone constraints. To ex-
plain the procedure, we consider problem (D) as an illustrative example. Recall that
a d-dimensional (d \geq 3) rotated quadratic cone is defined by

\scrK d
r :=

\bigl\{ 
x = (x1, x2, . . . , xd) \in \BbbR d | 2x1x2 \geq x23 + \cdot \cdot \cdot + x2d, x1, x2 \geq 0

\bigr\} 
.

From the positive semidefiniteness ofH, there exists R \in \BbbR k\times n with k := rank(H) \leq n
such that H = R\top R, and hence we can rewrite problem (D) as

min
y,t

\bigl\{ 
t+ \langle c, y\rangle 

\bigm| \bigm| \bigm| Ay = b, y \in \scrK , \| Ry\| 2 \leq 2t
\bigr\} 
.

Observe that the constraint \| Ry\| 2 \leq 2t is equivalent to (t, 1, Ry) \in \scrK k+2
r . Therefore,

(D) can be reformulated as

min
y,t,s,z

\bigl\{ 
t+ \langle c, y\rangle 

\bigm| \bigm| Ay = b, Ry  - z = 0, s = 1, y \in \scrK , (t, s, z) \in \scrK k+2
r

\bigr\} 
.(1.2)

From the constraints in (1.2), we can infer the following potential disadvantages for
transforming the quadratic term in the objective into the constraints: (1) One needs
to introduce an affine constraint with coefficient matrix of size (k + 1)\times (n+ k + 1).
Thus, when k is large, this additional affine constraint will increase the difficulty
of computing the search direction (e.g., when an IPM is used, one needs to solve
a large linear system to compute the Newton direction). (2) Introducing the extra
variables (y, z, s) naturally would increase the computational complexity in solving the
problem. (3) The factorization H = R\top R to begin with can be expensive to compute.
The above disadvantages have motivated us to deal with (P) and (D) directly.
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1750 L. LIANG, D. F. SUN, AND K.-C. TOH

Optimization problems with second-order cone constraints have been studied for
quite a long time and still receive constant attention to date. There is a large body
of literature on the topic. For comprehensive surveys and numerous important ap-
plications of SOCPs, we refer the reader to [1, 22, 25] and references therein. Here,
we mention some recent literature in the next three paragraphs to capture the main
research topics on SOCPs.

Optimization problems with second-order cone constraints are of great interest
theoretically due to their nonpolyhedral nature. In fact, theoretical results on vari-
ational analysis for SOCPs have been well developed. For example, Bonnans and
Ram\'{\i}rez C. [8] performed rigorous and systematic perturbation analysis for nonlinear
SOCPs. Outrata and Sun [33] then computed the limiting (Mordukhovich) coderiva-
tive of the metric projection onto a second-order cone, which can be used to provide a
sufficient condition for the Aubin property of the solution map of a complementarity
problem as well as to derive certain necessary optimality conditions. Very recently,
Hang, Mordukhovich, and Sarabi [17] conducted a second-order variational analysis
for SOCPs without imposing any nondegeneracy assumptions.

The importance of SOCPs comes from their modeling power. Indeed, applications
of SOCPs have grown dramatically over the years in engineering, control, management
science, and statistics; see, for instance, [4, 6, 16, 27, 30, 39, 43, 47]. As illustrative
examples, we consider minimal enclosing ball (MEB) problems [47], classical trust-
region subproblems [30], and square-root Lasso problems [6] in this paper.

As driven by the needs in applications, many algorithms have also been developed
for solving SOCPs. Among them, the most well developed ones are IPMs. In par-
ticular, primal-dual IPMs have been shown to have superior theoretical and practical
efficiency, and they are widely used to solve SOCPs to high precision. For references
on primal-dual IPMs for solving SOCPs, we recommend [2, 9, 29, 31, 32, 44]. How-
ever, IPMs are sometimes not scalable for large-scale problems due to the high expense
needed to solve the large linear system of equations in each iteration. Besides IPMs,
smoothing Newton methods [10, 15] and semismooth Newton methods [21] have also
been applied to solve the KKT system directly. However, limited numerical imple-
mentations and experiments were conducted in these works. Therefore, the practical
performance of these algorithms remains unclear. Finally, the augmented Lagrangian
method (ALM) has also been applied to general nonlinear programming problems
with the second-order cone constraint in [18, 24]. Both papers focus on analyzing
the local fast convergence rate of the ALM under some strong conditions, such as the
uniform second-order growth condition and the second-order sufficient condition, but
with different approaches. Nevertheless, the practical performance of the ALM is not
considered in both works. Therefore, the contributions in [18, 24] are mainly on the
theoretical development.

Continuing the research theme on algorithmic development just mentioned above,
the present paper aims to design a highly efficient and scalable algorithm for solving
large-scale SOCPs. Our algorithmic design is motivated by the recent success in de-
veloping an ALM framework for solving semidefinite programming (SDP) problems.
Specifically, in [46], an inexact ALM combined with a semismooth Newton method
has been shown to be highly efficient and scalable for solving large-scale SDP prob-
lems. Thus, it is natural for us to apply a similar ALM framework to solve SOCPs
directly. Note that this ALM framework, together with its convergence analysis, is
well established based on the theoretical work of Rockafellar [35, 36]. Along this line,
various papers (see, e.g., [12, 26]) have extended Rockafellar's work by relaxing some
restrictive conditions for convergence. For instance, Cui, Sun, and Toh [12] showed re-
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AN INEXACT ALM FOR SOCPs WITH APPLICATIONS 1751

cently that under the calmness condition for the dual solution mapping (equivalently,
the quadratic growth condition for the dual problem), the ALM applied to a pri-
mal convex composite conic programming problem has an asymptotic R-superlinear
convergence rate in term of the KKT residual. Moreover, Cui, Ding, and Zhao [11]
showed that under the metric subregularity and bounded linear regularity conditions,
the quadratic growth condition can be guaranteed for matrix optimization problems
involving symmetric spectral functions. Therefore, we can borrow these ideas to es-
tablish the fast convergence rate of the ALM when applied to SOCPs. To the best of
our knowledge, no such work has been done for SOCPs so far.

Our contributions in this paper can thus be summarized as follows:
\bullet Theoretically, we provide sufficient conditions for ensuring the quadratic
growth condition for the dual problem (D) under the bounded linear reg-
ularity condition and the metric subregularity condition. In particular, we
revisit the fact that if a strictly complementary solution exists, then the qua-
dratic growth condition holds for problem (D). Thus, sufficient conditions for
the R-superlinear convergence of the KKT residual generated by the ALM
can also be obtained.

\bullet Numerically, we develop a highly efficient and robust SOCP solver for large-
scale SOCPs. Our numerical results show that the solver is comparable to
existing state-of-the-art linear SOCP solvers, such as the highly powerful
commercial solver Mosek and the efficient open-source solver SDPT3, when
solving some large-scale linear SOCPs. More specifically, we apply our SOCP
solver to solve minimal enclosing ball (MEB) problems, square-root Lasso
problems, and some linear SOCPs in the DIMACS Challenge. For the SOCPs
arising from the MEB problems, we show that any feasible solution to the
primal problem is constraint nondegenerate, and hence the semismooth New-
ton method employed to solve the ALM subproblems is guaranteed to attain
at least a superlinear convergence rate.

\bullet For solving the convex quadratic SOCPs (P) and (D), we deal with the qua-
dratic objective functions directly in a concise manner. We do not need to
transform the problem into a much larger linear SOCP problem with an ad-
ditional rotated quadratic cone constraint. The great computational benefit
of our approach is demonstrated via the numerical results for solving the
classical trust-region subproblems.

The rest of the paper is organized as follows. In section 2, we introduce some
preliminaries and notation which will be used in this paper. Recently developed con-
vergence results of the ALM and related topics on the quadratic growth condition for
the dual problem (D) are presented in sections 3 and 4. A highly efficient semismooth
Newton method for solving the ALM subproblems is presented in section 5 with some
well-known convergence properties. In section 6, we design an SOCP solver based on
the proposed ALM. Moreover, we discuss the efficient implementation of the solver
and conduct extensive numerical experiments to illustrate the efficiency and robust-
ness of the proposed algorithm. Finally, we conclude the paper in section 7.

2. Preliminaries. In this section, we first list some notation and present some
basic material on the projection operator onto the standard second-order cone.

2.1. Notation and definitions. We use \BbbY , \BbbZ , and \BbbW to denote generic finite-
dimensional real Euclidean spaces. For a given closed convex cone \scrC , we use \scrC \circ and
\scrC \ast to denote the polar and dual cones of \scrC , respectively. We use N\scrC (x) and \scrT \scrC (x) to
denote the normal and tangent cones of \scrC at a point x \in \scrC , respectively.
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1752 L. LIANG, D. F. SUN, AND K.-C. TOH

Let f : \BbbW \rightarrow [ - \infty ,+\infty ] be a given convex function. The effective domain of f
is denoted as dom (f). Moreover, the subdifferential of f at the point x \in dom( f)
is denoted as \partial f(x). We use f\ast to denote the convex conjugate function of f , i.e.,
f\ast (z) = supx \{ \langle z, x\rangle  - f(x) | x \in dom (f)\} . Let D \subseteq \BbbW be a set. We use \delta D(\cdot ) to
denote the indicator function over the setD. If the setD is closed and convex, then the
metric projection of x \in \BbbW onto D is defined by \Pi D(x) := argmin\{ \| x - s\| | s \in D\} .
Moreover, the distance for a point x \in \BbbW to the set D is given by dist (x,D) :=
infx\in D \| x - d\| . For more useful properties related to convex functions and convex
sets, we refer the reader to the monograph of Rockafellar [37].

The following definitions on the Lipschitz-like continuity for a set-valued mapping
are commonly involved in derivation of the convergence rate for the ALM.

Definition 2.1.
1. A set-valued mapping \Phi : \BbbW \rightrightarrows \BbbY is Lipschitz continuous at u \in \BbbW with

modulus \kappa > 0 if \Phi (u) = \{ v\} and there exists a positive constant \epsilon such that

\| v\prime  - v\| \leq \kappa \| u\prime  - u\| \forall v\prime \in \Phi (u\prime ), u\prime \in \BbbB \epsilon (u).

2. A set-valued mapping \Phi : \BbbW \rightrightarrows \BbbY is upper Lipschitz continuous at u \in \BbbW 
with modulus \kappa > 0 if there exists a positive constant \epsilon such that

dist (v\prime ,\Phi (u)) \leq \kappa \| u\prime  - u\| \forall v\prime \in \Phi (u\prime ), u\prime \in \BbbB \epsilon (u).

Next, we define some mappings that are closely related to the perturbation theory
of optimization problems. We will use these mappings to analyze the convergence
property of the proposed ALM.

Let l : \BbbX \times \BbbR n \rightarrow [ - \infty ,+\infty ] be the Lagrangian function in the extended form:

l(x, y) :=

\Biggl\{ 
f0(x) + \langle y,  - Hx1 +A\top x2 + x3  - c\rangle x \in dom(f0),

+\infty x /\in dom(f0).

Denote the essential objective functions of (P) and (D), respectively, by

f(x) := sup
y

l(x, y) =

\Biggl\{ 
f0(x)  - Hx1 +A\top x2 + x3 = c,

+\infty otherwise,

g(x) := inf
x
l(x, y) =

\Biggl\{ 
g0(y) Ay = b,

 - \infty otherwise.

Note that the functions l(\cdot ), f(\cdot ), and g(\cdot ) are convex-concave, convex, and concave,
respectively. Therefore, their subdifferentials are well defined. In particular, we can
define the following set-valued mappings Tl : \BbbX \times \BbbR n \rightrightarrows \BbbX \times \BbbR n, Tf : \BbbX \rightrightarrows \BbbX , and
Tg : \BbbR n \rightrightarrows \BbbR n by

Tl(x, y) :=
\bigl\{ 
(u, v) \in \BbbX \times \BbbR n | (u, - v) \in \partial l(x, y)

\bigr\} 
, (x, y) \in \BbbX \times \BbbR n,

Tf := \partial f , and Tg :=  - \partial g, respectively.
Consider the following linearly perturbed form of problem (P) with perturbation

parameters (u, v) \in \BbbX \times \BbbR n:

(P(u, v)) min
x

\bigl\{ 
f0(x) - \langle x, u\rangle 

\bigm| \bigm|  - Hx1 +A\top x2 + x3 + v  - c = 0
\bigr\} 
.
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Then, according to [35], the inverse mapping of three mappings Tl, Tf , and Tg are
well defined (since Tl, Tf , and Tg are shown to be maximal monotone operators) and
can be viewed as the solution mappings of their corresponding perturbed problems.
Indeed, one can verify that\left\{     

Tl(u, v)
 - 1 = the set of all KKT points to (P(u, v)),

Tf (u)
 - 1 = the set of all optimal solution to (P(u, 0)),

Tg(v)
 - 1 = the set of all optimal solution to (D(0, v)),

where (D(u, v)) is the ordinary dual of (P(u, v)) for any (u, v) \in \BbbX \times \BbbR n. Therefore,
we may call T - 1

l the KKT solution mapping, T - 1
f the primal solution mapping, and

T - 1
g the dual solution mapping.

2.2. Projection onto the second-order cone. We next recall some impor-
tant properties on the projection onto the second-order cone. We will pay particular
attention to the differential properties for the projection mapping \Pi K(\cdot ), where for
notational simplicity we use K to denote a single second-order cone in \BbbR d, i.e.,

K := \{ x = (x0, xt)
\top \in \BbbR d | x0 \geq \| xt\| \} .

The following lemma provides an exact formula of the projection onto the second-order
cone (see, e.g., [15]).

Lemma 2.2. For any x = (x0, xt)
\top \in \BbbR d, the projection onto the second-order

cone K is given by

\Pi K(x) =

\left\{       
x \| xt\| \leq x0,

0 \| xt\| \leq  - x0,
1
2 (x0 + \| xt\| )

\Bigl( 
1, xt

\| xt\| 

\Bigr) \top 
otherwise.

Since \Pi K(\cdot ) is a globally Lipschitz continuous mapping with modulus 1 on \BbbR d, i.e.,

\| \Pi K(x) - \Pi K(y)\| \leq \| x - y\| \forall x, y \in \BbbR d,

it is well known that by Rademacher's theorem [13], \Pi K(\cdot ) is Fr\'echet differentiable
almost everywhere on any open set \scrO \subseteq \BbbR d. Thus, we can define the B-subdifferential
of \Pi K(\cdot ) at a point x \in \BbbR d as

\partial B\Pi K(x) := \{ lim
i\rightarrow \infty 

J\Pi K(xi) | xi \rightarrow x, J\Pi K(xi) exists\} ,

where J\Pi K(x) denotes the Jacobian of \Pi K(\cdot ) at x \in \BbbR d if it exists. Then, for any
x \in \BbbR d, the Clarke generalized Jacobian of \Pi K(x), namely, \partial \Pi K(x), is defined as the
convex hull of \partial B\Pi K(x). The following proposition gives the concrete expression of
the elements in \partial B\Pi K(x). We refer the reader to [34, 21, 33] for more details.

Proposition 2.3. Given an arbitrary point x = (x0, xt)
\top \in \BbbR d, each element

V \in \partial B\Pi K(x) has the following representations:
1. If x0 \not = \pm \| xt\| , \Pi K(\cdot ) is continuously differentiable near x with

J\Pi K(x) =

\left\{             

0 x0 <  - \| xt\| ,

Id x0 > \| xt\| ,

1
2

\Biggl( 
1

x\top 
t

\| xt\| 
xt

\| xt\| (1 + x0

\| xt\| )Id - 1  - x0

\| xt\| 3xtx
\top 
t

\Biggr) 
 - \| xt\| < x0 < \| xt\| .
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2. If xt \not = 0 and x0 = \| xt\| , then

V \in 

\left\{   Id, 12
\left(  1

x\top 
t

\| xt\| 
xt

\| xt\| 2Id - 1  - xt

\| xt\| 
x\top 
t

\| xt\| 

\right)  \right\}   .

3. If xt \not = 0 and x0 =  - \| xt\| , then

V \in 

\left\{   0,
1

2

\left(  1
x\top 
t

\| xt\| 
xt

\| xt\| 
xt

\| xt\| 
x\top 
t

\| xt\| 

\right)  \right\}   .

4. If xt = 0 and x0 = 0, then

V \in 
\Bigl\{ 
0, Id

\Bigr\} \bigcup \biggl\{ 
1

2

\biggl( 
1 \omega \top 

\omega (1 + \rho )Id - 1  - \rho \omega \omega \top 

\biggr) 
: | \rho | \leq 1, \| \omega \| = 1

\biggr\} 
.

Recall that \scrK = \scrK n1 \times \cdot \cdot \cdot \times \scrK nr \in \BbbR n is the Cartesian product of r second-order
cones. It is clear that for any x = (x1; \cdot \cdot \cdot ;xr) \in \BbbR n,

V := Diag(V1, . . . , Vr) \in \partial B\Pi \scrK (x), Vj \in \partial B\Pi \scrK nj (xj), 1 \leq j \leq r.

To apply the semismooth Newton method for solving the ALM subproblems pre-
sented later in the paper, we also need the concept of semismoothness.

Definition 2.4. Let \Phi : \BbbW \rightarrow \BbbY be a locally Lipschitz continuous function on the
open set \scrO \subseteq \BbbW . \Phi is said to be semismooth at a point x \in \scrO if \Phi is directionally
differentiable at x and for any V \in \partial \Phi (x+\Delta x),

\Phi (x+\Delta x) - \Phi (x) - V\Delta x = o(\| \Delta x\| ), \Delta x\rightarrow 0.

\Phi is said to be strongly semismooth at x \in \scrO if \Phi is semismooth at x and for any
V \in \partial \Phi (x+\Delta x),

\Phi (x+\Delta x) - \Phi (x) - V\Delta x = o(\| \Delta x\| 2), \Delta x\rightarrow 0.

\Phi is said to be a (strongly) semismooth function on \scrO if it is (strongly) semismooth
for every point x \in \scrO .

The next lemma shows that \Pi \scrK (\cdot ) is strongly semismooth on \BbbR n. For a proof of
this lemma, see [10, 19].

Lemma 2.5. The projection mapping \Pi \scrK (\cdot ) is strongly semismooth everywhere.

3. Convergence results of the ALM. In this section, we analyze the conver-
gence properties of the ALM applied to problem (P). Even though the theory has
been highly developed, we present certain important results here to make our paper
self-contained.

Let \sigma > 0 be a given penalty parameter. The augmented Lagrangian function
associated with problem (P) for any (x, y) \in \BbbX \times \BbbR n is defined as

L\sigma (x, y) := f0(x) +
1

2\sigma 

\Bigl( \bigm\| \bigm\| \sigma \bigl(  - Hx1 +A\top x2 + x3  - c
\bigr) 
+ y
\bigm\| \bigm\| 2  - \| y\| 2

\Bigr) 
.

At the (k+1)th iteration, for a given sequence of penalty parameters 0 < \sigma k \uparrow \sigma \infty \leq \infty 
and an initial point y0 \in \BbbR n, the inexact ALM performs the following scheme:\Biggl\{ 

xk+1 := (xk+1
1 , xk+1

2 , xk+1
3 ) \approx argmin

x
\{ fk(x) := L\sigma k

(x, yk)\} ,

yk+1 := yk + \sigma ( - Hxk+1
1 +A\top xk+1

2 + xk+1
3  - c), k \geq 0.

(3.1)
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The rate of convergence for the ALM can be obtained by considering its connec-
tion with the dual proximal point algorithm (PPA). This connection was explored in
Rockafellar's classical papers [35, 36]. More specifically, by combining Theorems 4
and 5 in [35], one obtains the following fundamental convergence result for ALM.

Theorem 3.1. Assume that SOLD is nonempty, i.e., T - 1
g (0) \not = \emptyset . Let \{ (xk, yk)\} 

be the infinite sequence generated by the ALM in (3.1) under the criterion for inexact
computation,

(A) fk(x
k+1) - inf fk \leq \epsilon 2k

2\sigma k
,

where \{ \epsilon k\} is a summable and nonnegative sequence in \BbbR . Then the whole sequence
\{ yk\} converges to some y\infty \in SOLD.

If T - 1
g is Lipschitz continuous at the origin with modulus \kappa g > 0 and the ALM is

also executed under the criterion

(B) fk(x
k+1) - inf fk \leq \delta 2k

2\sigma k

\bigm\| \bigm\| yk+1  - yk
\bigm\| \bigm\| 2

with a summable and nonnegative sequence \{ \delta k\} , then yk \rightarrow y\infty as k \rightarrow \infty , where in
this case y\infty is the unique solution for problem (D). Furthermore, it holds that

\bigm\| \bigm\| yk+1  - y\infty 
\bigm\| \bigm\| \leq 

\kappa g(\kappa 
2
g + \sigma 2

k)
 - 1/2 + \delta k

1 - \delta k

\bigm\| \bigm\| yk  - y\infty 
\bigm\| \bigm\| 

for all k sufficiently large.

Remark 3.2. Note that the Lipschitz continuity assumption on T - 1
g is rather re-

strictive since it requires the solution set T - 1
g (0) to be a singleton. In [26], Luque

extended Rockafellar's original results by relaxing the Lipschitz continuity condition
to the upper Lipschitz continuity condition. The latter condition is satisfied if the
corresponding set-valued mapping is piecewise polyhedral (see Sun's PhD thesis [40]
for more discussions on these mappings). However, in the present paper, we con-
sider the mapping involving the nonpolyhedral second-order cone; thus, more relaxed
conditions might be needed.

The classical convergence results for the ALM (or equivalently PPA) are of great
value both theoretically and numerically. However, there are two practical issues to be
resolved. First, we can only obtain the rate of convergence for the dual sequence \{ yk\} 
generated by the ALM, but the rate of convergence for the primal sequence \{ xk\} is not
known. Even though [12, Proposition 3] has provided a convergence result for \{ xk\} 
under the upper Lipschitz continuity condition of T - 1

l , the Lipschitz-like condition is
quite restrictive as explained in [12]. Thus, instead of requiring the convergence of
\{ xk\} when designing a solver, in our opinion, a more reasonable requirement is the
convergence of the KKT residual of the computed primal-dual sequence \{ (xk, yk)\} .
Second, the stopping criteria used in the theoretical analysis are not implementable
since they require some unknown information (e.g., inf fk). Fortunately, these issues
are resolved in [12] by conducting finer analysis of the ALM applied to the dual
problem. We shall summarize these results in the rest of this section.

To proceed, we first need the following definition of quadratic growth condition
and assumption of Robinson constraint qualification.
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1756 L. LIANG, D. F. SUN, AND K.-C. TOH

Definition 3.3. The quadratic growth condition holds at an optimal solution \=y \in 
SOLD if there exist positive constants \kappa and \epsilon such that

 - g0(y) \geq  - g0(\=y) + \kappa dist2(y,SOLD) \forall y \in \BbbB \epsilon (\=y) \cap \{ y \in \BbbR n | Ay = b\} .(3.2)

Assumption 3.4. The solution set SOLD for problem (D) is nonempty, and the
following Robinson constraint qualification of problem (D) holds at some \=y \in SOLD :

0 \in int

\biggl\{ \biggl( 
Ay  - b
y

\biggr) 
+

\biggl( 
A
In

\biggr) 
\BbbR n  - 

\biggl( 
\{ 0\} 
\scrK 

\biggr) \biggr\} 
.

By [7, Theorem 3.9], the optimal solution set SOLP to problem (P) is nonempty and
bounded under Assumption 3.4.

For any k \geq 0, yk \in \BbbR n, x1 \in \BbbR n, and x2 \in \BbbR m, denote\left\{               

\~yk(x1, x2) := \Pi \scrK 
\bigl[ 
yk + \sigma k

\bigl( 
 - Hx1 +A\top x2  - c

\bigr) \bigr] 
,

\~xk(x1, x2) :=
\bigl( 
x1, x2, \~y

k(x1, x2)
\bigr) \top \in \BbbX ,

ek(x1, x2) :=

\left(  Hx1  - H\~yk(x1, x2)
 - b+A\~yk(x1, x2)

0

\right)  .

(3.3)

Let \{ \^\epsilon k\} and \{ \^\delta k\} be two summable and nonnegative sequences. For inexact compu-
tations, we adopt the following stopping criteria:

(A\prime )
\bigm\| \bigm\| ek+1

\bigm\| \bigm\| \leq \^\epsilon 2k/\sigma k
Ck

min

\biggl\{ 
1,

1

\| Hyk+1\| + \| yk+1  - yk\| /\sigma k + 1/\sigma k

\biggr\} 
,

(B\prime )
\bigm\| \bigm\| ek+1

\bigm\| \bigm\| \leq 
(\^\delta 2k/\sigma k)

\bigm\| \bigm\| yk+1  - yk
\bigm\| \bigm\| 2

Ck
min

\biggl\{ 
1,

1

\| Hyk+1\| + \| yk+1  - yk\| /\sigma k + 1/\sigma k

\biggr\} 
,

where ek+1 := ek(xk+1
1 , xk+1

2 ), yk+1 := \~yk(xk+1
1 , xk+1

2 ), and Ck \geq 1 is defined as

Ck := 1 +
\bigm\| \bigm\| \~xk(xk+1

1 , xk+1
2 )

\bigm\| \bigm\| + \bigm\| \bigm\| yk+1
\bigm\| \bigm\| .

We can see that the above stopping criteria are truly implementable, and hence they
are more useful for practical purposes than the classical ones (i.e., criteria (A) and
(B)).

Based on the KKT optimality condition (1.1), we define the natural map

Rnat(x, y) :=

\left(    
Hx1  - Hy
 - b+Ay

x3  - \Pi \scrK (x3  - y)
Hx1  - A\top x2  - x3 + c

\right)    \forall x = (x1, x2, x3) \in \BbbX , y \in \BbbR n.(3.4)

The following theorem is taken from [12, Theorem 2], which provides the R-superlinear
convergence of the KKT residual.

Theorem 3.5. Suppose that Assumption 3.4 holds. Let \{ (xk, yk)\} be an infinite
sequence generated by the ALM in (3.1) under criterion (A\prime ). Then the sequence \{ yk\} 
is bounded and converges to some y\infty \in SOLD. Moreover, the sequence \{ xk\} is also
bounded with all of its limit points in SOLP.
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If criterion (B\prime ) is also executed in the ALM and the quadratic growth condition
holds at y\infty with modulus \^\kappa g > 0, then there exist a positive constant \alpha and an integer
\=k \geq 0 such that for all k \geq \=k, \alpha \^\delta k < 1 and

dist (yk+1,SOLD) \leq \theta kdist (y
k,SOLD),

\bigm\| \bigm\| Rnat(xk+1, yk+1)
\bigm\| \bigm\| \leq \theta \prime kdist (y

k,SOLD),

where

\theta k :=
1

1 - \alpha \^\delta k

\left(  \alpha \^\delta k +
\alpha \^\delta k\sqrt{} 

1 + \sigma 2
k\^\kappa 

2
g

\right)  ,

\theta \prime k :=
1

1 - \alpha \^\delta k

\Biggl( 
max

\biggl\{ 
1,

1

\sigma k

\biggr\} 
+

\^\delta 2k
\sigma k

\bigm\| \bigm\| yk+1  - yk
\bigm\| \bigm\| \Biggr) .

One can observe from the above theorem that when \sigma k \uparrow \sigma \infty \leq \infty ,

\theta k \rightarrow \theta \infty :=
1\sqrt{} 

1 + \sigma 2
\infty \^\kappa 2g

, \theta \prime k \rightarrow \theta \prime \infty := max

\biggl\{ 
1,

1

\sigma \infty 

\biggr\} 
.

Thus, \theta \infty can be arbitrarily close to zero if \sigma \infty is sufficiently large. This implies
that the linear convergence rate for the sequence \{ dist(yk,SOLD)\} can be arbitrar-
ily small. Moreover, since \theta \prime \infty \leq 1, the KKT residual also converges as rapidly as
\{ dist(yk,SOLD)\} . These convergence properties may explain partially the high effi-
ciency of the ALM, as we shall see in our numerical experiments.

4. Quadratic growth condition. In this section, we analyze the quadratic
growth condition for the dual problem (D), which serves as a sufficient condition for
the KKT residual generated by the ALM to achieve the R-superlinear convergence
rate (see Theorem 3.5). In the recent work of Cui, Ding, and Zhao [11], two types of
sufficient conditions were proposed to ensure the quadratic growth condition. Here in
this section, we will follow one of the available frameworks in [11] to provide a sufficient
condition for the quadratic growth condition under the bounded linear regularity and
metric subregularity conditions.

Recall that since H \succeq 0, there exists a matrix R such that H = R\top R. Denote
FD :=

\bigl\{ 
y \in \BbbR n | Ay = b

\bigr\} 
. Then problem (D) can be reformulated as

max
y

\biggl\{ 
g0(y) :=  - 1

2
\| Ry\| 2  - \langle c, y\rangle  - p(y)

\bigm| \bigm| \bigm| \bigm| y \in FD

\biggr\} 
,

where p(\cdot ) = \delta \scrK (\cdot ). Moreover, the KKT optimality condition (1.1) can be rewritten
as

0 \in R\top Ry + c+ \partial p(y) - A\top x2, Ay  - b = 0 \forall (x2, y) \in \BbbR m \times \BbbR n.(4.1)

Take any \=y \in SOLD. Denote

\=\zeta := R\=y, \scrV :=
\bigl\{ 
y \in \BbbR n | Ry = \=\zeta 

\bigr\} 
,

and define the set-valued mapping \scrG : \BbbX \rightrightarrows \BbbR n as

\scrG (x) := (\partial p) - 1
\bigl( 
A\top x2  - R\top \=\zeta  - c

\bigr) 
\forall x = (x1, x2, x3) \in \BbbX .

Then we have the following characterization for the optimal solution set SOLD.
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1758 L. LIANG, D. F. SUN, AND K.-C. TOH

Proposition 4.1. Assume that \=y \in SOLD and \=x = (\=x1, \=x2, \=x3) \in SOLP. Then
the optimal solution set SOLD can be characterized as

SOLD = \scrV \cap \scrG (\=x) \cap FD.

Proof. We only have to show that for any y, y\prime \in SOLD, it holds that Ry = Ry\prime .
This is equivalent to saying that the value Ry is invariant over y \in SOLD. However,
such a fact is already well known in the literature; see, for instance, [28].

Next, we recall the concept of bounded linear regularity of a collection of closed
convex sets. This concept is useful for analyzing error bound properties for constrained
optimization problems.

Definition 4.2. Let D1, . . . , Dq be some closed convex sets in a finite-dimensional
Euclidean space \BbbW . Suppose that D := D1 \cap \cdot \cdot \cdot \cap Dq is nonempty. The collection
\{ D1, . . . , Dq\} is said to be boundedly linearly regular if for every bounded set B \subseteq \BbbW ,
there exists a positive constant \kappa such that

dist (x,D) \leq \kappa max \{ dist (x,D1), . . . ,dist (x,Dq)\} \forall x \in B.

However, checking the condition in Definition 4.2 is not a trivial task. In [5, Corollary
3], the authors established the following simpler sufficient condition.

Proposition 4.3. Let D1, . . . , Dq be some closed convex sets in a finite-
dimensional Euclidean space \BbbW . Suppose that D1, . . . , Dq1 are polyhedral for some
0 \leq q1 \leq q. Then a sufficient condition for the collection \{ D1, . . . , Dq\} to be bound-
edly linearly regular is \bigcap 

1\leq i\leq q1

Di \cap 
\bigcap 

q1+1\leq i\leq q

ri (Di) \not = \emptyset .

We next introduce the definition of metric subregularity.

Definition 4.4. A multifunction \Phi : \BbbW \rightrightarrows \BbbY is said to be metrically subregular
at \=x \in \BbbW for \=v \in \BbbY if (x, v) \in gph (\Phi ) and there exist positive constants \kappa and \epsilon such
that

dist (x,\Phi  - 1(\=v)) \leq \kappa dist (\=v,\Phi (x)) \forall x \in \BbbB \epsilon (\=x).

For a general multifunction, it could be difficult to check the metric subregularity
directly since the graph of the multifunction at the reference point may contain in-
finitely many points. Fortunately, when the multifunction is the subdifferential of a
proper closed convex function, it has a more convenient characterization as shown in
the next proposition.

Proposition 4.5. Let \BbbW be a real Hilbert space endowed with the inner product
\langle \cdot , \cdot \rangle and p : \BbbW \rightarrow ( - \infty ,+\infty ] be a proper closed convex function. Let (\=v, \=x) \in \BbbW \times \BbbW 
such that \=v \in \partial p(\=x). Then \partial p is metrically subregular at \=x for \=v if and only if there
exist positive constants \kappa and \epsilon such that

p(x) \geq p(\=x) + \langle \=v, x - \=x\rangle + \kappa dist2 (x, (\partial p) - 1(\=v)) \forall x \in \BbbB \epsilon (\=x).

The proof of Proposition 4.5 can be found in [3, Theorem 3.3]. The next proposition
states that \partial p(\cdot ) = \partial \delta \scrK (\cdot ) = \scrN \scrK (\cdot ) is indeed metrically subregular.
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Proposition 4.6. Let \scrK = \scrK n1 \times \cdot \cdot \cdot \times \scrK nr \subseteq \BbbR n be the Cartesian product of
some second-order cones with \scrK ni \subseteq \BbbR ni , i = 1, . . . , r, and n = n1 + \cdot \cdot \cdot + nr. For
any (x, v) \in gph(\partial \delta \scrK ), i.e., v \in \scrN \scrK (x), \partial \delta \scrK (\cdot ) is metrically subregular at x for v.

Proof. Since the metric subregularity of \scrN \scrK is implied by the metric subregularity
of each \scrN \scrK ni for i = 1, . . . , r, we only need to check that for a standard second-order
cone K, \scrN K(\cdot ) is metrically subregular at any point on its graph. The latter has been
shown in [41] as a special case of the results for the p-order conic constraint system.
Thus, the proof is completed.

After all the previous preparations, we are now able to provide a sufficient condi-
tion for the quadratic growth condition for problem (D) to hold. The next theorem,
which is taken from [11], provides a general framework to establish the sufficient con-
dition for the quadratic growth condition. To make the paper self-contained and to
explain the idea more clearly, we provide a proof that is restricted to SOCPs.

Theorem 4.7. Assume that SOLD is nonempty and that there exists \=x \in SOLP

such that the collection
\bigl\{ 
\scrV ,\scrG (\=x)

\bigr\} 
is boundedly linearly regular. Then the quadratic

growth condition holds for problem (D) at any point \=y \in SOLD.

Proof. Let \=y \in SOLD, \=x = (\=x1, \=x2, \=x3) \in SOLP, and \epsilon > 0. Then for any
y \in FD \cap \BbbB \epsilon 

\bigl( 
\=y
\bigr) 
, we have that there exist \kappa 2 > 0 and \kappa 3 > 0 such that

dist2
\bigl( 
y,SOLD

\bigr) 
= dist2

\bigl( 
y,\scrV \cap \scrG (\=x)

\bigr) 
\leq \kappa 2

\bigl[ 
dist2

\bigl( 
y,\scrV 

\bigr) 
+ dist2

\bigl( 
y,\scrG (\=x)

\bigr) \bigr] 
\leq \kappa 3

\bigl[ \bigm\| \bigm\| Ry  - \=\zeta 
\bigm\| \bigm\| 2 + dist2

\bigl( 
y, (\partial p) - 1(A\top \=x2  - RT \=\zeta  - c)

\bigr) \bigr] 
under the assumption that

\bigl\{ 
\scrV ,\scrG (\=x)

\bigr\} 
is boundedly linearly regular. Note that in the

last inequality above, the first term makes use of Hoffman's error bound [20].
By Proposition 4.5, Proposition 4.6, and (\=y,A\top \=x2 - R\top \=\zeta  - c) \in gph(\partial p), we know

that there exists \kappa p > 0 such that for any y \in \BbbB \epsilon (\=y), it holds that (by shrinking \epsilon if
necessary)

p(y) - p(\=y) \geq \langle A\top \=x2  - R\top \=\zeta  - c, y  - \=y\rangle + \kappa pdist
2 (y, (\partial p) - 1(A\top \=x2  - R\top \=\zeta  - c)).

By combining all the obtained inequalities, we have that for any y \in FD \cap \BbbB \epsilon (\=y),

 - g0(y) =
1

2
\| Ry\| 2 + \langle c, y\rangle + p(y)

\geq 1

2

\bigm\| \bigm\| \=\zeta \bigm\| \bigm\| 2 + \langle \=\zeta , Ry  - \=\zeta \rangle + 1

2

\bigm\| \bigm\| Ry  - \=\zeta 
\bigm\| \bigm\| 2 + \langle c, y\rangle 

+ p(\=y) +
\bigl\langle 
A\top \=x2  - R\top \=\zeta  - c, y  - \=y

\bigr\rangle 
+ \kappa p dist

2
\bigl( 
y, (\partial p) - 1(A\top \=x2  - R\top \=\zeta  - c)

\bigr) 
=  - g0(\=y) + 1

2

\bigm\| \bigm\| Ry  - \=\zeta 
\bigm\| \bigm\| 2 + \kappa p dist

2
\bigl( 
y, (\partial p) - 1(A\top \=x2  - R\top \=\zeta  - c)

\bigr) 
\geq  - g0(\=y) + \kappa  - 1

3 min

\biggl\{ 
\kappa p,

1

2

\biggr\} 
dist2 (x, SOLD),

which is exactly the quadratic growth condition for problem (D). Therefore, the proof
is completed.

By the definitions of \scrV and FD, it is obvious that both sets are polyhedral.
However, \scrG (\cdot ) is not always polyhedral. Indeed, let \=x3 :=  - A\top \=x2 + R\top \=\zeta + c =
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1760 L. LIANG, D. F. SUN, AND K.-C. TOH

((\=x3)1, . . . , (\=x3)r)
\top \in \BbbR n. Since (see, e.g., [8])

(\partial \delta \scrK ni ) - 1 ( - (\=x3)i) = \scrN (\scrK ni )\circ ( - (\=x3)i) =

\left\{     
\{ 0\} (\=x3)i \in int\scrK ni ,

\scrK ni (\=x3)i = 0,

\BbbR +( - (\=x3)i,0, (\=x3)i,t) (\=x3)i \in bd\scrK ni\setminus \{ 0\} ,

we can see that \scrG (\=x) is polyhedral if and only if (\=x3)i \not = 0 \forall 1 \leq i \leq r. As a
consequence, given \=x2 \in \BbbR m, let J be the index set defined as J := \{ i | (\=x3)i = 0\} if
there exists \=y = (\=y1, . . . , \=yr)

\top \in \BbbR n such that (\=x2, \=y) solves the KKT system (4.1) and
\=yi \in int\scrK ni \forall i \in J . Then by Proposition 4.3, the collection \{ \scrV ,\scrG (\=x)\} is boundedly
linearly regular, and hence the quadratic growth condition for problem (D) holds at
any optimal solution. The aforementioned conclusion on (\=x2, \=y) is summarized as
follows.

Corollary 4.8. Let (\=x2, \=y) be a solution of the KKT system (4.1) and \=x3 =
 - A\top \=x2 + R\top \=\zeta + c. If for each block with ni \geq 3, i = 1, . . . , r, ((\=x3)i, \=yi) satisfies
the strictly complementary condition: \=yi+(\=x3)i \in int\scrK ni . Then the quadratic growth
condition holds at any solution of problem (D).

Proof. By [1, Corollary 24], we know that for each block with ni \geq 3, 1 \leq i \leq r,
((\=x3)i, \=yi) satisfies the strictly complementary condition either when both \=yi and (\=x3)i
are nonzero and in the bd\scrK ni or when one of them is zero and the other is in the
interior of \scrK ni . Then by the above discussions, the conclusion can be derived in a
straight-forward manner.

5. Solving the ALM subproblem by an inexact semismooth Newton
method. In this section, we propose an inexact semismooth Newton method for
solving subproblems arising from the inexact ALM in (3.1) applied to problem (P).

For given y and \sigma , denote \~y(x1, x2, y) := Hx1  - A\top x2  - y/\sigma + c. Recall that the
exact ALM subproblem is given by

(5.1) (x+1 , x
+
2 , x

+
3 ) = argmin

(x1,x2,x3)\in \BbbX 

\Biggl\{ 
1
2 \langle x1, Hx1\rangle  - \langle b, x2\rangle + \delta \scrK (x3)

+ 1
2\sigma 

\Bigl( 
\| \sigma (x3  - \~y(x1, x2, y))\| 2  - \| y\| 2

\Bigr) \Biggr\} 
.

By simple calculations, we have

x+3 = \Pi \scrK 
\bigl( 
\~y(x+1 , x

+
2 , y)

\bigr) 
.(5.2)

Therefore, by using the Moreau identity, we obtain that to solve problem (5.1), it is
equivalent to solve

(5.3) min
x1,x2

\psi (x1, x2) :=
1

2
\langle x1, Hx1\rangle  - \langle b, x2\rangle +

1

2\sigma 

\Bigl( 
\| \Pi \scrK [ - \sigma \~y(x1, x2, y)]\| 2  - \| y\| 2

\Bigr) 
.

Once x+1 and x+2 have been computed, we can obtain x+3 via (5.2). Furthermore,
to solve the above unconstrained minimization problem with respect to (x1, x2) \in 
Ran(H)\times \BbbR m, it is equivalent to solve the following system of nonsmooth equations:

\nabla \psi (x1, x2) =
\biggl( 
Hx1  - H\Pi \scrK [ - \sigma \~y(x1, x2, y)]
 - b+A\Pi \scrK [ - \sigma \~y(x1, x2, y)]

\biggr) 
= 0, (x1, x2) \in Ran(H)\times \BbbR m.

Since \Pi \scrK (\cdot ) is strongly semismooth everywhere (by Proposition 2.5), it is desirable
to apply a semismooth Newton method to solve the above system of nonsmooth
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equations, as one could expect a superlinear or even quadratic convergence rate. To
this end, for any (x1, x2) \in Ran(H)\times \BbbR m, we define

\^\partial 2\psi (x1, x2) :=

\biggl( 
H

0

\biggr) 
+ \sigma 

\biggl( 
H
 - A

\biggr) 
\partial \Pi \scrK [ - \sigma \~y(x1, x2, y)]

\bigl( 
H  - A\top \bigr) .

Then \^\partial 2\psi (x1, x2) can serve as a replacement of the (hard-to-characterize) generalized
Hessian of \psi at (x1, x2), namely, \partial 2\psi (x1, x2), in the sense that for any d1 \in Ran(H)
and d2 \in \BbbR m,

\^\partial 2\psi (x1, x2)

\biggl( \biggl( 
d1
d2

\biggr) \biggr) 
= \partial 2\psi (x1, x2)

\biggl( \biggl( 
d1
d2

\biggr) \biggr) 
.

Next we present the well-known inexact semismooth Newton method (as Algo-
rithm 5.1) in [46] to solve (5.3) as in Algorithm 5.1.

Algorithm 5.1 Algorithm iSSN: An inexact semismooth Newton method
(iSSN(y, \sigma )).

Given \^\nu \in (0, 1), \tau \in (0, 1], \tau 1, \tau 2 \in (0, 1), and \mu \in (0, 1/2), \delta \in (0, 1), choose
(x01, x

0
2) \in Ran(H)\times \BbbR m. Perform the following iterations for j = 0, 1, 2, . . . .

Step 1. Set \epsilon j := \tau 1 min
\Bigl\{ 
\tau 2,
\bigm\| \bigm\| \bigm\| \nabla \psi (xj1, xj2)\bigm\| \bigm\| \bigm\| \Bigr\} and \nu j := min

\biggl\{ 
\^\nu ,
\bigm\| \bigm\| \bigm\| \nabla \psi (xj1, xj2)\bigm\| \bigm\| \bigm\| 1+\tau 

\biggr\} 
.

Find (dj1, d
j
2) \in Ran(H)\times \BbbR m by solving approximately the linear system

Mj

\biggl( 
d1
d2

\biggr) 
+ \epsilon j

\biggl( 
0
d2

\biggr) 
+\nabla \psi (xj1, x

j
2) = 0, Mj \in \^\partial 2\psi (xj1, x

j
2)

in the sense that \bigm\| \bigm\| \bigm\| \bigm\| Mj

\biggl( 
dj1
dj2

\biggr) 
+ \epsilon j

\biggl( 
0

dj2

\biggr) 
+\nabla \psi (xj1, x

j
2)

\bigm\| \bigm\| \bigm\| \bigm\| \leq \nu j .

Step 2. Set \alpha j = \delta mj , where mj is the smallest nonnegative integer m for which

\psi (xj1 + \delta mdj1, x
j
2 + \delta mdj2) \leq \psi (xj1, x

j
2) + \mu \delta m

\biggl\langle 
\nabla \psi (xj1, x

j
2),

\biggl( 
dj1
dj2

\biggr) \biggr\rangle 
.

Step 3. Set xj+1
1 = xj1 + \alpha jd

j
1 and xj+1

2 = xj2 + \alpha jd
j
2.

The convergence of Algorithm 5.1 is given by the next theorem under the following
assumption.

Assumption 5.1. The linear mapping A : \BbbR n \rightarrow \BbbR m is onto, and there exists
\^y \in int\scrK such that A\^y = b.

Theorem 5.2. Suppose that Assumption 5.1 holds. Then Algorithm 5.1 generates
a bounded sequence \{ (xj1, x

j
2)\} such that any of its accumulation point is an optimal

solution to problem (5.3).

The reader may refer to [46, Theorem 3.4] for a proof of Theorem 5.2. To obtain
a fast superlinear convergence rate or even a quadratic convergence rate of Algo-
rithm 5.1, one needs the positive definiteness of the coefficient matrix in the linear
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system at the solution point. Establishing conditions that ensure the positive defi-
niteness of the coefficient matrix is important for the convergence analysis. The next
theorem provides the convergence rate of the algorithm under the constraint non-
degeneracy condition, whose proof can be done by combining the results from [23,
Proposition 3.1, Theorem 3.2] and [46, Proposition 3.2, Theorem 3.5].

Theorem 5.3. Suppose that Assumption 5.1 holds. Let (\^x1, \^x2) be an accumula-
tion point of the infinite sequence \{ (xj1, x

j
2)\} generated by Algorithm iSSN for prob-

lem (5.3). Let \^y := \Pi \scrK ( - \sigma \~y(\^x1, \^x2, y)). Assume that the following constraint nonde-
generacy condition holds:

A lin
\Bigl( 
\scrT \scrK (\^y)

\Bigr) 
= \BbbR m,

where lin (\scrT \scrK (\^y)) denotes the lineality space of the tangent cone of \scrK at \^y. Then the
whole sequence \{ (xj1, x

j
2)\} converges to (\^x1, \^x2) and\bigm\| \bigm\| \bigm\| (xj+1

1 , xj+1
2 ) - (\^x1, \^x2)

\bigm\| \bigm\| \bigm\| = O

\biggl( \bigm\| \bigm\| \bigm\| (xj1, xj2) - (\^x1, \^x2)
\bigm\| \bigm\| \bigm\| 1+\tau 

\biggr) 
.

Remark 5.4. The constraint nondegeneracy condition in the above theorem could
be hard to verify since the accumulation point (\^x1, \^x2) is usually not known. Fortu-
nately, for some special problems one may check that this condition holds at any
feasible solution. For such an example, see Theorem 6.1 in section 6.3 on solving
MEB problems.

Note that under the constraint nondegeneracy condition, one can show that every
element in \^\partial 2\psi (\^x1, \^x2) is self-adjoint and positive definite on Ran(H)\times \BbbR m; see [23,
Theorem 3.2]. It is also clear that if H is not positive definite on \BbbR n, then Ran(H) \not =
\BbbR n. Thus, if Ran(H) is replaced by any linear subspace of \BbbR n strictly containing
Ran(H) in the formulation of problem (P), then the local fast convergence rate for
Algorithm iSSN will be lost. As a result, the restriction x1 \in Ran(H) in problem
(P) in fact plays a crucial role in our algorithmic framework. We will discuss later in
section 6.1 on how to implement the restriction (d1, d2) \in Ran(H)\times \BbbR m when solving
the linear system in Algorithm iSSN.

We end this section by emphasizing that our ALM, equipped with a semismooth
Newton method for solving the ALM subproblems, is an inner-outer loop algorithm.
By our convergence analysis, both the inner loop and the outer loop have fast con-
vergence rates under some technical assumptions. Thus, our present algorithm is a
``fast+fast"" algorithm.

6. Numerical implementation and experiments. In this section, we aim to
design an efficient solver for the following SOCP problem

min
x1,x2,x3

\biggl\{ 
1

2
\langle x1, Hx1\rangle  - \langle b, x2\rangle 

\bigm| \bigm| \bigm| \bigm|  - Hx1 +A\top x2 + x3 = c,
x3 =

\bigl( 
(x3)0, (x3)1, . . . , (x3)r

\bigr) 
\in \scrK 

\biggr\} 
,(6.1)

where \scrK := \BbbR n0
+ \times \scrK n1 \times \cdot \cdot \cdot \times \scrK nr with \scrK ni (ni \geq 3) being the second-order cone in

\BbbR ni for 1 \leq i \leq r, c = (c0, c1, . . . , cr)
\top \in \BbbR n0 \times \BbbR n1 \times \cdot \cdot \cdot \times \BbbR nr , b \in \BbbR m, A \in \BbbR m\times n,

and H \in \BbbS n+ are given data with n = n0 + n1 + \cdot \cdot \cdot + nr. Moreover, if we treat A as a
linear mapping such that A : \BbbR n \rightarrow \BbbR m, then it has the following form:

Ay :=

r\sum 
i=0

Aiyi, Ai \in \BbbR m\times ni , 0 \leq i \leq r \forall y = (y0; y1; \cdot \cdot \cdot ; yr) \in \BbbR n.
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Note that in (6.1), we consider additionally a nonnegative constraint since it
often appears in real-world applications. However, all the theoretical development
in the previous parts of the paper can easily be extended to include the additional
nonnegative constraint since the cone \BbbR n0

+ is polyhedral.
In the remaining part of this section, we first discuss some implementation details

for the proposed ALM. Next, we apply our SOCP solver to solve MEB problems, trust-
region subproblems, square-root Lasso problems, and some linear SOCPs problems
in the DIMACS Challenge data set. We also mention here that the purpose of our
numerical experiments is to compare the efficiency of our proposed ALM against other
well-known linear SOCP solvers. Therefore, we do not compare the performance of
our solver with specialized solvers for each application that are presented in the rest
of this section.

6.1. On the efficient implementation of the ALM for SOCP. In this
subsection, we present some implementation details for our ALM solver. In particular,
we discuss how to solve the Newton systems efficiently when the input data possess
certain sparsity structures.

First, we consider solving systems arising in linear SOCPs. Let us focus on the
case when A is a sparse matrix. For any given (y, x2) and \sigma > 0, it is shown in
section 5 that the crucial task for solving the ALM subproblem is to solve a linear
system in the following form:

Md :=

\Biggl( 
\epsilon Im +

r\sum 
i=0

Mi

\Biggr) 
d = rhs, d \in \BbbR m,(6.2)

where Mi := AiViA
\top 
i for 1 \leq i \leq r, \epsilon is a small positive number, rhs is a given vector,

and

V0 \in \partial B\Pi \BbbR n
+

\bigl( 
y0 + \sigma (A\top 

0 x2  - c0)
\bigr) 
,

Vi \in \partial B\Pi \scrK ni

\bigl( 
yi + \sigma (A\top 

i x2  - ci)
\bigr) 
, 1 \leq i \leq r.

From the description of the elements in \partial B\Pi \scrK ni (\cdot ) presented in section 2, we can see
that Vi takes the following form:

Vi =
1

2

\Biggl( 
1 \omega \top 

i

\omega i (1 + \rho i)Ini - 1  - \rho i\omega i\omega 
\top 
i

\Biggr) 
, | \rho i| \leq 1, \| \omega i\| = 1.

Then, for any 1 \leq i \leq r, Mi can be rewritten as

Mi = AiViA
\top 
i =

1 + \rho i
2

AiA
\top 
i +

1

2
(Ai,1, Ai,2wi)

\biggl( 
 - \rho i 1
1  - \rho i

\biggr) 
(Ai,1, Ai,2wi)

\top 
,

where Ai = (Ai,1, Ai,2) with Ai,1 \in \BbbR m and Ai,2 \in \BbbR m\times (ni - 1).
The presence of the outer-product terms in the formulation of the matrix Mi =

AiViA
\top 
i can cause numerical issue in the following sense. If the vector Ai,2wi is

dense, even when AiA
\top 
i is a sparse matrix, Mi will still be a dense matrix. In this

case, directly solving (6.2) based on Cholesky factorization will be time consuming. To
overcome the aforementioned issue, we will apply the following dense-column handling
technique to exploit the possibly sparse part of the matrix Mi.

Let us assume that the coefficient matrixM can be written asM =Msp+UDU
\top ,

where Msp is a sparse symmetric positive definite matrix, U has only a few columns,
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and D is an invertible diagonal matrix. Then we can solve the linear system (6.2) by
solving the following slightly larger but sparse linear system:

\scrM 

\Biggl( 
d

du

\Biggr) 
=

\Biggl( 
rhs

0

\Biggr) 
, \scrM :=

\Biggl( 
Msp U

U\top  - D - 1,

\Biggr) 
, du := DU\top d.(6.3)

To obtain an accurate approximate solution to the linear system (6.3), it is desirable
to solve the above linear system via a preconditioned symmetric quasi-minimal resid-
ual method (PSQMR) [14] with the preconditioner computed based on the following
analytical expression of \scrM  - 1:

\scrM  - 1 =

\Biggl( 
M - 1

sp  - M - 1
sp US

 - 1U\top M - 1
sp M - 1

sp US
 - 1

S - 1U\top M - 1
sp  - S - 1

\Biggr) 
,

where S = D - 1 + U\top M - 1
sp U . It can be readily seen that for a given vector (h1;h2),

\scrM  - 1(h1;h2) can be evaluated efficiently as follows:

\lambda 1 = M - 1
sp h1, \lambda 2 = S - 1

\bigl( 
U\top \lambda 1  - h2

\bigr) 
, \scrM  - 1(h1;h2) = (\lambda 1  - M - 1

sp U\lambda 2;\lambda 2).

However, when the size of the matrix S (which is twice the number of second-order
cones) is large or there is no obvious sparsity structure in the linear system (6.2), the
aforementioned technique may be time consuming. In this case, we would apply the
PSQMR directly to solve the system (6.2) with diagonal preconditioner.

Next, we consider the case when H \not = 0. We then need to solve the linear system
as described in Algorithm iSSN,

(6.4) M

\Biggl( 
d1

d2

\Biggr) 
=

\Biggl( 
H + \sigma HV H  - \sigma HV A\top 

 - \sigma AV H \epsilon Im + \sigma AV A\top 

\Biggr) \Biggl( 
d1

d2

\Biggr) 
=

\Biggl( 
HR1

R2

\Biggr) 
,

such that (d1, d2) \in Ran(H)\times \BbbR m and

(6.5)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| M
\Biggl( 
d1

d2

\Biggr) 
 - 

\Biggl( 
HR1

R2

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq \nu ,

where \epsilon > 0, \sigma > 0, and \nu > 0 are given parameters; R1 and R2 are given vectors;
and V \in \partial B\Pi \scrK [ - \sigma \~y(x1, x2, y)] at the given point (x1, x2, y). Given the fact that
one requires the condition d1 \in Ran(H) to establish the convergence of Algorithm
iSSN, however, in practice this condition may bring numerical issues in computing
the Newton direction. Fortunately, we can fully overcome this difficulty via solving
the simplified system

(6.6) \widehat M \Biggl( 
\^d1

\^d2

\Biggr) 
=

\Biggl( 
In + \sigma V H  - \sigma V A\top 

 - \sigma AV H \epsilon Im + \sigma AV A\top 

\Biggr) \Biggl( 
\^d1

\^d2

\Biggr) 
=

\Biggl( 
R1

R2

\Biggr) 

such that ( \^d1, \^d2) \in \BbbR n \times \BbbR m, with the residual\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \widehat M
\Biggl( 

\^d1

\^d2

\Biggr) 
 - 

\Biggl( 
R1

R2

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq 1

max\{ 1, \lambda max(H)\} 
\nu ,

where \lambda max(H) is the maximum eigenvalue of H. Then simple calculations show

that (d1, d2) := (\Pi Ran(H)( \^d1), \^d2) solves (6.4) satisfying (6.5). Moreover, one can
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verify that H\Pi Ran(H)( \^d1) = H \^d1 and \langle \Pi Ran(H)( \^d1), H\Pi Ran(H)( \^d1)\rangle = \langle \^d1, H \^d1\rangle .
Using these facts and analyzing the proposed algorithm carefully, we can execute
the proposed algorithm without computing \Pi Ran(H)( \^d1) explicitly. Finally, to solve
the linear system (6.6), we can apply a direct method via computing the sparse LU

factorization of \widehat M if it is sparse. Otherwise, we may use an iterative solver, such as
the BICGSTAB method in [38].

6.2. Settings for numerical experiments. In this subsection, we present the
settings of our numerical experiments. We first set up the stopping criteria for the
proposed ALM based on the KKT conditions given in (1.1). We define the relative
KKT residuals,

\Delta 1(x1, y) :=

\sqrt{} 
\| Ay  - b\| 2 + \| H(x1  - y)\| 2

1 + \| b\| + \| H\| F
, \Delta 2(y, x3) :=

\| x3  - \Pi \scrK (x3  - y)\| 
1 + \| y\| + \| x3\| 

,

\Delta 3(x1, x2, x3) :=

\bigm\| \bigm\|  - Hx1 +A\top x2 + x3  - c
\bigm\| \bigm\| 

1 + \| c\| 

and the relative gap

\Delta 4(x1, x2, y) :=
| pobj - dobj| 

1 + | pobj| + | dobj| 
,

where pobj := 1
2 \langle x1, Hx1\rangle  - \langle b, x2\rangle and dobj :=  - 1

2 \langle y, Hy\rangle  - \langle c, y\rangle are the objective
function values for primal and dual problems, respectively. For any given termination
tolerance tol, which will be specified later, we terminate our ALM solver when

\Delta k := max
\bigl\{ 
\Delta 1(x

k
1 , y

k), \Delta 2(y
k, xk3), \Delta 3(x

k
1 , x

k
2 , x

k
3), \Delta 4(x

k
1 , x

k
2 , y

k)
\bigr\} 
< tol,(6.7)

where \{ (xk1 , xk2 , xk3 , yk)\} is the sequence generated by the algorithm at the kth itera-
tion.

In our numerical experiments, we will consider both linear and convex qua-
dratic SOCPs. For linear SOCPs, the solvers that we will benchmark against are
the highly powerful commercial solver Mosek1 (version 9.1.7) and the efficient open
source semidefinite-quadratic-linear programs solver SDPT32 [45] (version 4.0). For
the convex quadratic SOCPs, we apply our ALM solver to the problem with qua-
dratic objective directly, while for Mosek and SDPT3, we solve the reformulated
problem (1.2).

For the ALM, we set tol = 10 - 8 and stop the algorithm whenever it returns
a solution such that \Delta k defined in (6.7) is less than tol. Moreover, the maximum
number of iterations for the ALM is set to be 100. Since Mosek solves a homogeneous
self-dual model which uses different stopping criteria, we use its default settings. The
solutions returned by Mosek and SDPT3 under the default settings are then extracted
to compute the relative KKT residuals in (6.7). We observe that when the default
settings are used, Mosek and SDPT3 provide similar levels of accuracy as ours in the
terms of relative KKT residuals defined in (6.7).

All the computational results are presented in tables. The column under ``it""
reports the number of iterations for each algorithm. Note that for the column

1https://www.mosek.com/.
2https://blog.nus.edu.sg/mattohkc/softwares/sdpt3/.
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``it(newton),"" we report the number of ALM iterations and the total number of New-
ton systems solved in the ALM. In addition, the column ``time"" reports the compu-
tational time in seconds. For the column ``kkt,"" we report the relative KKT residuals
returned by each solver.

All experiments are run in MATLAB R2018b on a workstation with Intel Xeon
processor E5-2680v3 at 2.50 GHz (this processor has 12 cores and 24 threads) and
128 GB of RAM, equipped with 64-bit Windows 10 operating system. Since Mosek
can take advantage of multithreading, we observe that under this operating system,
the number of threads used by Mosek is 12, whereas for SDPT3 and our solver, only
one thread is observed to be used by MATLAB.

6.3. Application to MEB problems. In this subsection, we consider the MEB
problem, whose goal is to compute a ball of smallest radius that encloses a given set
of balls (including points). The MEB problem is a member of the family of minimum
containment problems, and it is also known as the smallest enclosing ball problem and
minimal bounding sphere problem. We refer the reader to [47] for an introduction of
MEB problems.

Let Bi denote a ball in \BbbR d with center ci and radius ri \geq 0, i.e.,

Bi =
\bigl\{ 
z \in \BbbR d : \| z  - ci\| \leq ri

\bigr\} 
.

Given a set of distinct balls \scrB = \{ B1, B2, . . . , Bm\} \subseteq \BbbR d, the MEB problem is equiv-
alent to the following unconstrained convex minimization problem:

min
z\in \BbbR d

max
1\leq i\leq m

\{ \| z  - ci\| + ri\} .(6.8)

Since the objective function is nonsmooth, the usual gradient-based methods are not
applicable. However, if we denote n = m(d+ 1), x\bftwo = (r; z) \in \BbbR d+1, and

x\bfthree = (t1; s1; t2; s2; \cdot \cdot \cdot ; tm; sm) \in \BbbR n,

problem (6.8) can be reformulated into a linear SOCP problem of the form (6.1) (see,
e.g., [47] for such reformulation)

(MEB) max
\bfx \bftwo ,\bfitx \bfthree 

\bigl\{ 
b\top x\bftwo 

\bigm| \bigm| A\top x\bftwo + x\bfthree = c, x\bfthree \in \scrK 
\bigr\} 
,(6.9)

where

b =  - (1; 0; \cdot \cdot \cdot ; 0) \in \BbbR d+1, c =  - (r1; c1; r2; c2; \cdot \cdot \cdot ; rm; cm) \in \BbbR n,

A =  - 
\bigl( 
Id+1 \cdot \cdot \cdot Id+1

\bigr) \underbrace{}  \underbrace{}  
m

\in \BbbR (d+1)\times n,\scrK = \scrK d+1 \times \cdot \cdot \cdot \times \scrK d+1\underbrace{}  \underbrace{}  
m

\subseteq \BbbR n.

Then we can apply the proposed ALM to solve the MEB problem. To achieve a
fast local convergence rate for the semismooth Newton method when solving the
ALM subproblems, we need the constraint nondegeneracy condition. For the MEB
problem, by considering its geometrical properties, we are able to show that the
constraint nondegeneracy condition holds at any feasible solution of the dual problem
of MEB.

Theorem 6.1. Assume that \scrB = \{ B1, B2, . . . , Bm\} \subset \BbbR d with m > 1. Then
the constraint nondegeneracy condition holds at any feasible solution \=y for the dual
problem of (MEB), i.e.,

A(lin(\scrT \scrK (\=y))) = \BbbR d+1 \forall \bfitA \=\bfity = \bfitb .
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Proof. Let \=y = (\=y1; . . . ; \=ym) \in \BbbR n be any feasible solution, i.e., \bfitA (\=\bfity ) = \bfitb and
\=yi = (\alpha i; vi) \in \scrK d+1 for i = 1, . . . ,m. If there exists i such that \alpha i > \| vi\| , then the
conclusion is trivial since lin(\scrT \scrK d+1( \=yi)) = \BbbR d+1. Assume without loss of generality
that for all 1 \leq i \leq m0, m0 \leq m, we have that \alpha i = \| vi\| > 0 and that for all i > m0,
\alpha i = \| vi\| = 0.

We claim that m0 \geq 2. If m0 = 1, then by the feasibility condition, we have
that \alpha 1 = 1 and v1 = 0, but this is impossible since \=y1 = (\alpha 1; v1) \in \partial \scrK d+1. Thus,
m0 \geq 2. Next, we show that there exist 1 \leq i < j \leq m0 such that \=yi = (\alpha i; vi) and
\=yj = (\alpha j ; vj) is linearly independent. Suppose that this is not true. Then all the
vectors \=yi, 1 \leq i \leq m0, are parallel, and the feasibility condition implies that vi = 0
for all 1 \leq i \leq m0. The latter contradicts the assumption that \=yi, 1 \leq i \leq m0, are
nonzero vectors on the boundary of \scrK d+1. Now for such i and j, the linearity spaces
are given by

lin(\scrT \scrK d+1(\alpha i; vi)) = (\alpha i; - vi)\bot , lin(\scrT \scrK d+1(\alpha j ; vj)) = (\alpha j ; - vj)\bot .

For the primal constraint nondegeneracy condition to hold, we need to show that

lin(\scrT \scrK d+1(\alpha i; vi)) + lin(\scrT \scrK d+1(\alpha j ; vj)) = \BbbR d+1.

However, the aforementioned condition is equivalent to

span \{ (\alpha i; - vi)\} \cap span \{ (\alpha j ; - vj)\} = \{ 0\} ,

which holds true because of the linear independence of the vectors \=yi and \=yj . This
completes the proof.

Next, we evaluate the performance of the proposed ALM against SDPT3 and
Mosek. Let \{ \=pi\} i\geq 0 denote the following pseudorandom sequence:

p0 = 7, pi+1 = (445pi + 1) mod 4096, \=pi =
pi

40.96
, i = 1, 2, . . . .

Then the elements of ci, i = 1, 2, . . . ,m, are successively set to \=p1, \=p2, . . ., in the order

r1, (c1)1, . . . , (c1)d, . . . , rm, (cm)1, . . . , (cm)d.

Note that same testing instances were also used in [47]. The associated computational
results are presented in Table 1. From these results, we observe that SDPT3, Mosek,
and the ALM solve all the instances successfully. Our ALM outperforms the other
methods in the sense that the computational time is much smaller. Mosek outperforms
SDPT3 but becomes less efficient when the problem size is large. Indeed, Mosek is
about two times faster than SDPT3, while the ALM is at least two times faster than
Mosek when the problem size is large. Thus, we can conclude that the proposed ALM
is highly efficient and robust for MEB problems.

6.4. Application to trust-region subproblems. We consider in this subsec-
tion SOCPs arising from the classical trust-region subproblem,

min
y\in \BbbR d

\biggl\{ 
1

2
\langle y, Hy\rangle + \langle c, y\rangle 

\bigm| \bigm| \bigm| \bigm| \| y\| \leq 1

\biggr\} 
,(6.10)

where H is symmetric but not necessarily positive semidefinite. It was proven in
[30, Theorem 5] that when \lambda H < 0 (the smallest eigenvalue of H), a tight convex

D
ow

nl
oa

de
d 

09
/0

2/
21

 to
 1

58
.1

32
.1

75
.1

03
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1768 L. LIANG, D. F. SUN, AND K.-C. TOH

Table 1
Computational results for MEB problems with various value of m and d.

SDPT3 Mosek ALM
m, d it| time| kkt it| time| kkt it(newton)| time| kkt

1000, 400 21 | 5.7 | 9.6e-09 13 | 2.7 | 3.5e-09 7(40) | 1.8 | 2.9e-09
1000, 800 22 | 13.1 | 6.5e-09 14 | 5.2 | 1.6e-09 7(44) | 3.0 | 1.9e-09
1000, 1200 21 | 19.8 | 8.0e-09 12 | 8.2 | 1.2e-09 7(42) | 4.1 | 1.3e-09
1000, 1600 21 | 29.7 | 7.3e-09 11 | 11.7 | 7.3e-09 6(39) | 5.3 | 3.2e-09
1000, 2000 19 | 34.3 | 8.1e-09 13 | 17.7 | 4.3e-09 6(37) | 6.0 | 2.3e-09
8000, 100 25 | 13.4 | 7.6e-09 17 | 5.2 | 2.4e-09 7(45) | 3.6 | 9.1e-09
16000, 100 25 | 26.1 | 7.1e-09 19 | 11.0 | 2.2e-09 8(48) | 7.5 | 4.1e-09
32000, 100 25 | 54.6 | 8.4e-09 20 | 23.7 | 1.7e-09 7(44) | 14.1 | 2.2e-09
64000, 100 28 | 119.7 | 6.7e-09 20 | 49.3 | 4.9e-09 7(45) | 28.6 | 1.9e-09
128000, 100 30 | 277.3 | 5.8e-09 18 | 97.9 | 6.4e-09 6(43) | 54.7 | 3.9e-09
256000, 100 30 | 645.3 | 1.0e-08 20 | 377.6 | 1.2e-08 6(45) | 118.4 | 3.6e-09
512000, 100 31 | 1429.2 | 7.0e-09 20 | 1306.5 | 1.0e-08 5(39) | 212.4 | 9.1e-09
3000, 1000 21 | 54.8 | 7.9e-09 14 | 20.1 | 4.4e-09 7(43) | 10.5 | 3.1e-09
3000, 2000 22 | 123.1 | 9.2e-09 15 | 51.9 | 1.9e-10 7(46) | 21.5 | 6.0e-09
3000, 4000 22 | 283.1 | 5.9e-09 11 | 128.8 | 1.5e-10 6(40) | 36.4 | 4.0e-09
3000, 8000 20 | 558.6 | 7.9e-09 12 | 277.2 | 5.0e-09 6(39) | 71.2 | 6.1e-09
3000, 16000 20 | 1334.9 | 5.4e-09 12 | 592.7 | 2.3e-10 6(44) | 164.6 | 1.6e-09

relaxation of the classical trust-region subproblem (6.10) can be derived and is given
by

min
y\in \BbbR d

\biggl\{ 
1

2
\langle y, (H  - \lambda HId)y\rangle + \langle c, y\rangle + \lambda H

\bigm| \bigm| \bigm| \bigm| \| y\| \leq 1

\biggr\} 
.(6.11)

Problem (6.11) can be reformulated (ignoring the constant term \lambda H in the objective)
to the form of (D),

min
\bfity 

\biggl\{ 
1

2
\langle \bfity , \bfitH \bfity \rangle + \langle \bfitc , \bfity \rangle 

\bigm| \bigm| \bigm| \bigm| \bfitA \bfity = \bfitb , \bfity \in \scrK d+1

\biggr\} 
,(6.12)

where \bfity := (s, y)\top \in \BbbR d+1, \bfitc := (0, c)\top \in \BbbR d+1, \bfitb := 1, \bfitA := (1, 0) \in \BbbR 1\times (d+1), and

\bfitH :=

\Biggl( 
0 0

0 H  - \lambda HId

\Biggr) 
\in \BbbS d+1

+ .

To solve a problem of the form (6.12) by Mosek and SDPT3, we need also to
reformulate it as a linear SOCP as we did in the introduction. Specifically, prob-
lem (6.12) is equivalent to the following problem with additional affine and rotated
quadratic cone constraints:

min
\=\bfity 

\{ \langle \=\bfitc , \=\bfity \rangle | \=\bfitA \=\bfity = \=\bfitb , \=\bfity \in \scrK d+1 \times \scrK d+2
r

\bigr\} 
,

where \=\bfity := (\bfity , t, q, z)\top \in \BbbR 2d+3 with t, q \in \BbbR , z \in \BbbR d, \=\bfitc := (\bfitc , 1, 0)\top \in \BbbR 2d+3,
\=\bfitb := (\bfitb , 0, 1) \in \BbbR d+2 and

\=\bfitA :=

\left(   \bfitA 0 0 0

R 0 0  - Id+1

0 0 1 0

\right)   \in \BbbR (d+2)\times (2d+3)

with \bfitH = R\top R.
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Table 2
Computational results for trust-region subproblem on synthetic data.

Mosek SDPT3 ALM
n \lambda H it| time| kkt it| time| kkt it(newton)| time| kkt

1000 -9.9e+03 3 | 0.9 | 1.1e-09 9 | 2.2 | 1.1e-07 6(13) | 0.1 | 1.7e-09
2000 -1.2e+04 3 | 2.4 | 6.6e-08 8 | 8.3 | 2.6e-06 5(14) | 0.1 | 3.6e-09
3000 -1.3e+04 3 | 6.0 | 1.9e-06 9 | 22.1 | 9.9e-08 6(16) | 0.3 | 6.1e-10
4000 -1.5e+04 3 | 11.9 | 4.0e-09 9 | 40.5 | 1.1e-07 6(15) | 0.6 | 5.9e-11
5000 -1.8e+04 3 | 18.8 | 3.5e-09 9 | 66.6 | 1.2e-07 6(13) | 0.8 | 1.0e-09
6000 -4.1e+04 3 | 29.4 | 9.9e-08 9 | 106.9 | 1.2e-07 6(13) | 1.0 | 3.7e-10
7000 -5.3e+04 3 | 40.7 | 2.4e-07 9 | 149.8 | 1.6e-07 6(13) | 1.4 | 4.6e-11
8000 -6.6e+04 3 | 56.6 | 1.3e-06 9 | 205.8 | 1.0e-07 6(15) | 2.0 | 3.2e-11
9000 -1.4e+05 3 | 72.5 | 1.4e-07 9 | 269.4 | 1.8e-07 5(10) | 1.7 | 4.0e-09
10000 -1.2e+05 3 | 88.1 | 7.5e-10 9 | 292.8 | 5.5e-08 5(11) | 2.1 | 8.1e-10

Next we compare the performance of our SOCP solver with Mosek on a class of
synthetic data. In particular, we randomly generate the input date via the following
MATLAB scripts:

P = rand(d,d); h = (P*diag(randn(d,1)))*P';

lamh = eigs(h,1,'smallestreal');

H = [zeros(1,d+1);[zeros(d,1),h-lamh*eye(d)]];

c = [0;randn(d,1)]; b = 1; A = [1,zeros(1,d)]; R = H\^0.5;

The computational results are presented in Table 2. In the table, we also report the
minimum eigenvalue of the data matrix H (corresponding to h in the above MATLAB
script), which is denoted by the term \lambda H . From the table, we can see that our ALM
solver outperforms Mosek and SDPT3 in terms of computational time. In most cases,
the solution quality returned by our solver is much better than that of Mosek and
SDPT3. These results also indicate that dealing with the quadratic objective directly
is indeed much more efficient.

6.5. Application to square-root Lasso problems. In this experiment, we
consider the following square-root Lasso model proposed in [6]:

min
x\in \BbbR d

\| Bx - w\| + \lambda \| x\| 1 ,(6.13)

where B \in \BbbR m\times d and w \in \BbbR m are given data, m is the sample size, and d is the
dimension of the features.

As explained in [6], the square-root Lasso model is advantageous over the classical
Lasso model. When dealing with noise that follows a Gaussian distribution \scrN (0, \sigma 2),
the square-root Lasso model guarantees a near-oracle performance. Moreover, for the
square-root Lasso model, one does not need to know an estimate of the standard devi-
ation \sigma in advance, while such an estimate of \sigma is needed in the classical Lasso model.
However, it is nontrivial to estimate the standard deviation when the dimension of
features, d, is much larger than the sample size, m. Therefore, the square-root Lasso
model is in some sense more useful.

It is outside the scope of this paper to compare the empirical performance of
different models from a statistical perspective. Here we focus on the numerical aspects
of solving the optimization problem (6.13) by reformulating it into an SOCP of the
form (6.1). Hence, we only compare the performance of our proposed ALM against
other general SOCP solvers but not the specialized square-root Lasso solvers, such as
the one in [42].
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Table 3
Computational results for square-root Lasso problems on UCI data set.

SDPT3 Mosek ALM
Problem \lambda c nnz it| time| kkt it| time| kkt it(newton)| time| kkt
E2006.test
(3308,150358)

0.107 1 13 | 102.8 | 8.3e-10 14 | 16.6 | 3.1e-11 4( 7) | 3.8 | 2.7e-09

pyrim.scaled.expanded5
(74,201376)

0.619 48 42 | 32.4 | 2.6e-10 26 | 11.8 | 1.9e-09 4(61) | 10.2 | 2.5e-09

abalone.scale.expanded7
(4177,6435)

0.020 32 22 | 83.1 | 2.2e-09 14 | 44.1 | 6.3e-10 12(37) | 23.2 | 5.0e-09

bodyfat.scale.expanded7
(252,116280)

0.067 15 34 | 42.7 | 3.4e-10 20 | 34.1 | 8.5e-09 4(57) | 5.9 | 7.5e-09

housing.scale.expanded7
(506,77520)

0.433 52 30 | 54.9 | 1.2e-09 20 | 47.2 | 4.8e-09 8(52) | 4.6 | 2.1e-09

mpg.scale.expanded7
(392,3432)

0.253 28 23 | 2.0 | 5.5e-10 13 | 1.3 | 1.2e-09 10(35) | 0.7 | 8.4e-09

space.ga.scale.expanded9
(3107,5005)

0.058 16 22 | 42.5 | 3.1e-09 11 | 22.0 | 1.3e-08 6(27) | 7.9 | 2.5e-10

As stated in [6, section 4], problem (6.13) can be equivalently reformulated as a
standard SOCP. Indeed, we note that for any real number a, we have | a| = a+ + a - 
and a = a+  - a - , where a+ and a - denote the positive and negative parts of a,
respectively. Therefore, we can write x = p - q with p, q \in \BbbR d

+ and thus

\| Bx - w\| + \lambda \| x\| 1 = \| Bp - Bq  - w\| + \lambda e\top (p+ q), e =
\bigl( 
1 \cdot \cdot \cdot 1

\bigr) \top \in \BbbR d.

Now let z = Bp - Bq  - w. Then (6.13) is equivalent to

min
(t,z),p,q

\bigl\{ 
t+ \lambda e\top (p+ q)

\bigm| \bigm| Bp - Bq  - z = w, (t, z) \in \scrK m+1, p, q \in \BbbR d
+

\bigr\} 
,(6.14)

where \scrK m+1 is the second-order cone in \BbbR m+1. Denote y = (p, q, t, z)\top \in \BbbR 2d+m+1

and

\bfitb := w \in \BbbR m, c := (\lambda e, \lambda e, 1, 0)\top \in \BbbR 2d+m+1,

A :=
\bigl( 
B  - B 0  - Im

\bigr) 
\in \BbbR m\times (2d+m+1).

Then we obtain a standard SOCP in the form of the dual problem of (6.1):

(srLasso) min
\bfy 

\Bigl\{ 
c\top y

\bigm| \bigm| \bigm| Ay = b, y \in \scrK := \BbbR d
+ \times \BbbR d

+ \times \scrK m+1
\Bigr\} 
.(6.15)

Next, we would test the reformulated problem (6.15) using SDPT3, Mosek, and
our linear SOCP solver on a collection of UCI data set3 which provides the data B
and w. For the choice of the regularization parameter, we follow the recent work of
Tang et al. [42], where they adopted a 10-fold cross validation to estimate the best
regularization parameter. In particular, we set the parameter \lambda = c0\Phi 

 - 1(1 - 1
40n )\lambda c,

with c0 = 1.1.
The choice of \lambda c and computational results are both presented in Table 3. From

the table, we observe that the three SOCP solvers can successfully solve all the in-
stances. In terms of efficiency, we can see that the ALM has better performance than
Mosek, while SDPT3 is less efficient.

6.6. Numerical experiments on DIMACS Challenge problems. In this
subsection, we test each algorithm on the linear SOCPs in DIMACS Challenge.4

3https://archive.ics.uci.edu/.
4http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/
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Table 4
Computational results on DIMACS Challenge problems.

SDPT3 Mosek ALM
Problem it| time| kkt it| time| kkt it(newton)| time| kkt

nb 22 | 0.4 | 3.1e-09 10 | 0.4 | 8.1e-09 11(46) | 1.0 | 2.8e-12
nbL1 30 | 4.0 | 1.7e-09 12 | 0.3 | 1.3e-09 22(62) | 4.9 | 1.5e-12

nbL2bessel 20 | 0.4 | 9.6e-10 8 | 0.2 | 2.4e-13 8(15) | 0.3 | 1.9e-09
nbL2 15 | 0.3 | 3.1e-09 8 | 0.3 | 2.2e-10 11(49) | 1.0 | 3.8e-10

nql30new 26 | 1.0 | 4.3e-10 16 | 0.3 | 1.8e-10 38(104) | 1.7 | 9.6e-09
nql60new 27 | 4.5 | 1.9e-10 17 | 1.0 | 9.2e-11 38(109) | 7.7 | 7.9e-09
nql180new 33 | 40.4 | 6.1e-11 21 | 10.4 | 6.8e-10 33(126) | 95.5 | 8.9e-09
qssp30new 20 | 0.7 | 3.9e-10 13 | 0.3 | 5.5e-11 13(42) | 1.0 | 7.7e-09
qssp60new 23 | 3.6 | 4.5e-10 13 | 0.8 | 1.9e-10 21(60) | 7.0 | 6.9e-11
qssp180new 29 | 54.5 | 8.1e-10 19 | 12.8 | 9.3e-10 21(69) | 88.1 | 9.6e-09
sched5050s 27 | 0.9 | 1.4e-09 21 | 0.3 | 2.6e-08 13(44) | 0.5 | 9.2e-09
sched10050s 29 | 1.7 | 7.7e-08 20 | 0.4 | 5.0e-07 67(1381) | 30.1 | 2.5e-09
sched100100s 28 | 4.0 | 9.1e-09 23 | 0.8 | 2.4e-06 100(1597) | 39.3 | 1.7e-06
sched200100s 36 | 12.7 | 1.0e-07 24 | 1.5 | 5.3e-08 52(1119) | 59.5 | 7.5e-09

These instances are commonly used to evaluate the efficiency and accuracy of linear
SOCP solvers, and they are quite challenging to solve since many of the instances are
highly degenerate.

The computational results are presented in Table 4. From the table, we observe
that the three methods are able to solve all the instances to the desirable accuracy
except for the last few instances. For the computational time, we see that ALM takes
a longer time than Mosek and SDPT3 for solving many of the instances, especially the
last few instances for which the ALM takes over 1000 Newton iterations to converge.
Those instances, as far as we know, are highly degenerate, and it is the degeneracy
that causes the slow convergence of the semismooth Newton method. This observation
indicates that the ALM may perform poorly on degenerate problems. Finally, based
on the presented numerical results, SDPT3 is also observed to be a highly efficient
and robust solver for the DIMACS Challenge problems.

7. Concluding remarks. In this paper, we have employed the inexact ALM
to solve convex quadratic SOCPs. Under the quadratic growth condition, the KKT
residual is shown to possess a R-superlinear convergence rate based on recently de-
veloped results in the related topics. We also provide sufficient conditions for the
quadratic growth condition to hold. Numerically, a practical SOCP solver is designed
and implemented based on the proposed semismooth Newton-based ALM. Extensive
numerical results on solving various classes of SOCPs demonstrate that our solver is
highly efficient and robust. It has comparable performance to the highly powerful
commercial solver Mosek and outperforms the well-known open-source semidefinite-
quadratic-linear programming solver SDPT3 on the tested problems. With fruitful
applications of SOCPs in many fields, we believe that our solver could serve as a
promising toolbox for solving large-scale SOCPs in real-world applications.
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