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Summary

The smoothing functions of nonsmooth matrix valued functions play an important

role in the smoothing Newton method. Recently the smoothing Newton method

has been extensively studied to solve the semidefinite complementarity problems.

In this thesis, we introduce a generalized smoothing function of the nonsmooth

matrix valued function on the base of the smoothing function of the scalar valued

function. The existence of such smoothing function can be obtained via convolu-

tion.

In Chapter 2, we first study the properties of the smoothing function of the

vector valued function defined via convolution. We discuss the directional differen-

tiability, semismoothness and strong semismoothness of the smoothing function of

the vector valued function. Though we cannot prove that the smoothing function

of the vector valued function inherits the strong semismoothness from the non-

smooth vector valued function corresponding to it, we can show that, under some

conditions, the smoothing function corresponding to the piecewise LC1 function is

strongly semismooth.

The smoothing function of the scalar valued function is the one dimension case

of the vector valued function function. By the results obtained in Chapter 2,

v



Summary vi

we know that the smoothing function of the scalar valued function can have the

properties of locally Lipschitz continuity, continuous differentiability, directional

differentiability, semismoothness and strong semismoothness. Based on the rela-

tionship between the generalized smoothing function of the matrix valued function

and the scalar valued function, we show in Chapter 3 and Chapter 4 that the

smoothing function of the matrix valued function inherits the properties of the

corresponding smoothing function of the scalar valued function.

We also extend the smoothing function for the second order cone complementar-

ity problems and the matrix valued function defined by singular values in Chapter

5.



Chapter 1

Introduction

Let Sn denote the linear space of n × n symmetric matrices. Let On denote

the set of n × n orthogonal matrices. For a matrix X ∈ Sn, its eigenvalues are

λ1(X), ..., λn(X) and it admits a spectral decomposition of the form:

X = Q(X)diag[λ1(X), ..., λn(X)]Q(X)T ,

where Q(X) ∈ On. For a continuous function f : R 7→ R, we can define a

corresponding matrix valued function F : Sn 7→ Sn, by

F (X) := Q(X)diag[f(λ1(X)), ..., f(λn(X))]Q(X)T . (1.1)

F is well defined (see [16, Sec. 6.2].) It is known that F inherits many properties

from f (see [5],[7].) In particular, if f is a nonsmooth function, then F is also

nonsmooth. The nonsmooth matrix valued function often arises from the semi-

definite programs (SDP) and the semidefinite complementarity problems (SDCP),

which include the nonlinear complementarity problems (NCP) as a special case.

The smoothing Newton method based on the smoothing function has been widely

investigated for NCP. See [24] and the references therein. In [7], Chen and Tseng

extended the smoothing Newton method to SDCP. See [5], [19], [41] and the ref-

erences therein for more discussion.
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In [7], [40], [41], some specific smoothing functions of the matrix valued function

F (X) = X+ have been studied. However, in this thesis, we will focus on the study

of the generalized smoothing functions of the nonsmooth matrix valued functions.

In particular, we are interested in this kind of smoothing functions: G(ε, X) :

R × Sn 7→ Sn such that G is continuously differentiable on R × Sn unless ε = 0

and lim
(ε,Z)→(0,X)

G(ε, Z) = F (X). We define a smoothing function of F by

G(ε, X) := Q(X)diag[g(ε, λ1(X)), ..., g(ε, λn(X))]Q(X)T , (1.2)

where g : R × R is a smoothing function of f . For convenience of discussion,

we always define G(0, X) = F (X) and for any ε < 0 and X ∈ Sn, G(ε, X) =

G(−ε, X).

Consider the locally Lipschitz continuous function F : Rn 7→ Rm. Let φ : R 7→
R+ be a kernel function, i.e., φ is Lebesgue integrable and

∫

R

φ(y)dµ(y) = 1. (1.3)

Here µ is Lebesgue measure (see [33, p.61] for the definition of Lebesgue measure.)

Define supp(φ) := {y ∈ R|φ(y) > 0}. Define Φ : Rn 7→ R+ by

Φ(x) :=
n
∏

i=1

φ(xi), x ∈ Rn.

Define θ : R++ ×R 7→ R+ by

θ(ε, x) := ε−1φ(ε−1x), (ε, x) ∈ R++ ×R.

Let Θ : R++ ×Rn 7→ R+,

Θ(ε, x) := ε−nΦ(ε−1x), (ε, x) ∈ R++ ×Rn.

Then the smoothing function G : R×Rn 7→ Rm corresponding to the vector valued
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function F can be defined by

G(ε, x) :=

∫

Rn

F(x − εy)Φ(y)dµ(y)

=

∫

Rn

F(x − y)Θ(ε, y)dµ(y)

=

∫

Rn

F(y)Θ(ε, x− y)dµ(y),

(1.4)

where (ε, x) ∈ R++ ×Rn, G(0, x) = F(x) and for ε < 0, G(ε, x) = G(−ε, x).

In [38], Sun and Qi investigated some properties, such as Lipschitz continuity,

continuous differentiability, etc. of G. Motivated by their results, the smoothing

function g : R × R 7→ R corresponding to the nonsmooth function f : R 7→ R,

which is used in (1.2), can be defined by

g(ε, x) :=

∫

R

f(x − εy)φ(y)dµ(y)

=

∫

R

f(x − y)θ(ε, y)dµ(y)

=

∫

R

f(y)θ(ε, x− y)dµ(y),

(1.5)

where (ε, x) ∈ R++ ×R, g(0, x) = f(x) and for ε < 0, g(ε, x) = g(−ε, x).

In this thesis, before we discuss the smoothing function G, we first study the

properties of G defined by (1.4) under two cases: supp(φ) is infinite and supp(φ)

is bounded. We show that for a general vector valued function F , under some

conditions, the smoothing function G inherits the properties such as directional

differentiability and semismoothness from F . When supp(φ) is bounded, we can

show that if F is strongly semismooth function, then so is the smoothing function

G. However, when supp(φ) is infinite, we have not obtained the analogous result

for any strongly semismooth function F . Fortunately, we can verify that if F is

a piecewise LC1 function, under some conditions, then G is strongly semismooth.

These results are the main contributions of this thesis. Therefore, our study com-

pletes the analysis of the smoothing function of the vector valued function in [38].
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Based on the study of the smoothing function of the vector valued function, we will

show that the properties of Lipschitz continuity, continuous differentiability, direc-

tional differentiability and (strong) semismoothness are also inherited by G from g.

Especially, the property of (strong) semismoothness of the matrix valued function

plays an important role in the (quadratic) superlinear convergence analysis of the

smoothing Newton method.

The organization of this thesis is as follows. In Subchapter 2.1, when supp(φ)

is infinite, we prove the directional differentiability and semismoothness of the

smoothing function of vector valued function. We also verify that the smooth-

ing function of the piecewise LC1 function is strongly semismooth under some

conditions. In Subchapter 2.2, when supp(φ) is bounded, we do some analogous

analysis of the vector valued smoothing function. These results are essential for

establishing some properties of G. In Chapter 3, we will show that G inherits the

properties of Lipschitz continuity, continuous differentiability and directional dif-

ferentiability from g. In Chapter 4, we prove that if g is (strongly) semismooth, so

is G. In Chapter 5, we apply our smoothing function to the vector valued function

associated with the second order cone and extend the smoothing function to the

matrix valued function over nonsymmetric matrices. The final remarks are stated

in Chapter 6.



Chapter 2

Properties of the Smoothing

Function G

In this chapter, we will focus on the smoothing function G defined by (1.4). Some

assumptions will be stated in the following subsections to make (1.4) well defined.

Also see [25], [34], [36], [38] etc. for some discussion about G. The following

examples are three well-known smoothing functions of plus function f(x) = x+.

Example 2.1. The neural networks smoothing function ([2], [3])

Let φ(x) =
e−x

(1 + e−x)2
, x ∈ R. Then the smoothing function of f(x) = x+ is

g(ε, x) = x + εln(1 + e−
x
ε ), where (ε, x) ∈ R++ ×R.

Example 2.2. The uniform smoothing function ([10], [14], [44])

Let φ(x) =







1 if −1
2
≤ x ≤ 1

2
,

0 otherwise,
x ∈ R. Then the smoothing function of

f(x) = x+ is

g(ε, x) =



















x if x ≥ ε
2
,

1
2ε

(x + ε
2
)2 if − ε

2
< x < ε

2
,

0 if x ≤ − ε
2
,

(2.1)

where (ε, x) ∈ R++ ×R.
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Example 2.3. The Chen-Harker-Kanzow-Smale (CHKS) smoothing function ([1],

[20], [37])

Let φ(x) =
2

(x2 + 4)3/2
, x ∈ R. Then the smoothing function of f(x) = x+ is

g(ε, x) =

√
4ε2 + x2 + x

2
, where (ε, x) ∈ R++ ×R.

In the next example, we use the Weierstrass kernel function as φ.

Example 2.4. Let φ(x) =
1√
π

e−x2

Then the smoothing function of f(x) = x+ is

g(ε, x) =
x

2
u(

x

ε
) +

x

2
+

ε

2
√

π
e−

x2

ε2 , (2.2)

where (ε, x) ∈ R++ ×R and

u(x) :=
2√
π

∫ x

0

e−t2dt.

We name this new smoothing function the Weierstrass smoothing function.

The smoothing function of the plus function f(x) = x+ defined via convolution

has been extensively studied recently. Based on the work of Chen and Mangasarian

([2], [3]), Tseng [43] introduced the CM function ρ(x) : R 7→ R, which is a smooth

convex function and satisfies lim
x→−∞

ρ(x) = 0, lim
x→∞

ρ(x) − x = 0 and 0 < ρ′(x) < 1,

for all x ∈ R; and approximated the plus function f(x) = x+ by the smoothing

function ερ(x/ε) where ε > 0. When ρ is twice continuous differentiable, ερ(x/ε)

can be written in the convolution form ερ(x/ε) =

∫ ∞

−∞

(x − t)+
1

ε
φ(

t

ε
)dt, where

φ = ρ′′, which is actually a special case of the smoothing function defined in (1.4).

Also see [7].

The smoothing function of the projection function, which is a more general case

of the plus function was introduced in [13]. Qi, Sun and Zhou [27] discussed the

strong semismoothness of this group of smoothing function. Also see [6].

In [29], Qi and Tseng studied the (strong) semismoothness of the recession

function, which in fact is a kind of convolution (see [31].) Then the recession
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function is a smoothing function. But this recession function cannot cover the

generalized smoothing function defined by (1.4).

Consider ϕ(x) :=

∫ b

a

[v(x, t)]+u(t)dt, where u(t) ≥ 0 for t ∈ [a, b]. [9], [26],

[29], [30] studied the properties of differentiability and (strong) semismoothness of

ϕ(x).

However, all of these investigations are based on the explicit forms of the

smoothing functions. In this chapter, we will generalize the results discussed in the

above papers from a specific smoothing function to a general smoothing function.

We will discuss the directional differentiability and (strong) semismoothness of G
in this chapter, which complete the analysis of the smoothing function in [38].

For a general vector valued function Ψ : Rn 7→ Rm, denote the set of points

at which Ψ is differentiable by DΨ. Let ∂BΨ(x) be the B-subdifferential of Ψ at

x ∈ Rn defined by

∂BΨ(x) = { lim
xk→x

xk∈DΨ

Ψ′(xk)}.

The generalized Jacobian ∂Ψ(x) of Ψ at x ∈ Rn (in Clarke’s sense) is defined as

the convex hull of ∂BΨ(x). These notions also hold for the matrix valued function.

The vector norm of x ∈ Rn is denoted by ‖x‖. For any n-by-n matrix X, ‖X‖
is the Frobenius norm of X. We denote the norm of the operator M : Sn 7→ Sn by

‖|M |‖ := max
‖X‖=1

‖MX‖.
(Strong) semismoothness plays an important role in the analysis of the (quadratic)

superlinear convergence of generalized Newton methods for nonsmooth equations.

Mifflin [23] and Qi and Sun [28] introduced the semismoothness and strong semi-

smoothness for the vector valued function.

Definition 2.5. Suppose that Ψ : Rn 7→ Rm is locally Lipschitz continuous around

x ∈ Rn. Ψ is said to be semismooth at x if Ψ is directionally differentiable at x

and for any V ∈ ∂Ψ(x + ∆x),

Ψ(x + ∆x) − Ψ(x) − V (∆x) = o(‖∆x‖).
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Ψ is said to be strongly semismooth at x if Ψ is semismooth at x and

Ψ(x + ∆x) − Ψ(x) − V (∆x) = O(‖∆x‖2).

We also use the following lemma to prove the semismoothness and strong semi-

smoothness. This result was obtained in [40, Proposition 2.3].

Lemma 2.6. Suppose that Ψ : Rn 7→ Rm is locally Lipschitz continuous around

x ∈ Rn. Then the following two statements are equivalent:

(i) for any V ∈ ∂Ψ(x + ∆x),

Ψ(x + ∆x) − Ψ(x) − V (∆x) = o(‖∆x‖)( respectively, O(‖∆‖2));

(ii) for any x + ∆x ∈ DΨ,

Ψ(x + ∆x) − Ψ(x) − Ψ′(x + ∆x)(∆x) = o(‖∆x‖)( respectively, O(‖∆‖2)).

2.1 supp(φ) is infinite

Suppose that F : Rn 7→ Rm is a locally Lipschitz continuous function. In this

subchapter, we study the properties of the smoothing function G defined in (1.4),

when supp(φ) is infinite. In order to guarantee some properties of G such as

Lipschitz continuity and continuous differentiability, we introduce the following

assumption in this subsection:

Assumption 2.7. (i) F is globally Lipschitz continuous with Lipschitz constant

LF .

(ii)

∫

Rn

‖y‖Φ(y)dµ(y) < ∞.



2.1 supp(φ) is infinite 9

(iii) Φ is continuously differentiable on Rn, with

∫

Rn

‖y‖2‖Φ′(y)‖dµ(y) < ∞,

for any h ∈ Rn, sup
t∈[0,1]

∫

Rn

‖y‖‖Φ′(y + th) − Φ′(y)‖dµ(y) = O(‖h‖) and

for any τ ∈ R+, sup
t∈[0,1]

∫

Rn

‖y‖2‖Φ′(
1 + τ

1 + tτ
y) − Φ′(y)‖dµ(y) = O(|τ |).

(iv) sup
yi∈R

|yi|3φ(yi) < ∞, i = 1, ..., n.

Here Assumption 2.7 (i) and (ii) are used to make G well defined. Assumption

2.7 (iii) is utilized to establish the continuous differentiability of G. Since we need

some results obtained in [38] in the following discussion, Lemma 2.10 shows that

Assumption 2.7 can imply the assumptions used in [38, Theorem 3.7], which is

stated by Assumption 2.8 and Assumption 2.9.

Assumption 2.8. ([38, Assumption 3.4])

(i) F is globally Lipschitz continuous with Lipschitz constant L.

(ii) κ :=

∫

Rn

‖y‖Φ(y)dµ(y) < ∞.

(iii) Φ is continuously differentiable and for any ε > 0 and x ∈ Rn, the following

integral:
∫

Rn

F(y)Θ′
x(ε, x − y)dy

exists.

(iv) For any ε > 0, x ∈ Rn and h → 0, it holds that

sup
t∈[0,1]

∫

Rn

‖y‖‖[Θ′
x(ε, x + th − y) − Θ′

x(ε, x − y)]h‖dy = o(‖h‖).

Assumption 2.9. ([38, Assumption 3.6])

(i) For any ε > 0 and x ∈ Rn, the following integral:
∫

Rn

F(y)Θ′
ε(ε, x− y)dy

exists.



2.1 supp(φ) is infinite 10

(ii) For any ε > 0, x ∈ Rn and τ ∈ R with τ → 0, we have

sup
t∈[0,1]

∫

Rn

‖y‖|[Θ′
ε(ε + tτ, x − y) − Θ′

ε(ε + τ, x − y)]τ |dy = o(|τ |).

(iii) For any ε > 0 and x ∈ Rn, we have

lim
τ→ε,z→x

∫

Rn

‖y‖|Θ′
ε(τ, z − y) − Θ′

ε(ε, x− y)|dy = 0.

The following lemma shows the relationship between Assumption 2.7 and As-

sumption 2.8, Assumption 2.9.

Lemma 2.10. (i) Assumption 2.7 (i), (ii) and (iii) imply Assumption 2.8.

(ii) Assumption 2.7 (i), (ii) and (iii) imply Assumption 2.9 (i) and (ii).

(iii) Under Assumption 2.7 (i), (ii) and (iii), we have that G′
x(ε, x) and G′

ε(ε, x)

are locally Lipschitz continuous on R++ ×Rn.

Proof. (i) For any ε > 0 and x ∈ Rn, by the assumption

∫

Rn

‖y‖2‖Φ′(y)‖dµ(y) <

∞, the integral
∫

Rn

F(y)Θ′
x(ε, x− y)dµ(y) =

∫

Rn

F(y)
1

εn+1
Φ′(

x − y

ε
)dµ(y).

exists. For any h ∈ Rn with h → 0,

sup
t∈[0,1]

∫

Rn

‖y‖‖[Θ′
x(ε, x + th − y) − Θ′

x(ε, x − y)]h‖dµ(y)

= sup
t∈[0,1]

∫

Rn

‖y‖‖[ 1

εn+1
Φ′(

x + th − y

ε
) − 1

εn+1
Φ′(

x − y

ε
)]h‖dµ(y)

=
1

εn
sup

t∈[0,1]

∫

Rn

‖x − y

ε
− x

ε
‖‖[Φ′(

x − y

ε
+ t

h

ε
) − Φ′(

x − y

ε
)]‖dµ(y)‖h‖

≤ ‖x‖
εn+1

sup
t∈[0,1]

∫

Rn

‖[Φ′(
x − y

ε
+

th

ε
) − Φ′(

x − y

ε
)]‖dµ(y)‖h‖

+
1

εn
sup

t∈[0,1]

∫

Rn

‖x − y

ε
‖‖[Φ′(

x − y

ε
+

th

ε
) − Φ′(

x − y

ε
)]‖dµ(y)‖h‖

=o(‖h‖),
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where the last equation is followed by the assumption sup
t∈[0,1]

∫

Rn

‖y‖‖Φ′(y + th) −

Φ′(y)‖dµ(y) = O(‖h‖). Then Assumption 2.8 holds.

(ii) For any ε > 0 and x ∈ Rn, by the assumption

∫

Rn

‖y‖2‖Φ′(y)‖dµ(y) < ∞,

the following integral
∫

Rn

F(y)Θ′
ε(ε, x − y)dµ(y)

=

∫

Rn

F(y)
−1

εn+1
Φ(

x − y

ε
)dµ(y) +

∫

Rn

F(y)
y − x

εn+2
Φ′(

x − y

ε
)dµ(y).

exists. For any τ ∈ R+ with τ → 0, obviously,

sup
t∈[0,1]

∫

Rn

‖y‖|[ −1

(ε + tτ)n+1
Φ(

x − y

ε + tτ
) − −1

(ε + τ)n+1
Φ(

x − y

ε + τ
)]τ |dµ(y) = o(|τ |).

Moreover, we have

sup
t∈[0,1]

∫

Rn

‖y‖|[ y − x

(ε + tτ)n+2
Φ′(

x − y

ε + tτ
) − y − x

(ε + τ)n+2
Φ′(

x − y

ε + τ
)]τ |dµ(y)

≤ sup
t∈[0,1]

∫

Rn

‖x − (ε + τ)y‖|[ (ε + τ)2y

(ε + tτ)n+2
Φ′(

ε + τ

ε + tτ
y) − (ε + τ)2y

(ε + τ)n+2
Φ′(y)]τ |dµ(y)

≤‖x‖|ε + τ |2 sup
t∈[0,1]

∫

Rn

‖y‖‖[ 1

(ε + tτ)n+2
Φ′(

ε + τ

ε + tτ
y) − 1

(ε + τ)n+2
Φ′(y)]τ‖dµ(y)

+ |ε + τ |3 sup
t∈[0,1]

∫

Rn

‖y‖2‖[ 1

(ε + tτ)n+2
Φ′(

ε + τ

ε + tτ
y) − 1

(ε + τ)n+2
Φ′(y)]τ‖dµ(y)

=o(|τ |),

where the last equality is followed by the assumption sup
t∈[0,1]

∫

Rn

‖y‖2‖Φ′(
1 + τ

1 + tτ
y)−

Φ′(y)‖dµ(y) = O(|τ |). Therefore, we have

sup
t∈[0,1]

∫

Rn

‖y‖|[Θ′
ε(ε + tτ, x − y) − Θ′

ε(ε + τ, x − y)]τ |dµ(y) = o(|τ |).

Then Assumption 2.9 (i) and (ii) follow.

(iii) By [38, Proposition 3.5], we have for ε > 0 and x ∈ Rn,

G′
x(ε, x) =

∫

Rn

F(y)
1

εn+1
Φ′(

x − y

ε
)dµ(y) =

1

εn

∫

Rn

F(x − εy)Φ′(y)dµ(y).
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For (ε1, x1), (ε2, x2) ∈ B(ε, x),

‖
∫

Rn

F(x1 − ε1y)Φ′(y)dµ(y)−
∫

Rn

F(x2 − ε2y)Φ′(y)dµ(y)‖

≤
∫

Rn

‖F(x1 − ε1y) − F(x2 − ε2y)‖‖Φ′(y)‖dµ(y)

≤L

∫

Rn

‖Φ′(y)‖dµ(y)‖x1 − x2‖ + L

∫

Rn

‖y‖‖Φ′(y)‖dµ(y)|ε1 − ε2|

≤K‖(ε1 − ε2, x1 − x2)‖,

where K is a constant. Together with the locally lipschitz continuity of
1

εn
, G′

x(ε, x)

is locally Lipschitz continuous on R++ ×Rn. By using the same way, we can also

show that G′
ε(ε, x) is locally Lipschitz continuous on R++ ×Rn.

There are lots of kernel functions satisfying these assumptions. For instance,

the ones mentioned in Examples 2.1, 2.3 and 2.4. Next proposition shows the

directional differentiability of G.

Proposition 2.11. Suppose that F is directionally differentiable at x ∈ Rn and

Assumption 2.7 (i) and (ii) are satisfied. Then the directional derivative of G at

(0, x) exists and is given by

G′((0, x); (τ, h)) =

∫

Rn

F ′(x; h − |τ |y)Φ(y)dµ(y) (2.3)

for any (τ, h) ∈ R×Rn.

Proof. For any (τ, h) ∈ R×Rn, let

∆tG((0, x); (τ, h)) :=
G(t|τ |, x + th) − G(0, x)

t

=

∫

Rn

F(x + th − t|τ |y) − F(x)

t
Φ(y)dµ(y).

By Assumption 2.7 (i), we have

‖F(x + th − t|τ |y) − F(x)

t
Φ(y)‖ ≤ L‖h‖Φ(y) + L|τ |‖y‖Φ(y), ∀t > 0.
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Assumption 2.7 (ii) implies that L‖h‖Φ(y) + L|τ |‖y‖Φ(y) is Lebesgue integrable.

Thus by Lebesgue’s Dominated Convergence Theorem, we have

lim
t↓0

∆tG((0, x); (τ, h)) = lim
t↓0

∫

Rn

F(x + th − t|τ |y) −F(x)

t
Φ(y)dµ(y)

=

∫

Rn

F ′(x; h − |τ |y)Φ(y)dµ(y),

which, by the definition of directional derivative, proves (2.3).

Based on the results obtained in [38], the following two theorems show two im-

portant properties of G, semismoothness and strong semismoothness, which haven’t

been proven completely in [38].

Theorem 2.12. Suppose that Assumption 2.7 (i), (ii) and (iii) hold. If F is

semismooth on Rn, then G is semismooth on R+ ×Rn.

Proof. By [38, Theorem 3.7 (i)], G is continuously differentiable on R++ × Rn.

Then it implies that G is semismooth on R++ ×Rn. Thus, we only need to show

that G is semismooth at (0, x), x ∈ Rn. By [38, Theorem 3.7 (vii)], we have for

any (ε, d) ∈ R++ ×Rn with (ε, d) → 0,

G(ε, x + d) − G(0, x) − G′(ε, x + d)

(

ε

d

)

= o(‖(ε, d)‖).

It has been proved in [28] that F is semismooth at x if and only if all its component

functions are. Then we have for ∀αi ∈ ∂Fi(x), i = 1, ..., m,

Fi(x + d) − Fi(x) − αid = o(‖d‖).

Furthermore, by [22] and [38, Theorem 3.7 (iv)], we have πx∂Gi(0, x+d) ⊆ ∂Fi(x+

d), where

πx∂Gi(0, x) := {α ∈ Rn| There exists β ∈ R such that (β, α) ∈ ∂Gi(0, x)}.
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Therefore, for any Vi = (βi, αi) ∈ ∂Gi(0, x + d), we have αi ∈ ∂Fi(x + d), then

Gi(0, x + d) − Gi(0, x) − Vi

(

0

d

)

= Fi(x + d) − Fi(x) − αid = o(‖d‖).

Therefore, G is semismooth at (0, x). Our result follows.

Next, we discuss the strong semismoothness of G, when F is a piecewise LC1

function. Before we prove the proposition, we review some properties of the piece-

wise LC1 function.

Definition 2.13. A continuous function F : Rn 7→ Rm is called piecewise LC1

function, if there exist finitely many continuously differentiable functions Li : Rn 7→
Rm, whose derivatives are locally Lipschitz continuous, i = 1, ..., k, such that

F(x) ∈ {L1(x), ..., Lk(x)} holds for every x ∈ Rn. Li, i = 1, ..., k are called the

selection functions for F .

The concept of the essentially active indices was introduced by Scholtes in [42].

Definition 2.14. The set of essentially active indices of piecewise LC1 function

F at x0 is defined by

Ie
F(x0) = {i ∈ {1, ..., k}|x0 ∈ cl(int{x ∈ Rn|F(x) = Li(x)})}.

A selection function Li is called essentially active at x0 if i ∈ Ie
F (x0).

Let Σi := {x ∈ Rn|F(x) = Li(x)} ⊆ Rn, i = 1, ..., k. Since F is continuous,

Σi, i = 1, ..., k are closed sets. Lemma 2.15 shows the covering property of the

union of Σi, i = 1, ..., k.

Lemma 2.15. If we remove those sets Σi with empty interior from Σi, i = 1, .., k,

then the remaining collection of sets Σi still covers Rn.

Proof. By [42, Proposition 4.1.1], we know that for any x0 ∈ Rn, there exists

a collection of selection functions for F at x0, which are all essentially active,
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i.e. there exists i0 ∈ {1, ..., k}, such that the interior of Σi0 is nonempty and

x0 ∈ Σi0 .

Without loss of generality, in this thesis, we assume that the interior of each

Σi, i = 1, ..., k is nonempty.

Next proposition discusses the strong semismoothness of G.

Theorem 2.16. Suppose that Assumption 2.7 holds. Assume that F is a piecewise

LC1 function and there exist K ≥ 0 and κ > 0, such that

(i) ‖L′
i(z) − L′

i(z + y)‖ ≤ K‖y‖κ+1, ∀ z, y ∈ Rn, i = 1, ..., k,

(ii) K

∫

Rn

‖y‖2+κΦ(y)dµ(y) < ∞.

Then G is strongly semismooth on R+ ×Rn.

Proof. Since F is piecewise LC1 function, F is strongly semismooth on Rn. Then,

by Proposition 2.12, G is semismooth on R+×Rn. Lemma 2.10 (iii) implies that G′

is locally Lipschitz continuous around any (ε, x) ∈ R++ ×Rn. Then G is strongly

semismooth on R++ ×Rn. Next, we will focus on the strong semismoothness of G
at (0, x), x ∈ Rn. For any (ε, d) ∈ R++ ×Rn with (ε, d) → 0, we have

‖G(ε, x + d) − G(0, x) − G′((ε, x + d); (ε, d))‖

=‖
∫

Rn

[F(x + d − εy) −F(x) − F ′(x + d − εy; d− εy)]Φ(y)dµ(y)‖

≤
k
∑

i=1

∫

x+d−εy∈Σi

‖F(x + d − εy) − F(x) −F ′(x + d − εy; d− εy)‖Φ(y)dµ(y),

where the last equality is followed by the covering property of the union of Σi,

i = 1, ..., k. First, let us fix ε and d. Define H : Rn 7→ R+ by

H(y) := ‖F(x + d − εy) − F(x) −F ′(x + d − εy; d− εy)‖Φ(y), y ∈ Rn.
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Then H(·) is an integrable function. By (i) of Assumption 2.7,

|H(y)| ≤ 2LF(‖d‖ + ε‖y‖)Φ(y), ∀y ∈ Rn,

which, together with (ii) of Assumption 2.7 and (1.3), implies that there exists

M > 0 such that

|H(y)| ≤ M(‖d‖ + ε), ∀y ∈ Rn.

For each i, let

Πi(ε, d) :=

∫

x+d−εy∈Σi

H(y)dµ(y).

Then ‖G(ε, x+d)−G(0, x)−G′((ε, x+d); (ε, d))‖ ≤
k
∑

i=1

Πi(ε, d). Since intΣi is open,

by [18, p.50, M7], intΣi is measurable. Then for each i ∈ {1, ..., k}, by [18, p.50,

M9], for any given δ > 0, there exists a closed set Ai(δ), such that Ai(δ) ⊆ intΣi

and µ(Σi − Ai(δ)) < δ. Let

πi(δ; ε, d) :=

∫

x+d−εy∈Ai(δ)

H(y)dµ(y), i = 1, ..., k.

Therefore, we have

|Πi(ε, d) − πi(δ; ε, d)| =|
∫

x+d−εy∈Σi−Ai(δ)

H(y)dµ(y)|

≤M(‖d‖ + ε)

ε
µ(Σi − Ai(δ))

<
M(‖d‖ + ε)

ε
δ.

Hence, lim
δ→0

πi(δ; ε, d) = Πi(ε, d). For any x ∈ Rn, there exists j̄ ∈ {1, ..., k} such

that F(x) = Lj̄(x). Let i be an arbitrary index in {1, ..., k}. Then by the definition

of F , for x + d − εy ∈ Ai(δ) ⊆ intΣi,

F ′(x + d − εy; d− εy) = L′
i(x + d − εy)(d − εy)

and

πi(δ; ε, d)

=

∫

x+d−εy∈Ai(δ)

‖Li(x + d − εy) − Lj̄(x) − L′
i(x + d − εy)(d − εy)‖Φ(y)dµ(y).
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We consider the following two cases.

Case i): i = j̄. Then x ∈ Σi. Thus, we have

|πi(δ; ε, d)|

=

∫

x+d−εy∈Ai(δ)

‖Li(x + d − εy)− Lj̄(x) − L′
i(x + d − εy)(d− εy)‖Φ(y)dµ(y)

≤
∫

x+d−εy∈Rn

‖Li(x + d − εy)− Li(x) − L′
i(x + d − εy)(d − εy)‖Φ(y)dµ(y)

=

∫

Rn

‖
∫ 1

0

[L′
i(x + θ(d − εy))− L′

i(x + (d − εy))](d− εy)dθ‖Φ(y)dµ(y)

≤K

∫

Rn

‖d − εy‖κ+2Φ(y)dµ(y)

≤K2κ+2

∫

Rn

max{‖d‖κ+2, εκ+2‖y‖κ+2}Φ(y)dµ(y)

≤O(max{‖d‖κ+2, εκ+2})

=O(‖(ε, d)‖2),

where the second equality is followed by the Mean Value Theorem and the second

inequality is followed by the condition (i). By the condition (ii), we get the last

inequality.

Case ii): i 6= j̄. Then x /∈ Σi. Since Σc
i is open, there exists an open ball

B(x, r), such that B(x, r) ⊂ Σc
i . We can find a rectangle I = [a1, b1]× ...× [an, bn]

with diameter less than 2r, such that x ∈ I ⊂ B(x, r). Then Ai(δ) ⊂ Σi ⊂ Ic.
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Hence, we have

∫

x+d−εy∈Ic

Φ(y)dµ(y)

=1 −
∫

x+d−εy∈I

φ(y1) · · · φ(yn)dµ(y)

=1 −
(
∫

x1+d1−εy1∈[a1,b1]

φ(y1)dµ(y1) · · ·
∫

xn−1+dn−1−εyn−1∈[an−1,bn−1]

φ(yn−1)dµ(yn−1)

)

(

1 −
∫

xn+dn−εyn∈[−∞,an]∪[bn,∞]

φ(yn)dµ(yn)

)

≤1 −
(
∫

x1+d1−εy1∈[a1,b1]

φ(y1)dµ(y1) · · ·
∫

xn−1+dn−1−εyn−1∈[an−1,bn−1]

φ(yn−1)dµ(yn−1)

)

+ sup
yn∈R

|yn|3φ(yn)

(

∫ xn+dn−bn
ε

−∞

1

|yn|3
dµ(yn) +

∫ +∞

xn+dn−an
ε

1

|yn|3
dµ(yn)

)

=1 −
(
∫

x1+d1−εy1∈[a1,b1]

φ(y1)dµ(y1) · · ·
∫

xn−1+dn−1−εyn−1∈[an−1,bn−1]

φ(yn−1)dµ(yn−1)

)

+ O(|ε|2),

(2.4)

where the inequality is implied by (1.3) and Assumption 2.7 (iv). Since we have

∫

x1+d1−εy1∈[a1,b1]

φ(y1)dµ(y1) · · ·
∫

xn−1+dn−1−εyn−1∈[an−1,bn−1]

φ(yn−1)dµ(yn−1)

=

∫

x1+d1−εy1∈[a1,b1]

φ(y1)dµ(y1) · · ·
∫

xn−2+dn−2−εyn−2∈[an−2,bn−2]

φ(yn−2)dµ(yn−2)

(

1 −
∫

xn−1+dn−1−εyn−1∈[−∞,an−1]∪[bn−1,∞]

φ(yn−1)dµ(yn−1)

)

,

by repeating (2.4), we obtain that

∫

x+d−εy∈Ic

Φ(y)dµ(y) ≤
n
∑

i=1

O(|ε|2) = O(|ε|2). (2.5)
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Thus, we obtain that

|πi(δ; ε, d)|

=

∫

x+d−εy∈Ai(δ)

‖Li(x + d − εy) − Lj̄(x) − L′
i(x + d − ε%y)(d − εy)‖Φ(y)dµ(y)

≤
∫

x+d−εy∈Ai(δ)

‖Li(x + d − εy) − Li(x) − L′
i(x + d − εy)(d − εy)‖Φ(y)dµ(y)

+ ‖Li(x) − Lj̄(x)‖
∫

x+d−εy∈Ic

Φ(y)dµ(y)

=O(‖(ε, d)‖2) + ‖Li(x) − Lj̄(x)‖
n
∑

j=1

O(|ε|2)

=O(‖(ε, d)‖2),

where the second equality is followed by the result obtained in the case (i) and

(2.5). Hence, we have Πi(ε, d) = O(‖(ε, d)‖2), which implies that G(ε, x + d) −
G(0, x)−G′((ε, x+d); (ε, d)) = O(‖(ε, d)‖2). When ε = 0, similar to the discussion

in Proposition 2.12, for any Vi = (βi, αi) ∈ ∂Gi(0, x + d), i = 1, ..., m, we have

αi ∈ ∂Fi(x + d). Then

Gi(0, x + d) − Gi(0, x) − Vi

(

0

d

)

= Fi(x + d) − Fi(x) − αid = O(‖d‖2),

if F is strongly semismooth on Rn. Consequently, G is strongly semismooth on

(0, x), x ∈ Rn.

Remark: in Theorem 2.16, whenever each Li is a linear function, condition (i)

and (ii) are not required.

2.2 supp(φ) is bounded

In this subchapter, we assume that supp(φ) is bounded. We can get some results

analogous to those in Subchapter 2.1.
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Proposition 2.17. If F is directionally differentiable at x ∈ Rn, then G is direc-

tionally differentiable at (0, x) and for any (τ, h) ∈ R×Rn,

G′((0, x); (τ, h)) =

∫

Rn

F ′(x; h − |τ |y)Φ(y)dµ(y).

The proof is similar to the proof of Proposition 2.11.

Theorem 2.18. Suppose that Φ is continuously differentiable on Rn. If F is

semismooth on Rn, then G is semismooth on R+ ×Rn.

The proof is similar to the proof of Theorem 2.12.

Theorem 2.19. Suppose that Φ is continuously differentiable on Rn. If F is

strongly semismooth on Rn, then G is strongly semismooth on R+ ×Rn.

Proof. Since G is continuously differentiable on R++ × Rn and G′(ε, x) is locally

Lipschitz continuous on R++ ×Rn, G is strongly semismooth on R++ ×Rn. Then

we only need to show that G is strongly semismooth at (0, x), x ∈ Rn. By [38,

Theorem 3.3 (vii)], for any (ε, d) ∈ R++ ×Rn with (ε, d) → 0, we have

G(ε, x + d) − G(0, x) − G′(ε, x + d)

(

ε

d

)

= o(‖(ε, d)‖2).

Moreover, for any Vi = (βi, αi) ∈ ∂Gi(0, x + d), i = 1, ..., m, by [38, Theorem 3.3

(iv)], we have αi ∈ ∂Fi(x + d). Then

Gi(0, x + d) − Gi(0, x) − Vi

(

0

d

)

= Fi(x + d) − Fi(x) − αid = O(‖d‖2),

if F is strongly semismooth on Rn. Therefore, G is strongly semismooth on (0, x),

x ∈ Rn. Then our result follows.



Chapter 3

Lipschitz Continuity, Continuous

Differentiability and Directional

Differentiability

In this chapter, we study locally Lipschitz continuity, continuous differentiabil-

ity and directional differentiability of the smoothing function G defined by (1.2).

Recall that

G(ε, X) = Q(X)diag[g(ε, λ1(X)), ..., g(ε, λn(X))]Q(X)T ,

where g : R × R 7→ R is a smoothing function corresponding to f : R 7→ R.

The existence of such a smoothing function g for the locally Lipschitz continuous

function f can be obtained via convolution, which has been discussed in Chapter

2.

It was shown in [5] that the matrix valued function F defined by (1.1) inher-

its many properties from the scalar valued function f . Shaprio [35] also obtained

the similar results in a concise method. In this thesis, we will make an analogous

study of the properties of G. According to the results obtained in Chapter 2, we

know that under some conditions, the smoothing function g can have the properties

21
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of locally Lipschitz continuity, continuous differentiability, directional differentia-

bility, semismoothness and strong semismoothness. We will prove that if g has

these properties, then so does G. In particular, we will show that G inherits the

properties of Lipschitz continuity, continuous differentiability and directional dif-

ferentiability from g in this chapter. The properties of semismoothness and strong

semismoothness of G will be discussed in the next chapter. Before we begin our

discussion, let us first introduce some notations and review some properties.

For a matrix X ∈ Sn, denote by q1(X), ..., qn(X) a set of the orthonormal

eigenvectors corresponding to the eigenvalues λ1(X), ..., λn(X). For a given matrix

X̄ ∈ Sn, we denote the multiplicities by r1, ..., rq. µ1 > ... > µq are the distinct

values of the eigenvalues λ1(X̄), ..., λn(X̄), i.e. µj := λsj+1(X̄) = ... = λsj+rj
(X̄),

j = 1, .., q, where s1 := 0, s2 := r1, ..., sq := r1+...+rq−1. Qj(X) is the n×rj matrix

whose columns are formed by the eigenvectors qsj+1(X), ..., qsj+rj
(X), j = 1, ..., q,

and define

Pj(X) := Qj(X)Qj(X)T . (3.1)

In particular, denote q̄j := qj(X̄), Q̄j := Qj(X̄) and P̄j := Pj(X̄). Obviously,

P̄iP̄j = 0 if i 6= j, P̄ 2
i = P̄i and

∑q
j=1 P̄j = In. Then the smoothing function

G(ε, X̄) defined in (1.2), can be written as

G(ε, X̄) =

q
∑

j=1

g(ε, µj)P̄j.

It is known that the function Pj(·) defined by (3.1) is analytic in a neighborhood

of X̄ ∈ Sn, which is given as the following lemma.

Lemma 3.1. (Shapiro [35]) The mapping X 7→ Pj(X) for any j ∈ {1, ..., q} is

analytic in a neighborhood of X̄ and for any H ∈ Sn,

P ′
j(X̄)H =

q
∑

k 6=j

k=1

(µj − µk)
−1(P̄jHP̄k + P̄kHP̄j). (3.2)
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The next proposition shows that λi(X), i = 1, ..., n are directionally differen-

tiable, which is a particular case of [21, Theorem 7].

Proposition 3.2. Given X̄ ∈ Sn, for any H ∈ Sn, the directional derivatives

λ′
sj+i(X̄; H), i = 1, ..., rj, exist and coincide with the corresponding eigenvalues of

the matrix Q̄T
j HQ̄j arranged in the decreasing order.

The following proposition shows the locally Lipschitz continuity of G. The

conclusion of this proposition can be obtained by combining the techniques used

in [5, Proposition 4.6] and [41, Lemma 2.3].

Proposition 3.3. If g is locally Lipschitz continuous on R×R, then G is locally

Lipschitz continuous on R× Sn.

Proof. Consider (ε̄, X̄) ∈ R×Sn. Since g is locally Lipschitz continuous on R×R,

by [32, Theorem 9.67], there exist continuously differentiable function gn : R×R 7→
R, n = 1, 2, ..., converging uniformly to g and satisfying

‖g′
n(ε, ξ)‖ ≤ κ, ∀(ε, ξ) ∈ C, (3.3)

where κ > 0 is a constant and C := ∪n
i=1[λi(X̄)− δi, λi(X̄) + δi]× [ε̄− η, ε̄ + η], for

some δi > 0, i = 1, ..., n and η > 0.

Let Gn(ε, X) := Q(X)diag[gn(ε, λ1(X)), ..., gn(ε, λn(X))]Q(X)T .

Obviously, {Gn}∞n=1 converges uniformly to G on B(ε̄, X̄). Fix (τ, Y ), (ν, Z) ∈
B(ε̄, X̄). Therefore, for any M > 0, there exists N > 0 such that for n > N , we

have

‖Gn(ε, X) − G(ε, X)‖ ≤ M‖(τ, Y ) − (ν, Z)‖, for all (ε, X) ∈ B(ε̄, X̄).

By Proposition 3.4, for any (ε, X) ∈ B(ε̄, X̄) with ε 6= 0, Gn(ε, X) is contin-

uously differentiable for all n. Moreover, because of (3.3), there exists a scalar L

such that |‖G′
n(ε, X)|‖ ≤ L, for all n.
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Then we have, for any (τ, Y ), (ν, Z) ∈ B(ε̄, X̄), where τ 6= 0 and ν 6= 0,

‖G(τ, Y ) − G(ν, Z)‖

=‖G(τ, Y ) − Gn(τ, Y ) + Gn(τ, Y ) − Gn(ν, Z) + Gn(ν, Z) − G(ν, Z)‖

≤‖G(τ, Y ) − Gn(τ, Y )‖ + ‖Gn(τ, Y ) − Gn(ν, Z)‖ + ‖Gn(ν, Z) − G(ν, Z)‖

≤2M‖(τ, Y ) − (ν, Z)‖ + ‖
∫ 1

0

G′
n(ν + t(τ − ν), Z + t(Y − Z))(τ − ν, Y − Z)dt‖

≤(2M + L)‖(τ − ν, Y − Z)‖.

By a limiting process, the above inequality also holds for τν = 0. Hence, G is

locally Lipschitz continuous on R× Sn.

By [38, Theorem 3.3 (i) and Theorem 3.7 (i)], we know that under some as-

sumptions, the smoothing function g is continuously differentiable around (ε, x) ∈
R++ × R. Based on this fact, we will prove the continuous differentiability of G

in the following proposition. Our proof uses the idea from Shapiro [35], in which

the derivative of matrix valued function was given in a nice form.

Proposition 3.4. Given (ε, X̄) ∈ R++ × Sn, if g is continuously differentiable

around (ε, µj), j = 1, ..., q, then G is continuously differentiable around (ε, X̄).

Moreover, for any (τ, H) ∈ R++ × Sn, the derivative of G is given by

G′(ε, X̄)

(

τ

H

)

= G′
X(ε, X̄)H + G′

ε(ε, X̄)τ

= A(ε, X̄, H) + B(ε, X̄, H) + C(ε, X̄, τ),

where

A(ε, X̄, H) =

q
∑

j=1

g(ε, µj)P̄
′
j(X̄)H

=
1

2

q
∑

j 6=k

j,k=1

g(ε, µj) − g(ε, µk)

µj − µk
(P̄jHP̄k + P̄kHP̄j),

(3.4)
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B(ε, X̄, H) =

q
∑

j=1

g′
x(ε, µj)P̄jHP̄j, (3.5)

and

C(ε, X̄, τ) =

q
∑

j=1

g′
ε(ε, µj)τP̄j . (3.6)

Proof. First fix ε > 0. By using [35, Proposition 4.2], we know that G(ε, ·) is

continuously differentiable around X̄ ∈ Sn and for any H ∈ Sn,

G′
X(ε, X̄)H = A(ε, X̄, H) + B(ε, X̄, H),

where A(ε, X̄, H) and B(ε, X̄, H) are given by (3.4) and (3.5) respectively.

For fixed X̄ ∈ Sn, since g(·, µ(j)), j = 1, ..., q, are continuously differentiable

on R++, G(·, X̄) is continuously differentiable on R++ and for any τ ∈ R, we have

G′
ε(ε, X̄)τ = C(ε, X̄, τ),

where C(ε, X̄, τ) is given by (3.6).

By Lemma 2.10 (iii) and locally Lipschitz continuity of λi, we can show that

g′
ε(ν, λi(Z)) → g′

ε(ε, λi(X̄)), as ν → ε, Z → X̄. Then |‖G′
ε(ν, Z)−G′

ε(ε, X̄)‖| → 0,

as ν → ε, Z → X̄. Hence, by the definition, we can get

G(ε + τ, X̄ + H) − G(ε, X̄) − G′
ε(ε, X̄)τ − G′

X(ε, X̄)H = o(‖(τ, H)‖).

Thus, the derivative of G exists at (ε, X̄) ∈ R++ ×Sn. The continuity of G′(ε, X̄)

follows from the continuity of G′
X(ε, ·) and G′

ε(·, X). Therefore, G is continuously

differentiable on R++ × Sn.

Proposition 3.4 not only verifies the continuous differentiability of G, but gives

us the form of the derivative of G as well.

The following proposition shows that if g is directionally differentiable, so is G.

Moreover, it also provides the explicit form of this directional derivative.



26

Proposition 3.5. Given (ε, X̄) ∈ R+ × Sn, if g is directionally differentiable at

(ε, λj(X̄)), j = 1, ..., n, then the directional derivative of G at (ε, X̄) exists and is

given by

G′((ε, X̄); (τ, H)) = A(ε, X̄, H) + D(ε, X̄, τ, H),

for any (τ, H) ∈ R×Sn and where A(ε, X̄, H) is given by (3.4) and D(ε, X̄, τ, H)

is defined by

D(ε, X̄, τ, H) :=
n
∑

j=1

g′
(

(ε, λj(X̄)); (τ, λ′
j(X̄; H))

)

q̄j q̄
T
j . (3.7)

Proof. For any (ν, X) ∈ R+ × Sn, consider the decomposition,

G(ν, X) =

q
∑

j=1

g(ε, µj)Pj(X) +

n
∑

j=1

(

g(ν, λj(X)) − g(ε, λj(X̄))
)

qj(X)qj(X)T .

(3.8)

Then for any t > 0, (τ, H) ∈ R× Sn, we have

t−1
(

G(t|τ | + ε, X̄ + tH) − G(ε, X̄)
)

= S + T,

where

S = t−1

q
∑

j=1

g(ε, µj)
(

Pj(X̄ + tH) − P̄j

)

and

T = t−1
n
∑

j=1

(

g(t|τ | + ε, λj(X̄ + tH)) − g(ε, λj(X̄))
)

qj(X̄ + tH)qj(X̄ + tH)T .

By Lemma 3.1, lim
t↓0

S = A(ε, X̄, H), where A(ε, X̄, H) is defined by (3.4).

Since g is directionally differentiable at (ε, λj(X̄)), j = 1, ..., n, together with

the directional differentiability of λj(X̄), j = 1, ..., n, we obtain that for each j,

lim
t↓0

t−1
(

g(t|τ | + ε, λj(X̄ + tH)) − g(ε, λj(X̄))
)

=g′
(

(ε, λj(X̄)); (τ, λ′
j(X̄; H))

)

.
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Thus,

lim
t↓0

T = D(ε, X̄, τ, H).

Hence, G is directionally differentiable at (ε, X̄) and the directional derivative of

G is given by

G′
(

(ε, X̄); (τ, H)
)

= A(ε, X̄, H) + D(ε, X̄, τ, H).



Chapter 4

Semismoothness and Strong

Semismoothness

In Theorem 2.12, Theorem 2.16, Theorem 2.18 and Theorem 2.19, we have proved

that the smoothing function g can be semismooth (strongly semismooth) on R+×R
under some conditions. In this chapter, we will show that semismoothness and

strong semismoothness are inherited by G from g.

Theorem 4.1. Given (ε, X̄) ∈ R+ ×Sn, if g is semismooth at (ε, µj), j = 1, ..., p,

then G is semismooth at (ε, X̄).

The proof of the semismoothness of G is quite similar to the proof of strong

semismoothness. We omit the detail here. Please refer to the proof of Theorem

4.2.

Theorem 4.2. Given (ε, X̄) ∈ R+ × Sn, if g is strongly semismooth at (ε, µj),

j = 1, ..., p, then G is strongly semismooth at (ε, X̄).

Proof. Since g is strongly semismooth at (ε, µj), j = 1, ..., p, by the definition,

we know that g is locally Lipschitz continuous in the neighborhood of (ε, µj),

j = 1, ..., p and g is directionally differentiable at (ε, µj), j = 1, ..., p. Then by

Proposition 3.3 and Proposition 3.5, G is locally Lipschitz continuous around (ε, X̄)

28
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and G is directionally differentiable at (ε, X̄). Next, we will show that for any

(τ, H) ∈ R+ × Sn with (τ, H) → 0,

G(ε + τ, X̄ + H) − G(ε, X̄) − G′((ε + τ, X̄ + H); (τ, H)) = O(‖(τ, H)‖2).

By the decomposition as (3.8), we have

G(ε + τ, X̄ + H) − G(ε, X̄)

=

q
∑

j=1

g(ε, µj)(Pj(X̄ + H) − P̄j)

+
n
∑

j=1

(

g(ε + τ, λj(X̄ + H)) − g(ε, λj(X̄))
)

qj(X̄ + H)qj(X̄ + H)T .

Since Pj, j = 1, ..., q, are twice continuously differentiable at X̄, we have

Pj(X̄ + H) − P̄j = P ′
j(X̄ + H)H + O(‖H‖2), j = 1, ..., n.

Since g is strongly semismoonth at (ε, µj), j = 1, ..., p, together with the strong

semismoothness of λj , j = 1, ..., n, the composition functions g(ε, λj(X)), j =

1, ..., n are also strongly semismooth at (ε, X̄) (see [11] and [23, Theorem 5 ].)

Then

g
(

ε + τ, λj(X̄ + H)
)

− g
(

ε, λj(X̄)
)

=g′
(

(ε + τ, λj(X̄ + H)); (τ, λ′
j(X̄ + H ; H))

)

+ O(‖(τ, H)‖2).

By noticing the fact that ‖qj(X̄ + H)qj(X̄ + H)T‖ are uniformly bounded, we get

G(ε + τ, X̄ + H) − G(ε, X̄)

=

q
∑

j=1

g(ε, µj)P
′
j(X̄ + H)H

+

n
∑

j=1

g′
(

(ε + τ, λj(X̄ + H)); (τ, λ′
j(X̄ + H ; H))

)

qj(X̄ + H)qj(X̄ + H)T

+ O(‖(τ, H)‖2).
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According to Proposition 3.5, we have

G′
(

(ε + τ, X̄ + H); (τ, H)
)

= A(ε + τ, X̄ + H, H) + D(ε + τ, X̄ + H, τ, H),

where A(ε + τ, X̄ + H, H) and D(ε + τ, X̄ + H, τ, H) are given by (3.4) and (3.7)

respectively. Moreover, it is known that

q
∑

j=1

g(ε, µj)P
′
j(X̄ + H)H = A(ε + τ, X̄ + H, H) + O(‖(τ, H)‖2),

and
n
∑

j=1

g′
(

(ε + τ, λj(X̄ + H)); (τ, λ′
j(X̄ + H ; H))

)

qj(X̄ + H)qj(X̄ + H)T

=D(ε + τ, X̄ + H, τ, H).

Then it follows that

G(ε + τ, X̄ + H) − G(ε, X̄) − G′
(

(ε + τ, X̄ + H); (τ, H)
)

= O(‖(τ, H)‖2).

The proof is completed.

Example 4.3. For the CHKS smoothing function, φ(x) =
2

(x2 + 4)3/2
, x ∈ R.

Then we have G(ε, X) =

√
4ε2I + X2 + X

2
, (ε, X) ∈ R++ × Sn, with infinity

supp(φ). Obviously, f and φ satisfy the assumptions and the conditions in Theorem

2.16. Then g corresponding to f(x) = x+ is strongly semismooth on R+×R. Thus,

by Theorem 4.2, G(ε, X) is strongly semismooth on R+ × Sn. Sun, Sun and Qi

[41] have used another method to prove the strong semismoothness of this smoothing

function. Also see [7], [40].

Example 4.4. For the extreme value smoothing function, since φ(x) =
1√
π

e−x2

,

x ∈ R, for any (ε, X) ∈ R++ ×Sn, we have G(ε, X) =
1

2
X +

ε

2
√

π
e−

X2

ε2 +U(ε, X),

where e−
X2

ε2 is the matrix exponential of −X2

ε2
and

U(ε, X) =
n
∑

i=1

λi(X)

2
u(

λi(X)

ε
)qi(X)qi(X)T ,



31

where u is defined by (2.4). Here supp(φ) is also infinity. Since f and φ satisfy

the assumptions and conditions in Theorem 4.2, g corresponding to f(x) = x+

is strongly semismooth on R+ × R. Then by using Theorem 4.2, G is strongly

semismooth on R+ × Sn.



Chapter 5

Some Applications of the

Smoothing Function

In this chapter, we will extend the smoothing function to the vector valued function

with second order cone and the matrix valued function over nonsymmetric matrices.

The second order cone (SOC), also called the Lorentz cone, in Rn, is defined

by

Kn = {(x1, x
T
2 )T |x1 ∈ R, x2 ∈ Rn−1, and x1 ≥ ‖x2‖}.

For convenience, we write x = (x1, x2) instead of x = (x1, x
T
2 )T . Denote e =

(1, 0, ..., 0)T ∈ Rn.

Any x = (x1, x2) ∈ R×Rn−1 can be decomposed as

x = λ1µ
(1) + λ2µ

(2),

where λ1, λ2 and µ(1), µ(2) are spectral values and the associated spectral vectors

of x, with respect to Kn, given by

λi = x1 + (−1)i‖x2‖

and

µ(i) =







1
2
(1, (−1)i x2

‖x2‖
) if x2 6= 0

1
2
(1, (−1)iω) otherwise

32
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for i = 1, 2 and ω is any vector in Rn−1, satisfying ‖ω‖ = 1. In [12], for any

function f : R → R, the following vector valued function associated with Kn is

introduced:

f soc(x) := f(λ1)µ
(1) + f(λ2)µ

(2).

The interest of this function is stemmed from the second-order-cone complemen-

tarity problem (SOCCP). See [4], [8], [12], [15] and the references therein for the

study of the smoothing method for solving SOCCP. Analogous to the matrix valued

function, we will construct a smoothing function of f soc(x).

Assume that f is locally Lipschitz continuous. Let e = (1, 0, ..., 0)T ∈ R. For

any x = (x1, x2) ∈ R×Rn−1, we define L(x) and L̃(x2) by

L(x) =





x1 xT
2

x2 x1I





L̃(x2) =





0 0T

0 I − x2x
T
2 /‖x2‖2



 .

In [4, Lemma 4.1], Chen, Chen and Tseng showed that for any t ∈ R,

f soc(x) = F (L(x) + tL̃(x2))e,

where F is the matrix valued function defined by (1.1) and the eigenvalues of

L(x) + tL̃(x2) are λ1, λ2 and x1 + t of multiplicity n − 2. This result is the key

to relating f soc to F . [4] showed that f soc(x) inherits from f the properties of

Lipschitz continuity, continuous differentiability, (strong) semismoothness etc. We

define the smoothing function gsoc(ε, x) : R++ × Rn 7→ Rn corresponding to f soc

by

gsoc(ε, x) := G(ε, L(x) + tL̃(x2))e, (5.1)

where G is the smoothing function of F defined by (1.2), gsoc(0, x) = f soc(x), for

any ε < 0, gsoc(ε, x) = gsoc(−ε, x). Chapter 3 and Chapter 4 have shown that the
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properties of locally Lipschitz continuity , continuous differentiability, directional

differentiability, semismoothness and strong semismoothness are inherited by G

from g. Based on the relationship between G and gsoc, Theorem 5.1 proves that

gsoc also inherits these properties from g.

Theorem 5.1. (a) If g is locally Lipschitz continuous on R × R, then gsoc is

locally Lipschitz continuous on R×Rn;

(b) If g is continuously differentiable on R++ × R, then gsoc is continuously

differentiable on R++ ×Rn;

(c) If g is directionally differentiable at (ε, λ1), (ε, λ2) with ε ≥ 0, then gsoc is

directionally differentiable at (ε, x) ∈ R+ ×Rn;

(d) If g is semismooth on R+ ×R, then gsoc is semismooth on R+ ×Rn;

(e) If g is strongly semismooth on R+ ×R, then gsoc is strongly semismooth on

R+ ×Rn.

Proof. (a) Let t = 0. By Proposition 3.3, G is locally Lipschitz continuous around

(ε, L(x)) with (ε, x) ∈ R×R. Since L(x) is locally Lipschitz continuous around x,

the relationship (5.1) yields that gsoc is locally Lipschitz continuous on R×Rn.

(b) Let t = 0. Analogous to the proof of (a), this result follows directly form

Proposition 3.4, the fact that L(x) is continuously differentiable at x ∈ Rn and

the relationship (5.1) .

(c) Let t = ‖x2‖. Then by [4, Lemma 4.1 (a)], for any x ∈ Rn, the eigenvalues

of L(x) + ‖x2‖L̃(x2) is λ1 and λ2 of multiplicity n − 1. Then by proposition 3.5,

G is directionally differentiable at (ε, L(x) + ‖x2‖L̃(x2)) with (ε, x) ∈ R+ × Rn,

if g is directionally differentiable at (ε, λ1) and (ε, λ2). Since L(x) + ‖x2‖L̃(x2) is

continuously differentiable at x, the result follows.
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(d)-(e) Let t = 0. By (Theorem 4.2) Theorem 4.1, G is (strongly) semismooth

at (ε, L(x)) with (ε, x) ∈ R+ × Rn. Since L(x) is (strongly) semismooth, by

[23, Theorem 5] and [11], the composite function gsoc(ε, x) = G(ε, L(x))e is still

(strongly) semismooth.

Let Mn,m be the space of n × m real matrices. Without loss of generality,

we assume n ≤ m. For any scalar valued function f : R 7→ R, in [40], Sun and

Sun introduced a matrix valued function over nonsymmetric matrices defined by

singular values. N : Mn,m 7→ Sn is defined by

N(A) := Udiag(f(σ1(A)), ..., f(σn(A)))UT , A ∈ Mn,m,

where σ1(A) ≥ σ2(A) ≥ ... ≥ σn(A) ≥ 0 are the singular values of A, and

U [diag(σ1(A), ..., σn(A)) 0]V T

is the singular value decomposition of A, where V ∈ Om, U ∈ On(see [17, p 415].)

In [40], Sun and Sun obtained the relationship between the matrix valued func-

tion N defined over nonsymmetric matrices and the matrix valued function F

defined over symmetric matrices:

N(A) = π(F (Ξ(A))),

where π : Sn+m 7→ Sn is defined by (π(X))ij := Xij , i, j = 1, ..., n, X ∈ Sn+m

and Ξ : Mn,m 7→ Sn×m is defined by Ξ(A) :=





0 A

AT 0



, A ∈ Mn,m. By [17,

Theorem 7.3.7], we know that the eigenvalues of Ξ(A) are ±σi(A), i = 1, ..., n and

0 of multiplicity m − n.

Then the smoothing function of N can be constructed as M : R×Mn,m 7→ Sn

M(ε, A) = π(G(ε, Ξ(A))), (ε, A) ∈ R++ ×Mn,m, (5.2)
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where G is the smoothing function corresponding to F defined by (1.2), M(0, A) =

N(A), for any ε < 0, M(ε, X) = M(−ε, X).

We combine the relationship (5.2) between M and G and the relationship be-

tween g and G discussed in Chapter 3 and Chapter 4. Then in the following

theorem, we make an analogous study for the smoothing function M .

Theorem 5.2. (a) If g is locally Lipschitz continuous on R × R, then M is

locally Lipschitz continuous on R×Mn,m;

(b) If g is continuously differentiable on R++ ×R, then M is continuously dif-

ferentiable on R++ ×Mn,m;

(c) If g is directionally differentiable at (ε,±σi(A)), i = 1, ..., n and (ε, 0) with

ε ≥ 0, then M is directionally differentiable at (ε, A) with (ε, A) ∈ R+ ×
Mn,m;

(d) If g is semismooth on R+ ×R, then M is semismooth on R+ ×Mn,m;

(e) If g is strongly semismooth on R+ × R, then M is strongly semismooth on

R+ ×Mn,m.

Proof. (a)For (τ, B) and (µ, C) in the neighborhood of B(ε, A) ∈ R×Mn,m. Then

we have

‖M(τ, B) − M(µ, C)‖ =‖π[G(τ, Ξ(B)) − G(µ, Ξ(C))]‖

≤‖G(τ, Ξ(B)) − G(µ, Ξ(C))‖

≤L(|τ − µ| + ‖Ξ(B) − Ξ(C)‖)

=L(|τ − µ| +
√

2‖B − C‖2)

≤2L(|τ − µ| + ‖B − C‖),

where the second inequality is followed by the locally Lipschitz continuity of G (see

Proposition 3.3.) Then the result follows.
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(b) By Proposition 3.4, G is continuously differentiable at (ε, Ξ(A)), with ε > 0

and A ∈ Mn,m. Since the linear mapping is continuously differentiable, by the

relationship (5.2), M is continuously differentiable around (ε, A) ∈ R++ ×Mn,m.

(c) For any (ε, A) ∈ R+ × Mn,m, it is known that the eigenvalues of Ξ(A)

are ±σi(A), i = 1, ..., n and 0 of multiplicity m − n. By Proposition 3.5, G is

directionally differentiable at (ε, Ξ(A)). By relationship (5.2), M is directionally

differentiable at (0, A).

(d)-(e) By (Theorem 4.2) Theorem 4.1, G is (strongly) semismooth on R+ ×
Mn,m. By using the fact that linear mapping is (strongly) semismooth, the compo-

sition function M(ε, A) = π(G(ε, Ξ(A))) is (strongly) semismooth on R+ ×Mn,m.



Chapter 6

Final Remarks

We have completed the analysis of the properties of the generalized smoothing

function of the vector valued function. In particular, we studied the (strong)

semismoothness of the smoothing function. Based on theses properties, we studied

the smoothing function of the matrix valued function. We found out that the

smoothing function of the matrix valued function inherits some properties from the

scalar valued function corresponding to it. With these useful results, we extend

the smoothing function to the vector valued function with second order cone and

matrix valued function over nonsymmetric matrices. However, in this thesis, we

cannot prove that when supp(φ) is infinite, G can inherit the strong semismoothness

from F , if F is strongly semismooth. Further study can be done in this aspect.
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