
Mathematical Programming (2020) 179:223–263
https://doi.org/10.1007/s10107-018-1329-6

FULL LENGTH PAPER

Series A

An efficient Hessian based algorithm for solving large-scale
sparse group Lasso problems

Yangjing Zhang1 · Ning Zhang2 · Defeng Sun2 · Kim-Chuan Toh3

Received: 15 December 2017 / Accepted: 4 September 2018 / Published online: 12 September 2018
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Abstract
The sparse group Lasso is a widely used statistical model which encourages the spar-
sity both on a group and within the group level. In this paper, we develop an efficient
augmented Lagrangian method for large-scale non-overlapping sparse group Lasso
problems with each subproblem being solved by a superlinearly convergent inexact
semismooth Newton method. Theoretically, we prove that, if the penalty parameter
is chosen sufficiently large, the augmented Lagrangian method converges globally at
an arbitrarily fast linear rate for the primal iterative sequence, the dual infeasibility,
and the duality gap of the primal and dual objective functions. Computationally, we
derive explicitly the generalized Jacobian of the proximal mapping associated with
the sparse group Lasso regularizer and exploit fully the underlying second order spar-
sity through the semismooth Newton method. The efficiency and robustness of our
proposed algorithm are demonstrated by numerical experiments on both the synthetic
and real data sets.

Keywords Sparse group Lasso · Generalized Jacobian · Augmented Lagrangian
method · Semismooth Newton method

Mathematics Subject Classification 90C25 · 90C06 · 62J05

N. Zhang: This author’s research is supported in part by the Singapore-ETH Centre (SEC), which was
established as a collaboration between ETH Zurich and National Research Foundation (NRF) Singapore
(FI 370074011) under the auspices of the NRF’s Campus for Research Excellence and Technological
Enterprise (CREATE) programme.
D. Sun: This author’s research is supported in part by a start-up research grant from the Hong Kong
Polytechnic University
K.-C. Toh: This author’s research is supported in part by an Academic Research Fund under Grant
number R-146-000-257-112 from the Ministry of Education, Singapore.

B Defeng Sun
defeng.sun@polyu.edu.hk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-018-1329-6&domain=pdf
http://orcid.org/0000-0003-0481-272X

224 Y. Zhang et al.

1 Introduction

In this paper, we aim to design a fast algorithm for solving the following sparse group
Lasso (SGLasso) problem:

min
x∈Rn

1

2
‖Ax − b‖2 + λ1‖x‖1 + λ2

g∑

l=1

wl‖xGl‖, (1)

where A : Rn → R
m is a linear map, b ∈ R

m is the given response vector, λ1 ≥ 0
and λ2 ≥ 0 are regularization parameters. For l = 1, 2, . . . , g, wl > 0, and the set
Gl ⊆ {1, 2, . . . , n} contains the indices corresponding to the l-th group of features.
We denote the restriction of the vector x to the index set Gl as xGl . Here ‖ · ‖ and
‖ · ‖1 denote the �2 norm and �1 norm, respectively. For convenience, we denote
the SGLasso regularizer by the proper closed convex function p(x) := λ1‖x‖1 +
λ2

∑g
l=1 wl‖xGl‖, ∀ x ∈ R

n .
In recent decades, high dimensional feature selection problems have become

increasingly important, and the penalized regression models have been proven to be
particularly useful for these feature selection problems. For many such problems in
real applications, the number of predictors n is much larger than the number of obser-
vations m. A notable example of the penalized regression model is the Lasso model
that was first proposed by Tibshirani [51]. The problem (1) contains the Lasso problem
as a special case if we take the parameter λ2 = 0. On the other hand, by assuming
that some prior information about the group structure of the underlying solution x is
known, Yuan and Lin [55] proposed the group Lasso model, i.e., in problem (1) with
parameters λ1 = 0 and λ2 ≥ 0. The group Lasso can select a small set of groups.
However, it does not ensure sparsity within each group. For the purpose of achieving
sparsity of groups and within each group, Friedman et al. [18] proposed the SGLasso
model (1), potentially with overlaps between groups. Apart from the above penalized
regression models, there exist a number of variants with different regularizers, such
as the fused Lasso [52] and the network Lasso [21].

The SGLassomodel has beenwidely applied to different fields, such as text process-
ing, bioinformatics, signal interpretation, and object tracking (e.g., [14,23,24,27,40,
58]). Its wide ranging applications have inspired many researchers to design various
algorithms for solving the SGLasso problem. These algorithms include the (accel-
erated) proximal gradient method (see e.g., [2,55]), (randomized) block coordinate
descent algorithm (see e.g., [43,44,48]), and alternating direction method of multi-
pliers (see e.g., [4]). To the best of our knowledge, these existing algorithms are first
ordermethods that are applied directly to the primal problem (1) and they hardly utilize
any second order information. In contrast, we aim to design an efficient second order
information based algorithm for solving the dual problem of the SGLasso problem
(1). For problem (1) with λ2 = 0, i.e., the Lasso problem, there exist a number of
algorithms with second order information being incorporated, such as block active
set methods [5,26], orthant based methods [1,5,12], and the semismooth Newton aug-
mented Lagrangian method (Ssnal) [30], to name only a few. In this paper, we extend
the Ssnal established in [30] to solve the SGLasso problem with three major rea-

123

An efficient Hessian based algorithm for solving… 225

sons. First of all, unlike other methods, the Ssnal does not require the uniqueness of
solutions for the primal problem. Secondly, the Ssnal does not need to identify the
active sets explicitly, which is critical for our SGLasso setting where the regularizer is
no longer piecewise linear. Thirdly and more importantly, the Ssnal has an excellent
numerical performance for solving the Lasso problem.

Solving the SGLasso problem is especially challenging when there are overlapping
groups because of the complex structure of the SGLasso regularizer p. The compli-
cated composite structure of p generally makes it impossible to compute its proximal
mapping analytically. However, the efficient computation of such a proximal mapping
is indispensable to a number of algorithms, and many of the papers mentioned in the
last paragraph thus considered the simpler case of the non-overlapping SGLasso prob-
lem. As a first attempt to design a Hessian based algorithm for the SGLasso problem,
we will also focus on the simpler case of the non-overlapping SGLasso problem. The
non-overlapping case can be treated as a preliminary study towards the final goal of
designing a Hessian based algorithm of solving the overlapping SGLasso problem.
For the rest of this paper, we make the following blanket assumption.

Assumption 1.1 The different groups Gl , l = 1, 2, . . . , g form a partition of
{1, 2, . . . , n}, i.e., Gi ∩ G j = ∅ for all 1 ≤ i < j ≤ g, and ∪g

l=1Gl = {1, 2, . . . , n}.
In order to solve the non-overlapping SGLasso problem, we aim to use the semis-

mooth Newton (SSN) augmented Lagrangian (Ssnal) framework for solving the dual
problem of (1). This approach is motivated by the success of the Ssnal when applied
to the dual of the Lasso problem [30] and that of the fused Lasso problem [31]. We
note that the objective functions of the Lasso and fused Lasso problems are piece-
wise linear-quadratic, and therefore as proven in [30,31], both the primal and dual
iterates generated by the augmented Lagrangian method (ALM) are asymptotically
superlinearly convergent. It is this attractive convergence property that leads to the
impressive numerical performance of the Ssnal. However, the regularizer p in the
objective function of the SGLasso problem (1) is no longer a polyhedral function due
to the presence of the �2 norm. As a result, the asymptotic superlinear convergence
of both the primal and dual iterative sequences generated by the ALM are no longer
guaranteed to hold by the existing theoretical results. Fortunately, by leveraging on the
recent advances made in Cui et al. [11] on the analysis of the asymptotic R-superlinear
convergence of the ALM for convex composite conic programming, we are able to
establish the global linear convergence (with an arbitrary rate) of the primal iterative
sequence, the dual infeasibility, and the dual function values generated by the ALM
for the SGLasso problem. With this convergence result, we could expect the ALM to
be highly efficient for solving the SGLasso problem.

The remaining challenge of designing an efficient ALM to solve (1) is in solving
the subproblem in each iteration. As inspired by the success in [30,31], we will design
a highly efficient SSN method for solving the subproblem in each ALM iteration.
The effectiveness of the SSN method relies critically on the efficient computation
of the generalized Jacobian of the proximal mapping associated with the SGLasso
regularizer p. Thus a major contribution of this paper is to analyse the structure of the
generalized Jacobian and its efficient computation. As far as we know, the elements in
the generalized Jacobian of the proximal mapping of p have not been derived before,

123

226 Y. Zhang et al.

and this paper aims to derive an explicit formula for them. We note that the SGLasso
regularizer p enjoys the “prox-decomposition”property [53], similar to the fusedLasso
regularizer (see [31]). With the “prox-decomposition” property and some necessary
properties for the �1 norm and �2 norm, we are able to derive an explicit formula
for the generalized Jacobian of the proximal mapping of p. Based on the structure
of the generalized Jacobian of the proximal mapping of p, we can derive a certain
structured sparsity (which we name as the second order sparsity) of the Hessians
associated with the objective function in each ALM subproblem to implement the
SSN method efficiently. We should emphasize that the efficiency of the SSN method
depends critically on the second order sparsity and the sparsity of the primal iterates.
Moreover, the SSN method will be proven to have superlinear/quadratic convergence.
In a nutshell, the globally fast linear convergence (with an arbitrary linear rate) of
the ALM and the superlinear/quadratic convergence of the SSN method for solving
each ALM subproblem can guarantee that our Ssnal is highly efficient and robust
for solving large-scale SGLasso problems.

The rest of this paper is organized as follows. Section 2 demonstrates the decom-
position property of the SGLasso regularizer and provides theoretical conditions for
ensuring the global fast linear convergence of theALM. The explicit formulation of the
generalized Jacobian of the proximal mapping of the SGLasso regularizer is derived
in Sect. 3. In Sect. 4, we design the semismooth Newton based augmented Lagrangian
method (Ssnal) for solving the dual of the SGLasso problem (1) and derive our
main convergence results. We will also present efficient techniques for implementing
Ssnal. Section 5 evaluates the performance of Ssnal on both the synthetic and real
data sets. Finally, concluding remarks are given in Sect. 6.

Notation For a linear map A : Rn → R
m , we denote its adjoint by A∗. For any

convex function p, we denote its conjugate function by p∗, i.e., p∗(x) = supz{〈x, z〉−
p(z)}. For each l ∈ {1, 2, . . . , g}, we define the linear operator Pl : R

n → R
|Gl |

by Pl x = xGl . Let s := ∑g
l=1 |Gl |. Define P := [P1;P2; . . . ;Pg] : R

n → R
s

and B2 := Bλ2,1
2 × · · · × Bλ2,g

2 , where Bλ2,l
2 := {ul ∈ R

|Gl | | ‖ul‖ ≤ λ2,l} and
λ2,l := λ2wl . For a given closed convex set � and a vector x , denote the distance of
x to � by dist(x,�) := infx ′∈�{‖x − x ′‖} and the Euclidean projection of x onto �

by ��(x) := argminx ′∈�{‖x − x ′‖}. We define sign(·) in a component-wise fashion
such that sign(t) = 1 if t > 0, sign(t) = 0 if t = 0, and sign(t) = −1 if t < 0. For
any functions f and g, define (f ◦g)(·) := f (g(·)). We denote the Hadamard product
by �. For a given vector x , supp(x) denotes the support of x , i.e., the set of indices
such that xi �= 0. We denote the vector of all ones by e. For a matrix A and a vector a,
we denote by diag(A) and Diag(a) the diagonal vector of A and the diagonal matrix
whose diagonal elements are the components of a, respectively.

2 Preliminaries

In this section, we establish the decomposition property of the SGLasso regularizer
p and present some general error bound results. The SGLasso problem (1) can be
written equivalently as follows:

123

An efficient Hessian based algorithm for solving… 227

(P) min
x∈Rn

h(x) := f (x) + p(x),

where f (x) := 1
2‖Ax − b‖2, p(x) := ϕ(x) + φ(x), ϕ(x) := λ1‖x‖1, and

φ(x) := ∑g
l=1 λ2,l‖xGl‖ with λ2,l := λ2wl , l = 1, 2, . . . , g. The dual problem

(see [3, Theorem 3.3.5]) of (P) takes the following form:

(D)
max g(y, z) := −〈b, y〉 − 1

2‖y‖2 − p∗(z)
s.t. A∗y + z = 0.

In addition, the Karush–Kuhn–Tucker (KKT) optimality system associated with (P)
and (D) is given by

Ax − y − b = 0, Proxp(x + z) − x = 0, A∗y + z = 0, (2)

where the proximal mapping of p is defined by:

Proxp(u) := argmin
x

{
p(x) + 1

2
‖x − u‖2

}
, ∀ u ∈ R

n . (3)

For any given parameter t > 0 and a closed proper convex function h (for its definition,
see e.g., [47, Page 52]), the following Moreau identity will be frequently used:

Proxth(u) + tProxh∗/t (u/t) = u. (4)

It is well known that the proximal mappings of �1 norm and �2 norm can be expressed
as follows: for any given c > 0,

Proxc‖·‖1(u) = sign(u) � max {|u| − ce, 0} ,

Proxc‖·‖(u) =
{ u

‖u‖ max{‖u‖ − c, 0}, if u �= 0,
0, otherwise.

The following definition of “semismoothness with respect to a multifunction”, which
is adopted from [28,31,38,42], will play an important role in the subsequent analysis.

Definition 2.1 Let O ⊆ R
n be an open set, K : O ⊆ R

n ⇒ R
m×n be a nonempty

and compact valued, upper-semicontinuous set-valued mapping and F : O → R
m be

a locally Lipschitz continuous function. F is said to be semismooth at x ∈ O with
respect to the multifunction K if F is directionally differentiable at x and for any
V ∈ K(x + �x) with �x → 0,

F(x + �x) − F(x) − V�x = o(‖�x‖).

123

228 Y. Zhang et al.

Let γ be a positive constant.F is said to be γ -order (strongly, if γ = 1) semismooth at
x with respect toK ifF is directionally differentiable at x and for any V ∈ K(x+�x)
with �x → 0,

F(x + �x) − F(x) − V�x = O(‖�x‖1+γ).

F is said to be a semismooth (respectively, γ -order semismooth, strongly semismooth)
function onOwith respect toK if it is semismooth (respectively, γ -order semismooth,
strongly semismooth) everywhere in O with respect to K.

We will see in the next lemma that the proximal mappings of the �1 norm and �2
norm are strongly semismooth with respect to the Clarke generalized Jacobian (for
the definition of Clarke’s generalized Jacobian, see [9, Definition 2.6.1]).

Lemma 2.1 For any c > 0, the proximal mappings Proxc‖·‖1(·) and Proxc‖·‖(·) are
strongly semismooth with respect to the Clarke generalized Jacobian ∂Proxc‖·‖1(·)
and ∂Proxc‖·‖(·), respectively.
Proof Since Proxc‖·‖1(·) is a Lipschitz continuous piecewise affine function, it follows
from[15, Proposition7.4.7] that Proxc‖·‖1(·) is strongly semismooth everywhere.Next,
we focus on the proximal mapping Proxc‖·‖(·). From the definition of Proxc‖·‖(·) and
the fact that the projection of any vector onto the second order cone, i.e., the epigraph
of the �2 norm function, is strongly semismooth [8, Proposition 4.3], we can obtain
the conclusion directly from [37, Theorem 4]. ��

Next, we analyse the vital decomposition property, which is termed as “prox-
decomposition” in [53], of the SGLasso regularizer p. In the next proposition, we
show that the proximal mapping Proxp(·) of p = ϕ + φ can be decomposed into the
composition of the proximal mappings Proxϕ(·) and Proxφ(·). With this decomposi-
tion property, we are able to compute Proxp(·) in a closed form. This decomposition
result was proved in [54, Theorem 1], which ismainly an extension of that for the fused
Lasso regularizer in [17]. Here, we give another short proof based on the systematic
investigation in [53].

Proposition 2.1 Under Assumption 1.1, it holds that

Proxp(u) = Proxφ ◦ Proxϕ (u), ∀ u ∈ R
n .

Proof Under Assumption 1.1, the function p has a separable structure. Hence, the
problem (3) is separable for each group. Therefore, it is sufficient to prove that

Proxλ1‖·‖1+λ2,l‖·‖(ul) = Proxλ2,l‖·‖ ◦ Proxλ1‖·‖1(ul), ∀ ul ∈ R
|Gl |, l = 1, 2, . . . , g.

By [53, Theorem 1], for each l ∈ {1, 2, . . . , g}, it suffices to show that

∂(λ1‖ul‖1) ⊆ ∂(λ1‖vl‖1), vl := Proxλ2,l‖·‖(ul), ∀ ul ∈ R
|Gl |.

For any given ul ∈ R
|Gl |, we discuss the following two cases.

123

An efficient Hessian based algorithm for solving… 229

Case 1 If ‖ul‖ ≤ λ2,l , then vl = 0. It follows that ∂(λ1‖vl‖1) = [−λ1, λ1]|Gl |,
which obviously contains ∂(λ1‖ul‖1).
Case 2 If ‖ul‖ > λ2,l , then vl = (1−λ2,l/‖ul‖)ul , which implies that sign(vl) =
sign(ul). Thus, it holds that ∂(λ1‖ul‖1) = ∂(λ1‖vl‖1).

Hence, the proof is completed. ��
Consider an arbitrary point u ∈ R

n . Based on the above proposition, we are now
ready to compute Proxp(u) explicitly. Let v := Proxϕ(u). For each group Gl , l =
1, 2, . . . , g, it holds that

argmin
xGl

{
λ2,l‖xGl‖ + 1

2
‖xGl − vGl‖2

}
= vGl − �Bλ2,l

2
(vGl).

That is, PlProxφ(v) = Plv − �Bλ2,l
2

(Plv). Therefore, we have

Proxp(u) = Proxφ(v) = v − P∗�B2(Pv). (5)

For the rest of this section, we introduce some error bound results that will be
used later in the convergence rate analysis. Define the proximal residual function
R : Rn → R

n by

R(x) := x − Proxp(x − ∇ f (x)), ∀ x ∈ R
n . (6)

Since dom f ∩ domp �= ∅, we know from [47, Theorem 23.8] that the Clarke gener-
alized Jacobian ∂h : R

n ⇒ R
n takes the following form:

∂h(x) = {v ∈ R
n | v ∈ ∇ f (x) + ∂ p(x)}, ∀ x ∈ R

n . (7)

Suppose that λ1 + λ2 > 0. Let �P be the optimal solution set of (P). Since f is
nonnegative on Rn , it is easy to obtain that h(x) → +∞ as ‖x‖ → +∞. Thus, �P is
a compact convex set. The first order optimality condition of (P) implies that x̄ ∈ �P

is equivalent to 0 ∈ ∂h(x̄), which in turn is equivalent to R(x̄) = 0. It is proved in
[56, Theorem 1] that the local error bound condition (in the sense of Luo and Tseng
[35]) holds around the optimal solution set �P , i.e., for every ξ ≥ infx h(x), there
exist positive scalars κ0 and δ0 such that

dist(x,�P) ≤ κ0‖R(x)‖, ∀ x ∈ R
n satis f ying h(x) ≤ ξ and ‖R(x)‖ ≤ δ0.

(8)
Therefore, by using the facts that �P is compact and that R is continuous, we know
that for any r1 > 0, there exists κ1 > 0 such that

dist(x,�P) ≤ κ1‖R(x)‖, ∀ x ∈ R
n satis f ying dist (x,�P) ≤ r1. (9)

Furthermore, by mimicking the proofs in [13, Theorem 3.1] or [10, Proposition 2.4]
and noting that �P is a compact set, we can obtain the following result with no
difficulty.

123

230 Y. Zhang et al.

Proposition 2.2 For any r > 0, there exists κ > 0 such that

dist(x,�P) ≤ κ dist(0, ∂h(x)), ∀ x ∈ R
n satis f ying dist (x,�P) ≤ r .

3 Generalized Jacobian of Proxp(·)
In this section, we shall analyse the generalized Jacobian of the proximal mapping
Proxp(·) of the SGLasso regularizer p. From Proposition 2.1, for any u ∈ R

n , we
have

Proxp(u) = Proxφ(Proxϕ (u)).

At the first glance, we may try to apply the chain rule in deriving the generalized
Jacobian of Proxp(·). Indeed it was illustrated in [49] that under certain conditions,
the generalized Jacobian for composite functions can be obtained by the chain rule in
a similar fashion as in finding the ordinary Jacobian for composite smooth functions.
Specifically, if the conditions in [49, Lemma 2.1] hold, then we could have obtained
by the chain rule the following B-subdifferential (for its definition, see [41, Equation
(2.12)]), which is a subset of the Clarke generalized Jacobian,

∂BProxp(u) =
{
�̃ · �

∣∣ �̃ ∈ ∂BProxφ(v), � ∈ ∂BProxϕ(u), v = Proxϕ (u)
}

.

However, the conditions in [49, Lemma 2.1] may not hold in our context, and con-
sequently the above equation is usually invalid. Therefore, the B-subdifferential of
Proxp(·) is nontrivial to obtain, and we have to find an alternative surrogate to bypass
this difficulty. The challenge just highlighted also appeared in [31] when analysing
the generalized Jacobian of the proximal mapping of the fused Lasso regularizer. In
that work, the general definition “semismoothness with respect to a multifunction”
was adopted, and such a multifunction was constructed to play the role of the Clarke
generalized Jacobian. Here, we shall use the same strategy, and our task now is to
identify such a multifunction.

Before characterizing the multifunction relating to the semismoothness, based on
the fact in (5) that Proxφ(v) = v − P∗�B2(Pv), ∀ v ∈ R

n , we define the following
alternative for the generalized Jacobian of Proxφ(·):

∂̂Proxφ(v) :=
{
I − P∗�P

∣∣ � = Diag(�1, . . . , �g),�l ∈ ∂�Bλ2,l
2

(vGl), l = 1, 2, . . . , g

}
.

It can be observed that the main part of ∂̂Proxφ(·) is the block diagonal matrix �, of
which each block is the Clarke generalized Jacobian of a projection operator onto an
�2-norm ball. Since ∂�Bλ2,l

2
(·) admits a closed form expression, so does ∂̂Proxφ(·).

123

An efficient Hessian based algorithm for solving… 231

Now, we are in a position to present the following multifunction M : Rn ⇒ R
n×n

and regard it as the surrogate generalized Jacobian of Proxp(·) at any u ∈ R
n :

M(u) :=
{

(I − P∗�P)�

∣∣∣∣∣
� = Diag(�1, . . . , �g),�l ∈ ∂�Bλ2,l

2
(vGl), l = 1, 2, . . . , g,

v = Proxϕ(u), � ∈ ∂Proxϕ(u)

}
.

(10)

Remark 3.1 For l = 1, 2, . . . , g and vl ∈ R
|Gl |, the projection onto an �2-norm ball

and its Clarke generalized Jacobian are given as follows, respectively:

�Bλ2,l
2

(vl) =
{

λ2,l
vl‖vl‖ , if ‖vl‖ > λ2,l ,

vl , otherwise,
(11)

∂�Bλ2,l
2

(vl) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{
λ2,l
‖vl‖

(
I − vlv

T
l

‖vl‖2
)}

, if ‖vl‖ > λ2,l ,

{
I − t

vlv
T
l

(λ2,l)
2 | 0 ≤ t ≤ 1

}
, if ‖vl‖ = λ2,l ,

{I }, if ‖vl‖ < λ2,l .

(12)

In numerical computations, for any u ∈ R
n , one needs to construct at least one element

inM(u) explicitly. This can be done as follows. For l = 1, 2, . . . , g, choose

�l =
⎧
⎨

⎩

λ2,l
‖vl‖

(
I − vlv

T
l

‖vl‖2
)

, if ‖vl‖ > λ2,l ,

I , if ‖vl‖ ≤ λ2,l .

In addition, the Clarke generalized Jacobian of Proxϕ are given as follows:

∂Proxϕ(u) =

⎧
⎪⎨

⎪⎩
Diag(θ)

∣∣∣∣ θ ∈ R
n, θi ∈

⎧
⎪⎨

⎪⎩

{1}, if |ui | > λ1,

{t | 0 ≤ t ≤ 1}, if |ui | = λ1,

{0}, if |ui | < λ1,

i = 1, . . . , n

⎫
⎪⎬

⎪⎭
.

(13)

Define a vector θ ∈ R
n and construct a matrix � = Diag(θ) with

θi =
{
0, if |ui | ≤ λ1,

1, otherwise, i = 1, . . . , n.
(14)

We also construct one element for numerical implementations:

� = Diag(θ) ∈ ∂Proxϕ(u). (15)

Therefore, it holds that (I − P∗�P)� ∈ M(u).

123

232 Y. Zhang et al.

The following main theorem of this section justifies why M(u) in (10) can be
treated as the surrogate generalized Jacobian of Proxp(·) at u. That is, it shows that
the proximal mapping Proxp is strongly semismooth on Rn with respect to the multi-
function M defined in (10).

Theorem 3.1 Assume that Assumption 1.1 holds. Let u ∈ R
n. Then the multifunction

M, defined in (10), is a nonempty compact valued upper-semicontinuous multifunc-
tion, and for any M ∈ M(u), M is symmetric and positive semidefinite. Moreover,
for any M ∈ M(w) with w → u,

Proxp(w) − Proxp(u) − M(w − u) = O(‖w − u‖2). (16)

Proof By Lemma 2.1, Proposition 2.1, and [15, Theorem 7.5.17], one can deduce that
the point-to-set mapM has nonempty compact images and is upper-semicontinuous,
and Eq. (16) holds. It remains to show that M is symmetric and positive semidefinite
for any M ∈ M(u). Denote v := Proxϕ(u). Take M ∈ M(u) arbitrarily. Then, there
exist �l ∈ ∂�Bλ2,l

2
(vGl), l = 1, 2, . . . , g and � = Diag(θ) ∈ ∂Proxϕ(u), given by

(12) and (13), respectively, such that

M =
g∑

l=1

P∗
l (I − �l)Pl�.

It suffices to show thatP∗
l (I −�l)Pl� is symmetric and positive semidefinite for any

l ∈ {1, 2, . . . , g}. Denote the index sets

�l := {i ∈ Gl | θi = 1}, l = 1, 2, . . . , g. (17)

For simplicity, we write vGl as vl in the following proof.

Case 1 ‖vl‖ < λ2,l . By (12), I − �l = 0.
Case 2 ‖vl‖ = λ2,l . By (12), there exists some t ∈ [0, 1] such that

P∗
l (I − �l)Pl� = t

(λ2,l)2
(P∗

l vl)(P∗
l vl)

T�.

By the definition of Pl , we deduce that supp(P∗
l vl) ⊆ �l . It follows from (17) that

(P∗
l vl)

T� = (P∗
l vl)

T . That is,

P∗
l (I − �l)Pl� = t

(λ2,l)2
(P∗

l vl)(P∗
l vl)

T ,

which is symmetric and positive semidefinite.

123

An efficient Hessian based algorithm for solving… 233

Case 3 ‖vl‖ > λ2,l . From (12) and the proof in case 2, we have

P∗
l (I − �l)Pl� = P∗

l

(
I − λ2,l

‖vl‖
(
I − vlv

T
l

‖vl‖2
))Pl�

=
(
1 − λ2,l

‖vl‖
)
P∗
l Pl� + λ2,l

‖vl‖3 (P∗
l vl)(P∗

l vl)
T�

=
(
1 − λ2,l

‖vl‖
)
P∗
l Pl� + λ2,l

‖vl‖3 (P∗
l vl)(P∗

l vl)
T .

Since both P∗
l Pl and � are diagonal, it holds that P∗

l (I − �l)Pl� is symmetric.
Furthermore, it is obvious that P∗

l Pl� is positive semidefinite. Therefore, the last
equality implies that P∗

l (I − �l)Pl� is positive semidefinite. In summary, we have
shown that M is symmetric and positive semidefinite. ��

4 An inexact semismooth Newton based augmented Lagrangian
method

In this section, we shall design an inexact semismooth Newton based augmented
Lagrangian method for solving problem (D), the dual of the SGLasso problem (1).
Compared with the previous work [30], this work adopts the same algorithmic frame-
work of ALM and SSN. As we know, the most important issue in implementing the
algorithm lies in finding the explicit expression of the generalized Jacobian, i.e., a
matrix M ∈ M(u). This matrix admits a diagonal form (with zero or one in the diag-
onal) in the previous paper [30] whereas it has a much more complicated structure
than a diagonal structure in our current work. In particular, any matrix M ∈ M(u) in
the set of generalized Jacobian will consist of two parts, since the sparse group Lasso
regularizer contains two parts. As the generalized Jacobians here have more com-
plex structures, the efficient implementation of the algorithm for solving a SGLasso
problem is naturally more difficult than that for solving a Lasso problem [30].

Here we always assume that λ1 + λ2 > 0. Write (D) equivalently in the following

min 〈b, y〉 + 1
2‖y‖2 + p∗(z)

s.t. A∗y + z = 0.
(18)

For σ > 0, the augmented Lagrangian function associated with (18) is given by

Lσ (y, z; x) = 〈b, y〉+ 1

2
‖y‖2 + p∗(z)+ σ

2
‖A∗y + z − σ−1x‖2 − 1

2σ
‖x‖2. (19)

The k-th iteration of the augmented Lagrangian method is given as follows:

{
(yk+1, zk+1) ≈ argminy,z{Lσk (y, z; xk)},
xk+1 = xk − σk(A∗yk+1 + zk+1), k ≥ 0.

123

234 Y. Zhang et al.

In each iteration, the most expensive step is to solve the following subproblem:

min
y,z

{Lσk (y, z; xk)}. (20)

Since for any given xk ∈ R
n and σk > 0, Lσk (·, ·; xk) is a strongly convex function,

the subproblem (20) admits a unique optimal solution. For any y ∈ R
m , define

ψk(y) := inf
z
Lσk (y, z; xk)

= 〈b, y〉 + 1

2
‖y‖2 + p∗(Proxp∗/σk (σ

−1
k xk − A∗y))

+σk

2
‖Proxp(σ−1

k xk − A∗y)‖2

− 1

2σk
‖xk‖2. (21)

Then, (yk+1, zk+1) ≈ argminy,z{Lσk (y, z; xk)} can be computed as follows:

yk+1 ≈ argmin
y

ψk(y) and zk+1 = Proxp∗/σk (σ
−1
k xk − A∗yk+1). (22)

Now, we propose an inexact augmented Lagrangian method for solving (18).

Algorithm 1 An inexact augmented Lagrangian method for solving (18)

Let σ0 > 0 be a given parameter. Choose (y0, z0, x0) ∈ R
m × R

n × R
n . Iterate the following steps for

k = 0, 1, . . .

Step 1. Compute the following via (22):

(yk+1, zk+1) ≈ argmin
y,z

{Lσk (y, z; xk)}. (23)

Step 2. Compute

xk+1 = xk − σk (A∗yk+1 + zk+1) = σkProxp(σ
−1
k xk − A∗yk+1). (24)

Step 3. Update σk+1 ↑ σ∞ ≤ ∞.

Given nonnegative summable sequences {εk} and {δk} such that δk < 1 for all
k ≥ 0, we estimate the accuracy of the approximate solution (yk+1, zk+1) of (23) via
the standard stopping criteria studied in [45]:

(A) Lσk (y
k+1, zk+1; xk) − inf y,z Lσk (y, z; xk) ≤ ε2k/2σk,

(B) Lσk (y
k+1, zk+1; xk) − inf y,z Lσk (y, z; xk) ≤ (δ2k/2σk)‖xk+1 − xk‖2.

123

An efficient Hessian based algorithm for solving… 235

Since ψk(·) is strongly convex with modulus 1, one has the estimate

Lσk (y
k+1, zk+1; xk) − inf y,z Lσk (y, z; xk) = ψk(y

k+1) − inf ψk ≤ 1

2
‖∇ψk(y

k+1)‖2.

Therefore, the above stopping criteria (A) and (B) can be replaced by the following
easy-to-check criteria, respectively,

(A′) ‖∇ψk(yk+1)‖ ≤ εk/
√

σk,

(B′) ‖∇ψk(yk+1)‖ ≤ (δk/
√

σk)‖xk+1 − xk‖.

4.1 Convergence rates for Algorithm 1

Note that the superlinear convergence of the primal and dual sequences generated
by the semismooth Newton ALM for solving the Lasso and fused Lasso problems
([30,31]) heavily relies on the polyhedral properties of the Lasso and fused Lasso
regularizers. However, the sparse group Lasso regularizer is non-polyhedral. There-
fore, one has to modify the convergence analysis in ([30,31]) to obtain the fast linear
convergence property under a suitable error bound assumption. In the following, we
shall analyse the global linear convergence at an arbitrarily fast rate of the inexact
augmented Lagrangian method for solving problem (18).

For the nonnegative summable sequence {εk} in the stopping criterion (A′), we
introduce a scalar α such that ∞∑

k=0

εk ≤ α. (25)

Let r be any given positive scalar satisfying r > α. It follows from Proposition 2.2
that there exists a positive scalar κ such that

dist(x,�P) ≤ κ dist(0, ∂h(x)), ∀ x ∈ R
n satisfying dist(x,�P) ≤ r . (26)

The next lemma measures the distance of each primal iterate generated by Algorithm
1 to the optimal solution set �P . The proof of Lemma 4.1 is mainly based on [11,
Proposition 1(c)], which itself is an extension of [46, Theorem 2] and [36, Theorem
2.1]. Compared to the proof in [11, Proposition 1(c)], the following lemma uses (26)
instead of the calmness condition of (∂h)−1 at the origin for some x̄ ∈ �P .

Lemma 4.1 Suppose that the initial point x0 ∈ R
n satisfies dist(x0, �P) ≤ r − α,

where α is given in (25). Let {xk} be any infinite sequence generated by Algorithm 1
under criteria (A′) and (B ′) simultaneously. Then for all k ≥ 0, one has

dist(xk+1,�P) ≤ μk dist(x
k,�P),

where μk := [δk + (1 + δk)κ/

√
κ2 + σ 2

k]/(1 − δk) and κ is from (26).

123

236 Y. Zhang et al.

Proof Denote the proximal point mapping by Pk := (I + σk∂h)−1. Then, it follows
from [45, Proposition 6] and criterion (A′) that

‖xk+1 − Pk(x
k)‖2/2σk ≤ Lσk (y

k+1, zk+1; xk) − inf y,z Lσk (y, z; xk) ≤ ε2k/2σk .

This, together with the fact that ��P (x0) = Pk(��P (x0)), implies that

‖xk+1 − ��P (x0)‖ ≤ ‖xk+1 − Pk(x
k)‖ + ‖Pk(xk) − ��P (x0)‖

≤ ‖xk − ��P (x0)‖ + εk .

Therefore, one has

‖xk − ��P (x0)‖ ≤ ‖x0 − ��P (x0)‖ +
k−1∑

i=0

εi ≤ ‖x0 − ��P (x0)‖ + α, ∀ k ≥ 0.

Consequently, dist(xk,�P) ≤ dist(x0,�P) + α ≤ r , ∀ k ≥ 0. Moreover, one has

‖Pk(xk) − ��P (xk)‖ = ‖Pk(xk) − Pk(��P (xk))‖ ≤ ‖xk − ��P (xk)‖ ≤ r ,

which implies that

dist(Pk(x
k),�P) ≤ r , ∀ k ≥ 0.

Additionally, it was shown in [46, Proposition 1(a)] that

Pk(x
k) ∈ (∂h)−1((xk − Pk(x

k))/σk), ∀ k ≥ 0.

Then it follows from (26) that

dist(Pk(x
k),�P) ≤ κdist(0, ∂h(Pk(x

k)) ≤ (κ/σk)‖xk − Pk(x
k)‖, ∀ k ≥ 0.

Therefore, from the proof in [11, Proposition 1 (c)], for all k ≥ 0, we obtain that

dist(Pk(x
k), �P) ≤

(
κ/

√
κ2 + σ 2

k

)
dist(xk, �P)

and that

‖xk+1 − ��P (Pk(x
k))‖

≤ δk‖xk+1 − ��P (Pk(x
k)‖ +

(
δk + (1 + δk)κ/

√
κ2 + σ 2

k

)
dist(xk,�P).

This, together with the fact that dist(xk+1, �P) ≤ ‖xk+1 −��P (Pk(xk))‖, ∀ k ≥ 0,
completes the proof. ��

123

An efficient Hessian based algorithm for solving… 237

While the global convergence of Algorithm 1 follows from [36,45] directly, the
conditions required in [36,45] to guarantee the local linear convergence of both {xk}
and {(yk, zk)}may no longer hold for the SGLasso problem due to the non-polyhedral
property of the �2 norm function. Fortunately, the new results established in [11] on
the convergence rates of the ALM allow us to establish the following theorem, which
proves the global Q-linear convergence of the primal sequence {xk} and the global R-
linear convergence of the dual infeasibility and the dual objective values. Furthermore,
the linear rates can be arbitrarily fast if the penalty parameter σk is chosen sufficiently
large.

Theorem 4.1 Let {(yk, zk, xk)} be an infinite sequence generated byAlgorithm 1 under
stopping criterion (A′). Then, the sequence {xk} converges to some x̄ ∈ �P , and the
sequence {(yk, zk)} converges to the unique optimal solution of (D).

Furthermore, if criterion (B ′) is also executed in Algorithm 1 and the initial point
x0 ∈ R

n satisfies dist(x0, �P) ≤ r − α, then for all k ≥ 0, we have

dist(xk+1,�P) ≤ μk dist(x
k,�P), (27a)

‖A∗yk+1 + zk+1‖ ≤ μ′
k dist(x

k,�P), (27b)

sup(D) − g(yk+1, zk+1) ≤ μ′′
k dist(x

k,�P), (27c)

where

μk :=
[
δk + (1 + δk)κ/

√
κ2 + σ 2

k

]
/(1 − δk),

μ′
k := 1/[(1 − δk)σk],

μ′′
k := [δ2k‖xk+1 − xk‖ + ‖xk+1‖ + ‖xk‖]/[2(1 − δk)σk],

and κ is from (26). Moreover, μk, μ′
k , and μ′′

k go to 0 if σk ↑ σ∞ = +∞.

Proof The statements on the global convergence just follow from [45, Theorem 5] or
[11, Proposition 2]. Inequality (27a) is a direct consequence of Lemma 4.1. From the
updating formula (24) of xk+1, we deduce that

‖A∗yk+1 + zk+1‖ = σ−1
k ‖xk+1 − xk‖,

which, together with [11, Lemma 3], i.e.,

‖xk+1 − xk‖ ≤ (1 − δk)
−1dist(xk,�p), (28)

implies that (27b) holds. Finally, it follows from [11, Proposition 2 (5b)] that

sup(D) − g(yk+1, zk+1) ≤ Lσk (y
k+1, zk+1; xk) − inf y,z Lσk (y, z; xk) + (1/2σk)(‖xk‖2 − ‖xk+1‖2).

This, together with criterion (B) and (28), shows that (27c) holds. The proof of this
theorem is completed. ��

123

238 Y. Zhang et al.

Remark 4.1 Assume that all the conditions in Theorem 4.1 are satisfied. Since the
primal objective function h is Lipschitz continuous on any compact set, there exists a
constant L > 0 such that h is Lipschitz continuous on the set {x ∈ R

n | dist(x,�P) ≤
r} with modulus L . Therefore, one can obtain from Theorem 4.1 that for all k ≥ 0,

h(xk+1) − inf(P) ≤ Ldist(xk+1,�P) ≤ Lμkdist(x
k, �P).

This inequality, together with (27c) and the strong duality theorem, implies that

h(xk+1) − g(yk+1, zk+1) ≤ (Lμk + μ′′
k)dist (x

k, �P),

which means that the duality gap converges to zero R-linearly at an arbitrary linear
rate if σk is sufficiently large and R-superlinearly if σk ↑ σ∞ = +∞.

4.2 A semismooth Newtonmethod for solving the subproblem (22)

In this subsection, we propose an efficient semismooth Newton (SSN) method for
solving the subproblem (22). As already mentioned earlier, having an efficient method
for solving (22) is critical to the efficiency of Algorithm 1. In each iteration, we have
to solve the following problem, for any given σ > 0 and fixed x̃ ,

min
y

{
ψ(y) := 〈b, y〉 + 1

2
‖y‖2 + p∗(Proxp∗/σ (σ−1 x̃ − A∗y))

+σ

2
‖Proxp(σ−1 x̃ − A∗y)‖2

}
. (29)

Note that ψ(·) is strongly convex and continuously differentiable with

∇ψ(y) = b + y − σAProxp(σ
−1 x̃ − A∗y).

Thus, the unique solution ȳ of (29) can be obtained by solving the followingnonsmooth
equation

∇ψ(y) = 0. (30)

Generally, to solve

F(x) = 0,

where F : R
m → R

m is a locally Lipschitz continuous function, one can employ the
following SSN method:

xk+1 = xk − V−1
k F(xk),

where Vk ∈ ∂F(xk), and ∂F(xk) denotes the Clarke generalized Jacobian [9, Defi-
nition 2.6.1] of F at xk . For more details about the SSN method, we refer the reader
to [28,29,42,50,57] and the references therein. In particular, existing studies such as

123

An efficient Hessian based algorithm for solving… 239

[42,50] used the Clarke generalized Jacobian Vk ∈ ∂F(xk) in the updating scheme
and established correspondingly the convergence results of the SSN method.

We should point out again that characterizing ∂(∇ψ)(·) is a difficult task to accom-
plish. In Sect. 3, we have constructed a multifunctionM, which is used as a surrogate
of the generalized Jacobian ∂Proxp. Besides, it is illustrated in Theorem 3.1 that Proxp
is strongly semismooth with respect to the multifunction M. Likewise, we define a
multifunction V : Rm ⇒ R

m×m as follows:

V(y) :=
{
V | V = I + σAMA∗, M ∈ M(σ−1 x̃ − A∗y)

}
,

whereM(·) is defined in (10). It follows from Theorem 3.1 and [15, Theorem 7.5.17]
that (1) V is a nonempty compact valued upper-semicontinuous multifunction; (2)∇ψ

is strongly semismooth onRm with respect to the multifunction V; (3) every matrix in
the set V(·) is symmetric and positive definite. With the above analysis, we are ready
to design the following SSN method for solving (30).

Algorithm 2 A semismooth Newton method for solving (30)

Given μ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and β ∈ (0, 1). Choose y0 ∈ R
m . Iterate the following steps

for j = 0, 1, . . .

Step 1. Choose Mj ∈ M(σ−1 x̃ − A∗y j). Let Vj = I + σAMjA∗. Solve the following linear system

Vj d = −∇ψ(y j) (31)

exactly or by the conjugate gradient (CG) algorithm to find d j such that ‖Vj d
j + ∇ψ(y j)‖ ≤

min(η̄, ‖∇ψ(y j)‖1+τ).
Step 2. (Line search) Set α j = β

m j , where m j is the smallest nonnegative integer m for which

ψ(y j + βmd j) ≤ ψ(y j) + μβm 〈∇ψ(y j), d j 〉.

Step 3. Set y j+1 = y j + α j d
j .

The following convergence theorem for Algorithm 2 can be obtained directly from
[31, Theorem 3].

Theorem 4.2 Let {y j } be the sequence generated by Algorithm 2. Then {y j } is well-
defined and converges to the unique solution ȳ of (29). Moreover, the convergence
rate is at least superlinear:

‖y j+1 − ȳ‖ = O(‖y j − ȳ‖1+τ),

where τ ∈ (0, 1] is the parameter given in Algorithm 2.

123

240 Y. Zhang et al.

4.3 Efficient techniques for solving the linear system (31)

In this section, we analyse the sparsity structure of the matrix in the linear system
(31) and design sophisticated numerical techniques for solving the large-scale linear
systems involved in the SSN method. These techniques were first applied in [30]
which took full advantage of the second order sparsity of the underlying problem.
The numerical techniques also rely heavily on the sparsity of the primal iterative
sequence.

As can be seen, themost expensive step in each iteration ofAlgorithm 2 is in solving
the linear system (31). Let (x̃, y) ∈ R

n × R
m and σ > 0 be given. The linear system

(31) has the following form:

(I + σ AMAT)d = −∇ψ(y), (32)

where A denotes the matrix representation of the linear operator A, and M ∈ M(u)

with u = σ−1 x̃ − AT y. With the fact that A is an m by n matrix and M is an n by
n matrix, the cost of naively computing AMAT is O(mn(m + n)). Similarly, for any
vector d ∈ R

m , the cost of naively computing the matrix-vector product AMAT d is
O(mn). Since the cost of naively computing the coefficient matrix I + σ AMAT and
that of multiplying a vector by the coefficient matrix I + σ AMAT are excessively
demanding, common linear system solvers, such as the Cholesky decomposition and
the conjugate gradient method, will be extremely slow (if possible at all) in solving
the linear system (32) arising from large-scale problems. Therefore, it is critical for
us to extract and exploit any structures present in the matrix AMAT to dramatically
reduce the cost of solving (32).

Next, we analyse the proof in Theorem 3.1 in detail in order to find the special
structure of AMAT , thereby reducing the computational cost mentioned above. Let
v := Proxϕ(u). From the proof in Theorem 3.1, case 1 and case 2 (taking t = 0) are
simple since the set M(u) contains a zero matrix. We can choose M = 0 so that

I + σ AMAT = I .

The sole challenge lies in case 3. Here, we shall consider

(
1 − λ2,l

‖vl‖
)
AP∗

l Pl�AT + λ2,l

‖vl‖3 A(P∗
l vl)(P∗

l vl)
T AT .

Note that both P∗
l Pl and � are diagonal matrices whose diagonal elements are either

0 or 1. Therefore, the product P∗
l Pl� enjoys the same property. Moreover, we have

supp(diag(P∗
l Pl)) = Gl and supp(diag(�)) = supp(v) by the definition of Pl , (14),

and (15). Therefore,

supp(diag(P∗
l Pl�)) = �l ,

where �l is the index set defined by (17) that corresponds to the non-zero elements of
v in the l-th group. In other words, the diagonal matrix P∗

l Pl� is expected to contain

123

An efficient Hessian based algorithm for solving… 241

only a few 1’s in the diagonal. Consequently, the computational cost of AP∗
l Pl�AT

can be greatly reduced. Next, we observe that supp(P∗
l vl) ⊆ �l . Thus to compute

A(P∗
l vl), one just needs to consider those columns of A corresponding to the index set

�l , thereby reducing the cost of computing A(P∗
l vl) and that of A(P∗

l vl)(P∗
l vl)

T AT .
The following notations are introduced to express these techniques clearly. Denote
the index set �> := {l | ‖vl‖ > λ2,l , l = 1, 2, . . . , g}, which corresponds to case 3 in
Theorem 3.1. For each l = 1, 2, . . . , g, let Al ∈ R

m×|�l | be the sub-matrix of A with
those columns in �l and sl := (P∗

l vl)�l ∈ R
|�l | be the sub-vector of P∗

l vl restricted
to �l . Then, we deduce that

AMAT =
∑

l∈�>

(
1 − λ2,l

‖vl‖
)
AP∗

l Pl�AT + λ2,l

‖vl‖3 A(P∗
l vl)(P∗

l vl)
T AT

=
∑

l∈�>

(
1 − λ2,l

‖vl‖
)
Al A

T
l + λ2,l

‖vl‖3 (Alsl)(Alsl)
T . (33)

Therefore, the cost of computing AMAT and that of the matrix-vector product
AMAT d for any d ∈ R

m are O(m2(r + r2)) and O(m(r + r2)), respectively, where
r := ∑

l∈�>
|�l | ≤ |supp(v)| and r2 := |�>| ≤ g. We may refer to r as the overall

sparsity and r2 as the group sparsity. In other words, the computational cost depends
on the overall sparsity r , the group sparsity r2, and the number of observations m.
The number r is presumably much smaller than n due to the fact that v = Proxϕ(u).
Besides, the number of observations m is usually smaller than the number of predic-
tors n in many applications. Even if n happens to be extremely large (say, larger than
107), one can still solve the linear system (32) efficiently via the (sparse) Cholesky
factorization as long as r , r2, and m are moderate (say, less than 104).

In addition, if the optimal solution is so sparse that r + r2 � m, then the cost of
solving (32) can be reduced further. In this case, the coefficient matrix can be written
as follows:

I + σ AMAT = I + DDT ,

where D = [B, C] ∈ R
m×(r+r2) with Bl :=

√
σ
(
1 − λ2,l

‖vl‖
)
Al ∈ R

m×|�l |, B :=
[Bl]l∈�> ∈ R

m×r , cl :=
√

σ
λ2,l

‖vl‖3 (Alsl) ∈ R
m and C = [cl]l∈�> ∈ R

m×r2 . By the
Sherman–Morrison–Woodbury formula, it holds that

(I + σ AMAT)−1 = (I + DDT)−1 = I − D(I + DT D)−1DT .

In this case, the main cost is in computing I + DT D at O(m(r + r2)2) operations, as
well as to factorize the r + r2 by r + r2 matrix I + DT D at the cost of O((r + r2)3)
operations.

Based on the above arguments, one can claim that the linear system (31) in each
SSN iteration can be solved efficiently at low costs. In fact based on our experience
gathered from the numerical experiments in the next section, the computational costs

123

242 Y. Zhang et al.

are so low that the time taken to perform indexing operations, such as obtaining the
sub-matrix Al from A and the sub-vector (P∗

l vl)�l fromP∗
l vl for l ∈ �>, may become

noticeably higher than the time taken to compute thematrix AMAT itself. Fortunately,
the group sparsity r2 generally limits the number of such indexing operations needed
when computing AMAT .

Note that in the unlikely event that computing the Cholesky factorization of AMAT

or that of I + DT D is expensive, such as when r + r2 and m are both large (say more
than 104), one can employ the preconditioned conjugate gradient (PCG) method to
solve the linear system (32) efficiently through exploiting the fast computation of the
matrix-vector product AMAT d for any given vector d.

5 Numerical experiments

In this section, we compare the performance of our semismooth Newton augmented
Lagrangian (Ssnal) method with the semi-proximal alternating direction method
of multipliers (sPADMM) and the state-of-the-art solver SLEP1[33] for solving the
SGLasso problem. Specifically, the function “sgLeastR” in the solver SLEP is used
for comparison. For the details of “sgLeastR” the reader is referred to the paper [34].
ADMM was first proposed in [19,20], and the implementation will be illustrated in
Sect. 5.1. In addition, we also compare with the block coordinate descent (BCD) algo-
rithm when testing on the climate data set in Sect. 5.5. The BCD method we used is
efficiently implemented in [39] with a gap safe screening rule, and a Python imple-
mentation is available as gl_path.py2. Therefore, we can test the performance of the
BCD algorithm by running the Python codes sgl_path.py. For a fair comparison, we
directly run the Python codes instead of translating them intoMatlab codes.

Since the primal problem (1) is unconstrained, it is reasonable to measure the
accuracy of an approximate optimal solution (y, z, x) for problem (18) and problem
(1) by the relative duality gap and dual infeasibility. Specifically, let

pobj := 1

2
‖Ax − b‖2 + λ1‖x‖1 + λ2

g∑

l=1

wl‖xGl‖ and dobj := −〈b, y〉 − 1

2
‖y‖2

be the primal and dual objective function values. Then the relative duality gap and the
relative dual infeasibility are defined by

ηG := |pobj − dobj|
1 + |pobj| + |dobj| , ηD := ‖A∗y + z‖

1 + ‖z‖ .

For given error tolerances εD > 0 and εG > 0, our algorithm Ssnal will be
terminated if

ηD < εD and ηG < εG , (34)

1 http://www.public.asu.edu/~jye02/Software/SLEP.
2 The source codes can be found in https://github.com/EugeneNdiaye/GAPSAFE_SGL.

123

http://www.public.asu.edu/~jye02/Software/SLEP
https://github.com/EugeneNdiaye/GAPSAFE_SGL

An efficient Hessian based algorithm for solving… 243

while the sPADMM will be terminated if the above conditions hold or the maximum
number of 10,000 iterations is reached. By contrast, since SLEP does not produce the
dual sequences {(yk, zk)}, the relative dual infeasibility cannot be used as a stopping
criterion for SLEP. Therefore, we terminate SLEP if the relative difference of the
optimal objective values between SLEP and SSNAL is less than εG , i.e.,

ηP := objP − objS
1 + |objP| + |objS| < εG ,

or the maximum number of 10,000 iterations is reached. Here objP and objS denote the
objective values obtained by SLEP and Ssnal respectively. Note that the parameters
for SLEP are set to their default values unless otherwise specified. The BCD is
terminated by its default stopping condition.

In our numerical experiments, we choose εD = εG = 10−6 unless otherwise
specified. That is, the condition (34) for Ssnal becomes

ηS := max{ηG, ηD} < 10−6.

Similarly, the stopping condition for sPADMM becomes

ηA := max{ηG, ηD} < 10−6.

In addition, we adopt the following weights: wl = √|Gl |, ∀ l = 1, 2, . . . , g for
the model (1). In the following tables, “S” stands for Ssnal; “P” for SLEP; “A” for
sPADMM; “nnz” denotes the number of non-zero entries in the solution x obtained
by Ssnal using the following estimation:

nnz := min

{
k |

k∑

i=1

|x̂i | ≥ 0.999‖x‖1
}

,

where x̂ is obtained via sorting x by magnitude in a descending order. We display
the number of outer ALM iterations (in Algorithm 1) and the total number of inner
SSN iterations (in Algorithm 2) of Ssnal in the format of “outer iteration (inner
iteration)” under the iteration column. The computation time is in the format of
“hours:minutes:seconds”, and “00” in the time column means that the elapsed time is
less than 0.5 s.

All our numerical results are obtained by running Matlab (version 9.0) on a
windows workstation (24-core, Intel Xeon E5-2680 @ 2.50GHz, 128 Gigabytes of
RAM) except that the Python code spl_path.py is implemented in Anaconda 2.

5.1 Dual based semi-proximal ADMM

In this section, we study the implementation of the (inexact) semi-proximal alternat-
ing direction method of multipliers (sPADMM), which is an extension of the classic
ADMM [19,20]. This method is one of the most natural methods for solving (18) due

123

244 Y. Zhang et al.

to its separable structure. Generally, the framework of the sPADMM consists of the
following iterations:

⎧
⎪⎪⎨

⎪⎪⎩

yk+1 ≈ argminy Lσ (y, zk; xk) + 1
2‖y − yk‖2S1

,

zk+1 ≈ argminz Lσ (yk+1, z; xk) + 1
2‖z − zk‖2S2

,

xk+1 = xk − τσ (A∗yk+1 + zk+1),

(35)

where τ ∈ (0, (1 + √
5)/2), S1 and S2 are self-adjoint positive semidefinite linear

operators, andLσ is the augmentedLagrangian function defined in (19). The sPADMM
is convergent under some mild conditions, and we refer the reader to [7,16] for the
convergence results. However, due to the lack of error bound conditions for the KKT
system (2), the linear convergence rate of the sPADMM cannot be established from
existing results.

In each iteration of (35), the first step is to minimize a function of y. In particular,
yk+1 can be obtained by solving the following m × m linear system of equations:

(σ−1 I + AA∗ + S1)y
k+1 = −σ−1b − A(zk − σ−1xk) + S1y

k .

As the dimensionm is a moderate number inmany statistical applications. Thus, in our
implementation, Eq. (5.1) was solved via the Cholesky factorization, and the proximal
term S1 was taken to be the zero matrix. In the event that computing the Cholesky
factorization of σ−1 I +AA∗ is expensive, one can choose S1 judiciously to make the
coefficient matrix to be a positive definite diagonal matrix plus a low-rank matrix that
one can invert efficiently via the Sherman–Morrison–Woodbury formula. We refer the
reader to [7, section 7.1] for the details on how to choose S1 appropriately.

The second step in (35) is to minimize a function of z. For the SGLasso problem,
one would simply choose S2 = 0. In this case, by the Moreau identity (4), zk+1 is
updated by the following scheme:

zk+1 = σ−1xk − A∗yk+1 − Proxp(σ
−1xk − A∗yk+1),

where Proxp is computable by Proposition 2.1. In summary, two subproblems of (35)
are solvable and consequently the framework (35) is easily implementable. Moreover,
in order to improve the convergence speed numerically, we set the step-length τ in
(35) to be 1.618 and tune the parameter σ according to the progress between primal
feasibility and dual feasibility in the implementation.

5.2 Synthetic data

This section presents the tests of the three algorithms Ssnal, sPADMM, and SLEP
on various synthetic data constructed in the same way as in [48]. The data matrix A
is generated randomly as an m × n matrix of normally distributed random numbers,
and the number of groups g is chosen manually to be 100, 1000, and 10,000. Then
we partition {1, 2, . . . , n} into g groups such that the indices of components in each

123

An efficient Hessian based algorithm for solving… 245

Table 1 The performances of Ssnal, sPADMM, and SLEP on synthetic data. Regularization parameters
are set as follows: λ1 = λ2. “S” stands for Ssnal; “P” for SLEP; “A” for sPADMM

Size (m, n) g λ1 nnz Iteration Time

S A P S A P

(1e3, 1e5) 100 1338 166 1(3) 1246 1 00 01:23 00

1000 1736 154 2(13) 1247 26 01 01:25 01

10000 983 84 4(27) 1185 239 02 01:21 13

(1e4, 1e6) 100 3775 43 1(3) 2228 17 13 03:01:49 59

1000 7229 167 1(3) 2232 1 11 03:05:03 08

10000 4000 109 3(28) 2104 148 01:38 03:06:31 08:37

group are adjacent, for example, G1 = {1, 2, . . . , 25}, G2 = {26, 27, . . . , 53}, etc.
The group sizes {|Gi |, i = 1, 2, . . . , g} are determined randomly such that each |Gi |
is expected to be around the mean value of n

g . Subsequently, the response vector b is
constructed as

b = Ax + ε,

where ε is normally distributed random noise, xGl = (1, 2, . . . , 10, 0, . . . , 0)T for
l = 1, 2, . . . , 10, and xGl = 0 for all other groups. That is, the first 10 groups are
the non-trivial groups, and the true number of non-zero elements of the underlying
solution x is 100. The regularization parameters λ1 = λ2 are chosen to make the
number of non-zero elements of the resulting solution close to the true number of 100.

Table 1 compares the numerical results of the three algorithms Ssnal, sPADMM,
and SLEP tested on different synthetic data. As can be seen from the table, the com-
putational time of Ssnal is less than that of sPADMM and SLEP for most cases.
The overall advantage of computational time suggests that our algorithm Ssnal is
efficient for solving the SGLasso problem with randomly generated data. Moreover,
we observe from the table that sPADMM is inefficient in solving the SGLasso prob-
lem with randomly generated large-scale data. A possible reason is that the first order
method sPADMM requires a large number of iterations to solve the problem to the
required accuracy of 10−6. The table also shows that our algorithm Ssnal can signif-
icantly outperform SLEP on problems with a large number of groups. In particular,
Ssnal is more than 5 times faster than SLEP for the high dimensional instance with
problem size (m, n) = (1e4, 1e6) and group number g = 10,000. For this instance,
the number of non-zero entries in the solution x is small, and we have highly con-
ducive second order sparsity which we can fully exploit in the numerical computations
outlined in Sect. 4.3.

5.3 UCI data sets with random groups

This section presents the performances of the three algorithms Ssnal, sPADMM,
and SLEP on large-scale UCI data sets [32] (A, b) that are originally obtained from
the LIBSVM data sets [6]. In our numerical experiments, we follow [30] and apply

123

246 Y. Zhang et al.

the method in [22] to expand the original features of the data sets bodyfat, pyrim, and
triazinesusingpolynomial basis functions. For example, a polynomial basis functionof
order 7 is used to expand the features of the data set bodyfat, and then the expanded data
set is named as bodyfat7. This naming convention is also used for pyrim5, triazines4,
and housing 7. As noted in [30, Table 1], these data sets are quite different in terms of
the problemdimension and the largest eigenvalue ofAA∗. For example, for a relatively
high-dimensional instance log1p.E2006.train, the dimension ofA is 16087×4272227
and the largest eigenvalue of AA∗ is 5.86 × 107.

Next, we describe how the groups in each problem are specified. By reordering the
components of the variable x if necessary, without loss of generality, we assume that
the vector x can be partitioned into g groups where the indices of components in each
group are adjacent. The group sizes {|Gl |, l = 1, 2, . . . , g} are determined randomly
such that each |Gl | is around the mean value of n

g . In the experiment, the average
group size is about 300.

We tested theSGLassoproblemswith twodifferent sets of regularization parameters
which are chosen manually:

(S1) λ1 = λ2 = γ ‖A∗b‖∞;
(S2) λ1 = 0.5γ ‖A∗b‖∞, λ2 = 9.5γ ‖A∗b‖∞.

The parameter γ is chosen to produce a reasonable number of non-zero elements
in the resulting solution x . Three values of γ are used for each UCI data set in our
experiments.

Table 2 presents the comparison results of the three algorithms Ssnal, sPADMM,
and SLEP on 8 selected UCI data sets with regularization parameters specified as in
(S1). As shown in the table, SSNAL has succeeded in solving all instances within 1
min, while SLEP failed to solve 10 cases. Although sPADMM has also succeeded in
solving all instances, its running time for each case is much longer than that of Ssnal.
In majority of the cases, SSNAL outperformed the first order methods sPADMM and
SLEP by a large margin. For example, for the instance E2006.train with γ = 1e−7,
SSNAL solved it to the desired accuracy in 3 s, sPADMM took more than 8 min, while
SLEP failed to solve it within 10,000 steps. The numerical results show convincingly
that our algorithm SSNAL can solve SGLasso problems highly efficiently and robustly.
Again, the superior performance of ourSsnal algorithm can be attributed to our ability
to extract and exploit the second order sparsity structure (in the SGLasso problem)
within the SSN method to solve each ALM subproblem very efficiently.

Table 3 is the same as Table 2 but for the regularization parameters specified as in
(S2). This table also shows that the computational time of Ssnal is far less than that
of sPADMM and SLEP for almost all cases. Furthermore, for more difficult cases,
such as those with large problem dimension (m, n) and large number of non-zero
entries (nnz), the superiority of Ssnal is even more striking compared to sPADMM
and SLEP. The results again demonstrate that our algorithm Ssnal is highly efficient
for solving SGLasso problems.

Figure 1 presents the performance profiles of Ssnal, sPADMM, and SLEP for
all 48 tested problems, which are presented in Tables 2 and 3. The meaning of the
performance profiles is given as follows: a point (x, y) is on the performance curve

123

An efficient Hessian based algorithm for solving… 247

Fig. 1 Performance profiles of Ssnal, sPADMM, and SLEP on UCI data sets with randomly generated
groups

of a particular method if and only if this method can solve up to desired accuracy
(100y)% of all the tested instances within at most x times of the fastest method for
each instance. As can be seen, Ssnal outperforms sPADMM and SLEP by a large
margin for all tested UCI data sets with randomly generated groups. In particular,
focusing on y = 40%, we can see from Fig. 1 that Ssnal is around 30 times faster
compared to sPADMM and SLEP for over 60% of the tested instances.

5.4 UCI datesets with simulated groups

This section also makes uses of the UCI data sets mentioned in Sect. 5.3. Instead
of specifying the groups randomly, we attempt to generate more meaningful groups
in the following manner. Firstly, the classical Lasso (model (1) with λ2 = 0) is
solved with the accuracy of 10−4 to obtain a sparse solution x , and the computed
solution x is sorted in a descending order. Then, the first |G1| largest variables are
allocated to group 1, and the next |G2| variables are allocated to group 2, etc. Since this
group membership is determined by the magnitude of each variable of the computed
solution from the classical Lasso, we believe that this kind of group structure is more
natural than that constructed randomly in the previous section. Besides, the group
sizes {|Gl |, l = 1, 2, . . . , g} are determined randomly such that each |Gl | is around
the mean value of n

g . Compared to the last section, a different value 30 is taken as the
average group size for the diversity of experiments.

To generate the solution from the classical Lasso to decide on the groupmembership
mentioned above, we take the medium value of γ in Table 4, e.g., γ = 1e-6 for the
instance E2006.train. And the regularization parameters for the classical Lasso are

123

248 Y. Zhang et al.

Ta
bl
e
2

T
he

pe
rf
or
m
an
ce
s
of

Ss
n
a
l,
sP
A
D
M
M
,a
nd

SL
E
P
on

8
se
le
ct
ed

U
C
I
da
ta
se
ts
w
ith

ra
nd
om

ly
ge
ne
ra
te
d
gr
ou
ps

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

E
20

06
.tr
ai
n

1e
−0

5
1

3(
7)

44
4

01
07

:5
0

00
1.
4e

−0
9

7.
4e

−0
7

6.
2e

−0
9

(1
60

87
,1
50

36
0)

1e
−0

6
1

4(
8)

23
11

01
07

:0
3

01
7.
9e

−1
1

7.
8e

−0
7

9.
9e

−0
7

50
1

1e
−0

7
46

20
(4
0)

70
10

00
0

03
08

:3
0

08
:5
9

1.
2e

−0
7

9.
3e

−0
7

2.
5e

−0
4

E
20
06
.te
st

1e
−0

5
1

4(
8)

36
4

00
18

00
1.
0e

−1
0

8.
6e

−0
7

4.
9e

−1
3

(3
30

8,
15

03
58

)
1e

−0
6

1
4(
9)

29
21

00
18

00
1.
2e

−0
8

8.
3e

−0
7

9.
7e

−0
7

50
1

1e
−0

7
15

0
23

(4
8)

20
5

10
00

0
02

28
02

:1
7

8.
0e

−0
7

1.
0e

−0
6

3.
1e

−0
3

lo
g1

p.
E
20

06
.tr
ai
n

1e
−0

3
2

3(
10

)
23

60
88

2
09

01
:0
1:
06

04
:4
5

4.
9e

−0
9

1.
0e

−0
6

9.
7e

−0
7

(1
60

87
,4
27

22
27

)
1e

−0
4

3
3(
10

)
24

90
52

60
08

01
:0
2:
49

28
:2
1

7.
0e

−0
7

1.
0e

−0
6

9.
8e

−0
7

14
24

1
1e

−0
5

10
05

5(
22

)
87

6
75

53
37

33
:5
7

40
:4
8

3.
3e

−0
7

9.
9e

−0
7

1.
0e

−0
6

123

An efficient Hessian based algorithm for solving… 249

Ta
bl
e
2

co
nt
in
ue
d

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

lo
g1

p.
E
20

06
.te
st

1e
−0

3
4

4(
13

)
15

49
21

07
08

10
:2
2

05
:1
2

3.
5e

−0
7

9.
9e

−0
7

9.
8e

−0
7

(3
30

8,
42

72
22

6)
1e

−0
4

5
4(
12

)
17

49
26

93
06

11
:3
9

06
:4
1

6.
2e

−0
7

9.
9e

−0
7

9.
9e

−0
7

14
24

1
1e

−0
5

50
09

7(
34

)
46

4
10

00
0

45
03

:4
2

25
:0
4

2.
1e

−0
7

9.
7e

−0
7

7.
5e

−0
6

bo
dy

fa
t7

1e
−0

4
7

11
(2
9)

87
8

32
46

01
28

54
7.
7e

−0
7

9.
9e

−0
7

9.
6e

−0
7

(2
52

,1
16

28
0)

1e
−0

5
13

15
(3
7)

91
8

10
00

0
03

29
02

:4
8

7.
9e

−0
7

9.
9e

−0
7

2.
1e

−0
5

38
8

1e
−0

6
23

7
21

(5
8)

91
7

10
00

0
07

29
02

:5
1

6.
9e

−0
7

1.
0e

−0
6

2.
4e

−0
4

py
ri
m
5

1e
−0

2
27

9
8(
32

)
30

74
47

36
02

02
:0
4

01
:5
5

1.
3e

−0
7

1.
0e

−0
6

1.
0e

−0
6

(7
4,
20

13
76

)
1e

−0
3

60
6

11
(3
9)

20
03

10
00

0
02

01
:2
1

04
:0
5

3.
9e

−0
7

1.
0e

−0
6

8.
9e

−0
6

67
1

1e
−0

4
93

7
17

(5
0)

19
69

10
00

0
05

01
:2
3

04
:0
5

6.
1e

−0
7

1.
0e

−0
6

1.
2e

−0
4

tr
ia
zi
ne
s4

1e
− 0

2
40

6
8(
35

)
50

38
93

74
09

24
:3
7

25
:3
8

8.
5e

−0
8

1.
0e

−0
6

1.
0e

−0
6

(1
86

,6
35

37
6)

1e
−0

3
13

96
9(
43

)
40

20
10

00
0

17
19

:4
3

27
:2
5

4.
2e

−0
7

1.
0e

−0
6

5.
8e

−0
4

21
18

1e
−0

4
35

74
16

(5
8)

42
87

10
00

0
55

22
:3
3

27
:2
3

6.
6e

−0
7

1.
0e

−0
6

5.
5e

−0
3

ho
us
in
g7

1e
−0

2
22

0
7(
31

)
81

3
33

66
01

25
59

2.
5e

−0
7

9.
9e

−0
7

9.
9e

−0
7

(5
06

,7
75

20
)

1e
−0

3
81

7
9(
37

)
81

6
51

99
02

25
01

:3
2

8.
9e

−0
8

9.
9e

−0
7

1.
0e

−0
6

25
8

1e
−0

4
21

34
14

(4
7)

61
8

10
00

0
07

19
02

:5
6

7.
1e

−0
7

1.
0e

−0
6

3.
7e

−0
6

T
he

re
gu
la
ri
za
tio

n
pa
ra
m
et
er
s
ar
e
sp
ec
ifi
ed

as
in

(S
1
).
“S
”
st
an
ds

fo
r
Ss

n
a
l;

“P
”
fo
r
SL

E
P;

“A
”
fo
r
sP
A
D
M
M

123

250 Y. Zhang et al.

Ta
bl
e
3

T
he

pe
rf
or
m
an
ce
s
of

Ss
n
a
l,
sP
A
D
M
M
,a
nd

SL
E
P
on

8
se
le
ct
ed

U
C
I
da
ta
se
ts
w
ith

ra
nd
om

ly
ge
ne
ra
te
d
gr
ou
ps

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

E
20

06
.tr
ai
n

1e
−0

5
1

3(
7)

73
1

01
08

:4
0

00
1.
6e

−1
0

9.
7e

−0
7

3.
0e

−0
8

(1
60

87
,1
50

36
0)

1e
−0

6
1

3(
7)

44
4

01
07

:4
9

00
1.
5e

−0
9

7.
9e

−0
7

7.
3e

−0
7

50
1

1e
−0

7
16

8(
16

)
31

13
01

07
:3
3

01
3.
3e

−0
7

9.
9e

−0
7

9.
9e

−0
7

E
20
06
.te
st

1e
−0

5
1

3(
7)

52
16

00
20

00
3.
7e

−0
9

7.
1e

−0
7

3.
8e

−0
8

(3
30

8,
15

03
58

)
1e

−0
6

1
4(
8)

32
16

00
18

00
4.
9e

−1
0

9.
4e

−0
7

4.
9e

−0
8

50
1

1e
−0

7
15

9(
19

)
29

25
01

18
00

4.
8e

−0
7

6.
9e

−0
7

8.
7e

−0
7

lo
g1

p.
E
20

06
.tr
ai
n

1e
−0

3
1

2(
6)

26
64

20
2

05
01

:0
6:
05

01
:0
6

5.
1e

−0
8

9.
9e

−0
7

2.
0e

−0
7

(1
60

87
,4
27

22
27

)
1e

−0
4

7
3(
11

)
23

79
12

86
10

01
:0
0:
42

06
:5
3

4.
2e

−0
9

9.
9e

−0
7

9.
6e

−0
7

14
24

1
1e

−0
5

32
3(
11

)
24

74
43

75
09

01
:0
2:
34

23
:2
3

6.
8e

−0
7

1.
0e

−0
6

9.
9e

−0
7

lo
g1

p.
E
20

06
.te
st

1e
−0

3
2

2(
7)

19
61

37
9

04
12

:5
5

57
5.
5e

−0
7

9.
9e

−0
7

9.
0e

−0
7

(3
30

8,
42

72
22

6)
1e

−0
4

10
4(
13

)
15

67
14

59
08

10
:3
0

03
:4
0

3.
9e

−0
7

9.
9e

−0
7

9.
6e

−0
7

14
24

1
1e

−0
5

95
5(
15

)
17

49
48

00
08

11
:3
7

12
:1
8

5.
6e

−0
8

9.
9e

−0
7

9.
9e

−0
7

123

An efficient Hessian based algorithm for solving… 251

Ta
bl
e
3

co
nt
in
ue
d

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

bo
dy

fa
t7

1e
−0

4
11

1
9(
20

)
36

3
17

11
00

12
33

1.
7e

−0
8

9.
8e

−0
7

1.
0e

−0
6

(2
52

,1
16

28
0)

1e
−0

5
20

8
13

(3
0)

43
8

84
60

01
14

02
:4
2

2.
5e

−0
7

9.
6e

−0
7

1.
0e

−0
6

38
8

1e
−0

6
26

4
17

(3
7)

55
5

10
00

0
05

18
03

:1
0

7.
9e

−0
7

9.
9e

−0
7

2.
3e

−0
6

py
ri
m
5

1e
−0

2
23

0
4(
17

)
12

58
14

89
01

51
37

3.
7e

−0
7

4.
5e

−0
7

9.
7e

−0
7

(7
4,
20

13
76

)
1e

−0
3

62
6

8(
34

)
14

13
60

38
02

57
02

:3
2

9.
0e

−0
7

1.
0e

−0
6

1.
0e

−0
6

67
1

1e
−0

4
11

78
13

(4
3)

16
84

10
00

0
04

01
:1
0

04
:1
6

1.
1e

−0
7

1.
0e

−0
6

4.
8e

−0
5

tr
ia
zi
ne
s4

1e
−0

2
57

7
6(
27

)
10

00
0

44
22

06
48

:2
9

12
:0
1

1.
1e

−0
7

2.
7e

−0
6

1.
0e

−0
6

(1
86

,6
35

37
6)

1e
−0

3
11

71
8(
36

)
48

75
10

00
0

10
23

:4
9

27
:1
9

5.
3e

−0
7

1.
0e

−0
6

3.
2e

−0
6

21
18

1e
−0

4
43

46
11

(4
8)

33
43

10
00

0
28

17
:5
1

28
:4
2

9.
1e

−0
7

1.
0e

−0
6

2.
7e

−0
4

ho
us
in
g7

1e
− 0

2
20

6
3(
11

)
10

97
29

00
34

01
9.
0e

−0
9

9.
7e

−0
7

2.
9e

−0
7

(5
06

,7
75

20
)

1e
−0

3
83

9
8(
30

)
75

4
93

6
01

23
17

1.
3e

−0
7

1.
0e

−0
6

9.
8e

−0
7

25
8

1e
−0

4
16

89
10

(3
6)

83
7

55
10

03
26

01
:3
8

1.
0e

−0
7

1.
0e

−0
6

1.
0e

−0
6

T
he

re
gu
la
ri
za
tio

n
pa
ra
m
et
er
s
ar
e
sp
ec
ifi
ed

as
in

(S
2
).
“S
”
st
an
ds

fo
r
Ss

n
a
l;

“P
”
fo
r
SL

E
P;

“A
”
fo
r
sP
A
D
M
M

123

252 Y. Zhang et al.

set as follow: λ1 = γ ‖A∗b‖∞, λ2 = 0. For the SGLasso problem, the regularization
parameters follow three different strategies: (S1) and (S2) given in the previous section,
and

(S3) λ1 = γ ‖A∗b‖∞, λ2 = √
λ1 if λ1 > 1 and λ2 = λ21 if λ1 ≤ 1.

The comparison results with parameter sets (S1), (S2), and (S3) are presented in
Tables 4, 5, and 6, respectively. As shown in these three tables, Ssnal has succeeded
in solving all the 72 instances highly efficiently, while sPADMM failed in 5 instances,
and SLEP failed in 58 instances. Moreover, for those failed instances, we observe
from the tables that SLEP terminated when the errors are still relatively large, which is
10−2 for most cases. The results may suggest that using only first order information is
not enough for computing high accuracy solution, while second order information can
contribute to the fast convergence and high computational efficiency of awell designed
second order SSN method. For the vast majority of the instances, the computational
time of Ssnal is far less than that of sPADMM and SLEP. Again, the results have
demonstrated convincingly that our algorithm Ssnal is capable of solving large-scale
SGLasso problems to high accuracy very efficiently and robustly.

Figure 2 presents the performance profiles of Ssnal, sPADMM, and SLEP for all
72 tested problems, which are presented in Tables 4, 5, and 6. From the figure, we find
that Ssnal not only solves all the tested instances to the desired accuracy, but also
outperforms sPADMM and SLEP by an obvious margin for these tested UCI data sets
with simulated groups. Within 250 times of the running time of Ssnal, sPADMM can
only solve approximately 80% of all the tested instances, while SLEP can only solve
20% of all the tested instances. We can safely claim that our algorithm Ssnal can
solve large-scale SGLasso problems to high accuracy very efficiently and robustly.

5.5 NCEP/NCAR reanalysis 1 dataset

This section evaluates the performance of Ssnal, sPADMM, SLEP and BCD on the
NCEP/NCAR reanalysis 1 dataset [25]. The data set contains the monthly means of
climate data measurements spread across the globe in a grid of 2.5o ×2.5o resolutions
(longitude and latitude144×73) from1948/1/1 to 2018/5/31.Eachgrid point (location)
constitutes a group of 7 predictive variables (Air Temperature, Precipitable Water,
Relative Humidity, Pressure, Sea Level Pressure, Horizontal Wind Speed and Vertical
Wind Speed). Such data sets have a natural group structure: 144 × 73 groups, where
each group is of length 7, and the corresponding data matrixA is of dimension 845×
73584.

Following the numerical experiment in [39], we also consider as target variable
b ∈ R

845, the values of Air Temperature in a neighborhood of Dakar. We also take a
decreasing sequence of 100 regularization parameters defined as follows:

λ̄t = λmax10
−3(t−1)/(100−1), (λ1, λ2) ∈ {(0.4λ̄t , 0.6λ̄t) | t = 1, 2, . . . , 100},

123

An efficient Hessian based algorithm for solving… 253

Ta
bl
e
4

T
he

pe
rf
or
m
an
ce
s
of

Ss
n
a
l,
sP
A
D
M
M
,a
nd

SL
E
P
on

8
se
le
ct
ed

U
C
I
da
ta
se
ts
w
ith

si
m
ul
at
ed

gr
ou
ps

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

E
20

06
.tr
ai
n

1e
−0

5
1

4(
9)

36
16

01
07

:3
0

01
6.
4e

−1
0

9.
0e

−0
7

4.
1e

−0
8

(1
60

87
,1
50

36
0)

1e
−0

6
34

14
(2
8)

33
10

00
0

02
07

:1
4

08
:5
6

9.
2e

−0
7

6.
9e

−0
7

3.
7e

−0
5

50
12

1e
−0

7
21

0
25

(5
2)

11
0

10
00

0
08

09
:1
7

08
:5
8

5.
8e

−0
8

7.
7e

−0
7

1.
2e

−0
2

E
20
06
.te
st

1e
−0

5
1

4(
9)

31
9

00
17

00
5.
4e

−0
9

9.
7e

−0
7

7.
7e

−0
7

(3
30

8,
15

03
58

)
1e

−0
6

38
20

(4
1)

70
10

00
0

01
20

02
:3
5

3.
1e

−0
7

8.
2e

−0
7

1.
3e

−0
3

50
12

1e
−0

7
27

5
27

(5
6)

32
4

10
00

0
02

33
02

:3
8

1.
9e

−0
7

9.
5e

−0
7

9.
8e

−0
2

lo
g1

p.
E
20

06
.tr
ai
n

1e
−0

3
15

3(
13

)
22

49
29

0
09

57
:0
9

01
:3
7

5.
5e

−0
7

9.
9e

−0
7

-1
.5
e−

04

(1
60

87
,4
27

22
27

)
1e

−0
4

25
3

4(
25

)
11

94
10

00
0

29
38

:3
4

54
:4
6

1.
4e

−0
7

1.
0e

−0
6

1.
7e

−0
2

14
24

08
1e

−0
5

78
21

6(
32

)
39

1
10

00
0

03
:2
7

24
:3
9

54
:4
8

2.
4e

−0
7

9.
8e

−0
7

1.
5e

−0
2

lo
g1

p.
E
20

06
.te
st

1e
−0

3
13

4(
14

)
15

72
28

4
07

10
:1
6

47
4.
6e

−0
7

9.
9e

−0
7

-2
.4
e−

04

(3
30

8,
42

72
22

6)
1e

−0
4

54
6

5(
21

)
62

7
10

00
0

14
04

:3
3

26
:5
6

2.
1e

−0
7

9.
9e

−0
7

4.
0e

−0
2

14
24

08
1e

−0
5

48
74

8(
33

)
30

0
10

00
0

43
02

:3
7

27
:0
4

6.
2e

−0
7

9.
8e

−0
7

1.
1e

−0
1

bo
dy

fa
t7

1e
−0

4
11

12
(3
2)

93
0

10
00

0
01

30
02

:5
4

8.
1e

−0
7

9.
9e

−0
7

6.
7e

−0
4

(2
52

,1
16

28
0)

1e
−0

5
26

19
(5
3)

23
94

10
00

0
03

01
:1
6

02
:5
6

4.
1e

−0
7

1.
0e

−0
6

2.
2e

−0
4

38
76

1e
−0

6
16

6
23

(7
5)

12
01

10
00

0
08

38
02

:5
8

2.
5e

−0
8

9.
9e

−0
7

2.
0e

−0
4

py
ri
m
5

1e
−0

2
98

7(
27

)
12

43
10

00
0

02
51

03
:3
9

3.
6e

−0
7

9.
9e

−0
7

9.
4e

−0
2

(7
4,
20

13
76

)
1e

−0
3

20
1

12
(4
3)

20
80

10
00

0
02

01
:2
7

03
:3
9

2.
1e

−0
7

1.
0e

−0
6

4.
2e

−0
2

67
13

1e
−0

4
64

4
18

(6
6)

23
51

10
00

0
06

01
:4
3

03
:4
6

3.
4e

−0
7

1.
0e

−0
6

1.
0e

−0
2

tr
ia
zi
ne
s4

1e
−0

2
26

1
10

(4
2)

84
39

10
00

0
11

44
:2
5

26
:3
5

4.
1e

−0
8

9.
6e

−0
7

6.
8e

−0
2

(1
86

,6
35

37
6)

1e
−0

3
73

7
15

(6
2)

10
00

0
10

00
0

18
50

:1
6

26
:3
6

3.
4e

−0
8

1.
2e

−0
5

6.
5e

−0
2

21
17

9
1e

−0
4

15
10

20
(7
9)

94
66

10
00

0
36

01
:2
0:
53

39
:0
4

4.
3e

−0
8

1.
0e

−0
6

5.
7e

−0
2

123

254 Y. Zhang et al.

Ta
bl
e
4

co
nt
in
ue
d

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

ho
us
in
g7

1e
−0

2
91

6(
25

)
86

2
10

00
0

01
30

03
:0
0

3.
6e

−0
8

9.
9e

−0
7

2.
5e

−0
2

(5
06

,7
75

20
)

1e
−0

3
15

0
9(
34

)
59

6
10

00
0

02
21

03
:0
1

8.
0e

−0
7

9.
9e

−0
7

9.
4e

−0
2

25
84

1e
−0

4
80

7
15

(4
9)

63
8

10
00

0
09

23
03

:0
1

6.
0e

−0
7

1.
0e

−0
6

3.
8e

−0
2

T
he

re
gu
la
ri
za
tio

n
pa
ra
m
et
er
s
ar
e
sp
ec
ifi
ed

as
in

(S
1
).
“S
”
st
an
ds

fo
r
Ss

n
a
l;

“P
”
fo
r
SL

E
P;

“A
”
fo
r
sP
A
D
M
M

123

An efficient Hessian based algorithm for solving… 255

Ta
bl
e
5

T
he

pe
rf
or
m
an
ce
s
of

Ss
n
a
l,
sP
A
D
M
M
,a
nd

SL
E
P
on

8
se
le
ct
ed

U
C
I
da
ta
se
ts
w
ith

si
m
ul
at
ed

gr
ou
ps

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

E
20

06
.tr
ai
n

1e
−0

5
1

3(
7)

54
16

01
08

:0
2

01
6.
4e

−1
0

7.
1e

−0
7

3.
9e

−0
8

(1
60

87
,1
50

36
0)

1e
−0

6
11

8(
17

)
34

10
00

0
01

07
:2
8

08
:4
6

3.
0e

−0
7

8.
6e

−0
7

1.
6e

−0
5

50
12

1e
−0

7
40

21
(4
7)

68
10

00
0

03
08

:1
5

08
:5
4

8.
7e

−0
8

9.
9e

−0
7

3.
3e

−0
3

E
20
06
.te
st

1e
−0

5
2

5(
11

)
42

10
00

0
00

18
02

:0
8

2.
9e

−0
7

7.
0e

−0
7

1.
5e

−0
6

(3
30

8,
15

03
58

)
1e

−0
6

22
9(
19

)
29

10
00

0
01

17
02

:2
6

3.
3e

−0
7

7.
3e

−0
7

6.
6e

−0
5

50
12

1e
−0

7
66

25
(5
1)

13
8

10
00

0
01

24
02

:3
0

5.
1e

−0
7

8.
4e

−0
7

1.
5e

−0
2

lo
g1

p.
E
20

06
.tr
ai
n

1e
−0

3
11

2(
12

)
23

99
92

09
01

:0
0:
29

30
6.
5e

−0
8

1.
0e

−0
6

-2
.9
e−

04

(1
60

87
,4
27

22
27

)
1e

−0
4

39
3(
16

)
20

88
57

8
13

55
:0
2

03
:1
4

4.
5e

−0
7

1.
0e

−0
6

-1
.8
e−

05

14
24

08
1e

−0
5

59
7

4(
22

)
86

2
10

00
0

29
33

:0
9

55
:1
2

2.
7e

−0
7

9.
9e

−0
7

3.
2e

−0
2

lo
g1

p.
E
20

06
.te
st

1e
−0

3
7

2(
12

)
15

67
60

07
10

:2
0

10
8.
6e

−0
7

1.
0e

−0
6

-4
.4
e−

04

(3
30

8,
42

72
22

6)
1e

−0
4

47
4(
17

)
12

60
32

7
08

08
:2
8

53
1.
3e

−0
7

1.
0e

−0
6

-1
.3
e−

04

14
24

08
1e

−0
5

10
79

5(
23

)
46

7
10

00
0

17
03

:3
7

27
:4
9

9.
8e

−0
7

9.
9e

−0
7

1.
2e

−0
1

bo
dy

fa
t7

1e
−0

4
26

10
(2
4)

74
8

10
00

0
01

24
03

:2
3

3.
7e

−0
7

1.
0e

−0
6

2.
1e

−0
2

(2
52

,1
16

28
0)

1e
−0

5
43

15
(3
7)

12
66

10
00

0
01

41
03

:2
2

6.
1e

−0
7

1.
0e

−0
6

2.
4e

−0
3

38
76

1e
−0

6
52

20
(5
3)

11
88

10
00

0
04

38
03

:2
5

2.
4e

−0
7

1.
0e

−0
6

3.
9e

−0
4

py
ri
m
5

1e
−0

2
42

6(
19

)
16

72
10

00
0

01
01

:0
5

04
:0
2

6.
4e

−0
8

1.
0e

−0
6

1.
1e

−0
1

(7
4,
20

13
76

)
1e

−0
3

13
6

8(
32

)
15

18
10

00
0

01
59

04
:2
4

1.
5e

−0
7

9.
9e

−0
7

1.
2e

−0
1

67
13

1e
−0

4
34

2
13

(5
0)

18
79

10
00

0
04

01
:4
9

04
:2
7

1.
6e

−0
7

1.
0e

−0
6

3.
7e

−0
2

tr
ia
zi
ne
s4

1e
− 0

2
40

8(
20

)
60

85
10

00
0

04
30

:3
7

26
:4
0

1.
6e

−0
8

9.
0e

−0
7

1.
1e

−0
1

(1
86

,6
35

37
6)

1e
−0

3
54

4
10

(4
3)

64
73

10
00

0
11

32
:0
6

26
:2
9

7.
4e

−0
8

9.
7e

−0
7

7.
0e

−0
2

21
17

9
1e

−0
4

96
4

17
(6
3)

10
00

0
10

00
0

18
49

:4
7

26
:5
2

4.
1e

−0
7

2.
2e

−0
6

8.
2e

−0
2

123

256 Y. Zhang et al.

Ta
bl
e
5

co
nt
in
ue
d

Pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
It
er
at
io
n

T
im

e
E
rr
or

S
A

P
S

A
P

η
S

η
A

η
P

ho
us
in
g7

1e
−0

2
51

4(
15

)
12

42
10

00
0

00
38

03
:3
6

5.
4e

−0
8

9.
8e

−0
7

5.
1e

−0
2

(5
06

,7
75

20
)

1e
−0

3
15

3
7(
26

)
85

3
10

00
0

01
26

03
:3
6

1.
2e

−0
7

1.
0e

−0
6

5.
0e

−0
2

25
84

1e
−0

4
17

5
10

(3
4)

57
7

10
00

0
02

18
03

:3
4

1.
2e

−0
7

9.
8e

−0
7

1.
3e

−0
1

T
he

re
gu
la
ri
za
tio

n
pa
ra
m
et
er
s
ar
e
sp
ec
ifi
ed

as
in

(S
2
).
“S
”
st
an
ds

fo
r
Ss

n
a
l;

“P
”
fo
r
SL

E
P;

“A
”
fo
r
sP
A
D
M
M

123

An efficient Hessian based algorithm for solving… 257

Ta
bl
e
6

T
he

pe
rf
or
m
an
ce
s
of

Ss
n
a
l,
sP
A
D
M
M
,a
nd

SL
E
P
on

8
se
le
ct
ed

U
C
I
da
ta
se
ts
w
ith

si
m
ul
at
ed

gr
ou
ps

pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
ite

ra
tio

n
tim

e
er
ro
r

S
A

P
S

A
P

η
S

η
A

η
P

E
20

06
.tr
ai
n

1e
−0

5
1

4(
9)

34
16

01
06

:5
7

01
8.
9e

−1
0

7.
8e

−0
7

8.
3e

−0
7

(1
60

87
,1
50

36
0)

1e
−0

6
27

22
(4
5)

69
10

00
0

03
07

:5
2

10
:1
4

1.
7e

−0
7

8.
7e

−0
7

3.
8e

−0
3

50
12

1e
−0

7
13

99
30

(7
9)

39
5

10
00

0
01

:2
7

11
:2
3

09
:4
8

8.
5e

−0
7

9.
8e

−0
7

8.
6e

−0
2

E
20
06
.te
st

1e
−0

5
1

4(
10

)
29

12
00

16
00

8.
8e

−0
9

8.
8e

−0
7

7.
4e

−0
7

(3
30

8,
15

03
58

)
1e

−0
6

48
25

(5
1)

18
2

10
00

0
01

25
02

:2
6

5.
1e

−0
8

9.
5e

−0
7

2.
3e

−0
2

50
12

1e
−0

7
13

25
38

(1
03

)
14

32
10

00
0

31
01

:1
7

02
:4
2

8.
7e

−0
9

8.
6e

−0
7

3.
3e

−0
1

lo
g1

p.
E
20

06
.tr
ai
n

1e
−0

3
5

4(
17

)
24

51
62

6
13

58
:5
7

04
:1
1

7.
8e

−0
9

9.
8e

−0
7

-7
.5
e−

06

(1
60

87
,4
27

22
27

)
1e

−0
4

51
0

5(
26

)
82

3
10

00
0

29
31

:0
5

01
:0
1:
43

5.
5e

−0
7

9.
9e

−0
7

1.
1e

−0
2

14
24

08
1e

−0
5

97
72

7(
33

)
34

0
10

00
0

04
:3
7

22
:4
8

01
:0
2:
05

3.
6e

−0
8

1.
0e

−0
6

1.
2e

−0
2

lo
g1

p.
E
20

06
.te
st

1e
−0

3
8

5(
22

)
16

88
73

2
12

10
:2
2

02
:0
9

5.
0e

−0
9

9.
9e

−0
7

-3
.1
e−

05

(3
30

8,
42

72
22

6)
1e

−0
4

90
9

6(
27

)
47

0
10

00
0

18
03

:2
5

29
:3
1

1.
0e

−0
7

9.
8e

−0
7

5.
4e

−0
2

14
24

08
1e

−0
5

49
56

9(
35

)
28

8
10

00
0

44
02

:2
2

30
:1
3

6.
6e

−0
8

9.
6e

−0
7

1.
2e

−0
1

bo
dy

fa
t7

1e
−0

4
3

12
(3
4)

11
01

11
63

02
34

28
2.
4e

−0
7

9.
9e

−0
7

9.
5e

−0
7

(2
52

,1
16

28
0)

1e
−0

5
24

19
(5
8)

15
86

10
00

0
05

49
05

:1
6

8.
6e

−0
7

1.
0e

−0
6

2.
1e

−0
6

38
76

1e
−0

6
10

6
25

(9
4)

22
31

10
00

0
12

01
:0
9

03
:3
9

5.
2e

−0
7

1.
0e

−0
6

4.
7e

−0
3

py
ri
m
5

1e
−0

2
87

9(
32

)
13

82
10

00
0

01
55

03
:5
1

4.
3e

−0
8

1.
0e

−0
6

7.
1e

−0
2

(7
4,
20

13
76

)
1e

−0
3

17
6

16
(5
6)

56
42

10
00

0
04

03
:4
2

03
:4
6

5.
6e

−0
7

1.
0e

−0
6

5.
8e

−0
3

67
13

1e
−0

4
12

9
26

(9
5)

10
00

0
10

00
0

09
06

:3
1

03
:5
2

5.
3e

−0
7

4.
1e

−0
5

1.
2e

−0
3

tr
ia
zi
ne
s4

1e
−0

2
24

6
10

(3
7)

83
69

10
00

0
09

43
:0
0

26
:5
8

5.
1e

−0
8

9.
2e

−0
7

6.
6e

−0
2

(1
86

,6
35

37
6)

1e
−0

3
80

3
20

(7
2)

10
00

0
10

00
0

23
50

:0
9

27
:0
6

8.
2e

−0
9

3.
7e

−0
6

3.
4e

−0
2

21
17

9
1e

−0
4

33
3

27
(1
15

)
10

00
0

10
00

0
01

:0
4

46
:2
1

27
:2
1

3.
9e

−0
7

1.
4e

−0
4

5.
5e

−0
2

123

258 Y. Zhang et al.

Ta
bl
e
6

co
nt
in
ue
d

pr
ob

le
m

na
m
e

(m
,
n)
;g

γ
nn

z
ite

ra
tio

n
tim

e
er
ro
r

S
A

P
S

A
P

η
S

η
A

η
P

ho
us
in
g7

1e
−0

2
50

7(
30

)
97

6
10

00
0

01
30

04
:0
7

1.
3e

−0
7

1.
0e

−0
6

1.
2e

−0
2

(5
06

,7
75

20
)

1e
−0

3
15

7
11

(4
1)

62
0

10
00

0
03

19
04

:0
3

1.
1e

−0
7

9.
9e

−0
7

6.
7e

−0
2

25
84

1e
−0

4
83

8
16

(5
1)

68
5

10
00

0
08

21
04

:1
1

8.
7e

−0
8

1.
0e

−0
6

3.
8e

−0
2

T
he

re
gu
la
ri
za
tio

n
pa
ra
m
et
er
s
ar
e
sp
ec
ifi
ed

as
in

(S
3
).
“S
”
st
an
ds

fo
r
Ss

n
a
l;

“P
”
fo
r
SL

E
P;

“A
”
fo
r
sP
A
D
M
M

123

An efficient Hessian based algorithm for solving… 259

Fig. 2 Performance profiles of Ssnal, sPADMM, and SLEP on UCI data sets with simulated groups

where λmax = �D(AT b), and �D is the dual norm of p that is defined by �D(y) :=
maxp(x)≤1 xT y. In total, there are 100 pairs of decreasing λ1 and λ2 that will lead to
a solution path.

The BCD used in [39] is terminated if

pobj − dobj < ε‖b‖2

or the default maximum number of 29,999 iterations is reached. In the same way, we
terminate Ssnal if

‖A∗y + z‖
1 + ‖z‖ < ε, pobj − dobj < ε‖b‖2. (36)

We terminate sPADMM if (36) holds or the maximum number of 10, 000 iterations is
reached. Besides, we terminate SLEP if the difference of the optimal objective values
between SLEP and SSNAL is less than ε, i.e.,

objP − objS < ε‖b‖2

or the maximum number of 10,000 iterations is reached.
Table 7 presents the comparison of Ssnal, sPADMM, SLEP, and BCD on the

climate data along a solution path. As revealed by Table 7, for the case ε = 10−4

where the accuracy is relatively low (‖b‖2 ≈ 5 × 105), both BCD and Ssnal have
successfully solve all cases along the path; while sPADMM took more than 3 h and
solved 85% of all cases, and SLEP took more than 5 h and merely solved 21% of

123

260 Y. Zhang et al.

Table 7 The performances of Ssnal, ADMM, SLEP, BCD on climate data along a solution path

Tolerance ε Time Success

S A P B S A P B

1e−4 09:02 03:34:49 05:49:56 03:51 100 85 21 100

1e−6 11:27 09:42:48 06:21:05 01:10:54 100 21 18 93

1e−8 11:40 10:40:17 06:36:49 01:39:01 100 16 16 93

“success” denotes the number of cases which are solved successfully among all the 100 cases along the
solution path. “S” stands for Ssnal; “P” for SLEP; “A” for sPADMM; “B” for BCD

all cases. One might notice that in this case the duality gap is allowed to be about
50. For low accuracy requirement, the BCD algorithm in [39] is highly efficient, but
our algorithm Ssnal can also make it within 10 min. In addition, for the cases with
tolerance 10−6 and 10−8, Ssnal has successfully solved all cases within 12min; while
all the other algorithms failed to solve some cases along the solution path. We can see
that our algorithm Ssnal has a clear advantage over the other first order algorithms
when one wants moderate or high accuracy solutions. We can safely conclude that
Ssnal is efficient and robust on the real climate data set.

6 Conclusion

In this paper, we have developed a highly efficient semismooth Newton based aug-
mented Lagrangian method Ssnal for solving large-scale non-overlapping sparse
group Lasso problems. The elements in the generalized Jacobian of the proximal
mapping associated with the sparse group Lasso regularizer were first derived, and
the underlying second order sparsity structure was thoroughly analysed and utilised
to achieve superior performance in the numerical implementations of Ssnal. Exten-
sive numerical experiments have demonstrated that the proposed algorithm is highly
efficient and robust, even on high-dimensional real data sets. Based on the superior
performance of Ssnal for solving non-overlapping sparse group Lasso problems, we
can expect the effectiveness of our algorithmic framework for solving overlapping
sparse group Lasso problems and other large-scale convex composite problems in
future studies.

Acknowledgements The authors would like to thank Dr. Xudong Li and Ms. Meixia Lin for their help in
the numerical implementations.We also thank the referees for their valuable suggestions which have helped
to improve quality of this paper.

References

1. Andrew, G., Gao, J.: Scalable training of L1-regularized log-linear models. In: Proceedings of the 24th
International Conference on Machine Learning. ACM, pp. 33–40 (2007)

2. Argyriou, A., Micchelli, C.A., Pontil, M., Shen, L., Xu, Y.: Efficient First Order Methods for Linear
Composite Regularizers. arXiv preprint arXiv:1104.1436 (2011)

123

http://arxiv.org/abs/1104.1436

An efficient Hessian based algorithm for solving… 261

3. Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples.
Springer Science & Business Media, New York (2010)

4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

5. Byrd, R.H., Chin, G.M., Nocedal, J., Oztoprak, F.: A family of second-order methods for convex
�1-regularized optimization. Math. Program. 159(1–2), 435–467 (2016)

6. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst.
Technol. (TIST) 2(3), 27 (2011)

7. Chen, L., Sun, D.F., Toh, K.-C.: An efficient inexact symmetric Gauss-Seidel based majorized ADMM
for high-dimensional convex composite conic programming. Math. Program. 161(1–2), 237–270
(2017)

8. Chen,X.D., Sun,D.F., Sun, J.: Complementarity functions and numerical experiments on some smooth-
ing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25(1),
39–56 (2003)

9. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, University City (1990)
10. Cui, Y., Sun, D.F., Toh, K.-C.: On the Asymptotic Superlinear Convergence of the Aug-

mented Lagrangian Method for Semidefinite Programming with Multiple Solutions. arXiv preprint
arXiv:1610.00875 (2016)

11. Cui, Y., Sun, D.F., Toh, K.-C.: On the R-superlinear Convergence of the KKT Residues Generated
by the Augmented Lagrangian Method for Convex Composite Conic Programming. Mathematical
Programming (arXiv preprint arXiv:1706.08800) (2018)

12. De LosReyes, J.C., Loayza, E.,Merino, P.: Second-order orthant-basedmethodswith enrichedHessian
information for sparse �1-optimization. Comput. Optim. Appl. 67(2), 225–258 (2017)

13. Dong, Y.: An extension of Luque’s growth condition. Appl. Math. Lett. 22(9), 1390–1393 (2009)
14. Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans.

Inf. Theory 55(11), 5302–5316 (2009)
15. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems.

Springer Science & Business Media, New York (2007)
16. Fazel, M., Pong, T.K., Sun, D.F., Tseng, P.: Hankel matrix rank minimization with applications to

system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)
17. Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat.

1(2), 302–332 (2007)
18. Friedman, J., Hastie, T., Tibshirani, R.: A Note on the Group Lasso and a Sparse Group Lasso. arXiv

preprint arXiv:1001.0736 (2010)
19. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite

element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
20. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution,

par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue française
d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9(R2), 41–76 (1975)

21. Hallac, D., Leskovec, J., Boyd, S.: Network lasso: clustering and optimization in large graphs. In:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, pp. 387–396 (2015)

22. Huang, L., Jia, J., Yu, B., Chun, B.-G., Maniatis, P., Naik, M.: Predicting execution time of computer
programs using sparse polynomial regression. In: Advances inNeural Information Processing Systems,
pp. 883–891 (2010)

23. Jacob, L., Obozinski, G., Vert, J.-P.: Group lasso with overlap and graph lasso. In: Proceedings of the
26th Annual International Conference on Machine Learning. ACM, pp. 433–440 (2009)

24. Jenatton, R., Mairal, J., Bach, F.R., Obozinski, G.R.: Proximal methods for sparse hierarchical dictio-
nary learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp.
487–494 (2010)

25. Kalnay, E., Kanamitsu,M., Kistler, R., Collins,W., Deaven, D., Gandin, L., Iredell,M., Saha, S.,White,
G.,Woollen, J., Zhu, Y., Chelliah,M., Ebisuzaki,W., Higgins,W., Janowiak, J., Mo, K.C., Ropelewski,
C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D.: The NCEP/NCAR 40-year reanalysis
project. Bull. Am. Meteorol. Soc. 77(3), 437–472 (1996)

26. Kim, J., Park, H.: Fast active-set-type algorithms for l1-regularized linear regression. In: Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 397–404 (2010)

123

http://arxiv.org/abs/1610.00875
http://arxiv.org/abs/1706.08800
http://arxiv.org/abs/1001.0736

262 Y. Zhang et al.

27. Kong, D., Ding, C.: Efficient algorithms for selecting features with arbitrary group constraints via
group lasso. In: 2013 IEEE 13th International Conference on Data Mining, pp. 379–388 (2013)

28. Kummer,B.:Newton’smethod for non-differentiable functions.Adv.Math.Optim. 45, 114–125 (1988)
29. Kummer, B.: Newton’smethod based on generalized derivatives for nonsmooth functions: convergence

analysis. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171–194. Springer, New
York (1992)

30. Li, X., Sun, D.F., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method
for solving Lasso problems. SIAM J. Optim. 28(1), 433–458 (2018)

31. Li, X., Sun, D.F., Toh, K.-C.: On efficiently solving the subproblems of a level-set method for fused
lasso problems. SIAM J. Optim. 28(2), 1842–1862 (2018)

32. Lichman, M.: UCI machine learning repository. School of Information and Computer Sciences, Uni-
versity of California, Irvine (2013)

33. Liu, J., Ji, S., Ye, J.: SLEP: sparse learning with efficient projections. Ariz. State Univ. 6, 491 (2009)
34. Liu, J., Ye, J.: Moreau-Yosida regularization for grouped tree structure learning. In: Lafferty, J.D.,

Williams, C.K.I., Shawe-Taylor, J. and Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information
Processing Systems 23, pp. 1459–1467. Curran Associates, Inc. (2010)

35. Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general
approach. Ann. Oper. Res. 46(1), 157–178 (1993)

36. Luque, F.J.: Asymptotic convergence analysis of the proximal point algorithm. SIAM J. Control Optim.
22(2), 277–293 (1984)

37. Meng, F., Sun, D.F., Zhao, G.: Semismoothness of solutions to generalized equations and the Moreau–
Yosida regularization. Math. Program. 104(2), 561–581 (2005)

38. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control
Optim. 15(6), 959–972 (1977)

39. Ndiaye, E., Fercoq, O., Gramfort, A., Salmon, J.: Gap safe screening rules for sparse-group lasso. In:
Lee, D.D., Sugiyama,M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information
Processing Systems 29, pp. 388–396. Curran Associates, Inc. (2016)

40. Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y., Pollack, J.R., Wang, P.: Regularized multi-
variate regression for identifying master predictors with application to integrative genomics study of
breast cancer. Ann. Appl. Stat. 4(1), 53 (2010)

41. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res.
18(1), 227–244 (1993)

42. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58(1), 353–367 (1993)
43. Qin, Z., Scheinberg, K., Goldfarb, D.: Efficient block-coordinate descent algorithms for the group

lasso. Math. Program. Comput. 5(2), 143–169 (2013)
44. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for

minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)
45. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex

programming. Math. Oper. Res. 1(2), 97–116 (1976)
46. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.

14(5), 877–898 (1976)
47. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)
48. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2),

231–245 (2013)
49. Sun, D.F.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear

semidefinite programming and their implications. Math. Oper. Res. 31(4), 761–776 (2006)
50. Sun, D.F., Sun, J.: Semismooth matrix-valued functions. Math. Oper. Res. 27(1), 150–169 (2002)
51. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol) 58,

267–288 (1996)
52. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused

lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)
53. Yu, Y.-L.: On decomposing the proximalmap. In: Burges, C.J.C., Bottou, L.,Welling,M., Ghahramani,

Z.,Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 91–99. Curran
Associates, Inc. (2013)

54. Yuan, L., Liu, J., Ye, J.: Efficient methods for overlapping group lasso. In: Shawe-Taylor, J., Zemel,
R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems 24, pp. 352–360. Curran Associates, Inc. (2011)

123

An efficient Hessian based algorithm for solving… 263

55. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc.
Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

56. Zhang, H., Jiang, J., Luo, Z.-Q.: On the linear convergence of a proximal gradient method for a class
of nonsmooth convex minimization problems. J. Oper. Res. Soc. China 1(2), 163–186 (2013)

57. Zhao, X.Y., Sun, D.F., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite
programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

58. Zhou, Y., Han, J., Yuan, X., Wei, Z., Hong, R.: Inverse sparse group lasso model for robust object
tracking. IEEE Trans. Multimed. 19, 1798–1810 (2017)

Affiliations

Yangjing Zhang1 · Ning Zhang2 · Defeng Sun2 · Kim-Chuan Toh3

Yangjing Zhang
zhangyangjing@u.nus.edu

Ning Zhang
ningzhang_2008@yeah.net

Kim-Chuan Toh
mattohkc@nus.edu.sg

1 Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road,
Singapore 119076, Singapore

2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong
Kong

3 Department of Mathematics, and Institute of Operations Research and Analytics, National
University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076, Singapore

123

http://orcid.org/0000-0003-0481-272X

	An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Generalized Jacobian of Proxp(cdot)
	4 An inexact semismooth Newton based augmented Lagrangian method
	4.1 Convergence rates for Algorithm 1
	4.2 A semismooth Newton method for solving the subproblem (22)
	4.3 Efficient techniques for solving the linear system (31)

	5 Numerical experiments
	5.1 Dual based semi-proximal ADMM
	5.2 Synthetic data
	5.3 UCI data sets with random groups
	5.4 UCI datesets with simulated groups
	5.5 NCEP/NCAR reanalysis 1 dataset

	6 Conclusion
	Acknowledgements
	References

