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Summary

In this thesis, we focus on developing an algorithmic framework to perform clus-
tering and intra-group feature selection simultaneously. In order to achieve this goal,
we first study the convex clustering model and the exclusive lasso model in Chapter
3 and Chapter 4, respectively. Then, we study the new sparse convex clustering
model in Chapter 5, which can achieve the goal of performing clustering and data
point wise feature selection simultaneously.

In Chapter 3, we first analyze the recovery property of the general convex clus-
tering model. More specifically, we propose a new mild sufficient condition which
can guarantee the perfect recovery of the weighted convex clustering model. Our
new theoretical results also include and improve the existing results for the convex
clustering model. Then, we propose a highly efficient and robust semismooth smooth
Newton based augmented Lagrangian method (SSNAL) to solve the weighted convex
clustering model, which has been demonstrated to out-perform some existing state-
of-art algorithms numerically, like the alternating direction method of multipliers
(ADMM) and the alternating minimization algorithm (AMA).

In Chapter 4, we study the exclusive lasso regularizer which could enforce the
intra-group level structured sparsity. We provide a rigorous proof for the closed-form

solution to the proximal mapping Proxp”_H?(') and we derive an explicit form of the

xi



xii

Summary

corresponding Han-Sun (HS) generalized Jacobian OusProx,.2(-). Based on these
results, we propose a dual Newton based preconditioned proximal point algorithm
(PPDNA) to solve machine learning models with the exclusive lasso regularizer. The
new proposed algorithm is more efficient and robust comparing to some popular
first order methods, like ADMM, accelerated proximal gradient method (APG) and
iterative least-square algorithm (ILSA).

Lastly, we focus on the sparse convex clustering model in Chapter 5. We demon-
strate numerically that the new sparse convex clustering model is able to do the
clustering and feature selection simultaneously on the high dimensional datasets. In
order to solve the sparse convex clustering model efficiently, we propose the SSNAL
algorithm to solve the 3-block convex composite programming, which can include
the sparse convex clustering model as a special case.

In summary, this thesis contributes to the topic of clustering and intra-group
level feature selection from both the model analysis and numerical optimization

algorithm perspectives.



Chapter

Introduction

This thesis focuses on developing a systematic model and efficient numerical
algorithms to perform clustering and intra-group level feature selections simulta-
neously. In order to achieve this goal, we first investigate the convex clustering
model in Chapter 3. We develop a highly efficient and scalable numerical algorithm,
called a semismooth Newton CG based augmented Lagrangian method (SSNAL),
to solve the general weighted convex clustering model. Furthermore, we study the
theoretical recovery guarantee of the weighted convex clustering model and propose
a mild sufficient condition to guarantee the perfect recovery property of the model
for a given collection of a finite number of data points. We study the exclusive lasso
regularizer, which could enforce intra-group sparsity in Chapter 4. We revisit the
closed-form solution to the proximal mapping of the exclusive lasso regularizer and
provide a rigorous proof, we also derive the corresponding HS Jacobian of the proxi-
mal mapping. Based on these theoretical analysis, we develop a dual Newton based
preconditioned proximal point algorithm (PPDNA) to solve the machine learning
model with the exclusive lasso regularization. Lastly, in Chapter 5, we design an
efficient SSNAL for three-block convex composite programing problems, then we ap-
ply it to solve the sparse convex clustering model which could perform clustering

and intra-group feature selection simultaneously.



Chapter 1. Introduction

1.1 Literature review

Clustering is a fundamental topic in unsupervised learning. Given a collection of
n data points and an integer k, clustering is to assign these n data points to £ clusters
based on some kinds of metrics. One of the most popular metric that is based on
the Euclidean distance is called minimal sum-of-squares (MSSC). Specifically, for n

given data points in d-dimensional Euclidean space
S = {Sl, S9, ... 7Sn|si € ‘SRd},

the idea of MSSC is trying to find £ centroids cq,cs,...,c, and k corresponding

clusters S = (81, 8s, . .., Sk) based on the sum-of-squares:

n

min S min{lsi = el s = el s — el (L1)

C€1,C2,...,C
=1

Note that finding the optimal solution of the above bi-level programming problem
is NP-hard.
On the other hand, if the points in each cluster S; are fixed, then the minimal

of the function

f(5.8) Z |3| > lIsi —eil)

JjES;

Wzs]

JES;

is achieved by

Based on the discussions, we can now introduce the popular and efficient algo-
rithm in clustering: K-means clustering algorithm [4,43] in Algorithm 1. Roughly
speaking, the idea of K-means algorithm is to first randomly generate k cluster
centers, then updating the membership of the data points and the center of each

clusters alternatively, until the cluster memberships are stable.

1.1.1 Convex clustering

Although traditional clustering models, such as K-means clustering, hierarchical

clustering are quite popular and scalable, they may suffer from poor performance
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Algorithm 1: K-means Algorithm

For a given collection of data points sq,ss,...,s, in ™ and an integer k for
the number of clusters. The K-means algorithm performs the following

steps:

Initialization . Choose k cluster centers {cy,Ca, ..., ¢} randomly in a domain

containing all the points.
Repeat :

Step 1 Assign each point to the closest cluster center, i.e., for each data point s;,

assign s; to the cluster §; if

Isi —c;l|”> < |lsi —all, VIe€{1,2,...k}.

Step 2 Update the cluster centers based on current cluster memberships,

Until convergence criterion is satisfied.

because of the non-convexity of the models and the difficulties in finding global
optimal solutions for such models. The clustering results are generally highly de-
pendent on the initializations and the results could differ significantly with different
initializations. Moreover, these clustering models require the prior knowledge about
the number of clusters which is not available in many real applications. Therefore,
in practice, K-means is typically tried with different cluster numbers and the user
will then decide a suitable value based on his judgment on which computed result
agrees best with his domain knowledge. Obviously, such a process could make the
clustering results subjective.

To address these difficulties, a new convex clustering model was proposed recently

in [31,41,55], which has been demonstrated to be more robust compared to those
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traditional ones.

Let A € R™" = [a;,ay, - ,a,] be a given data matrix with n observations and
d features. The convex clustering model for these n observations solves the following
convex optimization problem:

o 1g
min =3 = ail? 9 Y =, (1.2)
i=1

XeRdxn
1<j

where v > 0 is a tuning parameter, and || - ||, denotes the p-norm. We denote || - || as
the vector 2-norm or the Frobenius norm of a matrix. The p-norm above with p > 1
ensures the convexity of the model. Typically p is chosen to be 1,2, or co. After
solving (1.2) and obtaining the optimal solution X* = [x],...,x}], we assign a; and
a; to the same cluster if and only if x; = x}. In other words, x} is the centroid for
observation a;. (Here we used the word “centroid” to mean the approximate one
associated with a; but not the final centroid of the cluster to which a; belongs to.)
The idea behind this model is that if two observations a; and a; belong to the same
cluster, then their corresponding centroids x; and x} should be the same. The first
term in (1.2) is the fidelity term while the second term is the regularization term
to penalize the differences between different centroids so as to enforce the property
that centroids for observations in the same cluster should be identical.

The advantages of convex clustering lie mainly in two aspects. First, since the
clustering model (1.2) is strongly convex, the optimal solution for a given positive
v is unique and is more easily obtainable than traditional clustering algorithms like
K-means. Second, instead of requiring the prior knowledge of the cluster number,
we can generate a clustering path via solving (1.2) for a sequence of positive values
of .

To handle cluster recovery for large-scale data sets, various researchers, e.g.,
[31,41,54,55,67,89] have suggested the following weighted clustering model modified
from (1.2):

R
min = |lx; —al? 7Y wisllxi — x5, (1.3)
=1

XeRdxn 2 L
1<)
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where w;; = wj; > 0 are given weights that are generally chosen based on the given
input data A. One can regard the original convex clustering model (1.2) as a special
case if we take w;; = 1 for all ¢ < j. To make the computational cost cheaper when
evaluating the regularization term, one would generally put a non-zero weight only
for a pair of points which are nearby each other, and a typical choice of the weights
is

exp(—dlla; —a;||?) if (i,j) € €,

wij =
0 otherwise,

where £ = U {(i,7) | j is among ¢’s k-nearest neighbors,i < 7 < n}, and ¢ is a
given positive constant. Although we need to compute the pair-wise distance among
all the data points and sort them by distance (whose computational complexity is
O(n?)), but we only need to do it once.

The advantages just mentioned and the success of the convex model (1.2) in
recovering clusters in many examples with well selected values of v have motivated
researchers to provide theoretical guarantees on the cluster recovery property of
(1.2). The first theoretical result on cluster recovery established in [89] is valid
for only two clusters. It showed that the model (1.2) can recover the two clusters
perfectly if the data points are drawn from two cubes that are well separated. The
paper [67] further analyzed the statistical properties of (1.2). Recently, [54] provided
theoretical recovery results in the general case of k clusters under relatively mild
sufficient conditions for the fully uniformly weighted convex model (1.2).

In the practical aspect, various researchers have observed that better empirical
performance can be achieved by (1.3) with well chosen weights when comparing
to the original model (1.2) [16,31,41]. However, to the best of our knowledge, no
theoretical recovery guarantee has been established for the general weighted convex
clustering model (1.3). As a step forward in this direction, in Chapter 3 of this thesis,
we propose mild sufficient conditions for (1.3) to attain perfect recovery guarantee,
which also include and improve the theoretical results in [54,89] as special cases.

Our theoretical results thus definitively strengthened the theoretical foundation of
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convex clustering model.

As expected, the conditions provided in the theoretical analysis are usually not
checkable before one finds the right clusters and thus the range of parameter values
for v to achieve perfect recovery is an unknown priori. In practice, this difficulty is
mitigated by choosing a sequence of values of 7 to generate a clustering path.

The challenges for the convex model to obtain meaningful cluster recovery is
then to solve the model efficiently for a range of values of 4. In [41], the authors
used the off-the-shelf solver, CVX, to generate the solution path. However, Hocking
et. al. [31] realized that CVX is competitive only for small-scale problems and it
does not scale well when the number of data points increases. Thus the paper
[31] introduced three algorithms based on the subgradient methods for different
regularizers corresponding to p = 1,2, 00. Recently, some new algorithms have been
proposed to solve this problem. In particular, Eric Chi et al. [16] adapted the ADMM
and AMA to solve (1.2). However, as we will see in Chapter 3, both algorithms may
still encounter scalability issues, albeit less severely than CVX. Furthermore, the
efficiency of these two algorithms are sensitive to the parameter value . This is
not a favorable phenomenon since we need to solve (1.2) with 7 in a relative large
range to generate the clustering path. In [54], the authors proposed a stochastic
splitting algorithm for (1.2) in an attempt to resolve the aforementioned scalability
issues. Although this stochastic approach scales well with the problem scale (n in
(1.2)), the convergence rate shown in [54] is rather weak in that it requires at least
[ > n*/e iterations to generate a solution X! such that || X! — X*||* < ¢ is satisfied
with high probability. Moreover, because the error estimate is given in the sense of
high probability, it is difficult to design an appropriate stopping condition for the
algorithm in practice.

As the readers may observe, all the existing algorithms are purely first-order
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methods that do not use any second-order information underlying the convex cluster-
ing model. In contrast, in Chapter 3, we design and analyse a deterministic second-
order algorithm, the semismooth Newton based augmented Lagrangian method (Ss-
NAL), to solve the convex clustering model. Our algorithm is motivated by the recent
work [39] in which the authors have proposed a semismooth Newton augmented La-
grangian method (ALM) to solve Lasso and fused Lasso problems, and the algorithm
has been demonstrated to be highly efficient for solving large, or even huge scale
problems accurately. We are thus inspired to adapt this ALM framework for solving

the convex clustering model (1.3) in Chapter 3.

1.1.2 Regularizers for structure sparsity

Structured sparsity is very important in feature learning, not only for avoiding
over-fitting, but also in making the model more interpretable. Many regulariz-
ers and their combinations have been proposed to enforce sparsity for parameter-
ized machine learning models [68,69,78,79]. The most popular regularizers among
them are probably the standard lasso [68] and the group lasso [78,79] regulariz-
ers. Lasso, group lasso and their variants have been intensively studied in terms
of both their statistical properties [12,14,68,79,85,90] and efficient numerical com-
putations [8,24,39,52,74,78,84]. The classical lasso model has been important in
enforcing sparsity on variables while performing feature selection. However, there
is no structure enforced in the sparsity pattern. Instead, the group lasso is known
to enforce the sparsity at an inter-group level, where variables from different groups
compete to be selected. The idea behind the group lasso is that if a few features in
one group are important, then most of the features in the same group should also
be important.

However, in some real applications, instead of the unstructured sparsity (e.g.
lasso) or the inter-group level structured sparsity (e.g. group lasso), we also need the
intra-group level sparsity. That is, not only features from different groups, but also

features in a seemingly cohesive group are competing to survive. A realistic example
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comes from building an index exchange-traded fund (index ETF) to track a specific
index in the stock market. To diversify the risk across different sectors, we need to
do portfolio selection both across and within sectors, which indeed means that we
also need the intra-group level sparsity. To achieve this, a new regularizer called
the exclusive lasso has been proposed in [34,87] (also named as elitist lasso [35,36]).
Given a positive weight vector w € '/, , and a partition of variable index groups
G = {glg € {1,2,...,n}} such that U,.s9 = {1,2,...,n} and g;[g; = 0 for any

9i,9; € G. For x € R", the weighted exclusive lasso regularizer is defined as

09(z) == degng o 7417, (1.4)
where “o” denotes the Hadamard product, and z, denotes the sub-vector of x with
those elements not in g removed from x. As indicated in the above expression, an ¢
norm square is applied to combine different groups, and a weighted ¢; norm is used
to enforce sparsity within each group. Naturally, when solving machine learning
problems which involves a loss function and the exclusive lasso regularizer, we can
expect that each z, is nonzero. Under some strict assumptions, this statistical
property is carefully studied in [11].

The exclusive lasso regularizer was first proposed for multi-task learning [87],
and has been widely applied in applications such as image processing [15,82], sparse
feature clustering [76] and NMR spectroscopy [11]. Some numerical optimization
algorithms have been proposed for solving models involving the exclusive lasso
regularizer, such as the smooth minimization via APG [15, 82], the iterative least
squares algorithm (ILSA) [34,76], and the coordinate descent method [11]. However,
some popular algorithmic frameworks like the accelerated proximal gradient (APG)
[52,80], FISTA [8] and alternating direction method of multipliers (ADMM) [23,28]
have not been used to solve these kind of problems. The main reason could be due
to the fact that the closed-form solution to Prox,.. z(-) is not well known in the
community. In order to adopt a proximal gradient method to solve the exclusive
lasso model, Campbell et.al [11] used an iterative subroutine to compute Prox,.2(-)

without the weights.
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In this thesis, we recap the closed-form solution to the proximal mapping of
the exclusive lasso regularizer reported in [35], Then we provide a rigorous proof in
Chapter 4 based on a quadratic programming reformulation and the corresponding
Karush-Kuhn-Tucker (KKT) conditions. As mentioned above, such a closed-form
solution will be directly used in some popular algorithmic framework such as the
APG and ADMM for solving the exclusive lasso models. However, based on our
numerical experiments, these first-order algorithms are still not efficient enough in
solving the large scale exclusive lasso problems.

To overcome the challenges in solving large scale cases, we design a highly effi-
cient second-order type algorithm, the dual Newton based preconditioned proximal
point algorithm (PPDNA), to solve the exclusive lasso model. As a key ingredient
for PPDNA, we derive the Han-Sun (HS) Jacobian of Prox . 2(-). The numeri-
cal experiments shown in later section will demonstrate the superior performance
of PPDNA for solving popular machine learning models with the exclusive lasso

regularizer, comparing to other state-of-art algorithms mentioned previously.

1.1.3 Sparse convex clustering

Although the performance of the convex clustering model (1.3) is attractive, it’s
easy to realize that the convex clustering model could perform well only under the
scenarios when the features of the input data are meaningful for clustering. The
performance of convex clustering model could be severely deteriorated when clus-
tering high-dimensional data, especially for the scenario where a number of features
contain no information about the clustering structure.

To overcome the difficulties coming from uninformative features, we hope to
have a new model that could do clustering and feature selection at the same time.
Binhuan Wang et. al. [73] proposed a sparse convex clustering model by adding a
pxn

group lasso regularization term for the features. For a given input data A € R

with n data points and p features, the sparse convex clustering model proposed
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in [73] has the following form:

1 n
i = XZ—A12 FX, s y 1.5
min 2;!\ i = A3+ T(X;71,72) (1.5)

where

p
D(X571,72) =1 Y will X = X jlla+72 > usll X s

(i,5)€€ Jj=1

Here A.; and X.; are the i-th column of A and X, respectively, and Xj. is the j-th
row of X.

The feature-wise group regularization term (the second term in I'(X; 71, 72)) will
help to enforce the sparsity of the features, which will be helpful in feature selection.

The sparse convex clustering model (1.5) has been proven to be useful for clus-
tering on high dimensional data [73]. However, it’s not very effective in selecting
local feature sets, especially in the scenario when there are overlapping features in
different clusters.

To capture better local hidden features, Yamada et al. [76] proposed a new model
including a sample-wise regularization term for the features, which is

o1
min —

XeRpxn 2 Z ”le o A#H% + A(X;f}/laf)/?)a (16)
=1

where

AMXy,72) =m0 Y, wilXos = X jlla 472 Y I1XlIE-
(i.j)€€ =1

By imposing the sample-wise ¢; o norm in the regularization terms, the model can
select a small number of elements within each X.; [34,76,87]. As mentioned in [76],
taking the square of ¢; norm will enforce X ; to be sparse but still remain nonzero?,
which will make the results more interpretable.

The authors in [76] proposed an iterative least square algorithm to solve (1.6)

that involves the computation of the inverse of a large matrix. The computational

cost is expensive for large datasets. As mentioned in [76], we can adopt the ADMM

'For this claim, no rigorous mathematical proof could be found to the best of our knowledge.
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to solve (1.6), where each iteration of the algorithm requires the efficient computation
of proximal mapping of || - ||3.

Inspired by [81], we will design a semismooth Newton based augmented La-
grangian method (SSNAL) to solve a more general case of (1.6), given as

RN
e §;||Xwi_A~,iH§+AH(XW1772), (1.7)

Xeppxn

where

Au(Xsym) =7 > will X — X jlla+72 > I1H.q 0 X},
(ig)€€ i=1

and H € RP*" is a given weight matrix.

With the theoretical results of the proximal mapping and corresponding Jacobian
derived in chapter 3 and chapter 4, we will derive a semismooth Newton CG based
augmented Lagrangian method of multipliers (SSNAL) to solve the 3-block convex
composite programming reformulation of (1.7) in chapter 5, which will include the

model (1.7) as a special case.

1.2 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, we present some
preliminaries that will be repeatedly used in the subsequent discussions. In Chapter
3, we first show the theoretical recovery guarantee of the general weighted convex
clustering model, then we introduce the highly efficient and robust algorithm SSNAL
for solving the convex clustering model. At the end, we present numerical results to
demonstrate that SSNAL achieves the state-of-art results comparing to other popu-
lar numerical algorithms. In Chapter 4, we study the exclusive lasso regularizer for
intra-group feature selections. We proposed the dual Newton based preconditioned
proximal point algorithm (PPDNA) for solving a two-block convex composite pro-
graming problem, which includes the exclusive lasso model and the logistic regression

model with the exclusive lasso regularizer as special cases. In order to perform the
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algorithm PPNDA practically, we study the closed form solution to the proximal
mapping of the exclusive lasso regularizer and derive the corresponding HS Jaco-
bian. The numerical experiments on randomly generated data demonstrate the high
efficiency and scalability of PPDNA in solving the models with the exclusive lasso
regularizer. The numerical results on a realistic example also demonstrate the power
of the exclusive lasso regularizer in intra-group feature selections. Lastly, we study
the sparse convex clustering model in Chapter 5, which could perform clustering and
intra-group feature selection simultaneously. We propose the SSNAL algorithm for
3-block convex composite programming and applies it in solving the sparse convex
clustering model. We summarize the thesis and discuss about the future research

plans in Chapter 6.



Chapter

Preliminaries

In this chapter, we provide some important preliminary knowledge which will be

frequently used in the remaining parts of this thesis.

2.1 Moreau-Yosida regularization

In this section, we will discuss Moreau-Yosida regularization, a very important
tool that will be frequently used in this thesis. Moreau-Yosida regularization is com-
monly used in nonsmooth optimization algorithm since it could smooth a nonsmooth
function.

Let X be a real finite dimensional Euclidean space equipped with an inner prod-
uct (-,-) and its induced norm || - ||. Let f : & — R be a proper closed convex

function. The Moreau-Yosida regularization of f at point x € X is defined as

67(a) = min{f(y) + 3y — all?}, Vo€ X (2.)

The function ¢ is also known as the Moreau envelope of f. The following proposi-

tion shows that (2.1) is well defined [49].
Proposition 1. For any x € X, the problem (2.1) has a unique optimal solution.

Definition 1 (Proximal mapping). The unique optimal solution of (2.1), denotes

by Prox¢(x), is called the proximal mapping of x associated with f.

13
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Many popular numerical optimization algorithms, especially first-order algo-
rithms, highly depend on the efficient computation of the proximal mapping of
some given functionals. Here, we list some closed form formulas of the proximal

mappings for some popular functions in Table 2.1.

Table 2.1: Proximal maps for selected functions

p(-) Proxp(x) Comment

Il 11 1— 4| x; Elementwise soft-thresholding
‘xll +

BREP

Il 12 [1 t } x Blockwise soft-thresholding
+

| loo x—ILs(x) S is the unit ¢;-ball

Proposition 2. Let f : X — R be a closed proper convex function, ¢y be the

Moreau-Yosida regularization of f, and Proxy be the associated proximal mapping.

Then the following properties hold.
(1) argmingey f(z) = argmin,ex ¢(z).
(i) Both Prox; and I — Proxy are firmly non-expansive, i.e., for any x,y € X,
[Prox;(x) — Prox; (y)||* < (Proxs(z) — Prox;(y),= — ),
Iz — Proxy(x)) — (y — Prox; (y))||* < {(z —Proxs(z)) — (y — Prox;(y)), 2 — y).

(11t) The Moreau envelope ¢ is continuously differentiable, and its gradient can be

computed by

Vor(r) =z — Proxs(z), zeX.

Next, we introduce an important ingradient in algorithm design, Moreau decom-

position.

Proposition 3 (Moreau decomposition). Let f : X — (—o0, +00| be a closed proper

convex function and o be a positive scalar. Then the following Moreau identity holds:

Prox,;(z) + oProx,-1s (07 '2) =2, Vz € X,
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where f* is the conjugate function of f defined as

f(y) = sup {(z,y) — f(2)}.

TEX

2.2 Proximal ADMM for convex composite pro-
gramming

In this section, we recap the proximal alternating direction method of multipliers
(PADMM), which will be used as one of the benchmark algorithms in our numerical
experiments.

Let X, Y and Z be finite dimensional real Euclidian spaces. Let f : YV —
(—o0, +00] and g : Z — (—o0, +0o0] be closed proper convex functions, A : X — Y
and B : X — Z be linear maps. Let 0f and 0g be the subdifferential mappings of
f and g, respectively. Since both df and dg are maximally monotone [64, Theo-
rem12.17]. By [26], there exists two self-adjoint and positive semidefinite operators

s and %, such that for all y, 7 € dom(f), € € df(y) and € € Df(7),

W—5.6— 8> ly—dl3, (22)
and for all z, Z € dom(g), n € dg(z) and 7 € 0g(Z2),

(z =z —10) > |2 — 2[5, (2.3)

Now, we review the semi-proximal ADMM algorithm proposed in [26] for solving
a generic two blocks convex composite programming problem. Consider the convex

optimization problem with the following 2-block separable structure

min  f(y) + g(2)
st. Ay+Bz=c

(2.4)

The dual problem of (2.4) is given by
min {(c,z) + f*u+ g*(v)
st. Arx+u=0, (2.5)
Bxr +v=0.
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Let o > 0 be a given scalar, the augmented Lagrangian function associated with

(2.4) is given as follows:
Lo(y, 52) = fy) +9(2) + (o, Ay + Bz = o) + Z|[ A"y + Bz = c||*.

The semi-proximal ADMM proposed in [26], when applied to (2.4), has the
template given in Algorithm 2. Since the proximal terms added here are allowed
to be positive, the corresponding method is referred to as semi-proximal ADMM

instead of proximal ADMM as in [26].

Algorithm 2: sSPADMM: A generic 2-block semi-proximal ADMM for solv-

ing (2.4).
Let 0 > 0 and 7 € (0,00) be given parameters. Let T; and 7, be given

self-adjoint positive semidefinite, not necessarily positive definite, linear
operators defined on ) and Z, respectively. Choose
(v°, 2% 2%) € dom(f) x dom(g) x X. For k =0,1,2,..., perform the kth

iteration as follows:

Step 1 . Compute

Y = argmin £, (y, #5508 + 2 ly — o1 (2.6)
Step 2 . Compute
= arg min Loyt 2 ak) + %Hz - 2|17 (2.7)
Step 3 .
T = o ro (AT 4 B ¢, (2.8)

In Algorithm 2, the presence of 7; and 7, is to guarantee the existence of solutions
for the subproblems (2.6) and (2.7). However, the choice of 7; and 7, are problem
dependent. When we choose 7; = 0 and 7, = 0, the Algorithm 2 becomes the

classical ADMM for a two-block convex composite programming problem.
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For the convergence of the 2-block semi-proximal ADMM, we need the following

assumption.
Assumption 2.1. There exists (y, 2) € ri(domf x domg) such that A*y+ B*Z = c.

Theorem 2.1. [26, Theorem B.1] Let ¥y and ¥, be the self-adjoint and positive
semidefinite operators defined by (2.2) and (2.2), respectively. Suppose that the
solution set of problem (2.4) is nonempty and Assumption 2.1 holds. Assume that
T; and T, are chosen such that the sequence {(y*, 2%, z*)} generated by Algorithm
sPADMM is well defined. Then, under the condition either (a) 7 € (0, (1 4+ /5)/2)
or (b) T > (1+v/5)/2 but 3707 (B (M1 =2 [P+ 77 H|AyHH 4+ B2 —c|]?) < o0,

the following results hold:

(i) If (y>=, 2, ) is an accumulation point of {(y*, 2, x*)}, then (y>, 2°°) solves

problem (2.4) and x> solves (2.5), respectively.

(ii) If both o= 'Sy + Tp + AA* and o~ 'S, + T, + BB* are positive definite, then
the sequence {(y*, 2%, 2®)}, which is automatically well defined, converges to
a unique limit, say, (y>°, 2%, x>°) with (y>°, 2*°) solving problem (2.4) and x>

solving (2.5), respectively.

(iii) When the y-part disappears, the corresponding results in parts (i) and (i) hold
for (2.4) under the condition either T € (0,2) or 7 > 2 but > po, [|[B*2" —

c||? < oo.

2.3 Accelerated proximal gradient algorithm (APG)

In this section, we will discuss another popular first order algorithm, accelerated
proximal gradient algorithm for solving the general unconstrained nonsmooth con-
vex minimization problem which will include the convex clustering model and the

exclusive lasso model as special cases. Consider

min F(z) := f(x) + p(z), (2.9)
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where p : R — R is a proper, convex, lower semicontinuous (Isc) [61] function
and f is convex smooth (i.e., continuously differentiable) on an open subset of R"
containing dom p = {x € R" | p(x) < co}. We assume that dom p is closed and V f

is Lipschitz continuous on dom p, i.e.,
IVf(@) = VW < Lelz —ylI*, Yo,y € domf, (2.10)

for some positive scalar L.

Now, we introduce the proximal gradients method and some accelerated version
to solve (2.9).

For any y € dom p and a given positive scalar L, consider the following quadratic

approximation of F(-) at y as

Qulw.y) = 1) + 2 e —ull +p(@) - IVIGIE, (1)

where u = y — 1V f(y). Since Qp(z,y) is strongly convex, if admits a unique

minimizer. We denote the unique minimizer by
Sp(u) :argmin{Qr(z,y) | © € dom p}. (2.12)

We introduce a general proximal gradient algorithmic framework shown in [70]
for solving (2.9) in Algorithm 3.

Note that Algorithm 3 is a more general algorithmic framework, Fukushima and
Mine [27] studied a proximal gradient descent method with ¢* = 1 for all k and step
size o chosen by an Armijo-type rule. We first establish the convergence result for

the proximal gradient descent method in Theorem 2.2.

Theorem 2.2. [70, Theorem 2.1] Assume the optimal solution of problem (2.9) Q*
is nonempty. Let {x*} be the sequence generated by the Algorithm 3 with L* = Ly,
t* =1, and o =1 for all k. Then, for any k > 1, we have

< Lilla® =P

Plat) - Pla®) < =0

, Vot e Q.
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Algorithm 3: A general proximal gradient algorithmic framework for solv-

ing (2.9).
Choose 2° = z71 € dom(p), t° =t71 € [1,00). For k=0,1,2,..., generate

2F*1 from 2* according to the following iteration:
Step 1 . Set
N S ARl PO
yr=att " -
Step 2 . Set

ut =yt — (1)),
where L* > 0 and compute

Spe(u).
Step 3 . Choose a step size o > 0 and set
P = gk 4 oF (S (uk) — 2).
Step 4 . Choose t*™! € [1,00) satisfying

(tRT1)2 — L < (19)2, (2.13)

As a direct corollary of Theorem 2.2, we have

F(2%) — inf F(z) <O(Ls/k) Vk.

reR™

So for any € > 0, the algorithm terminates in O(Ly/€) iterations with an e —
optimal solution. So the sequence {2*} converges relatively slowly.

In the smooth setting, Nesterov [51] proposed an algorithm using only interpola-
tion strategy to achieve O(1/k?) iteration complexity. Later, Beck and Teboulle [§]
extend the results in [51] to solve the nonsmooth problem (2.9).

The condition (2.13) allows ¢, to increase, but cannot increase too rapidly. Since

larger t* will improve the convergence rate of the algorithm, we alternatively solve
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(2.13) with equality instead of inequality, which yields

Jebl _ 14+ 4/14 4(tF)?
- 5 )

The accelerated version of the proximal gradient based on the interpolation is shown

in Algorithm 4.

Algorithm 4: APG for solving (2.9).

Choose 2° = 271 € dom(p), t° =t =1. For k =0,1,2,..., generate 2!
from 2% according to the following iterations:
Step 1 . Set
A T S
yr=at 4 (¥ — 2" )
Step 2 . Set

where L*F = L and compute

Step 3 . Set

I’kJrl = SLk (Uk)

Step 4 . Compute
et _ L+ /T
5 .

We end this section by showing the convergence result of the APG algorithm in
Theorem 2.3, detailed proof could be found in [8].

Theorem 2.3. [8, Theorem /4.4] Let {x*} be generated by Algorithm 4. Then for

any k > 1

2L 0 _ .x]||2
F(:Ij‘k) —F($*> < f||x X H

< = Vot e Q. (2.14)
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2.4 Semismooth Newton method

In this section, we will discuss a semismooth Newton method, which will be an
important sub-routine in our proposed algorithmic framework. Before that, we first

give some preliminaries.

Definition 2 (Directional differentiability). [10, Definition 2.44] We say that F :
R™ — R™ is directionally differentiable at a point x € R™ in the direction h € R™ if

the limat
F —F
F'(z,h) ;= lim (z+th) (z)
tl0 t

exists. If I is differentiable at x in every direction h € R", we say that F is

directionally differentiable at x.
Next, we define the differentiability in the sense of Fréchet.

Definition 3 (Fréchet Differentiability). [10, Definition 2.48] We say that F :
R™ — R™ is directionally differentiable at a point x € R™ in the direction h € R" in

the Fréchet sense if F' is directionally differentiable at x and
F(o+h) = F(@)+ F'(w,h) + o]}, he R

If, in addition, F'(x,-) is linear and continuous, it is said that F' is Fréchet differ-

entiable at x.

We now introduce the important Rademacher’s theorem which will lead to the

definition of the generalized Jacobian in Clark’s sense.

Theorem 2.4 (Rademacher’s theorem). Suppose that F : R* — R™ is locally
Lipschitz continuous on an open set O C R™. Then F is almost everywhere (Fréchet )

differentiable in O.

Let I : R" — R™ be a locally Lipschitz continuous function, then it’s almost
everywhere (Fréchet) differentiable. Denote D to be the set of points in R" where F
is differentiable and F’(z) be the Jacobian of F' at x € Dr. We define the Bouligand

subdifferential and the Clark generalized Jacobian of F' at any x € " below.
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Definition 4. For a locally Lipschitz continuous function F' and the corresponding
differentiable set Dr defined above, the Boulingand subdifferential (B-subdifferential)
of F' at any x € R™ is defined as

OpF(x) = { lim F'(z%) | 2" € Dp},

ko

and the Clark generalized Jacobian of F' at x € R™ is defined as the convexr hull of
aBF<SL'), 7:.6.,
OF(x) = conv{0pF(x)}.

The following proposition about the B-subdifferential and the Clark generalized

Jacobian is from [18].

Proposition 4. Let O C R" be an open set and F' : O — R™ be a locally Lipschitz

continuous function. Then the following properties hold:
(i) OpF(x) is a nonempty compact subset of R™*" for any x € O.

(ii) OpF(x) is upper semicontinuous at x € O, i.e., for any € > 0, there exists

0 > 0 such that
OpF(y) C 0pF(x) + eB, Vy satisfying ||y — x| <,
where B C R™ " s the open unit ball centered at the origin.
The properties above are also true for OF(-).

With all the preparations above, we now introduce the definitions of semismooth-

ness, which are mainly adopted from [37,46,57].

Definition 5. Let O C R" be an open set and F : O — R™ be a locally Lipschitz
continuous function. F' is said to be G-semismooth at x € O if for any V €

OF (z + Ax) with Az — 0,

F(x 4+ Az) — F(x) — VAz = o(|| Ax])).
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F is said to be strongly G-semismooth at x € O if for any V € OF (x + Ax) with
Axr — 0,
F(x+ Az) — F(z) — VAz = O(]|Ax|]?).

If, in addition, F is directionally differentiable at x, then it’s said that F' is semis-

mooth and strongly semismooth at x, respectively.

Definition 6. Let O C R"™ be an open set, I : O = R™*" be a nonempty compact
valued, upper semicontinuous multifunction, and F : O — R™ be a locally Lipschitz
continuous function. F is said to be semismooth at x € O with respect to the
multifunction IC if F is directionally differentiable at x and for any V € K(x + Ax)
with Ax — 0,

F(x 4+ Az) — F(x) — VAz = o(|| Ax])).

Let v be a positive constant, F is said to be a—order (strongly if o = 1) semismooth
at x € O with respect to K if F is directionally differentiable at x and for any
Ve K(z + Azx) with Az — 0,

F(x+ Az) — F(x) — VAz = O(]|Ax||*T).

F is said to be a semismooth (respectively, a-order semismooth, strongly semismooth)
function on O with respect to K if it is semismooth (respectively, a-order semismooth,

strongly semismooth) everywhere in O with respect to K.

We usually regard Definition 5 as the classic and standard definition of semis-
moothness, whereas Definition 6 is more general as it involves a multifunction which
could be but not limited to the Clark generalized Jacobian.

Before we introduce the semismooth Newton method, we note that, the class of
semismooth functions includes many nonsmooth functions that we are interested in.
In particular, the convex functions are examples of semismooth functions [46].

Now, we introduce the semismooth Newton (SSN) method [57] to solve un-

constrained convex optimization problems with SC! objective functions, which are
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essentially the subproblem in our algorithmic framework. Consider the SSN method
for solving the following optimization problem

min f(z), (2.15)

zeER™

where f: R" — R is a convex LC! function. A function is said to be SC! if it is a
continuously differentiable function with locally Lipschitz continuous gradient, and
the gradient is semismooth.

Since the objective function f of the unconstrained convex optimization problem
(2.15) is differentiable, solving (2.15) is equivalent to solving the following nons-
mooth equation

Vf(z) = 0. (2.16)

Since f is SC', then, V f(z) is semismooth. We can adopt the semismooth New-
ton method to solve the nonsmooth equation (2.16) with the appealing superlinear
convergence (even quadratic convergence) rate. The SSN method for solving (2.16)
is shown in Algorithm 5.

Note that the Jacobian used in Algorithm 5 is not limited to Clark generalized
Jacobian, whether we use the Clark generalized Jacobian or not is problem depen-
dent. In some cases, the Clark generalized Jacobian is not easy to compute and we
need to work with other computationally available generalized Jacobians. This will
be seen in details when we apply the SSN' method in solving some specific models
in the following chapters.

To close this section, we present the convergence result for the SSN method in

Theorem 2.5, the proof could be found in [86].

Theorem 2.5. Suppose that the equation (2.16) admits a unique solution T, K
is a nonempty compact valued, upper semicontinuous multifunction, with respect to
which V f is semismooth, and every V € K(Z) is nonsingular. Let {7} be the infinite

sequence generated by Algorithm 5. Then {x?} converges to the unique solution T of

If the conjugate gradient method is used to solve (5), we denote the algorithm by SSNCG.
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Algorithm 5: A semismooth Newton method for solving (2.16).
Given p € (0,1/2), 7€ (0,1), 7 € (0,1] and § € (0,1). Let K be a

nonempty compact valued, upper semicontinuous multifunction, with
respect to which Vf is semismooth. Choose 2° € R". Do the following

steps for 7 =0,1,...

Step 1 . (Newton direction) Choose V; € (7). Solve the following linear system
Vid = -V f(z7) (2.17)

by a direct method or by the conjugate gradient (CG) algorithm to find @’
such that [|V;d? + V f(27)[| < min(n, |V f(27)[]'*7).

Step 2 . (Line search) Set a; = 0™, where m; is the smallest nonnegative integer

m for which

f +6"d) < f(y') + ud™(Vf(y'), &). (2.18)

Step 3 . Set 27! = 27 4 a;d’.

equation (2.16). Moreover, the convergence rate is at least superlinear:
|27+t — 2| = O(||l2” — z||"™*7),

where T € (0, 1] is the parameter given in Algorithm 5.

2.5 Error bounds

To close this chapter, we introduce an important concept, the so called the error
bound, which is critical for establishing the convergence rate results of an algorithm.
Here, we just recap some important results, for more details about the error bounds,
readers can refer to [20,44,71,88] and the references therein.

Consider the following problem

min F(z) := h(Azx) + (¢, z) + p(x), (2.19)

el
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where £ and O are finite-dimensional Euclidean spaces, A : £ — O is a linear map.
In this section, we also assume that the following assumptions hold for problem

(2.19).
Assumption 2.2. (a) p: E — (—00,00| is a proper, closed and convex function.

(b) h:O — (—00,00] is convex smooth (i.e., continuously differentiable) function
on int(dom(h)). In addition, we also assume that h is strongly convex and its

gradient Vh is Lipschitz continuous on any conpact convex set V- C dom(h).

(¢) The optimal solution set X of problem (2.19) is nonempty and compact.

2.5.1 Some preliminaries from set-valued analysis

Before we discuss the error bounds for problem (2.19), we first introduce some

necessary concepts and results in set-valued analysis [20, 64, 88].

Definition 7. Let & and & be finite-dimensional Fuclidean spaces, we say a map-
ping I' 1 & = & is a multi-function (or set-valued mapping) if it assigns a subset
I'(u) of & to each vector u € &;.
For a multi-function ' : £ = &, we define its graph and domain by

gph(I') :== {(u,v) € &y x & | v € T'(u)},

dom(T) :=={u € & | T'(u) # 0},
respectively. Furthermore, we define the inverse mapping of I', denote by I'™t, as a

multi-function from & to & defined by
I (w)={uec&|vel(u}

Next, we introduce the definition of calmness and metric sub-regularity of the

multi-function, which are high related to the error bounds.

Definition 8. (1) A multi-function I' : & = & is said to be calm at u € & for

v € & if (u,v) € gph(I') and there exist constants k,e > 0 such that

I(u) N Be,(v,¢) C(a) + kljlu — u||Bg, Yu € &. (2.20)
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Furthermore, we say I is isolated calm at u € & for v € & if (u,v) € gph(I)

and there exist constants kq,€e1 > 0 such that

F(U) N B& (Q_J, 61) Q {Q_J} + I€1||U — I_L”BgQ Yu € 51. (221)

(ii) A multi-function T : & = & is said to be metrically sub-reqular at u € & for

v € & if (u,v) € gph(I') and there exist constants k,e > 0 such that
dist(u, T71(0)) < rdist(0,T(u)) Yu € Be, (1, €). (2.22)

The calmness and the metric subregularity of a given multi-function are not easy
to check directly from the definitions. Fortunately, we have the following result [3] for

a special class of multi-valued mappings, i.e., the sub-differential of convex functions.

Theorem 2.6. [3, Theorem 3.3] Let H be a real Hilbert space endowed with the
inner product (-,-) and f : H — (—o00, +00] be a proper lower semicontinuous convex
function. Let v,& € H satisfy v € Of(x). Then Of is metric subregular at T for v
if and only if there exists a neighborhood N'(Z) of T and a positive constant ¢ such

that
f(x) > f(2)+ (0,2 — Z) + c(dist(z, (Of) " H(D)))?, Ve N(z). (2.23)

The next proposition shows the equivalence between the calmness of a multi-

function and the metric subregularity of its inverse.

Proposition 5. [22, Theorem 3H.3] For a multi-function T : £ = &, let (u,v) €
gph(T). Then T is calm at @ for v if and only if its inverse ™' is metrically

subreqular at v for u.

2.5.2 Error bounds

We now discuss the error bound conditions for (2.19) based on the preliminaries

above. In general, the error bound condition gives us a handle of the structure on
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the objective function near the optimal solution to deduce some useful quantitative
controls.

Let X be the nonempty optimal solution set of problem (2.19). Let T C & be a
set satisfying X C T and r : £ — R, be a function satisfying r(x) = 0 if and only if
x € X. We say that problem (2.19) satisfies the error bound condition for X with

test set T' and residual function r if there exists a constant x > 0 such that
dist(x,X) < k-r(x), VereT, (2.24)

where dist(x,X) = inf,cx ||z — x||2 denotes the Euclidean distance from a vector
x € € to the set X
One popular and practical choice of the residual function r(z) is rpx(z) =

|R(z)||2 where R : & — £ is the residual map defined by
R(x) := Prox,(z — (A"Vh(Az) + ¢)).

This popular choice of the residual function induces the following specific error

bound property with the proximal map based residual function.

Definition 9 (EBP). For any o > v* := min,eg F(z), there ezist constants k > 0

and € > 0 such that
dist(x,X) < k[|R(x)|]2, Vz € & with F(z) < a, ||R(x)]|2 <e.

The error bound property is important for the analysis of the convergence rate
of first order algorithms. If the error bound condition holds for (2.19), then popular
first order algorithms like proximal gradient (PG), proximal points algorithm (PPA)
can be shown to converge linearly [63,71].

The known results for the error bound property to hold relied on the polyhedral
property of multi-valued mappings. Recently, Zhou Zirui et al. [88] and Cui Ying
et al. [19] established the error bound property for an important non-polyhedral

function, the nuclear norm regularizer. Here, we recap some important results.



2.5 Error bounds

Theorem 2.7. [72, Theorem 4] Consider the general two-block convex optimization

problem

min  f(z) + p(z),

zeR™
where f is strongly convex and differentiable with Lipschitz continuous gradient V f,

and p is a closed, proper convex function, then the EBP holds.
Theorem 2.8. ( [72, Lemma 7], [71, Theorem 2]) Consider the following problem

min F(z) := h(Az) + (c,z) + p(z),

rER™

where A : R" — R™ is a linear map, h : R™ — (—o00, 00| is convex smooth (i.e.,
continuously differentiable) function on int(dom(h)). In addition, h is strongly

convez and its gradient Vh is Lipschitz continuous on any compact convex set V C

dom(h).

(i) If p: R™ — (—o0,00] is a proper, convez, closed function with a polyhedral

epigraph. Then the EBP holds.

(i) If p is the group lasso reqularizer, i.e., p(x) = > J € Jwyl||z |2, where T is
a partition of the index set {1,2,...,n}, x; € RI| is the vector obtained by
restricting x € R™ to the entries in J € J, and wy > 0 is a given parameter.

Then the EBP holds.

Next, we show the relationships between the error bound property and the calm-
ness property of the solution mapping for the convex composite programming prob-

lem (2.19).

The following proposition shows that we can replace the test set in (EBP) by
the neighborhood of the solution set X.

Proposition 6. /88, Proposition 3] Consider the optimization problem (2.19), under
the Assumption 2.2, the error bound (EBP) holds if there exists constants k,p > 0
such that

(EBN) dist(z,X) < k||R(x)]|2, Vz e O with dist(z,X) < p. (2.25)
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The following results from [88] build the bridge between the calmness of the

solution mapping and the error bound properties.

Theorem 2.9. [88, Proposition 1, Proposition 4, Theorem 1] Consider the opti-
mization problem (2.19), under the Assumption 2.2, there exist a § = Ax for all
x € X such that

X={ref|Arv=y,—A"Vh(y) — c € Op(x)}. (2.26)

Then the error bound condition (EBN) holds if and only if the solution map T" :
T x & =& is calm at (y, A*Vh(g) + ¢) for any T € I'(y, A*Vh(y) +¢).
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Convex Clustering

In this chapter, we will focus on the general weighted convex clustering model.
Specifically, for a given data matrix A € R¥™" = [a;,a,,...,a,], we consider the

following general weighted convex clustering model

1
min —ZHXz‘—ai|\2+’YZwinXi—Xija (3.1)
=1

XeRdxn 2 =
where p > 1 and w;; = w;; > 0 are given weights that are generally chosen based on
the given input data A.
As discussed in Chapter 1, the general weighted convex clustering model includes

the following uniform weighted convex clustering model as a special case:

1
min §ZHX’ —aiHQ—l—fyZHXi — X |- (3.2)
=1

XeRdxn =
This chapter will be organized as follows. We first discuss some related work
in section 3.1, some preliminaries could be found in section 3.2. The theoretical
recovery guarantee will be shown in section 3.3. In section 3.4, we will present the
semismooth Newton-CG based augmented Lagrangian method (SSNAL) for solving
(3.1). Convergence analysis of the algorithm SSNAL will also be included. Then, we

present all the numerical experiments in section 3.5.

31
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3.1 Related work

In this section, we discuss some additional related work to the convex clustering
model. In addition to the papers [17,31,41,54,55,67,89] on the convex models (3.2)
and (3.1), other convex models have been proposed to deal with the non-convexity
of the K-means clustering model. One such model is the convex relaxation of the
K-means model via semidefinite programming (SDP) [5,47,56].

As discussed in Chapter 1, for a given data matrix A € R>" = [aj,ay,...,a,],

the classical K-means model solves the following non-convex optimization problem

. k
min thl Zie[t la; — ﬁ Zje]t aj||2

s.t. Iy,..., I is a partition of {1,2,...,n}.

(3.3)

Now, if we define the n X n matrix D by D;; = ||a; — a;||?, then by taking

where 1;, € R" is the indicator vector of the index set [;. We can express the
objective function in (3.3) as $Tr(DX). Based on this, [56] proposed the following

SDP relaxation of the K-means model
min {Tr(DX) | Te(X) =k, Xe=e, X >0, X € S;}, (3.4)

where X > 0 means that all the elements in X are nonnegative, S} is the cone of
n X n symmetric and positive semidefinite matrices, and e € R™ is the column vector
of all ones.

Recently, [47] proved that the K-means SDP relaxation approach can achieve
perfect cluster recovery with high probability when the data A is sampled from the
stochastic unit-ball model in R¢, provided that the cluster centriods {a(l), e ,a(k)}
satisfy the condition that min{|ja(® —a®| |1 < a < § < k} > 2v2(1 4 1/V/4d).
However, the computational efficiency of SDP based relaxations highly depends on
the efficiency of the available SDP solvers. While recent progress [65,77,86] in solving

large-scale SDPs allows one to solve the SDP relaxation problem for clustering 2-3
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thousand points, it is however prohibitively expensive to solve the problem when n
goes beyond 3000.

The work in [16] has implicitly demonstrated that it is generally much cheaper
to solve the model (3.1) instead of the SDP relaxation model. However, based on
our numerical experiments, the algorithms ADMM and AMA proposed in [16] for
solving (3.1) only work efficiently when the number of data points is not too large
(several thousands depending on the feature dimension of the data). Also, it is not
easy for the proposed algorithms in [16] to achieve relatively high accuracy. This
also explains why we need to design a new algorithm in this paper to overcome the

aforementioned difficulties.

3.2 Preliminaries and notation

In this section, we first introduce some preliminaries and notation which will be
used later in this chapter. For theoretical analysis, we adopt some definitions and

notation from [54,89).

Definition 10. For a given finite set A = {a;, as,...,a,} C R? and its partitioning
V ={W,Va,...,Vk}, where each V; is a subset of A.

(a) We say that a map 1 on A perfectly recovers V when 1 (a;) = 1(a;) is equivalent
to a; and a; belonging to the same cluster. In other words, there exist distinct vectors
Vi,Va,..., Vg such that ¥ (a;) = v, holds whenever a; € V.

(b) We call a partitioning W = {W1, W, ..., W} of A a coarsening of V if each
partition Wy is obtained by taking the union of a number of partitions in V. Further-
more, W is called the trivial coarsening of V if W = {A}. Otherwise, it is called a

non-trivial coarsening.

Definition 11. For any finite set S C R?, its diameter with respect to the g-norm
for q > 1 is defined as

Dy(5) := max{|x —ylly | x,y € 5}.
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Moreover, we define its separation and centroid, respectively, as

_ ZXESX
c(S) = T

dy(5) == min[lx —yll, | x,y € 5, x # y},

For convenience, for any family of mutually disjoint finite sets F = {F; C R4}, we
define C(F) = {c(F})}.

Later in this chapter, we will establish the theoretical recovery guarantee based
on the above definitions. Next, we introduce some preliminaries and notations for
the design and analysis of the numerical optimization algorithms.

For a given simple undirected graph G = ({1,...,n}, £) with n vertices and edges
defined in &, we define the symmetric adjacency matrix G € R"*" with entries

1 if (i,5) €€,
0 otherwise.
Based on an enumeration of the index pairs in £ (say in the lexicographic order),

which we denote by [(, j) for the pair (i, 7), we define the node-arc incidence matrix
J € R<IEl as
1 if k=1,
T =8 1 k=, (3.5)

0 otherwise,

where jkl(i’j) is the k-th entry of the I(i, j)-th column of Jj.
Proposition 7. With matrices G, J defined above, we have the following results
JJ' = diag(Ge) — G =: L, (3.6)

where e € R" is the column vector of all ones, and Lg is the Laplacian matriz

associated with the adjacency matriz G.

Now, for given variables X € R¥>" Z € R¥I€l and the graph G, we define the

linear map B : R — RV and its adjoint B* : RIEI - RIX7 respectively, by
B(X) = [(xi —xj)lipes = XJT, (3.7)

B(z) = zJ". (3.8)
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Thus, by Proposition 7, we have
B*(B(X))=XJJ" = XLe. (3.9)

For a given proper and closed convex function p : X — (—o0, +00], its proximal

mapping Prox;,(x) for p at any x € X with ¢t > 0 is defined by
1
Proxy,(x) = arg mi/{/l{tp(u) + §||u —x|]*}. (3.10)
ue

In this chapter, we will often make use of the following Moreau identity (See [7,
Theorem 14.3(ii)])
Proxi,(x) + tProxp. ;(x/t) = x,

where ¢ > 0 and p* is the conjugate function of p. In particular, if p(z) = p||z||s,

it’s not difficult to show that, p*(y) is the indicator function defined as follows:

oy ) 0 il < p,
+oo if [lyll2 > p.

It is well known that proximal mappings are important for designing optimization
algorithms and they have been well studied. The proximal mappings for many
commonly used functions have closed form formulas. Here, we summarize those that
are related to this chapter in Table 2.1. In the table, dc(-) denotes the indicator

function of a given closed convex set C', which is

0 ifxeC,
+oo ifx g C.

(50(:13) =

I1¢ denotes the projection onto C'.

3.3 Theoretical recovery guarantee of convex clus-
tering models

The empirical success of the convex clustering model (3.2) has strongly motivated

researchers to investigate its theoretical clustering recovery guarantee. The perfect
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Table 3.1: Proximal maps for selected functions

p(+) Proxgp (x) Comment

Il 1—-Lt| x; Elementwise soft-thresholding
‘xl| +

Il 112 [1 L Lr x Blockwise soft-thresholding

BREYE

|- llo x—Is(x) S is the unit ¢;-ball
dc(-)  He(x) Projection

recovery results for convex clustering model (3.2), where all pairwise differences
are considered with equal weights, have been proved by [89] for the 2-clusters case
and later by [54] for the k-clusters case. [67] analyzed the statistical properties of
model (3.2) and [58] analyzed the statistical properties of model (3.2) with the ¢;-
regularization term. In practice, many researchers (e.g. [16,67]) have suggested the
use of the model (3.1), which is not only computationally more attractive but also
lead to more robust clustering results. However, so far no theoretical guarantee has
been provided for the convex clustering model with general weights. In this section,
we first review the nice theoretical results proved by [89] and [54] for (3.2), and then
we will present our new theoretical guarantee for the more challenging case of the

general weighted convex clustering model (3.1).

3.3.1 Theoretical recovery guarantee of convex clustering

model (3.2)

The first theoretical result by [89] guarantees the perfect recovery of (3.2) for
the two-clusters case when the data in each cluster are contained in a cube and the
two cubes are sufficiently well separated.

More recently, much stronger theoretical results have been established by [54]
wherein the authors proved the theoretical recovery guarantee of the fully uniformly

weighted model (3.2) for the general case of k-clusters.
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Theorem 3.1 ( [54]). Consider a finite set A= {a; € R |i=1,2,...,n} of vectors
and its partitioning V = {V1,Va, ..., Vk}. For the SON model in (3.2), denote its
optimal solution by {X;} and define the map ¢(a;) =X;, i =1,...,n.

(i) If v is chosen such that

d(C(V))

max D>(V) 7
2n\/F ’

vey |V|

<7<
then the map ¢ perfectly recovers V.

(ii) If v satisfies the following inequalities,
Dy(V) [c(A) — e(V)]]2

max <~ < max

vev |V| vev Al - V]

then the map ¢ perfectly recovers a non-trivial coarsening of V.

It was shown in [54] that one can treat the theoretical results in [89] as a special
case of Theorem 3.1.

We shall see in the next subsection that we can improve the upper bound in part
(i) of Theorem 3.1 to v < L) 45 a special case of our new theoretical results.

2n

3.3.2 Theoretical recovery guarantee of the weighted convex

clustering model (3.1)

Although the convex clustering model (3.2) with the fully uniformly weighted
regularization has the nice theoretical recovery guarantee, it is usually computation-
ally too expensive to solve since the number of terms in the regularization grows
quadratically with the number of data points n. In order to reduce the compu-
tational burden, in practice many researchers have proposed to use the partially
weighted convex clustering model (3.1) described in the Introduction. Moreover,
they have observed better empirical performance of (3.1) with well chosen weights,
comparing to the original model (3.2) [16, 31, 41]. However, to the best of our
knowledge, so far no theoretical recovery results have been established for the gen-

eral weighted convex clustering model (3.1). Here we will prove that under rather
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mild conditions, perfect recovery can be guarantee for the weighted model (3.1). In
additional, our theoretical results subsume the known results for the fully uniformly
weighted model (3.2) as special cases.

Next, we will establish the main theoretical results for (3.1). Our results and part
of the proof have been inspired by the ideas used in [54]. For convenience, we define
the index sets

I,={i|aeV,}, fora=12... K.

Let ng = |14/,

a(a):niaZal-, w(a’ﬁ):ZZwij, Va,=1,...,K

i€ly i€l ]'615

wz(ﬁ)zzwlja Vizly"'anaﬂzlﬁ"WK'

jelﬁ

)

Here we will interpret w,”” as the coupling between point a; and the 3-th cluster,

and w(®? as the coupling between the a-th and j-th clusters. We also define for
p=1,

d 1
hv) = vl = (D 0l)" v = (o0, u) € R,
i=1
and note that the subdifferential of h(v) is given by

{y e R lylly <1, ¢y, v) = lIvlp} ifv#0,

{y e | llylly < 1} if v.=0,

Oh(v) =

where ¢ > 1 is the conjugate index of p such that % + % = 1. Observe that for any
y € 0h(v), we have |ly|, < 1.

Theorem 3.2. Consider an input data A = [a;,a,,...,a,] € R*™ and its parti-
tioning V = {V1,Va, ..., Vi }. Assume that all the centroids {a¥ a® ... a} are
distinct. Let ¢ > 1 be the conjugate index of p such that % —I—% = 1. Denote the
optimal solution of (3.1) by {x}} and define the map ¢(a;) = x; fori=1,... n.
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1. Let
K

ME;?‘) = Z )wl(ﬁ) _wj(ﬂ))’ ijel, a=12 ... K.
B=1,p#c

Assume that w;; > 0 and nyw;; > l%(‘?) foralli,jel,, a=1,...,K. Let

L o llai—a;llq
Tmin = MaXj<o<ix MaX; jeg, () (>
B (3.11)

Ja(®)—a®)]|,

= MIN<q<f<K { T T :
Ymax Sa<f< e 1<I<K.l#a “’(a’”"‘@ Yi<i<rizs WP

If Yin < Ymax and 7y is chosen such that v € [Ymin, Ymax), then the map ¢

perfectly recovers V.

2. If v is chosen such that

< < Nallc — a(a)Hq
Ymin > Y é%ag}% Zl<ﬁ<K st w(@B)’

_ 1y o .
wherec = = %" | a;, then the map ¢ perfectly recovers a non-trivial coarsening

of V.

Proof. First we introduce the following centroid optimization problem corresponding

to (3.1):

K K K
1
min {5 ;nanx(a) —a@|? 4+ 7az;B_z;rlw(oz,ﬁ)HX(oz) _ X(B)Hp | xW L xE) ¢ %d}. (3.12)

Denote the optimal solution of (3.12) by {x(® | a = 1,2,..., K}. The proof will

rely on the relationships between (3.1) and (3.12).

(1a) First we show that, if 7 < Ymax, then x(® £ % for all o # 8. From the

optimality condition of (3.12), we have that

K
na(x@ —al®) 4y Y w@Iz*) =0, Va=1,. K, (3.13)
=1,6#a
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where z(®9) € Oh(x(® —x#), o # B. Now from (3.13), we get for a # f3,

n

0 % =a@ a2 SE bz ¢ S g0

=[x —xP, > Ja® —a@||, - L35 L, w2, —

0l

ng

K _
Zl:l,l;ﬁﬁ w0 HZ(B’Z) g

« K 6% K
> [[al® —a@||, — 7(% D i iza w(®! + # Doim 18 w(ﬁ’l))

> [a® —a®|, (1— 1 ) > 0.

“Ymax

Thus x(@ #£ % for all o # B.

(1b) Suppose that ¥ < Ymax. Then from (a), X £ % for all a # B. Next we

prove that, if v > v, then
x'=x% VYiel,, a=1,....K

is the unique optimal solution of (3.1).

To do so, we start with the optimality condition for (3.1), which is given as follows:

X; —a; + 7 Z U}Z‘jZij:O, i:1,2,...,n, (314)
J=1j#1
where z;; € Oh(x; — x;). Consider
z(@h) ificl,jels1<a,B<K, a#p,
n;uij %(ai —a;) — (pga) — p§a))} ifi,jel,i#j,a=1,....K,
where
- 1
p® = 3 {wﬁ” _ —w<aﬁ>} ey
B=1#0 fa

We can readily prove that

Ip — !, < ul

and

@ K 1 N .
>op = ( 3 {w](.ﬁ) -~ ﬁ)} 2 ,m)

Jj€ln Jj€la B=1,B#a

- i (Z {wj(ﬁ) - niw(“’ﬁ)D z*? = 0.

5217/8750‘ jela
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For convenience, we set zj; = 0 for ¢ = 1,2,...,n. Now, we show that z};, €
Oh(x} — x3).
If i € I, and j € I3 for a # 3, then we have that

z;; = 2% € Oh(x — W) = Oh(x} — x).

It remains to show that ||zj;||, < 1 for all i,j € [, = 1,2,..., K. By direct

calculations, we have that for v > v,

. Lt @ () 1 L (@
lille = | —a) = 0 e < e al
1 (@) L
< aWiy — M = 17
= nawij (TL w] ﬂz] ) + nawm :u'Lj

which implies that zj; € Oh(x] — x}) = Oh(0) for all i, j € I,.
Finally, we show that the optimality condition (3.14) holds for (x7,...,x%). We

n

have that for i € I,,

n K
xf—a; +7 Z wijz;ﬁj = x(@ _ a; +7v Z Z U)z'jz;kj

J=Ly#i B=1 jelg
B=1,#a jelg J€la
= 5 Z wﬂ @9 4 a® —a 493wy
B=1,8#a J€la
_ (@) | () _ e [_ —a@ (>]
" +a® —a o Z A
J€la
= 0.
Thus (x%,...,x%) is the optimal solution of (3.1). Since ¢(a;) = x} = x(@ for all
1 €1, a=1,..., K, we see that the mapping ¢ perfectly recovers the clusters in
V.
(2) Suppose on the contrary that x() = % = ... = x5 In this case, the

second term of (3.1) disappears, so X is the solution of miny £ > | [|x—a;>. Which

means the optimal solution for (3.12) degenerates to

:—E a; = C.
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Thus, the optimality condition (3.13) gives

K
nallc —a“|, <~ Z w? Yae{l,2,. . K}
B=1#a
This implies that

S naHC_a(a)Hq
Y > max —p ,
lsask Zﬁ:l,ﬁ;ﬁa w(eH)

which is a contradiction. Thus {x™), ..., x")} must have a distinct pair. O

The above theorem has established the theoretical recovery guarantee for the
general weighted convex clustering model (3.1). Later, we will demonstrate that the
sufficient conditions that v must satisfy is practically meaningful in the numerical
experiments section. Now, we explain the derived sufficient conditions intuitively.

For unsupervised learning, intuitively, we can get meaningful clustering results
when the given dataset has the properties that the elements within the same cluster
are “tight” (in other words, the diameter should be small) and the centroids for
different clusters are well separated. Indeed, the conditions we have established
are consistent with the intuition just discussed. First, the left-hand side in (3.11)
characterizes the maximum weighted distance between the elements in the same
cluster. On the other hand, the right-hand side in (3.11) characterizes the minimum
weighted distance between different centroids. Thus based on our discussion, we can
expect perfect recovery to be practically possible for the weighted convex clustering

model if the right-hand side is larger than the left-hand side in (3.11).

Remark 3.1. (a) Note that the assumption that w;; > 0 is only needed for all the
pairs (i,j) belonging to the same cluster 1, for all 1 < o < K. Thus the weights
w;; can be chosen to be zero if i and j belong to different clusters. As a result, the
number of pairwise differences in the regularization term can be much fewer than the
total of n(n — 1)/2 terms. This implies that we can gain substantial computational

efficiency when dealing with the sparse weighted reqularization term.

(b) The quantity [LE?) = Zg:w;éa |ww) - w](ﬂ)|, for 1,5 € I,, measures the total

)

difference in the couplings between a; and a; with the 5-th cluster for all B # «.
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Next, we show that the results in Theorem 3.1 are special cases of our results.

Therefore, we also include the result in [89] as a special case.

Corollary 3.1. In (3.1), if we take w;; = 1 for all 1 <i < j < n, then the results

in Theorem 3.2 reduce to the following.

(1) If

Dy(Va) [a®) —al?|
max 1 <7< min { ! }’
1<a<k  |V,| 1<a,f<K,a#8 L 2n — ny — ng

then the map ¢ perfectly recovers V.

(i) 1f
e DaVa) L eld) = V),

1<a<K |V, vey  |A| - |V|

then the map ¢ perfectly recovers a non-trivial coarsening of V.

Proof. The results for this corollary follow directly from Theorem 3.2 by noting that

D,(V,) = max; jer, ||a; — aj||4/na, and using the following facts for the special case:

« K B B K .o
(1) i) = ZBZLB#&WE f W] = SN 1 gzalng —mgl =0, for all i,j € I,
1<a< K.

K o K
(2) %25:1,[3#@ whf) = 1 D1 pta Naltg =N — Ny, forall 1 <a < K.

_na

We omit the details here. O]

If we compare the upper bound we obtained for + in part (i) of Corollary 3.1 to
that obtained in Theorem 3.1 of [54] for the case p = 2 (and hence ¢ = 2), we can

see that our upper bound is more relax in the sense that

() _ (8 () _ 5(8)
i {||a a H2} S nin {Ha a ||2} _ d(C(V)) > d2(C(V))‘
1<a,8<K a8 L 2n — ng — ng 1<a,B<K,a#8 2n 2n oV K

Remark 3.2. (i) More recently, Xu et al. [75] investigated the theoretical gquar-
antee for perfect recovery for the following weighted convex clustering model

based on {1 norm and guassian kernel weights:

1 —blasns
min §;||xi—ai||2+vze dlai=aill||x; — x|, (3.15)

XeRdxn
1<j
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where ¢ > 0 is a given constant. It’s not difficult to realize that, model (3.15)
is component-wise separable. This makes the model difficult to do the cluster-
ing task well in some scenario since each component may result in different
membership. Of course, on the other hand, since the model is component-wise

seperable, solving model (3.15) is relatively easier.

(7i) Recently, Jiang et al. [33] analyzed the recovery property of (3.2) for the mizture
gaussian model. They provide the theoretical gquarantee for convex clustering
model on the mizture gaussian model when the number of data points increases

to infinity.

3.4 A semismooth Newton-CG augmented Lagrangian

method

In this section, we introduce a fast convergent ALM for solving the weighted
convex clustering model (3.1). For simplicity, we will first focus on designing a
highly efficient algorithm to solve (3.1) with p = 2. The other cases can be done in
a similar way. In particular, the sam