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A brief review on nonsmooth Newton methods

1 Let X ,Y be two finite-dimensional real Euclidean spaces
2 F : X → Y a locally Lipschitz continuous function.

Since F is almost everywhere differentiable [Rademacher, 1912], we
can define

∂BF (x) :=
{

limF ′(xk) : xk → x, xk ∈ DF

}
.

Here DF is the set of points where F is differentiable. Hence,
Clarke’s generalized Jacobian of F at x is given by

∂F (x) = conv ∂BF (x).
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Semismoothness

Definition 1

Let K : X ⇒ L(X ,Y) be a nonempty, compact valued and
upper-semicontinous multifunction. We say that F is semismooth
x ∈ X with respect to the multifunction K if (i) F is directionally
differentiable at x; and (ii) for any ∆x ∈ X and V ∈ K(x+ ∆x)
with ∆x→ 0,

F (x+ ∆x)− F (x)− V (∆x) = o(‖∆x‖). (1)

Furthermore, if (1) is replaced by

F (x+ ∆x)− F (x)− V (∆x) = O(‖∆x‖1+γ), (2)

where γ > 0 is a constant, then F is said to be γ-order (strongly
if γ = 1) semismooth at x with respect to K. We say that F is a
semismooth function with respect to K if it is semismooth
everywhere in X with respect to K.
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Nonsmooth Newton’s method

Assume that F (x̄) = 0.

Given x0 ∈ X . For k = 0, 1, . . .

Main Step Choose an arbitrary Vk ∈ K(xk). Solve

F (xk) + Vk(x
k+1 − xk) = 0

Rates of Convergence: Assume that K(x̄) is nonsingular and that
x0 is sufficiently close to x̄. If F is semismooth at x̄, then

‖xk+1 − x̄‖ = ‖V −1k [F (xk)− F (x̄)− Vk(xk − x̄)]‖ = o(‖xk − x̄‖).

It takes o(‖xk − x̄‖1+γ) if F is γ-order semismooth at x̄ [the di-
rectional differentiability of F is not needed in the above analysis]
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Nonsmooth Equations

1 The nonsmooth Newton approach is popular in the comple-
mentarity and variational inequalities (nonsmooth equations)
community.

2 Kojima and Shindo (1986) investigated a piecewise smooth
Newton’s method.

3 Kummer (1988, 1992) gave a sufficient condition (1) to gener-
alize Kojima and Shindo’s work.

4 L. Qi and J. Sun (1993) proved what we know now.

5 Since then, many developments ...

Why nonsmooth Newton methods important in solving big data
optimization?
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The nearest correlation matrix problem

Consider the nearest correlation matrix (NCM) problem:

min

{
1

2
‖X −G‖2F | X � 0, Xii = 1, i = 1, . . . , n

}
.

The dual of the above problem can be written as

min 1
2‖Ξ‖

2 − 〈b, y〉 − 1
2‖G‖

2

s.t. S − Ξ +A∗y = −G, S � 0

or via eliminating Ξ and S � 0, the following

min

{
ϕ(y) :=

1

2
‖Π�0(A∗y +G)‖2 − 〈b, y〉 − 1

2
‖G‖2

}
.
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Numerical results for the NCM

Test the second order nonsmooth Newton-CG method [H.-D. Qi &
Sun 06] ([X,y] = CorrelationMatrix(G,b,tau,tol) in Matlab) and two
popular first order methods (FOMs) [APG of Nesterov; ADMM of
Glowinski (steplength 1.618)] all to the dual forms for the NCM with
real financial data:
G: Cor3120, n = 3, 120, obtained from [N. J. Higham & N. Strabić,
SIMAX, 2016] [Optimal sol. rank = 3, 025]

n = 3, 120 SSNCG ADMM APG

Rel. KKT Res. 2.7-8 2.9-7 9.2-7

time (s) 26.8 246.4 459.1

iters 4 58 111

avg-time/iter 6.7 4.3 4.1

Newton’s method only takes at most 40% time more than ADMM
& APG per iteration. How is it possible?
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Lasso-type problems

We shall use simple vector cases to explain why:

(LASSO)

min
{1

2
‖Ax− b‖2 + λ‖x‖1 | x ∈ Rn

}
where λ > 0, A ∈ Rm×n, and b ∈ Rm.

(Fused LASSO)

min
{1

2
‖Ax− b‖2 + λ‖x‖1 + λ2‖Bx‖1

}

B =


1 −1

1 −1
. . .

. . .

1 −1
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Lasso-type problems (continued)

(Clustered LASSO)

min
{1

2
‖Ax− b‖2 + λ‖x‖1 + λ2

n∑
i=1

n∑
j=i+1

|xi − xj |
}

(OSCAR)

min
{1

2
‖Ax− b‖2 + λ‖x‖1 + λ2

n∑
i=1

n∑
j=i+1

|xi + xj |+ |xi − xj |
}

We are interested in n (number of features) large and/or m (number
of samples) large
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Example: Sparse regression

Sparse regression:

Am

n

x
≈ b

# of features n� # of samples m

searching for a sparse solution
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Example: Support vector machine

Class +1

Class -1

Normal Vector

Separating Hyperplane

Residuals, r
i

Support Vectors

11



Newton’s method

Figure: Sir Isaac Newton (Niu Dun) (4 January 1643 - 31 March 1727)

12



Which Newton’s method?

(a) Snail (Niu) (b) Longhorn beetle (Niu)

(c) Charging Bull (Niu) (d) Yak (Niu)
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Numerical results for fused LASSO
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Numerical results for fused LASSO
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Interior point methods

For the illustrative purpose, consider a simpler example

min

{
1

2
‖Ax− b‖2 | x ≥ 0

}
and its dual

max

{
−1

2
‖ξ‖2 + 〈b, ξ〉 | AT ξ ≤ 0

}
Interior-point based solver I: an n× n linear system

(D +ATA)x = rhs1

D: A Diagonal matrix with positive diagonal elements

Using PCG solver (e.g., matrix free interior point methods [K. Foun-
toulakis, J. Gondzio and P. Zhlobich, 2014])

Costly when n is large
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Interior point methods

Interior-point based solver II: an m×m linear system

(Im +AD−1AT )ξ = rhs2

m

n

AAT =
O(m2n ∗ sparsity)
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Our nonsmooth Newton’s method

Our nonsmooth Newton’s method: an m×m linear system

(Im +APAT )ξ = rhs2

P : A Diagonal matrix with 0 or 1 diagonal elements

r: number of nonzero diagonal elements of P (second order sparsity)

(AP )(AP )T =
m

r

= O(m2r ∗ sparsity)

Sherman-Morrison-Woodbury formula:

=(AP )T (AP ) = O(r2m ∗ sparsity)
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Convex composite programming

(P) min {f(x) := h(Ax) + p(x)} ,

Real finite dimensional Hilbert spaces X , Y
Closed proper convex function p : X → (−∞,+∞]

Convex differentiable function h : Y → <
Linear map A : X → Y

Dual problem

(D) min{h∗(ξ) + p∗(u) | A∗ξ + u = 0}

p∗ and h∗: the Fenchel conjugate functions of p and h.

p∗(z) = sup{〈z, x〉 − p(x)}.
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Examples in machine learning

Examples of smooth loss function h:

Linear regression h(y) = ‖y − b‖2
Logistic regression h(y) = log(1 + exp(−yb))
many more ...

Examples of regularizer p:

LASSO p(x) = ‖x‖1
Fused LASSO p(x) = ‖x‖1 +

∑n−1
i=1 |xi − xi+1|

Ridge p(x) = ‖x‖22
Elastic net p(x) = ‖x‖1 + ‖x‖22
Group LASSO
Fused Group LASSO
Clustered LASSO, OSCAR
Ordered LASSO, etc
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Assumptions on the loss function

Assumption 1 (Assumptions on h)

1. h : Y → < has a 1/αh-Lipschitz continuous gradient:

‖∇h(y1)−∇h(y2)‖ ≤ (1/αh)‖y1 − y2‖, ∀y1, y2 ∈ Y

2. h is essentially locally strongly convex [Goebel and Rockafellar,
2008]: for any compact and convex set K ⊂ dom ∂h, ∃βK > 0
s.t.

(1−λ)h(y1)+λh(y2) ≥ h((1−λ)y1+λy2)+
1

2
βKλ(1−λ)‖y1−y2‖2

for all λ ∈ [0, 1], y1, y2 ∈ K
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Properties on h∗

Under the assumptions on h, we know

a. h∗: strongly convex with constant αh

b. h∗: essentially smooth1

c. ∇h∗: locally Lipschitz continuous on Dh∗ := int (domh∗)

d. ∂h∗(y) = ∅ when y 6∈ Dh∗ .

Only need to focus on Dh∗

1h∗ is differentiable on int (domh∗) 6= ∅ and limi→∞ ‖∇h∗(yi)‖ = +∞
whenever {yi} ⊂ int (domh∗) → y ∈ bdry(int (domh∗)).
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An augmented Lagrangian method for (D)

The Lagrangian function for (D):

l(ξ, u;x) = h∗(ξ)+p∗(u)−〈x, A∗ξ+u〉, ∀ (ξ, u, x) ∈ Y×X ×X .

Given σ > 0, the augmented Lagrangian function for (D):

Lσ(ξ, u;x) = l(ξ, u;x) +
σ

2
‖A∗ξ + u‖2, ∀ (ξ, u, x) ∈ Y ×X ×X .

The proximal mapping Proxp(x):

Proxp(x) = arg min
u∈X

{
p(u) +

1

2
‖u− x‖2

}
.

Assumption: Proxσp(x) is easy to compute given any x

Advantage of using (D): h∗ is strongly convex; minu{Lσ(ξ, u;x)}
is easy.

23



An augmented Lagrangian method of multipliers for (D)

An inexact augmented Lagrangian method of multipliers.

Given
∑
εk < +∞, σ0 > 0, choose (ξ0, u0, x0) ∈ int(domh∗) ×

dom p∗ ×X . For k = 0, 1, . . ., iterate

Step 1. Compute

(ξk+1, uk+1) ≈ arg min{Ψk(ξ, u) := Lσk(ξ, u;xk)}.

To be solved via a nonsmooth Newton method.

Step 2. Compute xk+1 = xk−σk(A∗ξk+1+uk+1) and update
σk+1 ↑ σ∞ ≤ ∞ .
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Global convergence

The stopping criterion for inner subproblem

(A) Ψk(ξ
k+1, uk+1)− inf Ψk ≤ ε2k/2σk,

∑
εk <∞.

Theorem 2 (Global convergence)

Suppose that the solution set to (P) is nonempty. Then, {xk} is
bounded and converges to an optimal solution x∗ of (P). In
addition, {(ξk, uk)} is also bounded and converges to the unique
optimal solution (ξ∗, u∗) ∈ int(domh∗)× dom p∗ of (D).
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Fast linear local convergence

Assumption 2 (Error bound)

For a maximal monotone operator T (·) with T −1(0) 6= ∅, ∃ ε > 0
and a > 0 s.t.

∀η ∈ B(0, ε) and ∀ξ ∈ T −1(η), dist(ξ, T −1(0)) ≤ a‖η‖,

where B(0, ε) = {y ∈ Y | ‖y‖ ≤ ε}. The constant a is called the
error bound modulus associated with T .

1 T is a polyhedral multifunction [Robinson, 1981].
2 Tf (∂f) of LASSO, fused LASSO and elastic net regularized LS

problems (piecewise linear-quadratic programming problems [J.
Sun, PhD thesis, 1986] +1 ⇒ error bound).

3 Tf of `1 or elastic net regularized logistic regression [Luo and
Tseng, 1992; Tseng and Yun, 2009].
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Fast linear local convergence

Stopping criterion for the local convergence analysis

(B) Ψk(ξ
k+1, uk+1)− inf Ψk

≤min{1, (δ2k/2σk)}‖xk+1 − xk‖2,
∑

δk <∞.

Theorem 3

Assume that the solution set Ω to (P) is nonempty. Suppose that
Assumption 2 holds for Tf with modulus af . Then, {xk} is
convergent and, for all k sufficiently large,

dist(xk+1,Ω) ≤ θkdist(xk,Ω),

where θk ≈
(
af (a2f + σ2k)

−1/2 + 2δk
)
→ θ∞ = af/

√
a2f + σ2∞ < 1

as k →∞. Moreover, the conclusions of Theorem 2 about
{(ξk, yk)} are valid.

ALM is an approximate Newton’s method!!! (arbitrary linear con-
vergence rate).
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Nonsmooth Newton method for inner problems

Fix σ > 0 and x̃, denote

ψ(ξ) := inf
u
Lσ(ξ, u, x̃)

= h∗(ξ) + p∗(Proxp∗/σ(x̃/σ −A∗ξ)) +
1

2σ
‖Proxσp(x̃− σA∗ξ)‖2.

ψ(·): strongly convex and continuously differentiable on Dh∗ with

∇ψ(ξ) = ∇h∗(ξ)−AProxσp(x̃− σA∗ξ), ∀ξ ∈ Dh∗

Solving nonsmooth equation:

∇ψ(ξ) = 0, ξ ∈ Dh∗ .
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Nonsmooth Newton’s method for inner problems

Denote for ξ ∈ Dh∗ :

∂̂2ψ(ξ) := ∂2h∗(ξ) + σA∂Proxσp(x̃− σA∗ξ)A∗

∂2h∗(ξ): Clarke subdifferential of ∇h∗ at ξ

∂Proxσp(x̃−σA∗ξ) : Clarke subdifferential of Proxσp(·) at x̃−σA∗ξ
Lipschitz continuous mapping: ∇h∗, Proxσp(·)
From [Hiriart-Urruty et al., 1984],

∂̂2ψ(ξ) (d) = ∂2ψ(ξ) (d), ∀ d ∈ Y

∂2ψ(ξ): the generalized Hessian of ψ at ξ. Define

V 0 := H0 + σAU0A∗

with H0 ∈ ∂2h∗(ξ) and U0 ∈ ∂Proxσp(x̃− σA∗ξ)

V 0 � 0 and V 0 ∈ ∂̂2ψ(ξ)
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Nonsmooth Newton’s method for inner problem

SSN(ξ0, u0, x̃, σ). Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and
δ ∈ (0, 1). Choose ξ0 ∈ Dh∗ . Iterate

Step 1. Find an approximate solution dj ∈ Y to

Vj(d) = −∇ψ(ξj)

with Vj ∈ ∂̂2ψ(ξj) s.t.

‖Vj(dj) +∇ψ(ξj)‖ ≤ min(η̄, ‖∇ψ(ξj)‖1+τ ).

Step 2. (Line search) Set αj = δmj , where mj is the first
nonnegative integer m for which

ξj + δmdj ∈ Dh∗

ψ(ξj + δmdj) ≤ ψ(ξj) + µδm〈∇ψ(ξj), dj〉.

Step 3. Set ξj+1 = ξj + αj d
j .
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Nonsmooth Newton’s method for inner problems

Theorem 4

Assume that ∇h∗(·) and Proxσp(·) are strongly semismooth on
Dh∗ and X . Then {ξj} converges to the unique optimal solution
ξ̄ ∈ Dh∗ and

‖ξj+1 − ξ̄‖ = O(‖ξj − ξ̄‖1+τ ).

Implementable stopping criteria: the stopping criteria (A) and (B)
can be achieved via:

(A′) ‖∇ψk(ξk+1)‖ ≤
√
αh
σk
εk

(B′) ‖∇ψk(ξk+1)‖ ≤
√
αh
σk
δk min{1, σk‖A∗ξk+1 + uk+1‖}

(A′)⇒ (A) & (B′)⇒ (B)
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Summary: outer iterations and inner iterations

So far we have

1 Outer iterations (ALM): asymptotically superlinear (arbitrary
rate of linear convergence)

2 Inner iterations (nonsmooth Newton): superlinear + cheap

Essentially, we have a ”fast + fast” algorithm.
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Newton system for LASSO

LASSO: min
{
1
2‖Ax− b‖

2 + λ1‖x‖1
}

h(y) = 1
2‖y − b‖

2, p(x) = λ1‖x‖1

Proxσp(x): easy to compute = sgn(x) ◦max{|x| − σλ1, 0}
Newton System:

(I + σAPA∗)ξ = rhs

P ∈ ∂Proxσp(x
k − σA∗ξ): diagonal matrix with 0, 1 entries. Most

of these entries are 0 if the optimal solution xopt is sparse.

Message: Nonsmooth Newton can fully exploit the second
order sparsity (SOS) of solutions to solve the Newton system
very efficiently!

33



Newton system for fused LASSO

Fused LASSO: min
{
1
2‖Ax− b‖

2 + λ1‖x‖1 + λ2‖Bx‖1
}

B =


1 −1

1 −1
. . .

. . .

1 −1


h(y) = 1

2‖y − b‖
2, p(x) = λ1‖x‖1 + λ2‖Bx‖1

Let xλ2(v) := arg minx
1
2‖x− v‖

2 + λ2‖Bx‖1.

Proximal mapping of p [Friedman et al., 2007]:

Proxp(v) = sign(xλ2(v)) ◦max(abs(xλ2(v))− λ1, 0).

Efficient algorithms to obtain xλ2(v): taut-string [Davies and Ko-
vac, 2001], direct algorithm [Condat, 2013], dynamic programming
[Johnson, 2013]
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Newton system for fused LASSO

Dual approach to obtain xλ2(v): denote

z(v) := arg min
z

{
1

2
‖B∗z‖2 − 〈Bv, z〉 | ‖z‖∞ ≤ λ2

}
⇒ x(v) = v − B∗z(v). Let C = {z | ‖z‖∞ ≤ λ2}, from optimality
condition

z = ΠC(z − (BB∗z − Bv))

and the implicit function theorem⇒ Newton system for fused Lasso:

(I + σAP̂A∗)ξ = rhs, [P is Han-Sun Jacobian (JOTA, 1997)]

P̂ = P (I − B∗(I − Σ + ΣBB∗)−1ΣB) (positive semidefinite)

Σ ∈ ∂ΠC(z − (BB∗z − Bv))

P , Σ: diagonal matrices with 0, 1 entries. Most diagonal entries of
P are 0 if xopt is sparse. The red part is diagonal + low rank
Again, can use sparsity and the structure of the red part to solve
the system efficiently
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Numerical resulsts for LASSO

KKT residual:

ηKKT :=
‖x̃− Proxp[x̃− (Ax̃− b)]‖

1 + ‖x̃‖+ ‖Ax̃− b‖
≤ 10−6.

Compare SSNAL with state-of-the-art solvers: mfIPM, ... [Foun-
toulakis et al., 2014] and APG [Liu et al. 2011]

(A, b) taken from 11 Sparco collections (all very easy problems) [Van
Den Berg et al, 2009]

λ = λc‖A∗b‖∞ with λc = 10−3 and 10−4

Add 60dB noise to b in Matlab: b = awgn(b,60,’measured’)

max. iteration number: 20,000 for APG
max. computation time: 7 hours
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Numerical results for LASSO arising from compressed sensing

(a) our Ssnal
(b) mfIPM
(c) APG: Nesterov’s accelerated proximal gradient method

λc = 10−3
ηKKT time (hh:mm:ss)

probname m;n a | b | c a | b | c
srcsep1 29166;57344 1.6-7 | 7.3-7 | 8.7-7 5:44 | 42:34 | 1:56
soccer1 3200;4096 1.8-7 | 6.3-7 | 8.4-7 01 | 03 | 2:35

blurrycam 65536;65536 1.9-7 | 6.5-7 | 4.1-7 03 | 09 | 02
blurspike 16384;16384 3.1-7 | 9.5-7 | 9.9-7 03 | 05 | 03

λc = 10−4

srcsep1 29166;57344 9.8-7 | 9.5-7 | 9.9-7 9:28 | 3:31:08 | 2:50
soccer1 3200;4096 8.7-7 | 4.3-7 | 3.3-6 01 | 02 | 3:07

blurrycam 65536;65536 1.0-7 | 9.7-7 | 9.7-7 05 | 1:35 | 03
blurspike 16384;16384 3.5-7 | 7.4-7 | 9.8-7 10 | 08 | 05
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Numerical results for LASSO arising from sparse regression

11 large scale instances (A, b) from LIBSVM [Chang and Lin, 2011]

A: data normalized (with at most unit norm columns)

λc = 10−3 ηKKT time (hh:mm:ss)

probname m;n a | b | c a | b | c
E2006.train 16087; 150360 1.6-7 | 4.1-7 | 9.1-7 01 | 14 | 02

log1p.E2006.train 16087; 4272227 2.6-7 | 4.9-7 | 1.7-4 35 | 59:55 | 2:17:57
E2006.test 3308; 150358 1.6-7 | 1.3-7 | 3.9-7 01 | 08 | 01

log1p.E2006.test 3308; 4272226 1.4-7 | 9.2-8 | 1.6-2 27 | 30:45 | 1:29:25
pyrim5 74; 201376 2.5-7 | 4.2-7 | 3.6-3 05 | 9:03 | 8:25

triazines4 186; 635376 8.5-7 | 7.7-1 | 1.8-3 29 | 49:27 | 55:31
abalone7 4177; 6435 8.4-7 | 1.6-7 | 1.3-3 02 | 2:03 | 10:05
bodyfat7 252; 116280 1.2-8 | 5.2-7 | 1.4-2 02 | 1:41 | 12:49
housing7 506; 77520 8.8-7 | 6.6-7 | 4.1-4 03 | 6:26 | 17:00
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Why each nonsmooth Newton step cheap

For housing7, the computational costs in our SSNAL are as follows:

1 costs for Ax: 66 times, 0.11s in total;
2 costs for AT ξ: 43 times, 2s in total;
3 costs for solving the inner linear systems: 43 times, 1.2s in

total.

SSNAL has the ability to maintain the sparsity of x, the compu-
tational costs for calculating Ax are negligible comparing to other
costs. In fact, each step of SSNAL is cheaper than many first order
methods which need at least both Ax (x may be dense) and AT ξ.

SOS is important for designing robust solvers!

SS-Newton equation can be solved very efficiently by exploit-
ing the SOS property in solutions!
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Solution path of LassoNAL

LassoNAL can generate solution path when λ varies

LassoNAL: start from λmax to desired λ, each step λnew = 0.9λold

λmax = ‖A∗b‖∞, λ = 10−3λmax

need to solve 66 lasso subproblems

Compare LassoNAL with SPAMS (SPArse Modeling Software by
Julien Mairal et al.)

SPAMS: modified Lars or homotopy algorithm (solve problem via
solution path)
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Solution path of LassoNAL

(a) LassoNAL (one run with desired λ = 10−3λmax)

(b) LassoNAL (solution path from λmax to λ)

(c) SPAMS (solution path from λmax to λ)

Randomly generated data

time (ss) λ NO. ratio nnz

m;n a | b | c b | c

50; 1e4 0.4 | 3.5 | 1.5 66 | 75 8.75 46

50; 2e4 0.4 | 3.7 | 7.7 66 | 71 9.25 49

50; 3e4 0.4 | 5.1 | 17.4 66 | 71 12.75 46

50; 4e4 0.4 | 5.1 | 32.0 66 | 69 12.75 48

50; 5e4 0.5 | 8.4 | err 66 | err 16.30 49

SPAMS reports error when n ≥ 5× 104

LassoNAL path: warm-start, ratio < 66, for simple problems, run-
ning time almost independent with respect to n
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Solution path of LassoNAL

(a) LassoNAL (one run with desired λ = 10−3λmax)

(b) LassoNAL (solution path from λmax to λ)

(c) SPAMS (solution path from λmax to λ)

UCI data: truncated with n ≤ 4× 104 (SPAMS reports error when
n is large)
η: KKT residual

time (ss) λ NO. ratio nnz η

Prob. m;n a | b | c b | c b| c b| c

pyrim5 74; 4e4 0.4 | 10.9 | 37.9 66 | 1 27.25 56 | 0 2.5-7 | 9.9-1

triazines4186; 4e4 1.4 | 33.9 | 38 66 | 1 24.21 136 | 0 4.4-7 | 9.9-1

housing7 506; 4e4 2.0 | 42.8 | 41.8 66 | 259 21.4 109 | 77 3.7-7 | 1.3-3

For difficult problems, SPAMS can not reach desired λ and may stop
at λmax (pyrim5 & triazines4)
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Solution path of LassoNAL

Plot partial solution path for housing7, 10 largest nonzero elements
in absolute values in the solution selected with λ ∈ [10−3λmax, 0.9

33λmax]
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(λ) Partial solution path by LassoNAL
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Numerical results for fused LASSO

(a) our SSNAL
(b) APG based solver [Liu et al., 2011] (enhanced...)
(c1) ADMM (classical) (c2) ADMM (linearized)

Parameters: λ1 = λc‖A∗y‖∞, λ2 = 2λ1, tol = 10−4

Problem: triazines 4, m = 186, n = 635376

Fused Lasso P. iter time (hh:mm:ss)

λc | nnz | ηC a | b | c1 | c2 a | b | c1 | c2
10−1 ; 164; 2.4-2 10 | 6448 | 3461 | 8637 18 | 26:44 | 28:42 | 46:35
10−2 ; 1004; 1.7-2 13 | 11820 | 3841 | 19596 22 | 48:51 | 24:41 | 1:22:11
10−3 ; 1509; 1.2-3 16 | 20000 | 4532 | 20000 31 | 1:16:11 | 38:23 | 1:29:48
10−5 ; 2420; 6.4-5 24 | 20000 | 14384 | 20000 1:01 | 1:26:39 | 1:49:44 | 1:35:36

SSNAL is vastly superior to first-order methods: APG, ADMM (clas-
sical), ADMM (linearized)

ADMM (linearized) needs many more iterations than ADMM (clas-
sical)
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When to choose SSNAL?

When Proxp and its generalized (HS) Jacobian ∂Proxp are easy
to compute

Almost all of the LASSO models are suitable for SSNAL

When the problems are very easy, one may also consider APG
or ADMM

Very complicated problems, in particular with many constraints,
consider 2-phase approaches
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Some remarks

1 For big optimization problems, our knowledge from the tradi-
tional optimization domain may be inadequate.

2 Belief: We do not know what we do not know. Always go to
modern computers!

3 Big data optimization models provide many opportunities to
test New and Old ideas. SOS is just one of them.

4 Many more need to be done such as the stochastic semismooth
Newton methods (Andre Milzarek, Zaiwen Wen, ...), screening,
sketching, parallelizing ...
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