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Let Sn be the set of all real symmetric matrices and Sn
+

be the cone of all positive semidefinite matrices in Sn.

We consider the least squares SDP:

min
{1

2
‖A(X)− b‖2 + ρ〈I, X〉 : B(X) = d, X ∈ Sn

+

}
,

where A : Sn → <m and B : Sn → <s are linear maps
and ρ is a given positive scalar.
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An example — the regularized kernel estimation
(RKE) problem in statistics:

we are given a set of n objects and dissimilarity
measures dij for certain object pairs (i, j) ∈ E .

The goal is to estimate a positive semidefinite kernel
matrix X ∈ Sn

+ such that the fitted squared distances
between objects induced by X satisfy

Xii + Xjj − 2Xij = 〈Aij, X〉 ≈ d2
ij ∀ (i, j) ∈ E ,

where Aij = (ei − ej)(ei − ej)
T .
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One version of the RKE problem is to solve the
following SDP:

min
{ ∑

(i,j)∈E
Wij(〈Aij, X〉 − d2

ij)
2 + ρ〈I, X〉 :

〈E, X〉 = 0, X º 0
}

,

where W ∈ Sn is a given weight matrix with positive
entries.
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Analogously, we consider the least squares problem with
the nuclear norm regularization:

min
{1

2
‖A(X)− b‖2 + ρ‖X‖∗ : B(X) = d, X ∈ <p×q

}
,

where

‖X‖∗ =
k∑

i=1

σi(X)

and σi(X) are the singular values of X.
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The matrix completion example:

min
{

rank(X) : Xij ≈ Mij ∀ (i, j) ∈ Ω
}

,

where

Ω ∈ {1, . . . , p} × {1, . . . , q} :



∗ ∗
∗ ∗

∗ ∗
∗ ∗
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get a relaxed convex problem:

min
{
‖X‖∗ : Xij ≈ Mij ∀ (i, j) ∈ Ω

}
.

Further

min
{1

2

∑

(i,j)∈Ω

(Xij −Mij)
2 + ρ‖X‖∗

}
.

The Netflix Prize problem: the convex relaxation is
pretty good.

http://www.netflixprize.com/index
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For a random example:

• p = q = 105, rank(X) = 10, noise level =0.1.

• |Ω| ≈ 1.2× 107.

• Proximal point method framework + gradient
projection method.

• Need 416 seconds to achieve a relative accuracy
0.0453.
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Consider the Moreau-Yosida regularization:

Fσ(X) = min
1

2
‖u‖2 + ρ‖Y ‖∗ +

1

2σ
‖Y −X‖2

s.t. A(Y ) + u = b

B(Y ) = d

Y ∈ <p×q, u ∈ <m.

(1)
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The Lagrangian dual problem of (1) is

max
y∈<m,z∈<s

{
θρ
σ(y, z; X) := inf

u∈<m,Y ∈<p×q
Lρ

σ(Y, u; y, z,X)

= −1

2
‖y‖2 + 〈b, y〉+ 〈d, z〉

+
1

2σ
‖X‖2 − 1

2σ
‖Dρσ(W (y, z; X))‖2

}
, (2)

where W (y, z; X) = X + σ(A∗y + B∗z).
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For any Y ∈ <p×q, Dρ(Y ) is the unique optimal solution
to the following strongly convex function

min
X
‖X‖∗ +

1

2ρ
||X − Y ‖2

F

It is well known that Dρ(·) is globally Lispchitz
continuous with modulus 1.
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Let Y ∈ <p×q admit the following singular value
decomposition:

Y = U [Σ 0]V T ,

where U ∈ <p×p and V ∈ <q×q are orthogonal matrices,
Σ = diag(σ1, · · · , σp), and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are
singular values of Y . For each ρ > 0, the operator Dρ is
given by:

Dρ(Y ) = U [Σρ 0]V T ,

where Σρ = diag((σ1 − ρ)+, . . . , (σp − ρ)+).
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Good news is: ‖Dρ(Y )‖2 is continuously differentiable
and

∇(1

2
‖Dρ(Y )‖2) = Dρ(Y ).

So we have a smooth convex optimization problem:

min
y∈<m,z∈<s

{
− θρ

σ(y, z; X)
}

.
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Even better: Dρ(·) is strongly semismooth
everywhere.

A Lipschitz function F : X → Y is said to be strongly
semismooth at x ∈ X if

1) it is directionally differentiable at x; and 2)

F (x + ∆x)− F (x)− F ′(x + ∆x)∆x = O(‖∆x‖2)

for all x + ∆x such that F is Fréchet differentiable at
x + ∆x.
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One key issue:

θρ
σ(·, ·; X) /∈ C2.

This property allows θρ
σ(·, ·; X) to possess nonsingular

(generalized) Hessian, which is vital for an inexact
second order method to be efficient.
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We apply the proximal point method to solve the
following unconstrained problem:

min
X∈<p×q

Φρ
σ(X) := max{θρ

σ(y, z; X) : y ∈ <m, z ∈ <s}.
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PPA. Input X0 ∈ <p×q, σ0 > 0, iterate:

1. Compute an approximate maximizer

(yk, zk) ≈ argmax{θρ
σk

(y, z; Xk) : y ∈ <m, z ∈ <s},

2. Xk+1 = Dρσk
(W (yk, zk; Xk)), Zk+1 =

1

σk
(Dρσk

(W (yk, zk; Xk))−W (yk, zk; Xk)),

3. If ‖Rk
d := A∗yk + B∗zk + Zk+1‖F ≤ ε; stop; else,

update σk.
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For the inner subproblem, the optimality condition is
given by

∇yθ
ρ
σk

(y, z; Xk) = b− y −ADρσ(W (y, z; Xk)) = 0

∇zθ
ρ
σk

(y, z; Xk) = d− BDρσ(W (y, z; Xk)) = 0
(3)

We solve (3) by a semismooth Newton-CG method.
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The inner problems can be solved by a (fast)
semismooth Newton-CG method. The outer
iteration

Xk+1 = Dρσk
(W (yk, zk; Xk))

only satisfies

Xk+1 = Xk − σk∇Φρ
σk

(Xk),

a gradient descent step. The good news is that it
can also be seen as an approximate semismooth
Newton method, at least for the least squares SDP
case.
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Selected examples:

1. For each pair (n, r), we generate a positive
semidefinite matrix M ∈ Sn of rank r by setting
M = M1M

T
1 where M1 ∈ <n×r is a random matrix with

i.i.d Gaussian entries. Then we sample a subset Ω of m

entries uniformly at random from the upper triangular
part of M . The observed data is set to be

M̃Ω = MΩ + αNΩ‖MΩ‖F/‖NΩ‖F , where the random
matrix NΩ ∈ Sn is generated that has sparsity pattern Ω
and i.i.d Gaussian entries and α is the noise level.
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The minimization problem we solve is given by

min
{1

2
‖XΩ − M̃Ω‖2

F + ρ〈I, X〉 : X º 0
}

. (4)

Numerical results: n = 2000, r = 100,

– for α = 0, we need 15:00 and 8 (27) iterations; and

– for α = 0.05, we need 39:15 and 18(63) iterations

– The relative accuracy is below 10−6.

– The averaged CGs each step ≤ 10.

– |Ω| ≈ 975, 000.
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2. The nonsymmtric problem: similarly generated as in
Example 1.

Numerical results: p = q = 1000, r = 50,

– for α = 0, we need 4:07 and 12 (24) iterations; and

– for α = 0.05, we need 16:01 and 26 (73) iterations.

– The averaged CGs each step ≤ 5.

– The relative accuracy is below 10−6.

– |Ω| = 487, 500.


