
Journal of Machine Learning Research 21 (2020) 1-37 Submitted 7/19; Revised 9/20; Published 12/20

A Fast Globally Linearly Convergent Algorithm for the
Computation of Wasserstein Barycenters

Lei Yang matylei@nus.edu.sg
Department of Mathematics
National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

Jia Li jiali@stat.psu.edu
Department of Statistics
Pennsylvania State University
University Park, PA 16802, USA

Defeng Sun defeng.sun@polyu.edu.hk
Department of Applied Mathematics
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Kim-Chuan Toh mattohkc@nus.edu.sg
Department of Mathematics and Institute of Operations Research and Analytics
National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

Editor: Inderjit Dhillon

Abstract

We consider the problem of computing a Wasserstein barycenter for a set of discrete prob-
ability distributions with finite supports, which finds many applications in areas such as
statistics, machine learning and image processing. When the support points of the barycen-
ter are pre-specified, this problem can be modeled as a linear programming (LP) problem
whose size can be extremely large. To handle this large-scale LP, we analyse the struc-
ture of its dual problem, which is conceivably more tractable and can be reformulated as
a well-structured convex problem with 3 kinds of block variables and a coupling linear
equality constraint. We then adapt a symmetric Gauss-Seidel based alternating direction
method of multipliers (sGS-ADMM) to solve the resulting dual problem and establish its
global convergence and global linear convergence rate. As a critical component for efficient
computation, we also show how all the subproblems involved can be solved exactly and
efficiently. This makes our method suitable for computing a Wasserstein barycenter on a
large-scale data set, without introducing an entropy regularization term as is commonly
practiced. In addition, our sGS-ADMM can be used as a subroutine in an alternating min-
imization method to compute a barycenter when its support points are not pre-specified.
Numerical results on synthetic data sets and image data sets demonstrate that our method
is highly competitive for solving large-scale Wasserstein barycenter problems, in comparison
to two existing representative methods and the commercial software Gurobi.

Keywords: Wasserstein barycenter, discrete probability distribution, semi-proximal
ADMM, symmetric Gauss-Seidel

©2020 Lei Yang, Jia Li, Defeng Sun and Kim-Chuan Toh.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-629.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/19-629.html

Yang, Li, Sun and Toh

1. Introduction

In this paper, we consider the problem of computing the mean of a set of discrete prob-
ability distributions under the Wasserstein distance (also known as the optimal transport
distance or the earth mover’s distance). This mean, called the Wasserstein barycenter, is
also a discrete probability distribution (Agueh and Carlier, 2011). Recently, the Wasserstein
barycenter has attracted much attention due to its promising performance in many appli-
cation areas such as data analysis and statistics (Bigot and Klein, 2018), machine learning
(Cuturi and Doucet, 2014; Li and Wang, 2008; Ye and Li, 2014; Ye et al., 2017) and image
processing (Rabin et al., 2011). For a set of discrete probability distributions with finite
support points, a Wasserstein barycenter with its support points being pre-specified can be
computed by solving a linear programming (LP) problem (Anderes et al., 2016). However,
the problem size can be extremely large when the number of discrete distributions or the
number of support points of each distribution is large. Thus, classical LP methods such as
the simplex method and the interior point method are no longer efficient enough or consume
too much memory when solving this problem. This motivates the study of fast algorithms
for the computation of Wasserstein barycenters; see, for example, (Benamou et al., 2015;
Borgwardt, 2020; Borgwardt and Patterson, 2020; Carlier et al., 2015; Claici et al., 2018;
Cuturi and Doucet, 2014; Cuturi and Peyré, 2016; Oberman and Ruan, 2015; Schmitzer,
2019; Solomon et al., 2015; Uribe et al., 2018; Xie et al., 2020; Ye and Li, 2014; Ye et al.,
2017).

One representative approach is to introduce an entropy regularization in the LP and
then apply some efficient first-order methods, e.g., the gradient descent method (Cuturi and
Doucet, 2014) and the iterative Bregman projection (IBP) method (Benamou et al., 2015),
to solve the regularized problem. These methods can be implemented efficiently and hence
are suitable for large-scale data sets. However, they can only return an approximate solution
of the LP (due to the entropy regularization) and often suffer from numerical instabilities
and very slow convergence speed when the regularization parameter becomes small. The
numerical issue can be alleviated by performing some stabilization techniques (e.g., the
log-sum-exp technique) at the expense of losing some computational efficiency, but the slow
speed may not be avoided. Thus, IBP is highly efficient if a rough approximate solution is
adequate, as is the case in many learning tasks. However, our aim here is to obtain a high
precision solution efficiently. Detailed empirical studies on the pros and cons of IBP are
provided by Ye et al. (2017), specifically, in the scenario when the regularization parameter
is reduced to obtain higher precision solutions. It was found that numerical difficulties often
occur and the computational efficiency is lost when driving the regularization parameter to
smaller values for obtaining more accurate solutions. We will also provide a comparison with
IBP in our experiments. Another approach is to consider the LP as a constrained convex
optimization problem with a separable structure and then apply some splitting methods
to solve it. For example, the alternating direction method of multipliers (ADMM) was
adapted in (Ye and Li, 2014). However, solving the quadratic programming subproblems
involved is still highly expensive. Later, Ye et al. (2017) developed a modified Bregman
ADMM (BADMM) based on the original one (Wang and Banerjee, 2014) to solve the LP. In
this method, all subproblems have closed-form solutions and hence can be solved efficiently.

2

Fast Algorithm for Computing Wasserstein Barycenters

Promising numerical performance was also reported in (Ye et al., 2017). However, this
modified Bregman ADMM does not have a convergence guarantee so far.

In this paper, we also consider the LP as a constrained convex problem with multiple
blocks of variables and develop an efficient method to solve its dual LP without introducing
the entropy regularization to modify the objective function. Here, we should mention that
although introducing the entropy regularization can give a certain ‘smooth’ solution (that
may be favorable in some learning tasks) and lead to the efficient method IBP, it also
introduces some blurring in transport plans (see Figure 1(b)), which may be undesirable
in many other applications. The blurred transport plan can be hard to use for other
purposes, for example, the recovery of non-mass splitting transport plan (Borgwardt, 2020).
In contrast, as discussed in (Borgwardt, 2020), an exact barycenter computed from the non-
regularized LP can have several favorable properties. Therefore, we believe it is important
to have an efficient algorithm that can faithfully solve the original LP. Moreover, the non-
regularization-based method can naturally avoid the numerical issues caused by the entropy
regularization and thus it is numerically more stable.

Our method is a convergent 3-block ADMM that is designed based on recent progresses
in research on convergent multi-block ADMM-type methods for solving convex composite
conic programming; see (Chen et al., 2017; Li et al., 2016). It is well known that the
classical ADMM was originally proposed to solve a convex problem that contains 2 blocks
of variables and a coupling linear equality constraint (Gabay and Mercier, 1976; Glowinski
and Marroco, 1975). Specifically, consider

min
x1∈Rn1 ,x2∈Rn2

f1(x1) + f2(x2) s.t. A1(x1) +A2(x2) = b, (1)

where f1 : Rn1 → (−∞,∞] and f2 : Rn2 → (−∞,∞] are proper closed convex functions,
A1 : Rn1 → Rm and A2 : Rn2 → Rm are linear operators, b ∈ Rm is a given vector. The
iterative scheme of the ADMM for solving problem (1) is given as follows:

xk+1
1 ∈ arg min

x1∈Rn1

{
Lβ(x1, x

k
2, λ

k)
}
,

xk+1
2 ∈ arg min

x2∈Rn2

{
Lβ(x

k+1
1 , x2, λ

k)
}
,

λk+1 = λk + τβ
(
A1(x

k+1
1) +A2(x

k+1
2)− b

)
,

where τ ∈ (0,
√
5+1
2) is the dual step-size and Lβ is the augmented Lagrangian function for

(1) defined as

Lβ(x1, x2, λ) := f1(x1) + f2(x2) + ⟨λ, A1(x1) +A2(x2)− b⟩+ β
2 ∥A1(x1) +A2(x2)− b∥2

with β > 0 being the penalty parameter. Under some mild conditions, the sequence
{(xk

1, x
k
2)} generated by the above scheme can be shown to converge to an optimal so-

lution of problem (1). The above 2-block ADMM can be simply extended to a multi-block
ADMM of the sequential Gauss-Seidel order for solving a convex problem with more than 2
blocks of variables. However, it has been shown in (Chen et al., 2016) that such a directly
extended ADMM may not converge when applied to a problem with 3 or more blocks of
variables. This has motivated many researchers to develop various convergent variants of

3

Yang, Li, Sun and Toh

the ADMM for convex problems with more than 2 blocks of variables; see, for example,
(Chen et al., 2017, 2019; He et al., 2012; Li et al., 2015, 2016; Sun et al., 2015). Among
them, the Schur complement based convergent semi-proximal ADMM (sPADMM) was pro-
posed by Li et al. (2016) to solve a large class of linearly constrained convex problems
with multiple blocks of variables, whose objective can be the sum of two proper closed
convex functions and a finite number of convex quadratic or linear functions. This method
modified the original ADMM by performing one more forward Gauss-Seidel sweep after
updating the block of variables corresponding to the nonsmooth function in the objective.
With this novel strategy, Li et al. (2016) showed that their method can be reformulated
as a 2-block sPADMM with specially designed semi-proximal terms and its convergence is
thus guaranteed from that of the 2-block sPADMM; see (Fazel et al., 2013, Appendix B).
Later, this method was generalized to the inexact symmetric Gauss-Seidel based ADMM
(sGS-ADMM) for more general convex problems (Chen et al., 2017; Li et al., 2018). The
numerical results reported in (Chen et al., 2017; Li et al., 2016, 2018) also showed that the
sGS-ADMM always performs much better than the possibly non-convergent directly ex-
tended ADMM. In addition, as the sGS-ADMM is equivalent to a 2-block sPADMM with
specially designed proximal terms, the linear convergence rate of the sGS-ADMM can also
be derived based on the linear convergence rate of the 2-block sPADMM under some mild
conditions; more details can be found in (Han et al., 2018, Section 4.1).

Motivated by the above studies, in this paper, we adapt the sGS-ADMM to compute a
Wasserstein barycenter by solving the dual problem of the original primal LP. The contri-
butions of this paper are listed as follows:

1. We derive the dual problem of the original primal LP and characterize the properties
of their optimal solutions; see Proposition 5. The resulting dual problem is our target
problem, which is reformulated as a linearly constrained convex problem containing 3
blocks of variables with a carefully delineated separable structure designed for efficient
computations. We should emphasize again that we do not introduce the entropic or
quadratic regularization to modify the LP so as to make it computationally more
tractable. This is in contrast to many existing works that primarily focus on solving
an approximation of the original LP arising from optimal transport related problems;
see, for example, (Benamou et al., 2015; Cuturi, 2013; Cuturi and Doucet, 2014;
Dessein et al., 2018; Essid and Solomon, 2018).

2. We apply the sGS-ADMM to solve the resulting dual problem and analyze its global
convergence as well as its global linear convergence rate without any condition; see
Theorems 6 and 7. As a critical component of the paper, we also develop essential
numerical strategies to show how all the subproblems in our method can be solved
efficiently and that the subproblems at each step can be computed in parallel. This
makes our sGS-ADMM highly suitable for computing Wasserstein barycenters on a
large-scale data set.

3. We conduct rigorous numerical experiments on synthetic data sets and image data
sets to evaluate the performance of our sGS-ADMM in comparison to existing state-
of-the-art methods (IBP and BADMM) and the highly powerful commercial solver
Gurobi. The computational results show that our sGS-ADMM is highly competitive

4

Fast Algorithm for Computing Wasserstein Barycenters

compared to IBP and BADMM, and is also able to outperform Gurobi in terms of the
computational time for solving large-scale LPs arising from Wasserstein barycenter
problems.

The rest of this paper is organized as follows. In Section 2, we describe the basic
problem of computing Wasserstein barycenters and derive its dual problem. In Section
3, we adapt the sGS-ADMM to solve the resulting dual problem and present the efficient
implementations for each step that are crucial in making our method competitive. The
convergence analysis of the sGS-ADMM is presented in Section 4. Finally, numerical results
are presented in Section 5, with some concluding remarks given in Section 6.

Notation and Preliminaries. In this paper, we present scalars, vectors and matrices
in lower case letters, bold lower case letters and upper case letters, respectively. We use
R, Rn, Rn

+ and Rm×n to denote the set of real numbers, n-dimensional real vectors, n-
dimensional real vectors with nonnegative entries and m × n real matrices, respectively.
For a vector x, xi denotes its i-th entry, ∥x∥ denotes its Euclidean norm, ∥x∥p denotes
its ℓp-norm (p ≥ 1) defined by ∥x∥p := (

∑n
i=1 |xi|p)

1
p and ∥x∥T :=

√
⟨x, Tx⟩ denotes its

weighted norm associated with the symmetric positive semidefinite matrix T . For a matrix
X, xij denotes its (i, j)-th entry, Xi: denotes its i-th row, X:j denotes its j-th column, ∥X∥F
denotes its Fröbenius norm and vec(X) denotes the vectorization of X. We also use x ≥ 0
and X ≥ 0 to denote xi ≥ 0 for all i and xij ≥ 0 for all (i, j). The identity matrix of size n×n
is denoted by In. For any X1 ∈ Rm×n1 and X2 ∈ Rm×n2 , [X1, X2] ∈ Rm×(n1+n2) denotes
the matrix obtained by horizontally concatenating X1 and X2. For any Y1 ∈ Rm1×n and
Y2 ∈ Rm2×n, [Y1;Y2] ∈ R(m1+m2)×n denotes the matrix obtained by vertically concatenating
Y1 and Y2. For any X ∈ Rm×n and Y ∈ Rm′×n′ , the Kronecker product X ⊗Y is defined as

X ⊗ Y =

x11Y · · · x1nY
...

...
xm1Y · · · xmnY

 .

For an extended-real-valued function f : Rn → [−∞,∞], we say that it is proper if
f(x) > −∞ for all x ∈ Rn and its domain dom f := {x ∈ Rn : f(x) < ∞} is nonempty. A
proper function f is said to be closed if it is lower semicontinuous. Assume that f : Rn →
(−∞,∞] is a proper and closed convex function. The subdifferential of f at x ∈ dom f
is defined by ∂f(x) := {d ∈ Rn : f(y) ≥ f(x) + ⟨d, y − x⟩, ∀y ∈ Rn} and its conjugate
function f∗ : Rn → (−∞,∞] is defined by f∗(y) := sup{⟨y, x⟩ − f(x) : x ∈ Rn}. For any
x and y, it follows from (Rockafellar, 1970, Theorem 23.5) that

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y). (2)

For any ν > 0, the proximal mapping of νf at y is defined by

Proxνf (y) := argmin
x

{
f(x) +

1

2ν
∥x− y∥2

}
.

For a closed convex set X ⊆ Rn, its indicator function δX is defined by δX (x) = 0 if x ∈ X
and δX (x) = +∞ otherwise. Moreover, we use PrX (y) to denote the projection of y onto
a closed convex set X . It is easy to see that PrX (·) ≡ ProxδX (·).

5

Yang, Li, Sun and Toh

In the following, a discrete probability distribution P with finite support points is spec-
ified by {(ai, qi) ∈ R+ × Rd : i = 1, · · · ,m}, where {q1, · · · , qm} are the support points or
vectors and {a1, · · · , am} are the associated probabilities or weights satisfying

∑m
i=1 ai = 1

and ai ≥ 0, i = 1, · · · ,m. We also use Ξp(Rd) to denote the set of all discrete probability
distributions on Rd with finite p-th moment.

2. Problem Statement
In this section, we briefly recall the Wasserstein distance and describe the problem of com-
puting a Wasserstein barycenter for a set of discrete probability distributions with finite
support points. We refer interested readers to (Villani, 2008, Chapter 6) for more details on
the Wasserstein distance and to (Agueh and Carlier, 2011; Anderes et al., 2016) for more
details on the Wasserstein barycenter.

Given two discrete distributions P(u) = {(a(u)i , q
(u)
i) : i = 1, · · · ,mu} and P(v) = {(a(v)i ,

q
(v)
i) : i = 1, · · · ,mv}, the p-Wasserstein distance between P(u) and P(v) is defined by

Wp(P(u), P(v)) :=
p
√
v∗,

where p ≥ 1 (commonly chosen to be 1 or 2) and v∗ is the optimal objective value of the
following linear program:

v∗ := min
πij≥0

mu∑
i

mv∑
j

πij∥q(u)i − q
(v)
j ∥pp :

∑mu
i=1πij = a

(v)
j , j = 1, · · · ,mv∑mv

j=1πij = a
(u)
i , i = 1, · · · ,mu

 .

Then, given a set of discrete probability distributions {P(t)}Nt=1 with P(t) = {(a(t)i , q
(t)
i) :

i = 1, · · · ,mt}, a p-Wasserstein barycenter P := {(wi, xi) : i = 1, · · · ,m} with m support
points is an optimal solution of the following problem

min
P∈Ξp(Rd)

∑N
t=1γt

(
Wp(P, P(t))

)p
for given weights (γ1, · · · , γN) satisfying

∑N
t=1 γt = 1 and γt > 0, t = 1, · · · , N . It is worth

noting that the number of support points of the true barycenter is generally unknown. In
theory, for p = 2, there exists a sparse barycenter whose number of support points is upper
bounded by

∑N
t=1mt−N+1; see (Anderes et al., 2016, Theorem 2). In practice, one usually

chooses m by experience and sets a value that is not less than mt for t = 1, · · · , N . Clearly,
a larger m would lead to a larger problem size and hence may require more computational
cost, as observed from our experiments. Since the Wasserstein distance itself is defined by a
LP, the above problem is then a two-stage optimization problem. Using the definition with
some simple manipulations, one can equivalently rewrite the above problem as

min
w, X, {Π(t)}

∑N
t=1 ⟨γtD(X, Q(t)), Π(t)⟩

s.t. Π(t)emt = w, (Π(t))⊤em = a(t), Π(t) ≥ 0, t = 1, · · · , N,

e⊤mw = 1, w ≥ 0,

(3)

where

6

Fast Algorithm for Computing Wasserstein Barycenters

• emt (resp. em) denotes the mt (resp. m) dimensional vector with all entries being 1;

• w := (w1, · · · , wm)⊤ ∈ Rm
+ , X := [x1, · · · ,xm] ∈ Rd×m;

• a(t) := (a
(t)
1 , · · · , a(t)mt)

⊤ ∈ Rmt
+ , Q(t) :=

[
q
(t)
1 , · · · , q(t)mt

]
∈ Rd×mt for t = 1, · · · , N ;

• Π(t) =
[
π
(t)
ij

]
∈ Rm×mt , D(X, Q(t)) :=

[
∥xi − q

(t)
j ∥pp

]
∈ Rm×mt for t = 1, · · · , N .

Note that problem (3) is a nonconvex problem, where one needs to find the optimal support
X and the optimal weight vector w of a barycenter simultaneously. However, in many real
applications, the support X of a barycenter can be specified empirically from the support
points of {P(t)}Nt=1. Thus, one only needs to find the weight vector w of a barycenter. In
view of this, from now on, we assume that the support X is given. Consequently, problem
(3) reduces to the following problem:

min
w, {Π(t)}

∑N
t=1⟨D

(t), Π(t)⟩

s.t. Π(t)emt = w, (Π(t))⊤em = a(t), Π(t) ≥ 0, t = 1, · · · , N,

e⊤mw = 1, w ≥ 0,

(4)

where D(t) denotes γtD(X, Q(t)) for simplicity1. This is also the main problem studied in
(Benamou et al., 2015; Borgwardt, 2020; Carlier et al., 2015; Claici et al., 2018; Cuturi and
Doucet, 2014; Cuturi and Peyré, 2016; Oberman and Ruan, 2015; Schmitzer, 2019; Uribe
et al., 2018; Ye and Li, 2014; Ye et al., 2017) for the computation of Wasserstein barycenters.
Moreover, one can easily see that problem (4) is indeed a large-scale LP containing (m +
m
∑N

t=1mt) nonnegative variables and (Nm+
∑N

t=1mt + 1) equality constraints. For N =
100, m = 1000 and mt = 1000 for all t = 1, . . . , N , such LP has about 108 nonnegative
variables and 2× 105 equality constraints.

Remark 1 (Practical computational consideration when a(t) is sparse) Note that
any feasible point (w, {Π(t)}) of problem (4) must satisfy (Π(t))⊤em = a(t) and Π(t) ≥ 0 for
any t = 1, · · · , N . This implies that if a(t)j = 0 for some 1 ≤ j ≤ mt and 1 ≤ t ≤ N , then
π
(t)
ij = 0 for all 1 ≤ i ≤ m, i.e., all entries in the j-th column of Π(t) are zeros. Based on

this fact, one can verify the following statements.

• For any optimal solution (w∗, {Π(t),∗}) of problem (4), the point (w∗, {Π(t),∗
Jt

}) is also
an optimal solution of the following problem

min
w, {Π̂(t)}

∑N
t=1⟨D

(t), Π̂(t)⟩

s.t. Π̂(t)em′
t
= w, (Π̂(t))⊤em = a

(t)
Jt
, Π̂(t) ≥ 0, t = 1, · · · , N,

e⊤mw = 1, w ≥ 0,

(5)

where Jt denotes the support set of a(t), i.e., Jt := { j : a
(t)
j ̸= 0 }, m′

t denotes the
cardinality of Jt, a

(t)
Jt

∈ Rm′
t denotes the subvector of a(t) obtained by selecting the

1. Our method presented later actually can solve problem (4) for any given matrices D(1), · · · , D(N).

7

Yang, Li, Sun and Toh

entries indexed by Jt and Π
(t),∗
Jt

∈ Rm×m′
t denotes the submatrix of Π(t),∗ obtained by

selecting the columns indexed by Jt.

• For any optimal solution (w∗, {Π̂(t),∗}) of problem (5), the point (w∗, {Π(t),∗}) ob-
tained by setting Π

(t),∗
Jt

= Π̂(t),∗ and Π
(t),∗
J c
t

= 0 is also an optimal solution of problem
(4), where J c

t := { j : a(t)j = 0 }.

Therefore, one can obtain an optimal solution of problem (4) by computing an optimal
solution of problem (5). Note that the size of problem (5) can be much smaller than that of
problem (4) when each a(t) is sparse, i.e., m′

t ≪ mt. Thus, solving problem (5) can reduce
the computational cost and save memory in practice. Since problem (5) takes the same form
as problem (4), we only consider problem (4) in the following.

For notational simplicity, let ∆m := {w ∈ Rm : e⊤mw = 1, w ≥ 0} and δt+ be the
indicator function over {Π(t) ∈ Rm×mt : Π(t) ≥ 0} for each t = 1, · · · , N . By enforcing the
constraints w ∈ ∆m and Π(t) ≥ 0, t = 1, · · · , N via adding the corresponding indicator
functions in the objective, problem (4) can be equivalently written as

min
w, {Π(t)}

δ∆m(w) +
∑N

t=1δ
t
+(Π

(t)) +
∑N

t=1⟨D
(t), Π(t)⟩

s.t. Π(t)emt = w, (Π(t))⊤em = a(t), t = 1, · · · , N.
(6)

We next derive the dual problem of (6) (hence (4)). To this end, we write down the
Lagrangian function associated with (6) as follows:

Υ
(
w, {Π(t)}; {y(t)}, {z(t)}

)
:= δ∆m(w) +

N∑
t=1

δt+(Π
(t)) +

N∑
t=1

⟨D(t), Π(t)⟩

+
N∑
t=1

⟨y(t), Π(t)emt −w⟩+
N∑
t=1

⟨z(t), (Π(t))⊤em − a(t)⟩,

(7)

where y(t) ∈ Rm, z(t) ∈ Rmt , t = 1, · · · , N are multipliers. Then, the dual problem of (6)
is given by

max
{y(t)},{z(t)}

min
w,{Π(t)}

Υ
(
w, {Π(t)}; {y(t)}, {z(t)}

)
. (8)

Observe that

min
w, {Π(t)}

Υ
(
w, {Π(t)}; {y(t)}, {z(t)}

)
= min

w, {Π(t)}

{
δ∆m(w)− ⟨

∑N
t=1y

(t), w⟩+
∑N

t=1

(
δt+(Π

(t)) + ⟨D(t) + y(t)e⊤mt
+ em(z(t))⊤, Π(t)⟩

)
−
∑N

t=1⟨z
(t), a(t)⟩

}

=

{
− δ∗∆m

(∑N
t=1y

(t)
)
−
∑N

t=1⟨z
(t), a(t)⟩, if D(t) + y(t)e⊤mt

+ em(z(t))⊤ ≥ 0, t = 1, · · · , N,

−∞, otherwise,

8

Fast Algorithm for Computing Wasserstein Barycenters

where δ∗∆m
is the conjugate of δ∆m . Thus, (8) is equivalent to

min
{y(t)}, {z(t)}

δ∗∆m

(∑N
t=1 y

(t)
)
+
∑N

t=1⟨z
(t), a(t)⟩

s.t. D(t) + y(t)e⊤mt
+ em(z(t))⊤ ≥ 0, t = 1, · · · , N.

By introducing auxiliary variables u, V (1), · · · , V (N), we can further reformulate the above
problem as

min
u, {V (t)}, {y(t)}, {z(t)}

δ∗∆m
(u) +

∑N
t=1δ

t
+(V

(t)) +
∑N

t=1⟨z
(t), a(t)⟩

s.t.
∑N

t=1y
(t) − u = 0,

V (t) −D(t) − y(t)e⊤mt
− em(z(t))⊤ = 0, t = 1, · · · , N.

(9)

Note that problem (9) can be viewed as a linearly constrained convex problem with 3 blocks
of variables grouped as

(
u, {V (t)}

)
, {y(t)} and {z(t)}, whose objective is nonsmooth only

with respect to
(
u, {V (t)}

)
and linear with respect to the other two. Thus, this problem

exactly falls into the class of convex problems for which the sGS-ADMM is applicable; see
(Chen et al., 2017; Li et al., 2016). Then, it is natural to adapt the sGS-ADMM for solving
problem (9), which is presented in the next section.

Remark 2 (2-block ADMM for solving (4)) It is worth noting that one can also apply
the 2-block ADMM to solve the primal problem (4) by introducing some proper auxiliary
variables. For example, one can consider the following equivalent reformulation of (4):

min
w,{Π(t)},{Γ(t)}

δ∆m(w) +
∑N

t=1δ∆Π(t)
(Π(t)) +

∑N
t=1⟨D

(t), Π(t)⟩

s.t. Π(t) = Γ(t), Γ(t)emt = w, t = 1, · · · , N,

where ∆Π(t) := {Π(t) ∈ Rm×mt : (Π(t))⊤em = a(t), Π(t) ≥ 0}. Then, the 2-block ADMM
can be readily applied with (w,Π(1), · · · ,Π(N)) being one block and (Γ(1), · · · ,Γ(N)) as the
other. This 2-block ADMM avoids the need to solve quadratic programming subproblems
and hence is more efficient than the one used in (Ye and Li, 2014). However, it needs to
compute the projection onto the m-dimensional simplex (1 +

∑N
t=1mt) times when solving

the (w,Π(1), · · · ,Π(N))-subproblem in each iteration. This is still time-consuming when N
or mt is large. Thus, this 2-block ADMM is also not efficient enough for solving large-scale
problems. In addition, we have adapted the 2-block ADMM for solving other reformulations
of (4), but they all perform worse than our sGS-ADMM to be presented later. Hence,
we will no longer consider ADMM-type methods for solving the primal problem (4) or its
equivalent variants in this paper.

3. sGS-ADMM for Computing Wasserstein Barycenters
In this section, we present the sGS-ADMM for solving problem (9). First, we write down
the Lagrangian function associated with (9) as follows:

Υ̃
(
u, {V (t)}, {y(t)}, {z(t)};λ, {Λ(t)}

)
= δ∗∆m

(u) +
∑N

t=1δ
t
+(V

(t)) +
∑N

t=1⟨z
(t), a(t)⟩+ ⟨λ,

∑N
t=1y

(t) − u⟩
+
∑N

t=1⟨Λ
(t), V (t) −D(t) − y(t)e⊤mt

− em(z(t))⊤⟩,

(10)

9

Yang, Li, Sun and Toh

where λ ∈ Rm, Λ(t) ∈ Rm×mt , t = 1, · · · , N are multipliers. Then, the augmented La-
grangian function associated with (9) is

Lβ

(
u, {V (t)}, {y(t)}, {z(t)};λ, {Λ(t)}

)
= Υ̃

(
u, {V (t)}, {y(t)}, {z(t)};λ, {Λ(t)}

)
+ β

2 ∥
∑N

t=1y
(t) − u∥2

+ β
2

∑N
t=1∥V

(t) −D(t) − y(t)e⊤mt
− em(z(t))⊤∥2F ,

where β > 0 is the penalty parameter. The sGS-ADMM for solving (9) is now readily
presented in Algorithm 1.

Algorithm 1 sGS-ADMM for solving (9)
Input: the penalty parameter β > 0, and the initialization u0 ∈ Rm, λ0 ∈ Rm, y(t),0 ∈ Rm,
z(t),0 ∈ Rmt , V (t),0 ∈ Rm×mt

+ , Λ(t),0 ∈ Rm×mt , t = 1, · · · , N . Set k = 0.
while a termination criterion is not met, do

Step 1. Compute(
uk+1, {V (t),k+1}

)
= arg min

u, {V (t)}
Lβ

(
u, {V (t)}, {y(t),k}, {z(t),k}; λk, {Λ(t),k}

)
.

Step 2a. Compute

{z̃(t),k+1} = arg min
{z(t)}

Lβ

(
uk+1, {V (t),k+1}, {y(t),k}, {z(t)}; λk, {Λ(t),k}

)
.

Step 2b. Compute

{y(t),k+1} = arg min
{y(t)}

Lβ

(
uk+1, {V (t),k+1}, {y(t)}, {z̃(t),k+1}; λk, {Λ(t),k}

)
.

Step 2c. Compute

{z(t),k+1} = arg min
{z(t)}

Lβ

(
uk+1, {V (t),k+1}, {y(t),k+1}, {z(t)}; λk, {Λ(t),k}

)
.

Step 3. Compute

λk+1 = λk + τβ
(∑N

t=1y
(t),k+1 − uk+1

)
,

Λ(t),k+1 = Λ(t),k + τβ
(
V (t),k+1 −D(t) − y(t),k+1e⊤mt

− em(z(t),k+1)⊤
)
, t = 1, · · · , N,

where τ ∈ (0, 1+
√
5

2) is the dual step-size that is typically set to 1.618.

end while
Output: uk+1, {V (t),k+1}, {y(t),k+1}, {z(t),k+1}, λk+1, {Λ(t),k+1}.

We next show that all subproblems in Algorithm 1 can be solved efficiently (in fact
analytically) and the subproblems in each step can also be computed in parallel. This

10

Fast Algorithm for Computing Wasserstein Barycenters

makes our method highly suitable for solving large-scale problems. The computational
details and the efficient implementations in each step are presented as follows.

Step 1. Note that Lβ is actually separable with respect to u, V (1), · · · , V (N) and hence
one can compute uk+1, V (1),k+1, · · · , V (N),k+1 independently. Specifically, uk+1 is
obtained by solving

min
u∈Rm

{
δ∗∆m

(u)− ⟨λk, u⟩+ β
2 ∥
∑N

t=1 y
(t),k − u∥2

}
.

Thus, we have

uk+1 = Proxβ−1δ∗∆m

(
β−1λk +

∑N
t=1y

(t),k
)

=
(
β−1λk +

∑N
t=1y

(t),k
)
− β−1 Proxβδ∆m

(
λk + β

∑N
t=1y

(t),k
)
,

where the last equality follows from the Moreau decomposition (Bauschke and Com-
bettes, 2011, Theorem 14.3(ii)), i.e., x = Proxνf∗(x) + νProxf/ν(x/ν) for any ν > 0
and the proximal mapping of βδ∆m can be computed efficiently by the algorithm
proposed in (Condat, 2016) with the complexity of O(m) that is typically observed
in practice. Moreover, for each t = 1, · · · , N , V (t),k+1 can be computed in parallel by
solving

min
V (t)

{
δt+(V

(t)) + ⟨Λ(t),k, V (t)⟩+ β
2 ∥V

(t) −D(t) − y(t),ke⊤mt
− em(z(t),k)⊤∥2F

}
.

Then, it is easy to see that

V (t),k+1 = max
{
D̃(t),k − β−1Λ(t),k, 0

}
,

where D̃(t),k := D(t) + y(t),ke⊤mt
+ em(z(t),k)⊤. Note that D̃(t),k is already computed

for updating Λ(t),k in the previous iteration and thus it can be reused in the current
iteration. The computational complexity in this step is O(Nm + m

∑N
t=1mt). We

should emphasize that because the matrices such as {D̃(t),k}, {Λ(t),k} are large and
numerous, even performing simple operations such as adding two such matrices can
be time consuming. Thus we have paid special attention to arrange the computations
in each step of the sGS-ADMM so that matrices computed in one step can be reused
for the next step.

Step 2a. Similarly, Lβ is separable with respect to z(1), · · · , z(N) and then one can also
compute z̃(1),k+1, · · · , z̃(N),k+1 in parallel. For each t = 1, · · · , N , z̃(t),k+1 is obtained
by solving

min
z(t)

{
⟨z(t), a(t)⟩ − ⟨Λ(t),k, em(z(t))⊤⟩+ β

2 ∥V
(t),k+1 −D(t) − y(t),ke⊤mt

− em(z(t))⊤∥2F
}
.

It is easy to prove that

z̃(t),k+1 = 1
m

(
(V (t),k+1)⊤em − (D(t))⊤em −

(
e⊤my(t),k

)
emt + β−1(Λ(t),k)⊤em − β−1a(t)

)
= z(t),k − 1

m

(
β−1a(t) + (B(t),k)⊤em

)
,

11

Yang, Li, Sun and Toh

where B(t),k := D̃(t),k − β−1Λ(t),k − V (t),k+1 = min{D̃(t),k − β−1Λ(t),k, 0}. Note that
D̃(t),k − β−1Λ(t),k has already been computed in Step 1 and hence B(t),k can be
computed by just a simple min(·) operation. We note that z̃(t),k+1 is computed
analytically for all t = 1, . . . , N , and the computational complexity in this step is
O((m+ 1)

∑N
t=1mt).

Step 2b. In this step, one can see that y(1), · · · , y(N) are coupled in Lβ (due to the
quadratic term β

2 ∥
∑N

t=1 y
(t)−uk+1∥2) and hence the problem of minimizing Lβ with

respect to y(1), · · · ,y(N) cannot be reduced to N separable subproblems. However,
one can still compute them efficiently based on the following observation. Note that
(y(1),k+1, · · · , y(N),k+1) is obtained by solving

min
y(1),··· ,y(N)

{
Φk(y(1), · · · ,y(N)) := ⟨λk,

∑N
t=1y

(t)⟩+ β
2 ∥
∑N

t=1y
(t) − uk+1∥2

+
∑N

t=1

(
⟨−Λ(t),kemt , y

(t)⟩+ β
2 ∥V

(t),k+1 −D(t) − y(t)e⊤mt
− em(z̃(t),k+1)⊤∥2F

)} .

The gradient of Φk with respect to y(t) is

∇y(t)Φk(y(1), · · · ,y(N))

= λk + β
(∑N

ℓ=1y
(ℓ) − uk+1

)
+ β

(
− β−1Λ(t),k +D(t) + y(t)e⊤mt

+ em(z̃(t),k+1)⊤ − V (t),k+1
)
emt

= β
∑N

ℓ=1y
(ℓ) + βmt(y

(t) − y(t),k) + λk − βuk+1 + β
(
B(t),k + em(z̃(t),k+1 − z(t),k)⊤

)
emt

= β
∑N

ℓ=1(y
(ℓ) − y(ℓ),k) + βmt(y

(t) − y(t),k) + βhk + βB̃(t),kemt ,

where B̃(t),k := B(t),k + em(z̃(t),k+1 − z(t),k)⊤ and hk := β−1λk − uk+1 +
∑N

ℓ=1y
(ℓ),k.

It follows from the optimality conditions, namely, ∇Φk(y(1),k+1, · · · ,y(N),k+1) = 0
that, for any t = 1, · · · , N ,∑N

ℓ=1(y
(ℓ),k+1 − y(ℓ),k) +mt(y

(t),k+1 − y(t),k) + hk + B̃(t),kemt = 0. (11)

By dividing mt in (11) for t = 1, · · · , N , adding all resulting equations and doing
some simple algebraic manipulations, one can obtain that

b̃k :=
∑N

ℓ=1(y
(ℓ),k+1 − y(ℓ),k) = −

(
∑N

ℓ=1m
−1
ℓ)hk +

∑N
ℓ=1m

−1
ℓ B̃(ℓ),kemℓ

1 +
∑N

ℓ=1m
−1
ℓ

.

Then, using this and (11), we have

y(t),k+1 = y(t),k − 1
mt

(
b̃k + hk + B̃(t),kemt

)
, t = 1, · · · , N.

Observe that we can compute y(t),k+1 analytically for t = 1, . . . , N . In the above
computations, one can first compute B̃(t),kemt in parallel for t = 1, · · · , N to obtain
b̃k. Then, y(t),k+1 can be computed in parallel for t = 1, · · · , N . By using the
updating formula for z̃(t),k+1 in Step 2a, we have that B̃(t),kemt = B(t),kemt −
1
mem

(
eTmB(t),kemt + β−1⟨emt , a

(t)⟩
)
. Thus, there is no need to form B̃(t),k explicitly.

The computational complexity in this step is O(Nm+m
∑N

t=1mt).

12

Fast Algorithm for Computing Wasserstein Barycenters

Step 2c. Similar to Step 2a, for each t = 1, · · · , N , z(t),k+1 can be obtained independently
by solving

min
z(t)

{
⟨z(t), a(t)⟩−⟨Λ(t),k, em(z(t))⊤⟩+ β

2 ∥V
(t),k+1−D(t)−y(t),k+1e⊤mt

−em(z(t))⊤∥2F
}

and it is easy to show that

z(t),k+1 = z(t),k − 1
m(β−1a(t) + (C(t),k)⊤em)

= z(t),k − 1
m(β−1a(t) + (B(t),k + (y(t),k+1 − y(t),k)e⊤mt

)⊤em)

= z̃(t),k+1 − 1
m

(
(y(t),k+1 − y(t),k)⊤em

)
emt ,

where C(t),k := D(t) + y(t),k+1e⊤mt
+ em(z(t),k)⊤ − β−1Λ(t),k − V (t),k+1 = B(t),k +

(y(t),k+1 − y(t),k)e⊤mt
. Based on the above, one can also compute z(t),k+1 efficiently.

The computational complexity in this step is O(Nm +
∑N

t=1mt), which is much
smaller than the cost in Step 2b.

From the above, together with the update of multipliers in Step 3, one can see that the
main computational complexity of our sGS-ADMM at each iteration is O(m

∑N
t=1mt).

Remark 3 (Comments on Step 2a–2c in Algorithm 1) Comparing with the directly
extended ADMM, our sGS-ADMM in Algorithm 1 just has one more update of {z̃(t),k+1}
in Step 2a. This step is actually the key to guarantee the convergence of the algorithm.
We shall see in the next section that computing

(
{y(t),k+1}, {z(t),k+1}

)
from Step 2a–2c

is indeed equivalent to minimizing Lβ plus a special proximal term simultaneously with
respect to

(
{y(t)}, {z(t)}

)
. Moreover, the reader may have observed that instead of com-

puting {y(t),k+1} and {z(t),k+1} sequentially as in Step 2a–2c, one can also compute
({y(t),k+1}, {z(t),k+1}) simultaneously in one step by solving a huge linear system of equa-
tions of dimension mN +

∑N
t=1mt. Unfortunately, for the latter approach, the computation

of the solution would require the Cholesky factorization of a huge coefficient matrix, and this
approach is not practically viable. In contrast, for our approach in Step 2a-2c, we have
seen that the solutions can be computed analytically without the need to perform Cholesky
factorizations of large coefficient matrices. This also explains why we have designed the
computations as in Step 2a-2c.

Remark 4 (Extension to the free support case) We briefly discuss the case when the
support points of a barycenter are not pre-specified and hence one needs to solve problem
(3) to find a barycenter. Note that problem (3) can be considered as a problem with X being
one variable block and (w, {Π(t)}) being the other block. Then, it is natural to apply an
alternating minimization method to solve (3). Specifically, with X fixed, problem (3) indeed
reduces to problem (4) (hence (6)), and one can call our sGS-ADMM in Algorithm 1 as
a subroutine to solve it efficiently. On the other hand, with (w, {Π(t)}) fixed, problem (3)
reduces to a simple quadratic optimization problem with respect to X and one can easily
obtain the optimal X∗ columnwise by computing

x∗
i =

(∑N
t=1

∑mt
j=1π

(t)
ij

)−1∑N
t=1

∑mt
j π

(t)
ij q

(t)
j , i = 1, · · · ,m.

13

Yang, Li, Sun and Toh

In fact, this alternating minimization strategy has also been used in (Cuturi and Doucet,
2014; Ye and Li, 2014; Ye et al., 2017) to handle the free support case by using their
proposed methods as subroutines.

4. Convergence Analysis
In this section, we shall establish the global linear convergence of Algorithm 1 based on the
convergence results developed in (Fazel et al., 2013; Han et al., 2018; Li et al., 2016). To
this end, we first write down the KKT system associated with (7) as follows:

0 ∈ ∂δ∆m(w)−
(∑N

t=1y
(t)
)
,

0 ∈ ∂δt+(Π
(t)) +D(t) + y(t)e⊤mt

+ em(z(t))⊤, ∀ t = 1, · · · , N,

0 = Π(t)emt −w, ∀ t = 1, · · · , N,

0 = (Π(t))⊤em − a(t), ∀ t = 1, · · · , N.

(12)

We also write down the KKT system associated with (10) as follows:

0 ∈ ∂δ∗∆m
(u)− λ,

0 ∈ ∂δt+(V
(t)) + Λ(t), ∀ t = 1, · · · , N,

0 = Λ(t)emt − λ, ∀ t = 1, · · · , N,

0 = (Λ(t))⊤em − a(t), ∀ t = 1, · · · , N,

0 =
∑N

t=1y
(t) − u,

0 = V (t) −D(t) − y(t)e⊤mt
− em(z(t))⊤, ∀ t = 1, · · · , N.

(13)

Then, we show the existence of optimal solutions of problems (6) and (9), and their relations
in the following proposition.

Proposition 5 The following statements hold.

(i) The optimal solution of problem (6) exists and the solution set of the KKT system
(12) is nonempty;

(ii) The optimal solution of problem (9) exists and the solution set of the KKT system
(13) is nonempty;

(iii) If
(
u∗, {V (t),∗}, {y(t),∗}, {z(t),∗},λ∗, {Λ(t),∗}

)
is a solution of the KKT system (13),

then (u∗, {V (t),∗}, {y(t),∗}, {z(t),∗}) solves (9) and
(
λ∗, {Λ(t),∗}

)
solves (6).

Proof Statement (i). Note that (6) is equivalent to (4). Thus, we only need to show that
the optimal solution of (4) exists. To this end, we first claim that the feasible set of (4) is
nonempty. For simplicity, let

Cfeas :=
{
(w, {Π(t)}) : w ∈ ∆m, Π(t) ∈ Ωt(w), t = 1, · · · , N

}
,

Ωt(w) :=
{
Π(t) ∈ Rm×mt : Π(t)emt = w, (Π(t))⊤em = a(t), Π(t) ≥ 0

}
, t = 1, · · · , N.

14

Fast Algorithm for Computing Wasserstein Barycenters

Recall that the simplex ∆m is nonempty. Then, for any fixed w̄ ∈ ∆m, consider the sets
Ω1(w̄), · · · , ΩN (w̄). For any t = 1, · · · , N , since a(t) is the weight vector of the discrete
probability distribution P(t), we have that e⊤mt

a(t) = 1. Using this fact and e⊤mw̄ = 1, we
have from (De Loera and Kim, 2014, Lemma 2.2) that each Ωt(w̄) is nonempty. Hence, Cfeas
is nonempty. Moreover, it is not hard to see that Cfeas is closed and bounded. This together
with the continuity of the objective function in (4) implies that the optimal solution of (4)
exists. Hence, the optimal solution of (6) exists. Now, let (w∗, {Π(t),∗}) be an optimal
solution of (6). Since the set {(w, {Π(t)}) : w ∈ ∆m, Π(t) ≥ 0, t = 1, · · · , N} is a convex
polyhedron and all constraint functions in (6) are affine, then it follows from (Ruszczyński,
2006, Theorem 3.25) that there exist multipliers y(t),∗ ∈ Rm, z(t),∗ ∈ Rmt , t = 1, · · · , N
such that

(
w∗, {Π(t),∗}, {y(t),∗}, {z(t),∗}

)
satisfies the KKT system (12). Thus, the solution

set of the KKT system (12) is also nonempty. This proves statement (i).
Statement (ii). Let

(
w∗, {Π(t),∗}, {y(t),∗}, {z(t),∗}

)
be a solution of the KKT system (12).

It follows from statement (i) that such a solution exists. Now, consider u∗ =
∑N

t=1y
(t),∗,

λ∗ = w∗, Λ(t),∗ = Π(t),∗, V (t),∗ = D(t) + y(t),∗e⊤mt
+ em(z(t),∗)⊤, t = 1, · · · , N . Then, by

simple calculations and recalling (2), one can verify that
(
u∗, {V (t),∗}, {y(t),∗}, {z(t),∗},λ∗,

{Λ(t),∗}
)

satisfies the KKT system (13). Hence, the solution set of the KKT system (13)
is nonempty. Moreover, from (Ruszczyński, 2006, Theorem 3.27), we see that

(
u∗, {V (t),∗},

{y(t),∗}, {z(t),∗}
)

is also an optimal solution of (9). This shows that the optimal solution of
(9) exists.

Statement (iii). First, it is easy to see from (Ruszczyński, 2006, Theorem 3.27) that (u∗,
{V (t),∗}, {y(t),∗}, {z(t),∗}) solves problem (9). Then, simplifying the KKT system (13) and
recalling (2), one can verify that (λ∗, {Λ(t),∗}, {y(t),∗}, {z(t),∗}) satisfies the KKT system
(12) with λ∗ in place of w and Λ(t),∗ in place of Π(t). Now, using (Ruszczyński, 2006,
Theorem 3.27) again, we see that

(
λ∗, {Λ(t),∗}

)
is an optimal solution of (6). This proves

statement (iii).

In order to present the global convergence of Algorithm 1 based on the theory developed
in (Fazel et al., 2013; Li et al., 2016), we first express problem (9) as follows:

min
u,{V (t)},{y(t)},{z(t)}

θ
(
u, {V (t)}

)
+ g
(
{y(t)}, {z(t)}

)

s.t. A

u

vec(V (1))...
vec(V (N))

+B1

y(1)

...
y(N)

+B2

z(1)

...
z(N)

 =

0

vec(D(1))...
vec(D(N))

 ,

where θ
(
u, {V (t)}

)
= δ∗∆m

(u) +
∑N

t=1δ
t
+(V

(t)), g
(
{y(t)}, {z(t)}

)
=
∑N

t=1⟨z(t), a(t)⟩ and

A =

[
−Im

Im
∑

t mt

]
, B1 =

1 · · · 1

−em1

.
−emN

⊗Im, B2 =

0 · · · 0

−Im1

.
−ImN

⊗em. (14)

15

Yang, Li, Sun and Toh

It is easy to verify that A⊤A = Im(1+
∑

t mt) ≻ 0 and

B⊤
1 B1 =

m1 + 1
. . .

mN + 1

⊗ Im ≻ 0, B⊤
2 B2 = m

Im1

. . .
ImN

 ≻ 0.

For notational simplicity, denote

W := (u, {V (t)}, {y(t)}, {z(t)},λ, {Λ(t)}),
Wk := (uk, {V (t),k}, {y(t),k}, {z(t),k},λk, {Λ(t),k}),
y := [y(1); · · · ;y(N)], yk := [y(1),k; · · · ;y(N),k],

z := [z(1); · · · ; z(N)], zk := [z(1),k; · · · ; z(N),k],

v := [vec(V (1)); · · · ; vec(V (N))], vk := [vec(V (1),k); · · · ; vec(V (N),k)],

d := [0; vec(D(1)); · · · ; vec(D(N))], vec({Λ(t)}) := [vec(Λ(1)); · · · ; vec(Λ(N))],

vec(W) := [u;v;y; z;λ; vec({Λ(t)})].

By using the above notation, we can rewrite problem (9) in a compact form as follows:

min θ(u,v) + g(y, z)

s.t. A[u;v] +B[y; z] = d,
(15)

where B = [B1 B2]. Then, our sGS-ADMM (Algorithm 1) is precisely a 2-block sPADMM
applied to the compact form (15) of (9) with a specially designed proximal term. In par-
ticular, Step 1 of the algorithm is the same as computing

(uk+1, vk+1) = argmin
u,v

{
Lβ(u,v,y

k, zk;λk, {Λ(t),k})
}
. (16)

It follows from (Li et al., 2016, Proposition 5) that Step 2a–2c is equivalent to

(yk+1, zk+1) = argmin
y,z

{
Lβ(u

k+1,vk+1,y, z;λk, {Λ(t),k}) + β
2 ∥[y; z]− [yk; zk]∥2C

}
, (17)

where the matrix C in the proximal term is the symmetric Gauss-Seidel decomposition
operator of B⊤B and it is given by

C =

[
B⊤

1 B2

(
B⊤

2 B2

)−1
B⊤

2 B1 0
0 0

]
.

Based on the above fact that the sGS-ADMM can be reformulated as a 2-block sPADMM
with a specially designed semi-proximal term, one can directly obtain the global convergence
of Algorithm 1 from that of the 2-block sPADMM.

Theorem 6 Let β > 0, τ ∈ (0, 1+
√
5

2) and
{(

uk, {V (t),k}, {y(t),k}, {z(t),k},λk, {Λ(t),k}
)}

be
the sequence generated by the sGS-ADMM in Algorithm 1. Then, the sequence

{(
uk, {V (t),k},

{y(t),k}, {z(t),k}
)}

converges to an optimal solution of (9) and the sequence
{(

λk, {Λ(t),k}
)}

converges to an optimal solution of (6).

16

Fast Algorithm for Computing Wasserstein Barycenters

Proof Here we apply the convergence result developed in (Fazel et al., 2013) to the 2-
block sPADMM outlined in (16), (17) and Step 3 of Algorithm 1. Since both A⊤A and
βC+βB⊤B are positive definite, the conditions for ensuring the convergence of the 2-block
sPADMM in (Fazel et al., 2013, Theorem B.1) are satisfied, thus along with Proposition 5,
one can readily apply (Fazel et al., 2013, Theorem B.1) to obtain the desired results.

Moreover, based on the equivalence of our sGS-ADMM to a 2-block sPADMM, the linear
convergence rate of the sGS-ADMM can also be established from the linear convergence
result of the 2-block sPADMM; see (Han et al., 2018, Section 4.1) for more details.

Define

M :=

0 βC + βB⊤B
(τβ)−1Im(1+

∑N
t=1 mt)

+ sτβ

A⊤A A⊤B 0
B⊤A B⊤B 0
0 0 0

 ,

where A, B1, B2 are defined in (14) and sτ := (5 − τ − 3min{τ, τ−1})/4. One can verify
that M ≻ 0. Indeed, it is easy to see from the definition that M ≻ 0 if and only if

M1 :=

[
A⊤A A⊤B
B⊤A s−1

τ C + (1 + s−1
τ)B⊤B

]
≻ 0.

Thus, one only needs to verify that M1 ≻ 0. Note that A⊤A = AA⊤ = Im(1+
∑N

t=1 mt) ≻ 0.
The Schur complement of A⊤A takes the form of

M2 := s−1
τ C + (1 + s−1

τ)B⊤B −B⊤A(A⊤A)−1A⊤B = s−1
τ C + s−1

τ B⊤B

= s−1
τ

[
B⊤

1 B2

(
B⊤

2 B2

)−1
B⊤

2 B1 +B⊤
1 B1 B⊤

1 B2

B⊤
2 B1 B⊤

2 B2

]
.

Since B⊤
2 B2 ≻ 0 and its Schur complement satisfies

B⊤
1 B2

(
B⊤

2 B2

)−1
B⊤

2 B1 +B⊤
1 B1 −B⊤

1 B2

(
B⊤

2 B2

)−1
B⊤

2 B1 = B⊤
1 B1 ≻ 0,

then M2 ≻ 0. This implies that M1 ≻ 0 and hence M ≻ 0.
We also let W := Rm×⊗N

t=1Rm×mt ×Rm×⊗N
t=1Rmt ×Rm×⊗N

t=1Rm×mt and Ω ⊆ W be
the solution set of the KKT system (13). Recall from Proposition 5(ii) that Ω is nonempty.
Moreover, for any W ∈ W , we define

dist(W, Ω) := inf
W ′∈Ω

∥vec(W)− vec(W ′)∥,

distM (W, Ω) := inf
W ′∈Ω

∥vec(W)− vec(W ′)∥M .

Since M ≻ 0, distM is also a point-to-set distance. We present the linear convergence result
of our sGS-ADMM in the next theorem.

Theorem 7 Let β > 0, τ ∈ (0, 1+
√
5

2) and
{
Wk
}

be the sequence generated by the sGS-
ADMM in Algorithm 1. Then, there exists a constant 0 < ρ < 1 such that, for all k ≥ 1,

dist2M (Wk+1, Ω)+β
∥∥[yk+1; zk+1]−[yk; zk]

∥∥2
C
≤ ρ
(
dist2M (Wk, Ω)+β

∥∥[yk; zk]−[yk−1; zk−1]
∥∥2
C

)
.

17

Yang, Li, Sun and Toh

Proof First we note the equivalence of the sGS-ADMM to a 2-block sPADMM. Next
consider the KKT mapping R : W → W defined by

R(W) :=

λ− Pr∆m(λ+ u){
V (t) − Prt+(V

(t) − Λ(t))
}{

Λ(t)emt − λ
}{

(Λ(t))⊤em − a(t)
}∑N

t=1y
(t) − u{

V (t) −D(t) − y(t)e⊤mt
− em(z(t))⊤

}

, ∀W ∈ W ,

where Pr∆m(·) denotes the projection operator over ∆m and Prt+(·) denotes the projection
operator over Rm×mt

+ for t = 1, · · · , N . It is easy to see that R(·) is continuous on W .
Moreover, note that λ ∈ ∂δ∗∆m

(u) ⇐⇒ u ∈ ∂δ∆m(λ) ⇐⇒ 0 ∈ ∂δ∆m(λ) + λ− (λ+ u) ⇐⇒
λ = Proxδ∆m

(λ+u) = Pr∆m(λ+u), where the first equivalence follows from (2). Similarly,
−Λ(t) ∈ ∂δt+(V

(t)) ⇐⇒ V (t) = (V (t) − Λ(t))+, where (·)+ = max(· , 0). Using these facts,
one can easily see that R(W) = 0 if and only if W ∈ Ω. By Theorem 6, we know that the
sequence {Wk} converges to an optimal solution W∗ ∈ Ω, and hence R(W∗) = 0.

Now, since ∆m, Rm×m1
+ , · · · ,Rm×mN

+ are polyhedral, it follows from (Rockafellar and
Wets, 1998, Example 11.18) and the definition of projections that Pr∆m(·) and Prt+(·) are
piecewise polyhedral. Hence, R(·) is also piecewise polyhedral. From (Robinson, 1981), we
know that the KKT mapping R satisfies the following error bound condition: there exist
two positive scalars η > 0 and ρ̃ > 0 such that

dist(W, Ω) ≤ η∥vec(R(W))∥, ∀ W ∈ {W | ∥vec(R(W))∥ ≤ ρ̃},

where vec(R(W)) denotes the vectorization of R(W).
Finally, based on the above facts and Proposition 5, we can apply (Han et al., 2018,

Corollary 1) to obtain the desired results.

5. Numerical Experiments

In this section, we conduct numerical experiments to test our sGS-ADMM in Algorithm
1 for computing Wasserstein barycenters with pre-specified support points, i.e., solving
problem (4). In all our experiments, we use the 2-Wasserstein distance. We also com-
pare our sGS-ADMM with the commercial software Gurobi and two existing representa-
tive methods, namely, the iterative Bregman projection (IBP) method (Benamou et al.,
2015) and the modified Bregman ADMM (BADMM) (Ye et al., 2017). For ease of future
reference, we briefly recall IBP and BADMM in Appendices A and B, respectively. All
experiments are run in Matlab R2016a on a workstation with Intel(R) Xeon(R) Processor
E-2176G@3.70GHz (this processor has 6 cores and 12 threads) and 64GB of RAM, equipped
with 64-bit Windows 10 OS.

18

Fast Algorithm for Computing Wasserstein Barycenters

5.1 Implementation Details
In our implementation of the sGS-ADMM, a data scaling technique is used. Let κ =
∥[D(1), · · · , D(N)]∥F . Then, problem (4) is equivalent to

min
w, {Π(t)}

∑N
t=1⟨D̂

(t), Π(t)⟩

s.t. Π(t)emt = w, (Π(t))⊤em = a(t), Π(t) ≥ 0, ∀ t = 1, · · · , N,

e⊤mw = 1, w ≥ 0,

(18)

where D̂(t) = κ−1D(t) for t = 1, · · · , N . We then apply the sGS-ADMM to solve the dual
problem of (18) to obtain an optimal solution of (4). Indeed, this technique has been widely
used in ADMM-based methods to improve their numerical performances; see, for example,
(Lam et al., 2018). Its effectiveness has also been observed in our experiments.

For a set of vectors {a(t) | t = 1,· · ·, N}, we define the notation ∥{a(t)}∥ =
(∑N

t=1 ∥a(t)∥2
) 1

2 .
Similarly, for a set of matrices {A(t) | t = 1, . . . , N}, we define the notation ∥{A(t)}∥F =(∑N

t=1 ∥A(t)∥2F
) 1

2 . For any u, {V (t)}, {y(t)}, {z(t)},λ, {Λ(t)}, we define the relative residuals
based on the KKT system (13) as follows:

η1(λ,u) =
∥λ−Pr∆m (λ+u)∥

1+∥λ∥+∥u∥ , η2({V (t)}, {Λ(t)}) = ∥{V (t)−(V (t)−Λ(t))+}∥F
1+∥{V (t)}∥F+∥{Λ(t)}∥F

,

η3(λ, {Λ(t)}) = ∥{Λ(t)emt−λ}∥
1+∥λ∥+∥{Λ(t)}∥F

, η4({Λ(t)}) = ∥{(Λ(t))⊤em−a(t)}∥F
1+∥{a(t)}∥+∥{Λ(t)}∥F

,

η5(u, {y(t)}) = ∥
∑N

t=1 y
(t)−u∥

1+∥
∑N

t=1 y
(t)∥+∥u∥

, η6({V (t)}, {y(t)}, {z(t)}) = ∥{V (t)−D(t)−y(t)e⊤mt
−em(z(t))⊤}∥F

1+∥{D(t)}∥F+∥{V (t)}∥F+∥{y(t)}∥+∥{z(t)}∥ ,

η7(λ) =
|e⊤mλ−1|+∥min(λ, 0)∥

1+∥λ∥ , η8({Λ(t)}) = ∥min([Λ(1),··· ,Λ(N)], 0)∥F
1+∥{Λ(t)}∥F

.

Moreover, let W = (u, {V (t)}, {y(t)}, {z(t)},λ, {Λ(t)}) and

ηP (W) = max
{
η1(λ,u), 0.7η2

(
{V (t)}, {Λ(t)}

)
, η3
(
λ, {Λ(t)}

)
, η4
(
{Λ(t)}

)}
,

ηD(W) = max
{
0.7η5

(
u, {y(t)}

)
, η6
(
{V (t)}, {y(t)}, {z(t)}

)
, η7(λ), 0.7η8

(
{Λ(t)}

)}
.

Following discussions in Theorem 7, it is easy to verify that max{ηP (W), ηD(W)} = 0 if
and only if W is a solution of the KKT system (13). The relative duality gap is defined by

ηgap(W) :=
| objP (W)− objD(W) |

1 + | objP (W) |+ | objD(W) |
,

where objP (W) =
∑N

t=1⟨D(t), Π(t)⟩ and objD(W) = δ∗∆m

(∑N
t=1 y

(t)
)
+
∑N

t=1⟨z(t), a(t)⟩. We
use these relative residuals in our stopping criterion for the sGS-ADMM. Specifically, we
will terminate the sGS-ADMM when

max
{
ηP (Wk+1), ηD(Wk+1), ηgap(Wk+1)

}
< Tolsgs,

where Wk+1 is generated by the sGS-ADMM at the k-th iteration and the value of Tolsgs
will be given later.

19

Yang, Li, Sun and Toh

We also use a similar numerical strategy as (Lam et al., 2018, Section 4.4) to update
the penalty parameter β in the augmented Lagrangian function at every 50 iterations.
Specifically, set β0 = 1. At the k-th iteration, if mod(k, 50) ̸= 0, set βk+1 = βk; otherwise,
compute χk+1 = ηD(Wk+1)

ηP (Wk+1)
and then, set

βk+1 =

σβk, if χk+1 > 2,
σ−1βk, if 1

χk+1 > 2,

βk, otherwise,

with σ =

1.1, if max{χk+1, 1

χk+1 } ≤ 50,

2, if max{χk+1, 1
χk+1 } > 500,

1.5, otherwise.

Note that the value of β is adjusted based on the primal and dual information. As observed
from our experiments, this updating strategy can efficiently balance the convergence of the
primal and dual variables, and improve the convergence speed of our algorithm.

Computing all the above residuals is expensive. Thus, in our implementations, we only
compute them and check the termination criteria at every 50 iterations. In addition, we
initialize the sGS-ADMM at origin and choose the dual step-size τ to be 1.618.

For IBP, the regularization parameter ε is chosen from {0.1, 0.01, 0.001} in our experi-
ments. For ε ∈ {0.1, 0.01}, we follow (Benamou et al., 2015, Remark 3) to implement the
algorithm (see (20)) and terminate it when

∥wk+1−wk∥
1+∥wk+1∥+∥wk∥ < Tolibp,

∥{u(t),k+1−u(t),k}∥
1+∥{u(t),k+1}∥+∥{u(t),k}∥ < Tolibp,

∥{v(t),k+1−v(t),k}∥F
1+∥{v(t),k+1}∥+∥{v(t),k}∥ < Tolibp,

where (wk+1, {u(t),k+1}, {v(t),k+1}) is generated at the k-th iteration in (20). Moreover, for
ε = 0.001, we follow (Peyré and Cuturi, 2019, Section 4.4) to adapt the log-sum-exp trick
for stabilizing IBP (see (21)). This stabilized IBP is terminated when

∥w̃k+1−w̃k∥
1+∥w̃k+1∥+∥w̃k∥ < Tolibp,

∥{ũ(t),k+1−ũ(t),k}∥
1+∥{ũ(t),k+1}∥+∥{ũ(t),k}∥ < Tolibp,

∥{ṽ(t),k+1−ṽ(t),k}∥F
1+∥{ṽ(t),k+1}∥+∥{ṽ(t),k}∥ < Tolibp,

where (w̃k+1, {ũ(t),k+1}, {ṽ(t),k+1}) is generated at the k-th iteration in (21). The value of
Tolibp will be given later.

For BADMM, we use the Matlab codes2 implemented by the authors in (Ye et al., 2017)
and terminate them when

max
{
η3
(
wk+1, {Γ(t),k+1}

)
, η4({Π(t),k+1})

}
< Tolb,

∥wk+1−wk∥
1+∥wk+1∥+∥wk∥ < Tolb,

∥{Π(t),k+1−Γ(t),k+1}∥F
1+∥{Π(t),k+1}∥F+∥{Γ(t),k+1}∥F

< Tolb,
∥{Π(t),k+1−Π(t),k}∥F

1+∥{Π(t),k}∥F+∥{Π(t),k+1}∥F
< Tolb,

∥{Γ(t),k+1−Γ(t),k}∥F
1+∥{Γ(t),k}∥F+∥{Γ(t),k+1}∥F

< Tolb,
∥{Λ(t),k+1−Λ(t),k}∥F

1+∥{Λ(t),k}∥F+∥{Λ(t),k+1}∥F
< Tolb,

where (wk+1, {Π(t),k+1}, {Γ(t),k+1}, {Λ(t),k+1}) is generated by BADMM at the k-th iteration
(see Appendix B) and the value of Tolb will be given later. The above termination criteria
are checked at every 200 iterations.

We also apply Gurobi 8.0.0 (Gurobi Optimization, 2018) to solve problem (4). It is well
known that Gurobi is a highly powerful commercial package for solving linear programming
problems and can provide high quality solutions. Therefore, we use the solution obtained by

2. Available in https://github.com/bobye/WBC_Matlab.

20

https://github.com/bobye/WBC_Matlab

Fast Algorithm for Computing Wasserstein Barycenters

Gurobi as a benchmark to evaluate the qualities of solutions obtained by different methods.
In our experiments, we use the default parameter settings for Gurobi. Note that, by the
default settings, Gurobi actually uses a concurrent optimization strategy to solve LPs, which
runs multiple classical LP solvers (the primal/dual simplex method and the barrier method)
on multiple threads simultaneously and chooses the one that finishes first.

We shall conduct the experiments as follows. In subsection 5.2, we test different methods
on synthetic data to show their computational performance in terms of accuracy and speed.
In subsection 5.3, we test on the MNIST data set to visualize the quality of results obtained
by each method. In subsection 5.4, we conduct some experiments for the free support case.
A summary of our experiments is given in subsection 5.5.

5.2 Experiments on Synthetic Data
In this subsection, we generate a set of discrete probability distributions {P(t)}Nt=1 with
P(t) =

{
(a

(t)
i , q

(t)
i) ∈ R+ × Rd : i = 1, · · · ,mt

}
and

∑mt
i=1 a

(t)
i = 1, and then apply different

methods to solve problem (4) to compute a Wasserstein barycenter P =
{
(wi, xi) ∈ R+ ×

Rd : i = 1, · · · ,m
}

, where m and (x1, · · · ,xm) are pre-specified. Specifically, we set
d = 3, γ1 = · · · = γN = 1

N and m1 = · · · = mN = m′ for convenience, and choose different
(N,m,m′). Then, given each triple (N,m,m′), we randomly generate a trial in the following
three cases.

• Case 1. Each distribution has different dense weights (all weights are nonzero)
and different support points. In this case, we first generate the support points
{q(t)i : i = 1, · · · ,m′, t = 1, · · · , N} whose entries are drawn from a Gaussian mixture
distribution via the following Matlab commands:

gm_num = 5; gm_mean = [-20; -10; 0; 10; 20];
sigma = zeros(1,1,gm_num); sigma(1,1,:) = 5*ones(gm_num,1);
gm_weights = rand(gm_num,1);
distrib = gmdistribution(gm_mean, sigma, gm_weights);

Next, for each t, we generate an associated weight vector (a
(t)
1 , · · · , a(t)m′) whose entries

are drawn from the standard uniform distribution on the open interval (0, 1), and then
normalize it so that

∑m′

i=1 a
(t)
i = 1. After generating all {P(t)}Nt=1, we use the k-means3

method to choose m points from {q(t)i : i = 1, · · · ,m′, t = 1, · · · , N} to be the support
points of the barycenter.

• Case 2. Each distribution has different sparse weights (most of weights are
zeros) and different support points. In this case, we also generate the support
points {q(t)i : i = 1, · · · ,m′, t = 1, · · · , N} whose entries are drawn from a Gaussian
mixture distribution as in Case 1. Next, for each t, we choose a subset St ⊂ {1, · · · ,m′}
of size s uniformly at random and generate an s-sparse weight vector (a

(t)
1 , · · · , a(t)m′),

which has uniformly distributed entries in the interval (0, 1) on St and zeros on Sc
t .

Then, we normalize it so that
∑m′

i=1 a
(t)
i = 1. The number s is set to be ⌊m′×sr⌋, where

3. In our experiments, we call the Matlab function “kmeans”, which is built in statistics and machine
learning toolbox.

21

Yang, Li, Sun and Toh

sr denotes the sparsity ratio and ⌊a⌋ denotes the greatest integer less than or equal to
a. The number m is set to be larger than s. The support points of the barycenter are
chosen from {q(t)i : a

(t)
i ̸= 0, i = 1, · · · ,m′, t = 1, · · · , N} by the k-means method. Note

that, in this case, one can solve a smaller problem (5) to obtain an optimal solution of
(4); see Remark 1.

• Case 3. Each distribution has different dense weights (all weights are nonzero),
but has the same support points. In this case, we set m = m′ and generate the
points (q1, · · · , qm) whose entries are drawn from a Gaussian mixture distribution as in
Case 1. Then, all distributions {P(t)}Nt=1 and the barycenter use (q1, · · · , qm) as the
support points. Next, for each t, we generate an associated weight vector (a(t)1 , · · · , a(t)m)
whose entries are drawn from the standard uniform distribution on the open interval
(0, 1), and then normalize it so that

∑m
i=1 a

(t)
i = 1.

Tables 1, 2, 3 present numerical results of different methods for Cases 1, 2, 3, respec-
tively, where we use different choices of (N, m, m′) and different sparsity ratio sr. In
this part of experiments, we set Tolsgs = Tolb = 10−5 and Tolibp = 10−8 for termination.
We also set the maximum numbers of iterations for sGS-ADMM, BADMM and IBP to
3000, 3000, 10000, respectively. In each table, “normalized obj” denotes the normalized
objective value defined by |F({Π(t),∗})−Fgu|

Fgu
, where F({Π(t),∗}) :=

∑N
t=1⟨D(t), Π(t),∗⟩ with

(w∗, {Π(t),∗}) being the terminating solution obtained by each algorithm and Fgu denotes
the objective value obtained by Gurobi; “feasibility” denotes the value of

ηfeas
(
w∗, {Π(t),∗}

)
:= max

{
η3
(
w∗, {Π(t),∗}

)
, η4
(
{Π(t),∗}

)
, η7(w

∗), η8
(
{Π(t),∗}

)}
,

which is used to measure the deviation of the terminating solution from the feasible set;
“time” denotes the computational time (in seconds); “iter” denotes the number of iterations.
All results presented are the average of 10 independent trials.

One can observe from Tables 1, 2, 3 that our sGS-ADMM performs much better than
BADMM and IBP (ε = 0.001) in the sense that it always returns an objective value con-
siderably closer to that of Gurobi while achieving comparable feasibility accuracy in less
computational time. For IBP with ε ∈ {0.1, 0.01}, it always converges faster and achieves
better feasibility accuracy, but it gives a rather poor objective value, which means that the
solution obtained is rather crude. Although a small ε = 0.001 can give a better approxi-
mation, it may also lead to the numerical instability. The log-sum-exp stabilization trick
can be used to ameliorate this issue. However, with this trick, IBP (see (21)) must give up
some computational efficiency in matrix-vector multiplications and require many additional
exponential evaluations that are typically time-consuming. Moreover, when ε is small, the
convergence of IBP becomes quite slow, as evident in three tables. For BADMM, it can
give an objective value close to that of Gurobi. However, it takes much more time and its
feasibility accuracy is the worst for most cases. Thus, the performance of BADMM is still
not good enough. Moreover, the convergence of BADMM is still unknown. For Gurobi,
when N , m and m′ are relatively small, it can solve the problem highly efficiently. However,
when the problem size becomes larger, Gurobi would take much more time. As an exam-
ple, for the case where (N, m, m′) = (100, 300, 200) in Table 1, one would need to solve a

22

Fast Algorithm for Computing Wasserstein Barycenters

large-scale LP containing 6000300 nonnegative variables and 50001 equality constraints. In
this case, we see that Gurobi is about 20 times slower than our sGS-ADMM.

Table 1: Numerical results on synthetic data for Case 1. In this case, each distribution
has different dense weights and different support points. In the table, “sGS” stands for
sGS-ADMM; “BA” stands for BADMM; “IBP1” stands for IBP with ε = 0.1; “IBP2”
stands for IBP with ε = 0.01; “IBP3” stands for IBP with ε = 0.001.

N m m′ sGS BA IBP1 IBP2 IBP3 Gurobi sGS BA IBP1 IBP2 IBP3
normalized obj feasibility

20 100 100 1.17e-4 5.54e-5 1.17e+0 7.09e-2 3.95e-2 1.05e-15 1.40e-5 2.00e-4 3.97e-9 3.92e-8 1.22e-4
20 200 100 2.45e-4 1.18e-4 1.30e+0 9.98e-2 6.60e-2 9.60e-16 1.39e-5 2.61e-4 2.68e-9 2.08e-8 3.91e-5
20 200 200 4.01e-4 1.05e-3 2.21e+0 1.28e-1 4.70e-2 2.41e-7 1.39e-5 3.07e-4 3.66e-9 2.63e-8 4.29e-5
20 300 200 4.65e-4 1.53e-3 2.33e+0 1.56e-1 6.61e-2 1.97e-7 1.41e-5 3.67e-4 2.66e-9 1.08e-8 1.45e-5
50 100 100 9.85e-5 1.20e-4 1.14e+0 6.40e-2 3.46e-2 2.03e-7 1.40e-5 2.92e-4 7.61e-9 1.30e-7 1.76e-4
50 200 100 1.57e-4 1.30e-4 1.24e+0 8.93e-2 5.76e-2 1.25e-7 1.41e-5 3.99e-4 5.83e-9 8.13e-8 1.01e-4
50 200 200 2.52e-4 1.29e-3 2.09e+0 1.20e-1 4.22e-2 1.76e-7 1.41e-5 4.60e-4 4.73e-9 3.63e-8 7.31e-5
50 300 200 4.02e-4 1.93e-3 2.21e+0 1.41e-1 5.74e-2 4.34e-7 1.40e-5 5.58e-4 3.81e-9 3.89e-8 3.07e-5
100 100 100 2.12e-4 1.35e-4 1.11e+0 6.24e-2 3.39e-2 2.48e-7 1.45e-5 3.63e-4 7.56e-9 9.03e-8 2.55e-4
100 200 100 3.32e-4 1.99e-4 1.21e+0 8.65e-2 5.68e-2 1.89e-7 1.43e-5 5.10e-4 6.16e-9 5.23e-8 1.08e-4
100 200 200 5.15e-4 1.35e-3 2.11e+0 1.21e-1 4.35e-2 3.42e-7 1.51e-5 5.89e-4 6.12e-9 7.69e-8 8.21e-5
100 300 200 6.56e-4 2.04e-3 2.21e+0 1.40e-1 5.53e-2 5.14e-7 1.47e-5 7.24e-4 5.00e-9 6.11e-8 3.88e-5

iter time (in seconds)
20 100 100 2595 3000 112 2965 10000 1.84 3.23 33.27 0.14 3.45 24.91
20 200 100 2495 3000 107 1761 10000 6.67 8.48 69.20 0.25 3.85 47.51
20 200 200 2585 3000 103 2049 10000 10.56 19.24 139.12 0.50 9.39 98.31
20 300 200 2465 3000 102 1505 10000 23.68 28.14 208.91 0.76 10.59 152.04
50 100 100 2930 3000 112 4440 10000 9.21 13.18 85.33 0.33 12.30 60.53
50 200 100 2820 3000 110 2712 10000 53.21 27.36 175.70 0.68 15.94 127.48
50 200 200 2900 3000 104 2472 10000 72.73 56.66 341.90 1.30 29.45 250.09
50 300 200 2840 3000 103 1850 10000 299.94 85.01 517.10 1.95 33.35 376.42
100 100 100 2985 3000 117 5398 10000 9.89 28.92 173.16 0.74 32.72 127.03
100 200 100 2980 3000 110 2937 10000 31.03 58.46 347.86 1.40 35.72 254.26
100 200 200 3000 3000 105 2730 10000 63.72 117.03 690.55 2.61 64.81 503.19
100 300 200 3000 3000 102 1923 10000 3703.33 178.99 1032.84 3.80 68.31 756.29

We next follow (Cuturi and Peyré, 2016, Section 3.4) to conduct a simple example to
visually show the qualities of the barycenter w∗ and transport plans {Π(t),∗} computed
by different algorithms. Consider two one-dimensional continuous Gaussian distributions
N (µ1, σ

2
1) and N (µ2, σ

2
2). It is known from (Agueh and Carlier, 2011, Section 6.2) and

(McCann, 1997, Example 1.7) that their 2-Wasserstein barycenter is the Gaussian distri-
bution N

(µ1+µ2

2 ,
(
σ1+σ2

2

)2). Based on this fact, we discretize two Gaussian distributions
N (−2,

(
1
4

)2
) and N (2, 1), and then apply different algorithms to compute their barycenter,

which is expected to be close to the discretization of the true barycenter N (0,
(
5
8

)2
). The

discretization is performed on the interval [−4, 5] with n uniform grids. Since this part
of experiments is not intended for comparing speed, we shall use tighter tolerances, say,
Tolsgs = Tolb = 10−6 and Tolibp = 10−10, and set the maximum numbers of iterations for all
algorithms to 20000. Figure 1(a) shows the barycenters computed by different algorithms
for n = 500. From this figure, we see that the barycenter computed by Gurobi oscillates
wildly. A similar result has also been observed in (Cuturi and Peyré, 2016, Section 3.4). The

23

Yang, Li, Sun and Toh

Table 2: Numerical results on synthetic data for Case 2. In this case, each distribution
has different sparse weights and different support points. In the table, “sGS” stands for
sGS-ADMM; “BA” stands for BADMM; “IBP1” stands for IBP with ε = 0.1; “IBP2”
stands for IBP with ε = 0.01; “IBP3” stands for IBP with ε = 0.001.

N m m′ sr sGS BA IBP1 IBP2 IBP3 Gurobi sGS BA IBP1 IBP2 IBP3
normalized obj feasibility

50 50 500 0.1 4.22e-5 1.58e-4 5.52e-1 3.54e-2 2.60e-2 9.22e-16 1.45e-5 2.67e-4 1.67e-8 5.90e-7 5.46e-4
50 100 500 0.2 8.58e-5 1.38e-4 1.14e+0 6.19e-2 3.30e-2 9.28e-8 1.40e-5 2.92e-4 7.05e-9 6.29e-8 1.76e-4
50 100 1000 0.1 1.02e-4 1.51e-4 1.16e+0 6.47e-2 3.49e-2 8.89e-8 1.41e-5 2.76e-4 8.08e-9 7.59e-8 1.57e-4
50 200 1000 0.2 3.21e-4 1.30e-3 2.12e+0 1.22e-1 4.38e-2 8.11e-8 1.41e-5 4.65e-4 4.26e-9 3.69e-8 6.65e-5
100 50 500 0.1 6.26e-5 9.86e-5 5.62e-1 3.53e-2 2.42e-2 3.36e-8 1.49e-5 2.96e-4 2.00e-8 2.73e-7 6.47e-4
100 100 500 0.2 1.93e-4 1.68e-4 1.14e+0 6.08e-2 3.22e-2 2.36e-15 1.48e-5 3.65e-4 7.97e-9 8.39e-7 2.52e-4
100 100 1000 0.1 1.89e-4 1.56e-4 1.13e+0 6.07e-2 3.15e-2 1.79e-8 1.46e-5 3.62e-4 9.97e-9 8.65e-7 2.39e-4
100 200 1000 0.2 6.04e-4 1.29e-3 2.12e+0 1.22e-1 4.32e-2 3.19e-7 1.50e-5 5.84e-4 5.41e-9 7.17e-8 7.40e-5
200 50 500 0.1 1.31e-4 9.33e-5 5.63e-1 3.56e-2 2.38e-2 3.43e-8 1.51e-5 3.54e-4 3.54e-8 8.22e-7 7.21e-4
200 100 500 0.2 4.20e-4 1.61e-4 1.12e+0 6.01e-2 3.23e-2 1.06e-7 1.56e-5 4.39e-4 7.80e-9 2.50e-7 3.19e-4
200 100 1000 0.1 3.93e-4 1.65e-4 1.12e+0 6.16e-2 3.29e-2 1.97e-7 1.57e-5 4.35e-4 1.42e-8 3.25e-7 3.27e-4
200 200 1000 0.2 1.27e-3 1.35e-3 2.09e+0 1.20e-1 4.34e-2 3.09e-7 1.61e-5 7.25e-4 7.78e-9 2.31e-7 1.12e-4

iter time (in seconds)
50 50 500 0.1 2850 3000 147 7790 10000 1.66 1.49 12.78 0.05 2.43 10.46
50 100 500 0.2 2965 3000 110 3098 10000 9.19 13.06 83.96 0.33 8.60 60.05
50 100 1000 0.1 2945 3000 109 4071 10000 9.13 12.98 84.11 0.32 11.29 59.90
50 200 1000 0.2 2885 3000 104 2294 10000 75.44 55.95 337.89 1.29 27.23 249.11
100 50 500 0.1 2965 3000 137 6915 10000 1.86 5.64 41.85 0.21 10.25 31.29
100 100 500 0.2 3000 3000 111 4520 10000 10.40 28.71 171.21 0.70 27.18 126.31
100 100 1000 0.1 3000 3000 118 5675 10000 11.01 28.76 171.31 0.74 34.22 126.46
100 200 1000 0.2 3000 3000 104 2985 10000 63.89 117.93 674.10 2.57 70.33 499.95
200 50 500 0.1 3000 3000 154 8143 10000 3.98 13.56 85.42 0.48 24.49 63.71
200 100 500 0.2 3000 3000 126 5600 10000 27.66 57.73 339.87 1.60 68.39 254.00
200 100 1000 0.1 3000 3000 116 5764 10000 31.36 57.75 340.34 1.47 70.34 254.03
200 200 1000 0.2 3000 3000 104 3107 10000 143.95 224.84 1366.46 5.14 146.97 1010.56

possible reason for this phenomenon is that the LP (4) has multiple solutions and Gurobi
using a simplex method may not find a “smooth” one. IBP always finds a “smooth” solution
thanks to the entropic regularization in the objective. A smaller ε (say, 0.001) indeed gives
a better approximation. On the other hand, our sGS-ADMM and BADMM are also able
to find a “smooth” barycenter, although they are designed to solve the original LP. This
could be due to the fact that these two algorithms are developed based on the augmented
Lagrangian function or its variants, and they implicitly have a ‘smoothing’ regularization
(due to the penalty or proximal term) in each subproblem. In particular, just as IBP with
ε = 0.001, the barycenter computed by the sGS-ADMM can match the true barycenter
almost exactly. We also show the transport plans for n = 500 in Figure 1(b). One can
see that the transport plans computed by sGS-ADMM are more similar to those computed
by Gurobi, while the transport plans computed by IBP are more blurry. Consequently,
these two figures clearly demonstrate the superior quality of the solution obtained by our
sGS-ADMM.

To further compare the performances of Gurobi and our sGS-ADMM, we conduct more
experiments on synthetic data for Case 1, where we fix two of three dimensions m, m′,

24

Fast Algorithm for Computing Wasserstein Barycenters

Table 3: Numerical results on synthetic data for Case 3. In this case, each distribution
has different dense weights, but has the same support points. In the table, “sGS” stands
for sGS-ADMM; “BA” stands for BADMM; “IBP1” stands for IBP with ε = 0.1;
“IBP2” stands for IBP with ε = 0.01; “IBP3” stands for IBP with ε = 0.001.

N m m′ sGS BA IBP1 IBP2 IBP3 Gurobi sGS BA IBP1 IBP2 IBP3
normalized obj feasibility

20 50 50 1.68e-4 4.08e-4 1.02e+0 2.23e-2 4.48e-3 6.79e-16 1.42e-5 2.22e-4 1.28e-8 3.71e-6 1.17e-3
20 100 100 1.84e-4 4.12e-4 2.12e+0 6.26e-2 1.91e-3 1.97e-8 1.43e-5 2.92e-4 1.24e-8 1.49e-6 5.11e-4
20 200 200 8.12e-4 2.80e-3 4.34e+0 1.72e-1 1.59e-3 2.55e-7 1.40e-5 4.38e-4 4.10e-9 1.25e-6 2.49e-4
50 50 50 9.73e-5 6.26e-4 1.02e+0 2.18e-2 3.84e-3 4.11e-8 1.63e-5 3.18e-4 1.98e-8 1.18e-5 1.52e-3
50 100 100 2.47e-4 3.91e-4 2.07e+0 6.04e-2 2.48e-3 9.32e-8 1.64e-5 4.32e-4 1.25e-8 2.16e-6 8.39e-4
50 200 200 6.17e-4 2.81e-3 4.23e+0 1.65e-1 1.50e-3 3.37e-7 1.49e-5 6.46e-4 6.70e-9 1.37e-7 3.77e-4
100 50 50 1.39e-4 2.72e-4 1.02e+0 2.15e-2 3.95e-3 1.17e-7 1.85e-5 4.05e-4 3.16e-8 1.14e-5 1.95e-3
100 100 100 3.85e-4 4.13e-4 2.07e+0 6.00e-2 2.49e-3 1.88e-7 1.73e-5 5.27e-4 1.08e-8 4.97e-6 1.05e-3
100 200 200 1.06e-3 2.94e-3 4.19e+0 1.63e-1 1.46e-3 3.79e-7 1.65e-5 8.17e-4 6.30e-9 7.26e-7 4.91e-4
200 50 50 2.45e-4 2.87e-4 1.02e+0 2.15e-2 3.65e-3 5.21e-8 1.90e-5 4.43e-4 1.87e-7 1.31e-5 2.14e-3
200 100 100 7.75e-4 4.08e-4 2.05e+0 5.91e-2 2.59e-3 6.45e-8 1.81e-5 6.45e-4 1.87e-8 5.66e-6 1.28e-3
200 200 200 2.33e-3 2.96e-3 4.15e+0 1.61e-1 1.34e-3 3.43e-7 1.73e-5 1.02e-3 8.17e-9 9.32e-7 5.90e-4

iter time (in seconds)
20 50 50 2895 3000 316 8465 10000 0.29 0.72 5.59 0.03 0.79 5.22
20 100 100 2925 3000 225 6383 10000 1.69 3.68 33.69 0.03 0.75 24.68
20 200 200 2765 3000 157 6037 10000 9.90 21.28 139.94 0.04 1.11 98.05
50 50 50 3000 3000 286 9815 10000 1.34 1.91 13.48 0.04 1.23 10.98
50 100 100 3000 3000 226 8759 10000 9.41 14.11 85.93 0.05 1.81 60.24
50 200 200 2995 3000 161 5603 10000 74.60 62.07 343.52 0.08 2.17 250.74
100 50 50 3000 3000 428 9685 10000 1.98 6.28 42.33 0.09 1.89 31.40
100 100 100 3000 3000 330 9182 10000 11.35 30.30 173.30 0.13 3.25 126.06
100 200 200 3000 3000 157 7767 10000 51.47 125.53 685.99 0.14 4.79 501.63
200 50 50 3000 3000 399 9876 10000 4.20 13.78 86.35 0.15 3.44 63.13
200 100 100 3000 3000 238 9662 10000 29.93 58.16 343.43 0.15 5.16 252.98
200 200 200 3000 3000 157 9107 10000 135.97 225.66 1370.98 0.23 9.10 1003.73

N and vary the third one. In this part of experiments, we use Tolsgs = 10−5 to terminate
our sGS-ADMM without setting the maximum iteration number. Figure 2 shows the com-
putational results of the two algorithms over a range of m, m′ or N , and each value is an
average over 10 independent trials. From the results, one can see that our sGS-ADMM
always returns a similar objective value as Gurobi and has a reasonably good feasibility
accuracy. For the computational time, our sGS-ADMM increases approximately linearly
with respect to m, m′ or N individually, while Gurobi increases much more rapidly. This
is because the solution methods used in Gurobi (the primal/dual simplex method and the
barrier method) are no longer efficient enough and may consume too much memory (due
to the Cholesky factorization of a huge coefficient matrix) when the problem size becomes
large, although Gurobi already uses a parallel implementation to exploit multiple proces-
sors. Moreover, Gurobi may lack robustness, especially for solving large-scale problems.
Indeed, as observed from our experiments, the computational times taken by Gurobi can
vary a lot among the 10 randomly generated instances, especially m, m′ or N becomes
large. On the other hand, as discussed in Section 3, the main computational complexity of
our sGS-ADMM at each iteration is O(Nmm′). Hence, when two of m, m′, N are fixed,

25

Yang, Li, Sun and Toh

-4 -3 -2 -1 0 1 2 3 4 5
0

0.01

0.02

0.03
n = 500

g1

g2

7w
w1

w2

w3

w4

w5

w6
-0.6 0 0.6
0

0.01

(a) Distributions and barycenters

n = 300

Gurobi sGS-ADMM BADMM IBP(ε=0.1) IBP(ε=0.01) IBP(ε=0.001)

Π(1)

Π(2)

n = 500

Gurobi sGS-ADMM BADMM IBP(ε=0.1) IBP(ε=0.01) IBP(ε=0.001)

Π(1)

Π(2)

1

(b) Transport plans for n = 500

Figure 1: In figure (a): g1 stands for the discretization of N (−2,
(
1
4

)2
); g2 stands for

the discretization of N (2, 1); w̄ stands for the discretization of the true barycenter
N (0,

(
5
8

)2
) of g1 and g2; w1, w2, w3 stand for the barycenter computed by Gurobi,

sGS-ADMM and BADMM, respectively; w4, w5, w6 stand for the barycenter com-
puted by IBP with ε = 0.1, 0.01, 0.001, respectively. The discretization is performed
on the interval [−4, 5] with n uniform grids. In figure (b): Π(1) (resp. Π(2)) stands
for the transport plan between the barycenter and g1 (resp. g2).

the total computational cost of our sGS-ADMM is approximately linear with respect to
the remaining one, as shown in Figure 2. This then highlights another advantage of our
method. In addition, although our sGS-ADMM takes advantage of many efficient built-in
functions (e.g., matrix multiplication and addition) in Matlab that can execute on mul-
tiple computational threads, we believe that there is still ample room for improving our
sGS-ADMM with a dedicated parallel implementation on a suitable computing platform
other than Matlab. But we will leave this topic as future research.

26

Fast Algorithm for Computing Wasserstein Barycenters

100 200 300 400 500 600

m

0

50

100

150

200

250

300

350

400

450
tim

e
(s

.)

N = 50, m' = 100

Gurobi
sGS-ADMM

normalized obj feasibility
m Gurobi sGS-ADMM Gurobi sGS-ADMM

100 0 9.19e-05 2.03e-07 1.40e-05
200 0 1.57e-04 1.25e-07 1.41e-05
300 0 3.03e-04 1.56e-07 1.40e-05
400 0 3.91e-04 1.76e-07 1.41e-05
500 0 5.20e-04 1.76e-07 1.40e-05
600 0 5.74e-04 1.71e-07 1.41e-05

(a) m varies with N = 50 and m′ = 100

50 100 150 200 250 300

m'

0

100

200

300

400

500

600

700

800

900

1000

tim
e

(s
.)

N = 50, m = 500

Gurobi
sGS-ADMM

normalized obj feasibility
m′ Gurobi sGS-ADMM Gurobi sGS-ADMM
50 0 4.14e-04 2.54e-10 1.40e-05
100 0 4.85e-04 6.60e-10 1.40e-05
150 0 5.81e-04 2.56e-10 1.41e-05
200 0 6.38e-04 4.14e-10 1.42e-05
250 0 7.64e-04 1.41e-11 1.41e-05
300 0 9.64e-04 2.35e-11 1.41e-05

(b) m′ varies with N = 50 and m = 500

0.5 1 2 3 4 5 6 7 8

N #104

0

500

1000

1500

2000

2500

3000

3500

4000

tim
e

(s
.)

m = 20, m' = 10

Gurobi
sGS-ADMM

normalized obj feasibility
N Gurobi sGS-ADMM Gurobi sGS-ADMM

5000 0 1.28e-05 9.78e-09 5.19e-06
10000 0 1.12e-05 2.15e-08 4.60e-06
20000 0 1.03e-05 1.39e-08 4.19e-06
40000 0 9.83e-06 1.79e-08 3.92e-06
60000 0 9.59e-06 1.87e-08 3.77e-06
80000 0 9.35e-06 1.92e-08 3.78e-06

(c) N varies with m = 20 and m′ = 10

Figure 2: Comparisons between Gurobi and sGS-ADMM

27

Yang, Li, Sun and Toh

5.3 Experiments on MNIST

To better visualize the quality of results obtained by each method, we conduct similar
experiments to (Cuturi and Doucet, 2014, Section 6.1) on the MNIST4 data set (LeCun
et al., 1998). Specifically, we randomly select 50 images for each digit (0 ∼ 9) and resize
each image to ζ times of its original size of 28× 28, where ζ is drawn uniformly at random
between 0.5 and 2. Then, we randomly put each resized image in a larger 56 × 56 blank
image and normalize the resulting image so that all pixel values add up to 1. Thus, each
image can be viewed as a discrete distribution supported on grids. We then apply sGS-
ADMM, BADMM and IBP with ε ∈ {0.01, 0.001} to compute a Wasserstein barycenter of
the resulting images for each digit. The size of barycenter is set to 56 × 56. Note that,
since each input image can be viewed as a sparse discrete distribution because most of the
pixel values are zeros, one can actually solve a smaller problem (5) to obtain a barycenter;
see Remark 1. Moreover, for such grid-supported data, an efficient convolutional technique
(Solomon et al., 2015) and its stabilized version (Schmitz et al., 2018, Section 4.1.2) have
also been used to substantially accelerate IBP and the stabilized IBP, respectively, in our
experiments.

The computational results are shown in Figure 3. One can see that, our sGS-ADMM can
provide a clear “smooth” barycenter just like IBP with ε = 0.001, although it is designed to
solve the original LP. This again shows the superior quality of the solution obtained by our
sGS-ADMM. Moreover, the results obtained by running sGS-ADMM for 100s are already
much better than those obtained by running BADMM for 800s. IBP performs very well
on this grid-supported data with smaller ε leading to sharper barycenters. Here, we would
also like to point out that, without the novel convolutional technique, IBP (especially with
a small ε) would take much longer time to produce sharper images. Moreover, when using
the convolutional technique in IBP, one can no longer take advantage of the sparsity of the
distributions and needs to solve the problem on the full grids. This may limit the adoption
of the convolutional technique for the case when the distributions are highly sparse (most
of weights are zeros) but supported on very dense or high dimensional grids. In that case,
our sGS-ADMM may be more favorable.

5.4 Experiments for the Free Support Case

In this subsection, we briefly compare the performance of different methods used as sub-
routines in the alternating minimization method for computing a barycenter whose support
points are not pre-fixed, i.e., solving problem (3); see Remark 4. The experiments are con-
ducted on the same image data sets5 with three different categories (mountains, sky and
water) as in (Ye and Li, 2014). For each category, the data set consists of 1000 discrete
distributions and each distribution is obtained by clustering pixel colors of an image in this
category (Li and Wang, 2008, Section 2.3). The average number of support points is around
8 and the dimension of each support point is 3. We then compute the barycenter of each
data set. The number of support points of the barycenter is chosen as m = 10, 50 and
the initial m support points are computed as the centroids of clusters obtained by applying
k-means to all the support points of the given distributions.

4. Available in http://yann.lecun.com/exdb/mnist/.
5. Available in https://github.com/bobye/d2_kmeans/tree/master/data

28

http://yann.lecun.com/exdb/mnist/
https://github.com/bobye/d2_kmeans/tree/master/data

Fast Algorithm for Computing Wasserstein Barycenters

sGS-ADMM

100s

200s

400s

800s

BADMM

100s

200s

400s

800s

IBP (ε = 0.01)

100s

200s

400s

800s

IBP (ε = 0.001)

100s

200s

400s

800s

1

Figure 3: Barycenters obtained by running different methods for 100s, 200s, 400s,
800s, respectively.

29

Yang, Li, Sun and Toh

The performance of the alternating minimization method for solving problem (3) nat-
urally depends on the accuracy of the approximate solution obtained for each subproblem
(namely, problem (4)). Basically, a more accurate approximate solution is more likely to
guarantee the descent of the objective in problem (3), but is also more costly to obtain.
Thus, it is nontrivial to design an optimal stopping criterion for the subroutine when solv-
ing each subproblem. In our experiments, we simply use the maximum iteration number
to terminate the subroutine. For sGS-ADMM and BADMM, we follow (Ye et al., 2017) to
set the maximum iteration number to 10. For IBP, we set the maximum iteration number
to 100 for ε = 0.01 and to 1000 for ε = 0.001. As observed from our experiments, such
maximum numbers are ‘optimal’ for IBP in the sense that an approximate solution having
a reasonably good feasibility accuracy can be obtained in less CPU time for most cases. At
each iteration, each subroutine is also warm started by the approximate solution obtained
in the previous iteration. Finally, we terminate the alternating minimization and return
the approximate solution when the relative successive change of the objective in problem
(3) is smaller than 10−5.

The computational results are reported in Table 4. One can see that Gurobi performs
best in terms of the solution accuracy because it always achieves the lowest objective value
and the best feasibility accuracy. However, it is significantly more time consuming, com-
pared with our sGS-ADMM. In comparison to BADMM and IBP, our sGS-ADMM always
returns lower objective values (which are also much closer to those of Gurobi) and better
feasibility accuracy within competitive computational time. Similar to the numerical obser-
vations in (Ye et al., 2017, Section IV), IBP always gives the worse objective values in our
experiments. One possible reason is that, due to the entropy regularization, using IBP as
the subroutine to approximately solve the subproblem is less likely to ensure the monotonic
decrease of the objective values in problem (3) during the iterations. In our experiments, we
have observed that careful tuning of the regularization parameter ε and intricate adjustment
of the corresponding stopping criterion are needed for IBP to perform well as a subroutine
within the alternating minimization method. In view of the above, our sGS-ADMM can
be more favorable to be incorporated in the alternating minimization method for handling
the free support case. But we should also mention that the computation of barycenters
with free supports is still a challenging problem nowadays, which is nonconvex and often
presented in large-scale. More in-depth study on applying our sGS-ADMM to this problem
is needed and will be left as a future research project.

5.5 Summary of Experiments

From the numerical results reported in the last few subsections, one can see that our
sGS-ADMM outperforms the powerful commercial solver Gurobi in terms of the computa-
tional time for solving large-scale LPs arising from Wasserstein barycenter problems. Our
sGS-ADMM is also much more efficient than another non-regularization-based algorithm
BADMM that is designed to solve the primal LP (6). Comparing to IBP on non-grid-
supported data, our sGS-ADMM always returns high quality solutions comparable to those
obtained by Gurobi but within much shorter computational time. Moreover, our sGS-
ADMM is also able to find a “smooth” barycenter as in IBP even though we do not modify
the LP objective function by adding an entropic regularization. Finally, we would like to

30

Fast Algorithm for Computing Wasserstein Barycenters

Table 4: Numerical results for the free support case

data set method m = 10 m = 50

obj feasibility time(s) obj feasibility time(s)

mountains

Gurobi 1490.24 1.56e-12 13.46 1480.38 5.73e-11 103.39
sGS-ADMM 1491.37 2.23e-04 2.25 1481.70 1.03e-04 6.09

BADMM 1497.79 3.46e-03 1.21 1483.24 5.32e-03 8.73
IBP(ε=0.01) 1509.30 3.77e-04 3.71 1503.79 5.84e-04 10.44
IBP(ε=0.001) 1529.99 7.02e-04 37.20 1530.69 1.15e-03 311.93

sky

Gurobi 1623.42 1.50e-12 14.61 1612.30 1.26e-12 89.48
sGS-ADMM 1624.60 2.98e-04 2.31 1614.27 1.12e-04 5.68

BADMM 1632.14 3.12e-03 1.44 1633.07 2.66e-02 1.92
IBP(ε=0.01) 1643.13 7.62e-04 2.99 1637.36 9.06e-04 7.17
IBP(ε=0.001) 1735.32 2.10e-04 26.96 1639.74 1.19e-03 244.22

water

Gurobi 1620.78 3.87e-13 15.52 1611.15 5.05e-11 73.86
sGS-ADMM 1622.20 2.02e-04 2.54 1613.16 1.31e-04 4.76

BADMM 1653.79 8.66e-03 0.27 1615.14 1.02e-02 5.17
IBP(ε=0.01) 1644.79 1.34e-04 3.87 1635.35 3.77e-04 11.98
IBP(ε=0.001) 1734.99 1.40e-04 39.53 1646.01 2.05e-03 197.29

emphasize that in contrast to IBP that uses a small ε, our sGS-ADMM does not suffer from
numerical instability issues or exceedingly slow convergence speed. Thus, one can easily
apply our sGS-ADMM for computing a high quality Wasserstein barycenter without the
need to implement sophisticated stabilization techniques as in the case of IBP.

6. Concluding Remarks

In this paper, we consider the problem of computing a Wasserstein barycenter with pre-
specified support points for a set of discrete probability distributions with finite support
points. This problem can be modeled as a large-scale linear programming (LP) problem.
To solve this LP, we derive its dual problem and then adapt a symmetric Gauss-Seidel
based alternating direction method of multipliers (sGS-ADMM) to solve the resulting dual
problem. We also establish its global linear convergence without any condition. Moreover,
we have designed the algorithm so that all the subproblems involved can be solved exactly
and efficiently in a distributed fashion. This makes our sGS-ADMM highly suitable for
computing a Wasserstein barycenter on a large data set. Finally, we have conducted detailed
numerical experiments on synthetic data sets and image data sets to illustrate the efficiency
of our method.

Acknowledgments

The authors are grateful to the editor and the anonymous referees for their valuable sugges-
tions and comments, which have helped to improve the quality of this paper. The research

31

Yang, Li, Sun and Toh

of Defeng Sun was supported in part by a start-up research grant from the Hong Kong Poly-
technic University. The research of Kim-Chuan Toh was supported in part by the Ministry
of Education, Singapore, Academic Research Fund (Grant No. R-146-000-256-114).

Appendix A. An iterative Bregman projection method

The iterative Bregman projection (IBP) method was adapted by Benamou et al. (2015) to
solve the following problem, which introduces an entropic regularization in the original LP
(4):

min
w, {Π(t)}

1
N

∑N
t=1

(
⟨D(t), Π(t)⟩ − εEt(Π

(t))
)

s.t. Π(t)emt = w, (Π(t))⊤em = a(t), Π(t) ≥ 0, ∀ t = 1, · · · , N,

e⊤mw = 1, w ≥ 0,

(19)

where the entropic regularization Et(Π
(t)) is defined as Et(Π

(t)) = −
∑m

i=1

∑mt
j=1 π

(t)
ij (log(π

(t)
ij)

−1) for t = 1, · · · , N and ε > 0 is a regularization parameter. Let Ξt = exp(−D(t)/ε) ∈
Rm×mt for t = 1, · · · , N . Then, it follows from (Benamou et al., 2015, Remark 3) that IBP
for solving (19) is given by

u(t),k+1 = wk./
(
Ξtv

(t),k
)
, t = 1, · · · , N,

v(t),k+1 = a(t)./
(
Ξ⊤
t u

(t),k+1
)
, t = 1, · · · , N,

Π(t),k+1 = Diag(u(t),k+1) ΞtDiag(v(t),k+1), t = 1, · · · , N,

wk+1 =
(∏N

t=1

(
u(t),k+1 ⊙ (Ξtv

(t),k+1)
)) 1

N
,

(20)

with w0 = 1
mem and v(t),0 = emt for t = 1, · · · , N , where Diag(x) denotes the diagonal

matrix with the vector x on the main diagonal, “./” denotes the entrywise division and “⊙”
denotes the entrywise product. Note that the main computational cost in each iteration of
the above iterative scheme is O(m

∑N
t=1mt). Moreover, when all distributions have the same

m′ support points, IBP can be implemented highly efficiently with a O((m+m′)N) memory
complexity, while sGS-ADMM and BADMM still require O(mm′N) memory. Specifically,
in this case, IBP can avoid forming and storing the large matrix [Ξ1, · · · ,ΞN] (since each Ξt

is the same) to compute Ξtv
(t),k and Ξ⊤

t u
(t),k+1. Thus, IBP can reduce much computational

cost and take less time at each iteration. This advantage can be seen in Table 3 for ε ∈
{0.1, 0.01}. However, we should be mindful that IBP only solves problem (19) to obtain an
approximate solution of the original problem (4). Although a smaller ε can give a better
approximation, IBP may become numerically unstable when ε is too small; see (Benamou
et al., 2015, Section 1.3) for more details. To alleviate this numerical instability, one may
carry out the computations in (20) in the log domain and use the log-sum-exp stabilization
trick to avoid underflow/overflow for small values of ε; see (Peyré and Cuturi, 2019, Section
4.4) for more details. Specifically, by taking logarithm on both sides of the equations in
(20) and letting ũ(t),k := ε log(u(t),k), ṽ(t),k := ε log(v(t),k), w̃(t),k := ε log(w(t),k) and

32

Fast Algorithm for Computing Wasserstein Barycenters

ã(t) := ε log(a(t)), we obtain after some manipulations that

ũ(t),k+1 = w̃k + ũ(t),k − ε log

([
mt∑
j=1

exp

(
ũ
(t),k
i +ṽ

(t),k
j −D

(t)
ij

ε

)]
i

)
, t = 1, · · · , N,

ṽ(t),k+1 = ã(t) + ṽ(t),k − ε log

([
m∑
i=1

exp

(
ũ
(t),k+1
i +ṽ

(t),k
j −D

(t)
ij

ε

)]
j

)
, t = 1, · · · , N,

Π(t),k+1 = exp

(
ũ(t),k+1e⊤mt

+em(ṽ(t),k+1)⊤−D(t)

ε

)
, t = 1, · · · , N,

w̃k+1 =
ε

N

N∑
t=1

log

([
mt∑
j=1

exp

(
ũ
(t),k+1
i +ṽ

(t),k+1
j −D

(t)
ij

ε

)]
i

)
,

(21)

where w̃0 = ε log(1
mem) and ũ(t),0 = 0, ṽ(t),0 = 0 for t = 1, · · · , N . After obtaining w̃k+1,

one can recover wk+1 by setting wk+1 := exp
(
w̃k+1/ε

)
. In contrast to (20), the log-domain

iterations (21) is more stable for a small ε. However, at each step, (21) requires additional
exponential operations that are typically time-consuming. It also loses some computational
efficiency in replacing the matrix-vector multiplications (which can take advantage of the
multiprocessing capability in Matlab’s Intel Math Kernel Library) in (20) by the log-
sum-exp operations. Hence, iterations (21) can be much less efficient than iteration (20)
in computation. This issue has also been discussed in (Peyré and Cuturi, 2019, Remark
4.23). Moreover, when ε is small, the convergence of IBP can become quite slow. In our
experiments, we use (20) for ε ∈ {0.1, 0.01} and use (21) for ε = 0.001.

Appendix B. A modified Bregman ADMM
The Bregman ADMM (BADMM) was first proposed by Wang and Banerjee (2014) and
then was adapted to solve (4) by Ye et al. (2017). For notational simplicity, let

C1 := {(Π(1), · · · ,Π(N)) : (Π(t))⊤em = a(t), Π(t) ≥ 0, t = 1, · · · , N},
C2 := {(Γ(1), · · · ,Γ(N),w) : w ∈ ∆m, Γ(t)emt = w, Γ(t) ≥ 0, t = 1, · · · , N}.

Then, problem (4) can be equivalently rewritten as

min
{Π(t)}, {Γ(t)},w

∑N
t=1⟨D

(t), Π(t)⟩

s.t. Π(t) = Γ(t), t = 1, · · · , N,

(Π(1), · · · ,Π(N)) ∈ C1, (Γ(1), · · · ,Γ(N),w) ∈ C2.

(22)

The iterative scheme of BADMM for solving (22) is given by

(Π(1),k+1, · · · ,Π(N),k+1) = argmin
(Π(1),··· ,Π(N))∈C1

{
N∑
t=1

(
⟨D(t), Π(t)⟩+ ⟨Λ(t),k, Π(t)⟩+ ρKL(Π(t), Γ(t),k)

)}
,

(Γ(1),k+1, · · · ,Γ(N),k+1,wk+1) = argmin
(Γ(1),··· ,Γ(N),w)∈C2

{
N∑
t=1

(
−⟨Λ(t),k, Γ(t)⟩+ ρKL(Γ(t), Π(t),k+1)

)}
,

Λ(t),k+1 = Λ(t),k + ρ(Π(t),k+1 − Γ(t),k+1), t = 1, · · · , N,

33

Yang, Li, Sun and Toh

where KL(·, ·) denotes the KL divergence defined by KL(A,B) =
∑

ij aij ln(
aij
bij

) for any
two matrices A, B of the same size. The subproblems in above scheme have closed-form
solutions; see (Ye et al., 2017, Section III.B) for more details. Indeed, at the k-th iteration,

u(t),k =

 a
(t)
j

(Γ
(t),k
:j)⊤ exp(−1

ρD
(t)
:j − 1

ρΛ
(t),k
:j)

j=1,··· ,mt

, t = 1, · · · , N,

Π(t),k+1 =
(
Γ(t),k ⊙ exp(−1

ρD
(t) − 1

ρΛ
(t),k)

)
Diag(u(t),k), t = 1, · · · , N,

w̃(t),k+1 =
(
(Π

(t),k+1
i:)⊤ exp(1ρΛ

(t),k
i:)

)
i=1,··· ,m

, t = 1, · · · , N,

wk+1 =
(∏N

t=1w̃
(t),k+1

) 1
N
/(

e⊤m

(∏N
t=1w̃

(t),k+1
) 1

N

)
,

v(t),k+1 =

 wk+1
i

(Π
(t),k+1
i:)⊤ exp(1ρΛ

(t),k
i:)

i=1,··· ,m

, t = 1, · · · , N,

Γ(t),k+1 = Diag(v(t),k+1)
(
Π(t),k+1 ⊙ exp(1ρΛ

(t),k)
)
, t = 1, · · · , N.

Moreover, in order to avoid computing the geometric mean (
∏N

t=1 w̃
(t),k+1)

1
N for updating

wk+1, Ye et al. (2017) actually use one of the following heuristic rules to update wk+1:

(R1) wk+1 =
(∑N

t=1w̃
(t),k+1

)/(
e⊤m

(∑N
t=1w̃

(t),k+1
))

,

(R2) wk+1 =
(∑N

t=1

√
w̃(t),k+1

)2/(
e⊤m

(∑N
t=1

√
w̃(t),k+1

)2)
.

In their Matlab codes, (R2) is the default updating rule. The main computational com-
plexity without considering the exponential operations in BADMM is O(m

∑N
t=1mt). For

the exponential operations at each step, the practical computational cost could be a few
times more than the previous cost of O(m

∑N
t=1mt).

References
M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM Journal on Mathe-

matical Analysis, 43(2):904–924, 2011.

E. Anderes, S. Borgwardt, and J. Miller. Discrete Wasserstein barycenters: Optimal trans-
port for discrete data. Mathematical Methods of Operations Research, 84(2):389–409,
2016.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, volume 408. Springer, 2011.

J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projec-
tions for regularized transportation problems. SIAM Journal on Scientific Computing,
37(2):A1111–A1138, 2015.

34

Fast Algorithm for Computing Wasserstein Barycenters

J. Bigot and T. Klein. Characterization of barycenters in the Wasserstein space by averaging
optimal transport maps. ESAIM: Probability and Statistics, 22:35–57, 2018.

S. Borgwardt. An LP-based, strongly polynomial 2-approximation algorithm for sparse
Wasserstein barycenters. To appear in Operational Research, 2020.

S. Borgwardt and S. Patterson. Improved linear programs for discrete barycenters. IN-
FORMS Journal on Optimization, 2(1):14–33, 2020.

G. Carlier, A. Oberman, and E. Oudet. Numerical methods for matching for teams and
Wasserstein barycenters. ESAIM: Mathematical Modelling and Numerical Analysis, 49
(6):1621–1642, 2015.

C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent. Mathematical Programming, 155(1):
57–79, 2016.

L. Chen, D. F. Sun, and K.-C. Toh. An efficient inexact symmetric Gauss-Seidel based ma-
jorized ADMM for high-dimensional convex composite conic programming. Mathematical
Programming, 161(1-2):237–270, 2017.

L. Chen, X. Li, D. F. Sun, and K.-C. Toh. On the equivalence of inexact proximal ALM
and ADMM for a class of convex composite programming. To appear in Mathematical
Programming, 2019.

S. Claici, E. Chien, and J. Solomon. Stochastic Wasserstein barycenters. In Proceedings
of the 35th International Conference on Machine Learning, volume 80, pages 999–1008,
2018.

L. Condat. Fast projection onto the simplex and the ℓ1 ball. Mathematical Programming,
158(1-2):575–585, 2016.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in Neural Information Processing Systems, pages 2292–2300, 2013.

M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters. In International
Conference on Machine Learning, pages 685–693, 2014.

M. Cuturi and G. Peyré. A smoothed dual approach for variational Wasserstein problems.
SIAM Journal on Imaging Sciences, 9(1):320–343, 2016.

J. A. De Loera and E. D. Kim. Combinatorics and geometry of transportation polytopes:
An update. Contemporary Mathematics, 625:37–76, 2014.

A. Dessein, N. Papadakis, and J.-L. Rouas. Regularized optimal transport and the rot
mover’s distance. Journal of Machine Learning Research, 19(1):590–642, 2018.

M. Essid and J. Solomon. Quadratically regularized optimal transport on graphs. SIAM
Journal on Scientific Computing, 40(4):A1961–A1986, 2018.

35

Yang, Li, Sun and Toh

M. Fazel, T. K. Pong, D. F. Sun, and P. Tseng. Hankel matrix rank minimization with
applications to system identification and realization. SIAM Journal on Matrix Analysis
and Applications, 34(3):946–977, 2013.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximations. Computers & Mathematics with Applications, 2(1):17–
40, 1976.

R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires.
Revue Francaise d’Automatique, Informatique, Recherche Opérationelle, 9(R-2):41–76,
1975.

Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual, 2018. URL http://www.
gurobi.com.

D. Han, D. F. Sun, and L. Zhang. Linear rate convergence of the alternating direction
method of multipliers for convex composite programming. Mathematics of Operations
Research, 43(2):622–637, 2018.

B. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back substitution
for separable convex programming. SIAM Journal on Optimization, 22(2):313–340, 2012.

X. Y. Lam, J. S. Marron, D. F. Sun, and K.-C. Toh. Fast algorithms for large scale
generalized distance weighted discrimination. Journal of Computational and Graphical
Statistics, 27(2):368–379, 2018.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Li and J. Z. Wang. Real-time computerized annotation of pictures. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 30(6):985–1002, 2008.

M. Li, D. F. Sun, and K.-C. Toh. A convergent 3-block semi-proximal ADMM for convex
minimization problems with one strongly convex block. Asia-Pacific Journal of Opera-
tional Research, 32(3):1550024(19p), 2015.

X. Li, D. F. Sun, and K.-C. Toh. A Schur complement based semi-proximal ADMM for
convex quadratic conic programming and extensions. Mathematical Programming, 155
(1-2):333–373, 2016.

X. Li, D. F. Sun, and K.-C. Toh. QSDPNAL: A two-phase augmented lagrangian method for
convex quadratic semidefinite programming. Mathematical Programming Computation,
10(4):703–743, 2018.

R.J. McCann. A convexity principle for interacting gases. Advances in Mathematics, 128
(1):153–179, 1997.

A.M. Oberman and Y. Ruan. An efficient linear programming method for optimal trans-
portation. arXiv preprint arXiv: 1509.03668, 2015.

36

http://www.gurobi.com
http://www.gurobi.com

Fast Algorithm for Computing Wasserstein Barycenters

G. Peyré and M. Cuturi. Computational optimal transport. Foundations and Trends® in
Machine Learning, 11(5-6):355–607, 2019.

J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its application
to texture mixing. In International Conference on Scale Space and Variational Methods
in Computer Vision, pages 435–446, 2011.

S. M. Robinson. Some continuity properties of polyhedral multifunctions. Mathematical
Programming at Oberwolfach, vol.14 of Mathematical Programming Studies, pages 206–
214, 1981.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer, 1998.

A. Ruszczyński. Nonlinear Optimization. Princeton University Press, Princeton, 2006.

M.A. Schmitz, M. Heitz, N. Bonneel, F. Ngole, D. Coeurjolly, M. Cuturi, G. Peyré, and J.-L.
Starck. Wasserstein dictionary learning: Optimal transport-based unsupervised nonlinear
dictionary learning. SIAM Journal on Imaging Sciences, 11(1):643–678, 2018.

B. Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport prob-
lems. SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and
L. Guibas. Convolutional Wasserstein distances: Efficient optimal transportation on
geometric domains. ACM Transactions on Graphics, 34(4):1–11, 2015.

D. F. Sun, K.-C. Toh, and L. Yang. A convergent 3-block semiproximal alternating direction
method of multipliers for conic programming with 4-type constraints. SIAM Journal on
Optimization, 25(2):882–915, 2015.

C. A. Uribe, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and A. Nedić. Distributed
computation of Wasserstein barycenters over networks. In IEEE Conference on Decision
and Control, pages 6544–6549, 2018.

Cédric Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business
Media, 2008.

H. Wang and A. Banerjee. Bregman alternating direction method of multipliers. In Advances
in Neural Information Processing Systems, pages 2816–2824, 2014.

Y. Xie, X. Wang, R. Wang, and H. Zha. A fast proximal point method for computing exact
Wasserstein distance. In Proceedings of Machine Learning Research, volume 115, pages
433–453, 2020.

J. Ye and J. Li. Scaling up discrete distribution clustering using ADMM. In IEEE Inter-
national Conference on Image Processing, pages 5267–5271, 2014.

J. Ye, P. Wu, J. Z. Wang, and J. Li. Fast discrete distribution clustering using Wasserstein
barycenter with sparse support. IEEE Transactions on Signal Processing, 65(9):2317–
2332, 2017.

37

	Introduction
	Problem Statement
	sGS-ADMM for Computing Wasserstein Barycenters
	Convergence Analysis
	Numerical Experiments
	Implementation Details
	Experiments on Synthetic Data
	Experiments on MNIST
	Experiments for the Free Support Case
	Summary of Experiments

	Concluding Remarks
	An iterative Bregman projection method
	A modified Bregman ADMM

