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To motivate our discussions, let us consider the following simple
one-dimensional optimization problem

min
x∈<

1
2
x2

s.t. x ≥ 0 .

The corresponding Lagrangian function is

L(x, λ) :=
1
2
x2 + 〈λ, x〉 , (x, λ) ∈ <2 .
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The unique optimal solution and its corresponding Lagrangian
multiplier are given by

x∗ = 0 & λ∗ = 0 ,

which satisfy the Karush-Kuhn-Tucker (KKT) condition

∇xL(x∗, λ∗) = x∗ + λ∗ = 0 , 0 ≤ x∗ ⊥ (−λ∗) ≥ 0 .

The Hessian of L with respect to x∗ is:

∇2
xxL(x∗, λ∗) = I (the best one can dream of) .
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Now, let us consider the following equivalent form:

min
(t,x)∈<2

t

s.t. x ≥ 0 ,

1
2
x2 ≤ t .

m



National University of Singapore Optimization and Its Applications’06 5'

&

$

%

(SOC)

min
(t,x)∈<2

t

s.t. x ≥ 0 ,

‖(2x, 2 − t)‖2 ≤ 2 + t ⇐⇒ (2 + t, 2x, 2 − t) ∈ K3 ,

where for each n ≥ 1, Kn+1 is the (n + 1)-dimensional second-order
cone

Kn+1 := {(t, x) ∈ < × <n : t ≥ ||x||2} .
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The Lagrangian function for (SOC) is

L(t, x, λ, µ) := t + 〈λ, x〉 + 〈µ, (2 + t, 2x, 2 − t)〉 .

The Hessian of L with respective to (t, x) now turns to be

∇2
(t,x)(t,x)L(t, x, λ, µ) = 0 (too bad???) .
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The seemingly harmless transformations have completed changed
the Hessian of the corresponding Lagrangian functions (from I to
0).

This change should be related to the non-polyhedral structure of
Kn+1.

This simple example suggests that when we talk about
second-order optimality conditions and perturbation analysis, we
need to include the “curvature” of the non-polyderal set involved.
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Let’s now turn to the general optimization problem

(OP )

min
x∈X

f(x)

s.t. G(x) ∈ K ,

where f : X → < and G : X → Y are C2 (twice continuously
differentiable), X,Y finite-dimensional real Hilbert vector spacesa

each equipped with a scalar product 〈·, ·〉 and its induced norm
‖ · ‖, and K is a closed convex set in Y .

aA real vector space H is called a Hilbert space if there is an “inner product”

(or a “scalar product”) denoted 〈·, ·〉 satisfying i) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ H; ii)

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 ∀x, y, and z ∈ H; iii) 〈αx, y〉 = α〈x, y〉 ∀α ∈ < and

x, y ∈ H; iv) 〈x, x〉 ≥ 0 ∀x ∈ H; and v) 〈x, x〉 = 0 only if x = 0.
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Some notation:

For any given x ∈ X and ε > 0, let the open ball be
Bε(x) := {x ∈ X : ‖x − x‖ < ε} .

Suppose that X ′ and Y ′ are two finite-dimensional real Hilbert
spaces and that F : X × X ′ 7→ Y ′. If F is Fréchet-differentiable at
(x, x′) ∈ X × X ′, then we use JF (x, x′) (respectively, JxF (x, x′))
to denote the Fréchet-derivative of F at (x, x′) (respectively, the
partial Fréchet-derivative of F at (x, x′) with respect to x).

Let ∇F (x, x′) := JF (x, x′)∗, the adjoint of JF (x, x′) (respectively,
∇xF (x, x′) := JxF (x, x′)∗, the adjoint of JxF (x, x′)).
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If F is twice Fréchet-differentiable at (x, x′) ∈ X × X ′, we define

J 2F (x, x′) := J (JF )(x, x′)

J 2
xxF (x, x′) := Jx(JxF )(x, x′),

∇2F (x, x′) := J (∇F )(x, x′) ,

∇2
xxF (x, x′) := Jx(∇xF )(x, x′) .
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For any closed set D ⊆ Y , we write T i
D(y) and TD(y) for the inner

tangent cone and the contingent (Bouligand) cone of D at y,
respectively. That is,

T i
D(y) = {d ∈ Y : dist(y + td,D) = o(t) , t ≥ 0}

and

TD(y) = {d ∈ Y : ∃ tk ↓ 0, dist(y + tkd,D) = o(tk)}.
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When D is a closed convex set, the inner tangent cone and the
contingent cone are equal:

TD(y) = T i
D(y) = {d ∈ Y : dist(y + td,D) = o(t) , t ≥ 0}, y ∈ D .

We use NK(y) to denote the normal cone of K at y in the sense of
convex analysis

NK(y) =

 {d ∈ Y : 〈d, z − y〉 ≤ 0 ∀ z ∈ K} if y ∈ K,

∅ if y /∈ K.
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The inner and outer second order tangent setsa to the set D at the
point y ∈ D and in the direction d ∈ Y are defined by

T i,2
D (y, d) := {w ∈ Y : dist(y + td +

1
2
t2w,D) = o(t2) , t ≥ 0}

and

T 2
D(y, d) := {w ∈ Y : ∃ tk ↓ 0 & dist(y + tkd +

1
2
t2kw,D) = o(t2k)}.

aJ.F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization

Problems, Springer (New York, 2000).
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We have T i,2
D (z, d) ⊆ T 2

D(y, d) and T i,2
D (z, d) = ∅ (respectively,

T 2
D(z, d) = ∅) if d /∈ T i

D(y) (respectively, d /∈ TD(y)).

In general, T i,2
D (z, d) 6= T 2

D(z, d) even if D is convex. However,
when K := {0} × Sp

+ ⊂ Y := <m × Sp,

T i,2
K (y, d) = T 2

K(y, d) ∀ y, d ∈ Y.

where Sp is the linear space of all p × p real symmetric matrices,
and Sp

+ is the cone of all p × p positive semidefinite matrices.

Recall that for any set D ⊆ Z, the support function of the set D is
defined as

σ(y,D) := sup
z∈D

〈z, y〉, y ∈ Y .
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The Lagrangian function L : X × Y → < for (OP) is defined by

L(x, µ) := f(x) + 〈µ,G(x)〉 , (x, µ) ∈ X × Y.

Let x̄ be a feasible solution to (OP). Robinson’s constraint
qualification (CQ) is as follows:

0 ∈ int{G(x̄) + JG(x̄)X − K},

(or JG(x̄)X + TK(G(x̄)) = Y ),
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If x̄ is a locally optimal solution to (OP ) and Robinson’s CQ holds
at x̄, then there exists a Lagrangian multiplier µ̄ ∈ Y , together with
x̄, satisfying the KKT condition:

∇xL(x̄, µ̄) = 0 and µ̄ ∈ NK(G(x̄)) ,

and equivalently if K is a closed convex cone

∇f(x̄) + ∇G(x̄)µ̄ = 0 & K 3 G(x̄) ⊥ (−µ̄) ∈ K∗ ,

where K∗ is the dual cone of K given by

K∗ := {d ∈ Y : 〈d, y〉 ≥ 0 ∀ y ∈ K } .

Let M(x̄) denote the set of Lagrangian multipliers.
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• Tremendous progress achieved in necessary and sufficient
second-order optimality conditions and stability analysis in (OP )
subject to data perturbation.

• K is a polyhedral set, the theory quite complete. Especially for

(NLP )

min
x∈<n

f(x)

s.t. h(x) = 0 ,

g(x) ≤ 0 .
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For (NLP ), Robinson’s CQ reduces to the Mangasarian-Fromovitz
constraint qualification (MFCQ):

 J hi(x̄), i = 1, . . . ,m, are linearly independent,

∃ d ∈ X : J hi(x̄)d = 0 , i = 1, . . . ,m , J gj(x̄)d < 0 , j ∈ I(x̄),

where
I(x̄) := {j : gj(x̄) = 0 , j = 1, . . . , p}.

A stronger notion than the MFCQ in (NLP ) is the LICQ:

{J hi(x̄)}m
i=1 and {J gj(x̄)}j∈I(x̄) are linearly independent.
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In 1980, Robinsona introduced the far-reaching concept of
strong regularity for generalized equations (KKT system is a special
case) and the strong second order sufficient condition (SSOSC) for
(NLP ) (the later is also developed by Luenbergerb).

Robinson proved for (NLP ):

SSOSC + LICQ =⇒ Strong Regularity.

aS.M. Robinson. Strongly regular generalized equations. Mathematics of

Operations Research 5 (1980) 43–62.
bD.G. Luenberger. Introduction to Linear and Nonlinear Programming,

Addison-Wesley (London, 1973.)
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Jongen, Mobert, Rückmann, and Tammera; Bonnans and Sulemb;
Dontchev and Rockafellarc proved:

SSOSC + LICQ ⇐= Strong Regularity.

aH.Th. Jongen, T. Mobert, J. Rückmann, and K. Tammer. On inertia

and Schur complement in optimization. Linear Algebra and its Applications 95

(1987) 97–109.
bJ.F. Bonnans and A. Sulem. Pseudopower expansion of solutions of gen-

eralized equations and constrained optimization problems. Mathematical Pro-

gramming 70 (1995) 123–148.
cA.L. Dontchev and R.T. Rockafellar. Characterizations of strong regu-

larity for variational inequalities over polyhedral convex sets. SIAM Journal on

Optimization 6 (1996) 1087–1105.
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In the above characterizations, K is a polyhedral set. In this talk,
we focus on the nonlinear semidefinite programming

(NLSDP )

min
x∈X

f(x)

s.t. h(x) = 0 ,

g(x) ∈ Sp
+ .

Difficulty:
Sp

+ is not a polyhedral set.
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Note that (NLSDP) can be equivalently written as either
semi-infinite programming problem

min
x∈X

f(x)

s.t. h(x) = 0 ,

dT g(x)d ≥ 0 ∀ ‖d‖2 = 1

or nonsmooth optimization problem

min
x∈X

f(x)

s.t. h(x) = 0 ,

λmin(g(x)) ≥ 0 ,
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where λmin(g(x)) is the smallest eigenvalue of g(x).

Indeed, early in seventies and eighties of the last century,
researchers working on semi-infinite programming problems and
nonsmooth optimization problems realized that in order to get
satisfactory second-order necessary and sufficient conditions,
an additional term, which represents the curvature of the set K,
must be added.

As mentioned earlier, we shall use (NLSDP) as an example to
demonstrate this.
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Let Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on
the open set O, where Z is another finite-dimensional real Hilbert
space.

We denote by OΞ the set of points in O where Ξ is Fréchet
differentiable. Then Clarke’s generalized Jacobiana of Ξ at y is:

∂Ξ(y) := conv{∂BΞ(y)},

where “conv” denotes the convex hull and

∂BΞ(y) := {V : V = lim
k→∞

JΞ(yk) , yk → y , yk ∈ OΞ}.

aF.H. Clarke. Optimization and Nonsmooth Analysis, John Wiley and Sons

(New York, 1983).
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Let D be a closed convex set in Z. Let ΠD : Z → Z denote the
metric projector over D:

min
1
2
〈z − y, z − y〉

s.t. z ∈ D.

The operator ΠD(·) is F-differentiable almost everywhere in Z and
for any y ∈ Z, ∂ΠD(y) is well defined.

Lemma.a For any y ∈ Z and V ∈ ∂ΠD(y), (a) V is self-adjoint;
(b) 〈d, V d〉 ≥ 0 ∀ d ∈ Z; and (c) 〈V d, d − V d〉 ≥ 0 ∀ d ∈ Z.

aF. Meng, D. Sun, and G. Zhao. Semismoothness of solutions to generalized

equations and the Moreau-Yosida regularization. Mathematical Programming

104 (2005) 561–581.
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For A and B in Sp,

〈A, B〉 := Tr
(
AT B

)
= Tr (AB) ,

where “Tr” denotes the trace of a square matrix (i.e., the sum of all
diagonal elements of the symmetric matrix). Let A ∈ Sp have the
following spectral decomposition

A = PΛPT ,

where Λ is the diagonal matrix of eigenvalues of A and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.
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Then, one can check without difficulty that (see Highama and
Tsengb):

A+ := ΠSp
+
(A) = PΛ+PT .

aN.J. Higham. Computing a nearest symmetric positive semidefinite matrix.

Linear Algebra and Applications 103 (1988) 103–118.
bP. Tseng. Merit functions for semi-definite complementarity problems.

Mathematical Programming 83 (1998) 159–185.
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Define

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =


Λα 0 0

0 0 0

0 0 Λγ

 and P = [ Pα Pβ Pγ ].

Define U ∈ Sp:

Uij :=
max{λi, 0} + max{λj , 0}

|λi| + |λj |
, i, j = 1, . . . , p,

where 0/0 is defined to be 1.
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The operator ΠSp
+
(·) is directionally differentiable.a Sun and Sunb

showed that ΠSp
+
(·) is strongly semismooth at A, i.e., in addition to

the directional differentiability of ΠSp
+
(·) at A, for any H ∈ Sp and

V ∈ ∂ΠSp
+
(A + H) we have

ΠSp
+
(A + H) − ΠSp

+
(A) − V (H) = O(‖H‖2)

and Π′
Sp

+
(A;H) is given by

aJ.F. Bonnans, R. Cominetti, and A. Shapiro. Sensitivity analysis of

optimization problems under second order regularity constraints. Mathematics of

Operations Research 23 (1998) 803–832 and Second order optimality conditions

based on parabolic second order tangent sets. SIAM Journal on Optimization 9

(1999) 466–493.
bD. Sun and J. Sun. Semismooth matrix valued functions. Mathematics of

Operations Research 27 (2002) 150–169.
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Π′
Sp
+
(A; H) = P


P T

α HPα P T
α HPβ Uαγ ◦ P T

α HPγ

P T
β HPα ΠS|β|

+
(P T

β HPβ) 0

P T
γ HPα ◦ UT

αγ 0 0

P T ,

where ◦ denotes the Hadamard product. Note that Π′
Sp

+
(A;H) does

not depend on any particularly chosen P .

When |β| = 0, ΠSn
+
(·) is continuously differentiable around A and

the above formula reduces to the classical result of Löwnera.
aK. Löwner. Über monotone matrixfunctionen. Mathematische Zeitschrift

38 (1934) 177–216.
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The tangent cone of Sp
+ at A+ = ΠSp

+
(A) is a:

TSp
+
(A+) = {B ∈ Sp : PT

ᾱ BPᾱ º 0} .

and the lineality space of TSp
+
(A+), i.e., the largest linear space in

TSp
+
(A+),

lin
(
TSp

+
(A+)

)
= {B ∈ Sn : PT

ᾱ BPᾱ = 0},

where ᾱ := {1, . . . , p}\α and Pᾱ := [Pβ Pγ ].
aV.I. Arnold. Matrices depending on parameters. Russian Mathematical

Surveys, 26 (1971) 29–43.
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One may use the following relations to get TSp
+
(A+) directly:

TSp
+
(A+)

= {B ∈ Sp : dist(A+ + tB,Sp
+) = o(t), t ≥ 0}

= {B ∈ Sp : ‖A+ + tB − ΠSp
+
(A+ + tB)‖ = o(t), t ≥ 0}

= {B ∈ Sp : ‖A+ + tB − [A+ + tΠ′
Sp

+
(A+;B) + o(t)]‖ = o(t), t ≥ 0}

= {B ∈ Sp : B = Π′
Sp

+
(A+;B)} .
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The critical cone of Sp
+ at A ∈ Sp, is defined as

C(A;Sp
+) := TSp

+
(A+) ∩ (A+ − A)⊥,

=
{

B ∈ Sp : PT
β BPβ º 0, PT

β BPγ = 0, PT
γ BPγ = 0

}
.

The affine hull of C(A;SP
+ ), aff(C(A;Sp

+)), can be written as

aff
(
C(A;Sp

+)
)

=
{
B ∈ Sp : PT

β BPγ = 0, PT
γ BPγ = 0

}
.
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Lemma. Let Ψ : X → Y be C1 on an open neighborhood N̂ of x̄

and Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on
an open set O containing ȳ := Ψ(x̄).

Suppose that Ξ is directionally differentiable at every point in O
and that JΨ(x̄) : X → Y is onto. Then it holds that

∂BΦ(x̄) = ∂BΞ(ȳ)JΨ(x̄), Φ(x) := Ξ(Ψ(x)), x ∈ N̂ .

By using the above lemma and

∂BΠSp
+
(A) = ∂BΘ(0) , Θ(·) := Π′

Sp
+
(A; ·) ,

we obtain
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Proposition. For any V ∈ ∂BΠSp
+
(A) (respectively, ∂ΠSp

+
(A)),

there exists a W ∈ ∂BΠS|β|
+

(0) (respectively, ∂ΠS|β|
+

(0)) such that

V (H) = P


H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ W (H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

PT ∀H ∈ Sp,

(1)
where H̃ := PT HP .

Conversely, for any W ∈ ∂BΠS|β|
+

(0) (respectively, ∂ΠS|β|
+

(0)) ,

there exists a V ∈ ∂BΠSp
+
(A) (respectively, ∂ΠSp

+
(A)) such that (1)

holds.
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Definition. For any given B ∈ Sp, define the linear-quadratic
function ΥB : Sp × Sp → < by

ΥB(Γ, A) := 2
〈
Γ, AB†A

〉
, (Γ, A) ∈ Sp × Sp,

where B† is the Moore-Penrose pseudo-inverse of B.

Proposition. Suppose that B ∈ Sp
+ and Γ ∈ NSp

+
(B). Then for

any V ∈ ∂ΠSp
+
(B + Γ) and ∆B, ∆Γ ∈ Sp such that

∆B = V (∆B + ∆Γ), it holds that

〈∆B,∆Γ〉 ≥ −ΥB(Γ,∆B).
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Let x̄ be a stationary point of (NLSDP ). Let (ζ̄, Γ) ∈ M(x̄) such
that

∇xL(x̄, ζ̄, Γ) = 0, −h(x̄) = 0, and Γ ∈ NSp
+
(g(x̄)).

Let A := g(x̄) + Γ̄ anda

g(x̄) = P


Λα 0 0

0 0 0

0 0 0

PT , and Γ = P


0 0 0

0 0 0

0 0 Λγ

 PT .

aSince g(x̄) and Γ commute, we can simultaneously diagonalize them.
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The critical cone C(x̄) of (NLSDP ) at x̄ is

C(x̄) =
{

d : J h(x̄)d = 0,J g(x̄)d ∈ TSp
+
(g(x̄)),J f(x̄)d = 0

}
=

{
d : J h(x̄)d = 0, PT

β (J g(x̄)d)Pβ º 0,

PT
β (J g(x̄)d)Pγ = 0, PT

γ (J g(x̄)d)Pγ = 0
}

.

The difficulty is that the affine hull of C(x̄), aff(C(x̄)), has no
explicit formula. Define the following outer approximation set to
aff(C(x̄)) with respect to (ζ̄, Γ) by

app(ζ̄, Γ) :=
{
d : J h(x̄)d = 0, J g(x̄)d ∈ aff

(
C(A;Sp

+)
)}

.
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It holds that

app(ζ̄, Γ) =
{

d : J h(x̄)d = 0, PT
β (J g(x̄)d)Pγ = 0,

PT
γ (J g(x̄)d)Pγ = 0

}
.

Then by the definition of aff(C(x̄)), we have for any (ζ̄, Γ) ∈ M(x̄)
that

aff(C(x̄)) ⊆ app(ζ̄, Γ).
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The two sets aff(C(x̄)) and app(ζ̄, Γ) coincide if the strict
complementary condition holds at (x̄, ζ̄, Γ):

rank(g(x̄)) + rank(Γ) = p,

where “rank” denotes the rank of a square matrix.

In general, these two sets may be different even if M(x̄) is a
singleton as in the case for (NLP ).

Proposition. Suppose that (ζ̄, Γ) satisfies the following strict
constraint qualification: J h(x̄)

J g(x̄)

X +

 0

TSp
+
(g(x̄)) ∩ Γ

⊥

 =

 <m

Sp

 .

Then M(x̄) is a singleton, i.e., M(x̄) = {(ζ̄, Γ)}, and
aff(C(x̄)) = app(ζ̄, Γ).
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By combining Theorem 3.45 and Proposition 3.136 with Theorem
3.137 in [Bonnans and Shapiro’00], we can state the “no-gap”
second order necessary condition and the second order sufficient
condition for (NLSDP ).

Theorem 1. (Second-Order Necessary and Sufficient Conditions.)

Let K = {0} × Sp
+ ⊂ <m × Sp. Suppose that x̄ is a locally optimal

solution to (NLSDP ) and Robinson’s CQ holds at x̄. Then

sup
µ∈M(x̄)

{〈
d,∇2

xxL(x̄, µ)d
〉
− σ

(
µ, T 2

K(G(x̄),JG(x̄)d)
)}

≥ 0

for all d ∈ C(x̄).
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(continued)

Conversely, let x̄ be a feasible solution to (NLSDP ) such that
M(x̄) is nonempty. Suppose that Robinson’s CQ holds at x̄. Then
the following condition

sup
µ∈M(x̄)

{〈
d,∇2

xxL(x̄, µ)d
〉
− σ

(
µ, T 2

K(G(x̄),JG(x̄)d)
)}

> 0

for all d ∈ C(x̄)\{0} is necessary and sufficient for the quadratic
growth condition at the point x̄:

f(x) ≥ f(x̄) + c‖x − x̄‖2 ∀x ∈ N̂ such that G(x) ∈ K

for some constant c > 0 and a neighborhood N̂ of x̄ in X.
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Since

T 2
K(G(x̄),JG(x̄)d) ⊂ TTK(G(x̄))(JG(x̄)d)

and

TTK(G(x̄))(JG(x̄)d) = cl {TK(G(x̄)) + span(JG(x̄)d)} ,

we have for any µ ∈ M(x̄) and d ∈ C(x̄),

σ
(
µ, T 2

K(G(x̄),JG(x̄)d)
)
≤ σ

(
µ, TTK(G(x̄))(JG(x̄)d)

)
= 0 .
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Thus, unless 0 ∈ T 2
K(G(x̄),JG(x̄)d) for all h ∈ C(x̄) as in the case

when K is a polyhedral convex set, the additional “sigma term” in
the necessary and sufficient second-order conditions will not
disappear.

Lemma. Let x̄ be a feasible solution to (NLSDP ) such that
M(x̄) is nonempty. Then for any (ζ,Γ) ∈ M(x̄) with ζ ∈ <m and
Γ ∈ Sp, one has

Υg(x̄)(Γ,J g(x̄)d) = σ
(
Γ, T 2

Sp
+
(g(x̄),J g(x̄)d)

)
∀ d ∈ C(x̄)

where

ΥB(Γ, A) = 2
〈
Γ, AB†A

〉
, (Γ, A) ∈ Sp × Sp.
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Definition. Let x̄ be a stationary point of (NLSDP ). We say that
the strong second order sufficient condition (SSOSC) holds at x̄ if

sup
(ζ,Γ)∈M(x̄)

{〈
d,∇2

xxL(x̄, ζ,Γ)d
〉
− Υg(x̄)(Γ,J g(x̄)d)

}
> 0

for all d ∈ Ĉ(x̄)\{0}, where for any (ζ,Γ) ∈ M(x̄),
(ζ,Γ) ∈ <m × Sp and

Ĉ(x̄) :=
⋂

(ζ,Γ)∈M(x̄)

app(ζ,Γ).
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Next, we define a nondegeneracy condition for (NLSDP ), which is
an analogue of the LICQ for (NLP ). The concept of
nondegeneracy originally appeared in Robinsona for (OP ).

Definition. We say that a feasible point x̄ to (OP ) is constraint
nondegenerate if

JG(x̄)X + lin(TK(ȳ)) = Y,

where ȳ := G(x̄).
aS.M. Robinson. Local structure of feasible sets in nonlinear programming,

Part II: Nondegeneracy. Mathematical Programming Study 22 (1984) 217–230.
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Write down the KKT condition as

F (x, ζ,Γ) :

=


∇xL(x, ζ,Γ)

−h(x)

−g(x) + ΠSp
+
(g(x) + Γ)

 =


∇xL(x, ζ, Γ)

−h(x)

Γ − ΠSp
−
(Γ + g(x))

 = 0,

which is equivalent to the following generalized equation:

0 ∈ φ(z) + ND(z),

where φ is C1 and D is a closed convex set in Z.
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Definition. [Robinson’80] Let z̄ be a solution of the generalized
equation. We say that z̄ is a strongly regular solution if there exist
neighborhoods B of the origin 0 ∈ Z and V of z̄ such that for every
δ ∈ B, the following linearized generalized equation

δ ∈ φ(z̄) + J φ(z̄)(z − z̄) + ND(z)

has a unique solution in V, denoted by zV(δ), and the mapping
zV : B → V is Lipschitz continuous.



National University of Singapore Optimization and Its Applications’06 49'

&

$

%

Let U be a Banach space and f : X × U → < and G : X × U → Y .

We say that (f(x, u), G(x, u)), with u ∈ U , is a
C2-smooth parameterization of (OP ) if f(·, ·) and g(·, ·) are C2 and
there exists a ū ∈ U such that f(·, ū) = f(·) and G(·, ū) = G(·).
The corresponding parameterized problem takes the form:

(OPu)

min
x∈X

f(x, u)

s.t. G(x, u) ∈ K .

We say that a parameterization is canonical if U := X × Y ,
ū = (0, 0) ∈ X × Y , and

(f(x, u), G(x, u)) := (f(x) − 〈u1, x〉, G(x) + u2), x ∈ X.
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Definition. [Bonnans and Shapiro’00] Let x̄ be a stationary point
of (OP ). We say that the
uniform second order (quadratic) growth condition holds at x̄ with
respect to a C2-smooth parameterization (f(x, u), G(x, u)) if there
exist c > 0 and neighborhoods VX of x̄ and VU of ū such that for
any u ∈ VU and any stationary point x(u) ∈ VX of (OPu), the
following holds:

f(x, u) ≥ f(x(u), u)+c‖x−x(u)‖2 ∀x ∈ VX such that G(x, u) ∈ K.

We say that the uniform second order growth condition holds at x̄

if the above inequality holds for every C2-smooth parameterization
of (OP ).
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Definition. [Kojimaa and Bonnans and Shapiro’00]

Let x̄ be a stationary point of (OP ). We say that x̄ is
strongly stable with respect to a C2-smooth parameterization
(f(x, u), G(x, u)) if there exist neighborhoods VX of x̄ and VU of ū

such that for any u ∈ VU , (OPu) has a unique stationary point
x(u) ∈ VX and x(·) is continuous on VU .

If this holds for any C2-smooth parameterization, we say that x̄ is
strongly stable.

aM. Kojima. Strongly stable stationary solutions in nonlinear programs. In:

S.M. Robinson, editor, Analysis and Computation of Fixed Points, Academic

Press (New York, 1980), pp. 93-138.
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Let

Φ(δ) := F ′(x̄, ζ̄, Γ; δ).

Let ind(φ, z̄) denote the index of a continuous function φ : Z → Z

at an isolated zero z̄ ∈ Z used in degree theory.

Based on several recent results of Bonnans and Shapiro’00;
Gowdaa; Pang, Sun and Sunb; Sun and Sun’02, we get

aM.S. Gowda. Inverse and implicit function theorems for H-differentiable

and semismooth functions. Optimization Methods and Software 19 (2004) 443-

461.
bJ.S. Pang, D. Sun, and J. Sun. Semismooth homeomorphisms and strong

stability of semidefinite and Lorentz complementarity problems. Mathematics of

Operations Research 28 (2003) 39–63.
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Theorem 2a. Let x̄ be a locally optimal solution to (NLSDP ).
Suppose that Robinson’s CQ holds at x̄ so that x̄ is necessarily a
stationary point of (NLSDP ). Let (ζ̄, Γ) ∈ <m × Sp be such that
(x̄, ζ̄, Γ) is a KKT point of (NLSDP ). Then the following TEN
statements are equivalent:

(a) The SSOSC holds at x̄ and x̄ is constraint nondegenerate.

(b) Any element in ∂F (x̄, ζ̄, Γ) is nonsingular.

(c) The KKT point (x̄, ζ̄, Γ) is strongly regular.

(d) The uniform second order growth condition holds at x̄ and x̄ is
constraint nondegenerate.

(e) The point x̄ is strongly stable and x̄ is constraint
nondegenerate.

aD. Sun. The strong second order sufficient condition and constraint nonde-

generacy in nonlinear semidefinite programming and their implications. Mathe-

matics of Operations Research 31 (2006).



National University of Singapore Optimization and Its Applications’06 54'

&

$

%

(continued)

(f) F is a locally Lipschitz homeomorphism near (x̄, ζ̄, Γ).

(g) For every V ∈ ∂BF (x̄, ζ̄, Γ), sgn detV = ind(F, (x̄, ζ̄, Γ)) = ±1.

(h) Φ is a globally Lipschitz homeomorphism.

(i) For every V ∈ ∂BΦ(0), sgn detV = ind(Φ, 0) = ±1.

(j) Any element in ∂Φ(0) is nonsingular.

Note that many more equivalent statements can be added by
looking at statements (b) and (g).
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For an application of Theorem 2, let us look at the augmented
Lagrangian method for solving (NLSDP):

For each c > 0, the augmented Lagrangian function for (NLSDP) is:

Lc(x, ζ,Ξ) : = f(x) + 〈ζ, h(x)〉 +
c

2
‖h(x)‖2

+
1
2c

[
‖ΠSp

+
(Ξ − cg(x))‖2 − ‖Ξ‖2

]
,

where (x, ζ,Ξ) ∈ X ×<m × Y .
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Let c0 > 0 be given. Let (ζ0,Ξ0) ∈ <m × Sp
+ be the initial

estimated Lagrange multiplier. At the kth iteration, determine xk

by minimizing Lck
(x, ζk,Ξk) , compute (ζk+1,Ξk+1) by ζk+1 := ζk + ckh(xk) ,

Ξk+1 := ΠSp
+
(Ξk − ckg(xk)) ,

and update ck+1 by

ck+1 := ck or ck+1 := κck

according to certain rules, where κ > 1 is a preselected positive
number.
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Theorem 3a. Let x̄ be a locally optimal solution to (NLSDP ).
Suppose that Robinson’s CQ holds at x̄ so that x̄ is necessarily a
stationary point of (NLSDP ). Suppose that one of (a)-(j) in
Theorem 2 holds.

Then we can find positive numbers c, %1, and %2 such that for any
c ≥ c, there exist two positive numbers ε and δ (may depend on c)
such that for any (ζ,Ξ) ∈ Bδ(ζ, Ξ), the problem

min Lc(x, ζ,Ξ) s.t. x ∈ Bε(x)

aD. Sun, J. Sun, and Liwei Zhang. The rate of convergence of

the augmented Lagrangian method for nonlinear semidefinite programming.

Manuscript, Department of Mathematics, National University of Singapore, Jan-

uary 2006.
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(continued)

has a unique solution denoted xc(ζ,Ξ). The function xc(·, ·) is
locally Lipschitz continuous on Bδ(ζ,Ξ) and is semismooth at any
point in Bδ(ζ, Ξ), and for any (ζ,Ξ) ∈ Bδ(ζ, Ξ), we have

‖xc(ζ,Ξ) − x‖ ≤ %1‖(ζ,Ξ) − (ζ, Ξ)‖/c

and

‖(ζc(ζ,Ξ),Ξc(ζ,Ξ)) − (ζ,Ξ)‖ ≤ %2‖(ζ,Ξ) − (ζ,Ξ)‖/c ,

where ζc(ζ,Ξ) and ξc(ζ,Ξ)) are defined as

ζc(ζ,Ξ) := ζ+ch(xc(ζ,Ξ)) and Ξc(ζ,Ξ) := ΠSp
+
(ξ−cg(xc(ζ,Ξ))) .

Note that Theorem 3 solved the local convergence and rate of
convergence of the augmented Lagrangian function method for
(NLSDP).
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Some unsolved problems:

(Q1) How far can we go beyond the SDP cone? Symmetric cone
(SOC is fine)? Homogeneous cone? Hyperbolic cone?

(Q2) What can we say about the equivalent conditions in
Theorem 2 if x̄ is assumed to be a stationary point only? Or
more generally

(Q3) How can we characterize the strong regularity for the conic
complementarity problems?


