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毕业论文题目： 求解一类矩阵范数逼近问题的数值算法
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摘　要

本文主要针对一类矩阵范数逼近问题提出快速有效而且稳定的算法。具体而言，

矩阵范数逼近问题是在一族给定矩阵中寻找一个满足某些线性等式与不等式约

束的线性组合，并且该组合与目标矩阵在谱范数意义下具有最近的距离。这类

问题通常来源于数值代数，网络，控制，工程等领域，例如寻找矩阵的切比雪

夫矩阵多项式以及求解最速收敛的混合马尔可夫链模型。

本文首先用目前流行的一阶交替方向法来求解此类问题，在算法的每步迭

代中，由于子问题可以通过快速算法求解或者直接拥有解析解，故而比较容易

实现。然而，交替方向法求解矩阵范数逼近问题的数值表现不稳定，对于某些

算例特别是带有约束的问题，其无法在合理的时间内求得令人满意的解。

为了克服这个困难，我们引入一个不精确对偶邻近点算法来求解矩阵范数

逼近问题。在每步迭代中，子问题可以被写成一个半光滑等式组，并可以用不

精确半光滑牛顿法求解，其中牛顿方向利用预条件共轭梯度法求解。当子问题

的原始约束非退化条件成立时，不精确半光滑牛顿法被证明有超线性的收敛速

率。此外，我们对于该算法设计了高效的实现方法。各类问题的数值结果表明，

半光滑牛顿共轭梯度对偶邻近点算法优于交替方向法，它可以稳定高效地得到

矩阵范数逼近问题具有相对较高精度的解。

当矩阵范数问题的矩阵变为向量时，其可以等价的转换成一个二阶锥规划，

可以被牛顿型方法如内点法求解，甚至对于大规模问题也是如此。受此启发，

我们考虑用平方光滑牛顿法来求解给定矩阵行数远远小于列数的矩阵范数逼近

问题。为此，我们首先提出了谱范数上图锥的投影算子的光滑函数，并且证明

它在每个点至少具有γ 阶的半光滑性，其中γ为某一正有理数。此外，原始对

偶约束非退化条件在原始对偶最优点成立的情形下，该算法也具有超线性收敛

性。初步的数值试验表明，该算法对于求解中小等规模问题非常稳定高效，它

可以通过很少的迭代步数得到精度令人满意的解。

关键词：矩阵范数逼近问题，交替方向法，邻近点算法，谱算子，半光滑牛顿

法，共轭梯度法，约束非退化，平方光滑牛顿法。
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Abstract

This thesis focuses on designing robust and efficient algorithms for a class of ma-

trix norm approximation (MNA) problems that are to find an affine combination of

given matrices having the minimal spectral norm subject to some prescribed linear e-

quality and inequality constraints. These problems arise often in numerical algebra,

network, control, engineering and other areas, such as finding the Chebyshev polyno-

mials of matrices and fastest mixing Markov chain models.

In this thesis, we first apply the popular first-order algorithm alternating direction

method (ADM) to solve such problems. At each iteration of the algorithm, the subprob-

lems involved can either be solved by a fast algorithm or admit closed form solutions,

which allows us to implement the ADM easily and simply. Unfortunately, numerical

experiments on MNA problems reveal that the ADM performs unstably, and it may

fail to achieve satisfactory accuracy in reasonable cpu time for some tested examples,

especially for the constrained cases.

To overcome this difficulty, we also introduce an inexact dual proximal point al-

gorithm (in short SNDPPA) for solving the MNA problems. At each iteration, the

inner problem, rewritten as a system of semismooth equations, is solved by an inexact

iii



semismooth Newton method using the preconditioned conjugate gradient method to

compute the Newton directions. Furthermore, when the primal constraint nondegener-

acy condition holds for the inner problems, our inexact semismooth Newton method is

proven to have a suplinear convergence rate. We also design efficient implementation

for the proposed algorithm to solve a variety of instances and compare its performance

with that of ADM. Numerical results show that the semismooth Newton-CG dual prox-

imal point algorithm substantially outperforms the alternating direction method, and it

is able to solve the matrix norm approximation problems efficiently and stably to a

relatively high accuracy.

When one restricts the matrices to vectors, then the matrix norm approximation

problem can be converted into a second order cone (SOC) problem, which can be

solved by Newton’s method such as IPMs even for large scale problems. Motivated

by this, we also consider a squared smoothing Newton method, to solve the MNA

problems in which the matrix is of much more columns than rows (skinny ones) such

as the vector case. For this purpose, we present an interior smoothing function for

the metric projector over the epigraph cone of spectral norm and establish its γ or-

der semismoothness everywhere. Moreover, suplinear convergence of the smoothing

Newton method for solving the MNA problems is also shown to hold under the primal

dual constraint nondegenerate conditions for the MNA problems and their dual at the

primal dual optimal solution pairs. Preliminary numerical result demonstrate that the

smoothing Newton is robust and efficient for the problem of small and moderate scale.

Specifically, we can successfully find the solution with the desired accuracy in a few

iterations.

Keywords: Matrix norm approximation, alternating direction method, proximal point

algorithm, spectral operator, semismooth Newton method, conjugate gradient method,

constraint nondegneracy, squared smoothing Newton method.
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CHAPTER 1 INTRODUCTION

Chapter 1

Introduction

In this thesis, we focus on designing efficient algorithms for solving a special case

of large scale matrix optimization problems. In particular, we are interested in a class of

matrix norm approximation problems with linear equality and inequality constraints.

Let ℜm×n be the space of m × n matrices equipped with the standard inner product

⟨X, Y ⟩ = Tr(XTY ) for X, Y ∈ ℜm×n. Given a family of matrices {A1, A2, . . . , Ap},

define the linear operator A and its adjoint A∗ by

A(X) := [⟨A1, X⟩, . . . , ⟨Ap, X⟩]T , A∗(y) :=

p∑
k=1

ykAk, ∀X ∈ ℜm×n, y ∈ ℜp.

The matrix norm approximation (abbreviated as MNA) problem we consider in this

thesis takes the following form

min
{
∥A0 −A∗y∥2 | By − b ∈ Q

}
, (1.1)

where A0 ∈ ℜm×n and B ∈ ℜ(n1+n2)×p are given matrices, b ∈ ℜn1+n2 is a vector and

Q = {0}n1 × ℜn2
+ is a polyhedral cone. Without loss of generality, we assume that

m ≤ n.

1.1 Motivating examples and related approaches

The MNA problems arise in numerical algebra, network, control, engineering and

many other areas. An illustrative example is the problem of finding the degree t Cheby-

shev polynomial of a given matrix A ∈ ℜN×N . In this problem, one is interested in

finding a degree t monic polynomial p∗t which minimizes the spectral norm of pt(A),

i.e.,

min {∥pt(A)∥2 | pt is a monic polynomial of degree t}. (1.2)

Problem (1.2) was firstly introduced in [36] under the name ideal Arboldi approxima-

tion problem and then extensively studied in [83] where the ideal Aronoli polynomial

p∗t is called the degree t Chebyshev polynomial of A, in analogy to the notion Cheby-

shev polynomial in approximation theory [44, 80], which is a monic polynomial that

1



CHAPTER 1 INTRODUCTION

attains minimal essential-supremum on that set. Indeed, suppose A is a Hermitan, by

the eigenvalue decomposition, the Chebyshev polynomials of A as defined by (1.2)

collapses to the Chebyshev polynomial of the spectrum of A in the latter sense. Note

that

pt(A) = At −
t−1∑
i=0

yiA
i (1.3)

for some y ∈ ℜt, the Chebyshev matrix approximation problem is actually a special

case of (1.1).

Possibly due to its mathematical elegance, the Chebyshev polynomial matrices

problem received much attention of the theoretical researchers, see [25, 26, 53, 96] and

references therein. Nevertheless, with the exception of the early work in [83] concern-

ing with algorithmic and computational results, no attention was paid on the numerical

treatment of the Chebyshev matrix approximation problem. In [83], the model (1.2) is

equivalently reformulated as the following semidefinite program problem

min −λ

s.t.
t∑

k=1

ykAk + λAt+1 + Z = A0

Z ≽ 0,

(1.4)

where

At+1 =

(
I 0

0 I

)
, A0 =

(
0 B0

BT
0 I

)
, A0 =

(
0 Bk

BT
k I

)
, B0 = At

and Bk = Ak−1 for k = 1, 2, . . . , t. Based on the semidefinite reformulation above, a

primal-dual interior point method is proposed to compute the Chebyshev polynomials

of matrices. In the implementation of such algorithm, the search direction is computed

via a dense Schur complement equation even if the data is sparse and each iteration has

a complexity O(tN3)+O(t2N2), which is reduced to O(tN3) for the Cheyshev matrix

approximation problems since t < N . Obviously, the high complexity may give rise

to great difficulties for applying the interior point algorithms to solve the Chebyshev

matrix norm approximation problems of large scale.

In contrast to the unconstrained example (1.2), some other problems may have

prescribed linear constraints, for example, the fastest mixing Markov chain (FMMC)

problem studied in [7–9]. Let G = (N , E) be an undirected connected graph with n

2



CHAPTER 1 INTRODUCTION

nodes. The FMMC problem is to find a symmetric stochastic matrix P with Pij = 0

for (i, j) /∈ E that minimizes µ(P ), where

µ(P ) = max
i=2,...,n

|λi(P )|

and λi(P ) is the ith largest eigenvalue of P in magnitude. Let the vector of transition

probabilities on the edges (labeled by l = 1, 2, . . . , p) be d, and let the matrix B ∈
ℜn×m be defined by

Bil :=

 1, if edge l incident to vertex i,

0, otherwise.
(1.5)

For any l = 1, 2, . . . , p, write the matrix E(l) to denote

E
(l)
ij :=


1, if edge l incident to vertex i and j, j ̸= i

−1, if edge l incident to vertex i, j = i,

0, otherwise.

(1.6)

Then by the analysis in [8, 9], the FMMC problem can be written as a matrix norm

approximation problem in terms of d as follows:

min
{
∥I − (1/n)11T +

p∑
l=1

dlE
(l)∥2 | d ≥ 0, Bd ≤ 1

}
. (1.7)

Several simple heuristic methods, including the maximum-degree chain and Metroplis-

Hasting chain, have been proposed to obtain the transition probability giving fast mix-

ing. Let di be the degree of the vertex i, not counting the self-loop. Denote by dmax the

maximum degree of the graph, i.e.,

dmax = max
i∈N

di.

Then the maximum-degree transition probability matrix Pmd is given by

Pmd
ij =


1/dmax, if (i, j) ∈ E and i ̸= j,

1− di/dmax, if i = j,

0, otherwise.

Another typical heuristic is the Metropolis-Hasting chain, which is constructed based

on the Metroplis-Hasting algorithm [3, 38, 60] applied to a random walk on a graph.

3
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In this chain, the transition probability matrix Pmh is given in a symmetric form

Pmh
ij =


min{1/di, 1/dj}, if (i, j) ∈ E and i ̸= j,∑

(i,k)∈E max{0, 1/di − 1/dj}, if i = j,

0, otherwise.

Other than the aforementioned methods, there are many other interesting works aiming

at developing some heuristics to assign transition probabilities obtaining faster mixing

Markov chain. Related materials can be found in [1, 19, 50, 75]. With the help of

the semidefinite programming technique, Boyd et al. [9] proposed a primal-dual inte-

rior point algorithm to compute exactly the fastest mixing chain. In that paper, they

expressed the FMMC problem as a SDP by introducing a scalar variable s:

min s

s.t. Diag
(
P − (1/n)11T + sI, sI − P + (1/n)11T , vec(P )

)
≽ 0,

P1 = 1, P = P T ,

Pij = 0, (i, j) /∈ E ,

(1.8)

where Diag(·) forms a block diagonal matrix from its arguments, and vec(P ) is a vec-

tor containing the n(n + 1)/2 different coefficients in P . For graphs with up to a

thousand or so edges, the resulting semidefinite programming can be solved efficient-

ly by the standard interior point solvers. For larger problem, the authors suggested a

projected subgradient method to solve the MNA formulation (1.7) of the FMMC prob-

lem. However, as pointed by the authors, the algorithm is relatively slow in terms of

number of iterations and has no simple stopping criterion guaranteeing a certain level

of suboptimality while compared to a primal-dual interior point method.

Another strong motivation for considering the model (1.1) comes from the fastest

distributed linear averaging (FDLA) problem with symmetric weights. Let G = {N , E}
as defined above be a connected graph with n nodes. In this problem, we aim at find-

ing the symmetric weight matrix W , consistent with G, that makes the convergence as

fast as possible. Using [88, Theorem 1], we can formulate the FDLA problem as the

following optimization problem

min
d

ρ
(
I − (1/n)11T +

p∑
l=1

dlE
(l)
)
, (1.9)

where ρ stands for the spectral radius, p is the weight on the edges with different nodes,

and B and E(l) are respectively defined by (1.5) and (1.6). Since the spectral radius of

4
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any symmetric matric coincides with its spectral norm, we know the FDLA problem

can be stated as a MNA problem

min
d

∥I − (1/n)11T +

p∑
l=1

dlE
(l)∥2. (1.10)

Similar to the FMMC problem, there exist some simple heuristics [88] for choos-

ing the weight matrix W that gives reasonably fast convergence of distributed averag-

ing. Define the Laplacian matrix L by

Lij =


−1, if (i, j) ∈ E and i ̸= j,

di if i = j,

0, otherwise,

where di is the degree of node i not counting the self-loop. The simplest approach is

to set all the edge (with different nodes) weights to be a constant α; the self-weights

are decided by the constraint W1 = 1. In the best constant weight graph, α is set to be

2/
(
λ1(L)+λn−1(L)

)
where λ1 and λn−1 stand respectively for the largest and n−1-th

eigenvalues of L. Additionally, one can also use the maximum-degree weight

αmd =
1

dmax

,

provided that the graph is not bipartite. Another method is to assign the weight on an

edge based on the larger degree of its two incident nodes:

Wij =
1

max(di, dj)
, {i, j} ∈ E

and then determineWii usingW1 = 1, which yields the so-called local-degree weights.

By reformulating the FDLA equivalently as a SDP

min s

s.t. Diag
(
W − (1/n)11T + sI, sI −W + (1/n)11T

)
≽ 0,

W1 = 1, W = W T ,

Wij = 0, (i, j) /∈ E ,

(1.11)

the authors show the interior-point method is able to solve efficiently the FDLA prob-

lem, for network with up to a thousand or so edges. A simple subgradient method,

which suffers from slow convergence is also described in [88] to handle far larger

problem.

The above examples serve to motivate the study of numerical algorithms for solv-

ing MNA problems.
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1.2 Contributions of the thesis

By introducing a scalar variable t to bound the spectral norm ∥A0 − A∗y∥2, the

MNA problem (1.1) can be equivalently formulated as:

min t

s.t. By ∈ b+Q,

t ≥ ∥A0 − A∗y∥2,
(1.12)

which is a natural generalization of the second order cone programming. It is well

known that the matrix norm constraint t ≥ ∥A0−A∗y∥2 is equivalent to a linear matrix

inequality with block-arrow structure:[
tIm A0 −A∗y

(A0 −A∗y)T tIn

]
≽ 0. (1.13)

Therefore, the problem (1.12) can be expressed as a semidefinite programming prob-

lem:

min t

s.t.

[
tIm A0 −A∗y

(A0 −A∗y)T tIn

]
≽ 0,

By ∈ b+Q,

(1.14)

which falls into the applicable scope of standard SDP packages such as SDPT3 [82],

SeDuMi [76], or SDPNAL [95]. When m orn = 1, the constraint t ≥ ∥A0 − A∗y∥2
reduces to a second order cone constraint. In this case, it is certainly not wise to solve

the MNA problem (1.1) via (1.14). Instead one should deal with (1.1) or (1.12) directly

since it is just a second-order cone problem, which requires far lower computational

cost to solve compared to the SDP reformulation (1.14). In the case that n > 1, the

block-arrow constraint t ≥ ∥A0 − A∗y∥2 is often handled via its SDP reformulation

[2] because it can not be reduced to a second order cone constraint. This of course

makes the MNA problem potentially very computationally expensive since one has

to deal with (m + n) × (m + n) matrix variables instead of m × n matrices. The

computational cost and memory requirement are especially high when we have large

m+ n, but m≪ n. For example, while applied the SDP (1.14) without linear equality

and inequality constraints, the standard interior point methods require O
(
p(m+n)3+

p2(m+n)2+p3+(m+n)3
)

flops at each iteration to solve the dense Schur complement

6
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equation and compute the search directions. The total memory requirement should be

more than 8p2 +O(m+ n)2.

Realizing the difficulties mentioned above, in this thesis we consider three differ-

ent approaches to solve the MNA problem directly instead of via its SDP reformula-

tion. The first idea to solve the matrix norm approximation problems is built on the

classical alternating direction method [30, 34]. In the past several years, we have wit-

nessed explosively increasing interests in ADM because of its effectiveness in diverse

areas, such as image processing [90], compressive sensing [89], matrix completion

[14], robust principle component analysis [81] and sparse matrix separation [74]. This

provides an initial impetus for us to apply ADM to solve MNA problems by its variant

which has a separable structure:

min ∥X∥2

s.t. A∗y +X = A0,

By − b = z, z ∈ Q.

(1.15)

At each iteration of the ADM, the subproblem involved can either be solved by a fast

algorithm or it has a closed form solution, due to recent advances in [21].

Recently, Zhao, Sun and Toh [95] designed a Newton-CG augmented Lagrangian

(NAL) method to solve the standard SDP problems, which is essentially a proximal

point algorithm applied to primal problem where the inner problems are solved by an

inexact semi-smooth Newton method using a preconditioned conjugate gradient (PCG)

solver. Their numerical results demonstrated the high efficiency and stability of the

NAL method whenever the primal and dual constraint nondegeneracy conditions hold.

This phenomenon can be partially explained by the theoretical results in [13, 77, 78]

where it is shown that under the constraint nondegenerate conditions the augmented

Lagrangian method can be locally regarded as an approximate generalized Newton’s

method applied to a semismooth equation. Shortly after, Wang, Sun and Toh extended

this idea to solve a class of log-det problems, i.e., applying the proximal point algo-

rithm to solve the primal problem where the innear problem is solved by a Newton-CG

method. Extensive numerical experiments show that the resulting algorithm is shown

to be approximately 2～20 times faster than the adaptive Nesterov’s smoothing method

[57]. Motivated by the stability and the effectiveness of the Newton-CG based PPA, we

adopt the essential idea of the NAL method to propose a semismooth Newton-CG dual

proximal point algorithm (SNDPPA) to solve the problem (1.1). As a starting point,

7
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we first derive an inexact dual proximal point algorithmic framework with checkable

stopping criterions for the MNA problem. Based on the classical result of the proximal

point algorithm in [72, 73], we analyze the global and local convergence of the PPA

for solving (1.1). We note that the subproblem of the dual PPA in each iteration is an

unconstrained minimization problem whose objective function is convex continuously

differentiable though not twice continuously differentiable. However, since the corre-

sponding gradient is strongly semismooth, we are able to apply the inexact semismooth

Newton method to solve the unconstrained minimization subproblem with a fast con-

vergence where at each iteration a preconditioned conjugate gradient method is used to

compute approximately the Newton directions. Using the results of nonsmooth anal-

ysis in [16], we also clearly characterize the tangent cone and then the linearity space

of the unit nuclear norm ball, and therefore introduce a constraint nondegeneracy con-

dition for the subproblem. It turns out that the constraint nondegeneracy condition is

equivalent to the nonsingularity of the generalized hessians of the subproblems and

then ensures the quadratic convergence of our inexact semismooth Newton method.

We also designed efficient implementation for our proposed algorithm to solve a va-

riety of instances and compare its performance with the popular first order alternating

direction method. The results show that our algorithm substantially outperforms the al-

ternating direction method, especially for the constrained cases, and it is able to solve

the matrix norm approximation problems efficiently to a relatively high accuracy.

In the last part of this thesis, we study a squared smoothing Newton method [47,

68, 79] for solving MNA problem (1.1), or equivalently (1.12). Assuming the strong

duality holds for the problem (1.12) and its dual and there exists at least one saddle

point.Then solving the MNA problem is equivalent to the following KKT syestem:

(t,X) = ΠK(t− 1, X + Z)

AZ +BTw = 0,

A∗y +X = A0,

B1y = b1,

w2 = Πℜn2
+
(w2 −B2y + b2),

(1.16)

where K is the epigraph cone of spectral norm, and 1 and 2 represent the indexes of

equality and inequality constraints, respectively. In order to apply the smoothing New-

ton method to (6.5), we adopt the essential idea of [67, section 4] to provide a com-

putable smoothing function for the metric projection onto the epigraph of l1 norm,

which, together with the recent developments of spectral operator [20], furnishs us a

8
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smoothing function G of ΠK. It can be shown that G(·, ·, ·) is γ order semismooth

at (0, t, x) for any given t ∈ ℜ and x ∈ ℜm. The search direction is computed by

solving the Schur complement of the Newton system. Moreover, based on Clark’s

classical results on the tangent cone of convex sets [16], we also characterize the pri-

mal and dual constraint nondegeneracy and derive some equivalent conditions for the

nondegeneracy. We are able to show when the primal and dual constraint nondegen-

eracy conditions of (1.12) and its dual hold, the proposed smoothing Newton method

solves the MNA problem with a suplinear convergence rate. Preliminary numerical

experiments demonstrate that the smoothing Newton is very robust and efficient for

moderate and small scale problem. Specifically, we can successfully find the solution

with the desired accuracy in a few iterations.

1.3 Organization of the thesis

The remaining parts of this thesis are organized as follows. In chapter 2, we

list some preliminaries on the semismoothness mapping, spectral operator for non-

symmetric matrices, Moreau-Yosida regularization and smoothing functions. We give

the closed form solution of the proximal point operator associated with the spectral

function and establish its strongly semismoothness everywhere. We also discuss a com-

putable smooth counterpart of the metric projection onto the epigraph of the spectral

norm. With the help of the properties enjoyed by the spectral operator, we are able to

show this smoothing function of ΠK is γ order semismooth at (0, t, X) for given t ∈ ℜ
and X ∈ ℜm×n. In chapter 3, we briefly review the history of the alternating direction

method, develop some new results on the ADM and the proximal ADM and then dis-

cuss the details on the implementation of ADM for the MNA problem. In chapter 4,

we introduce the framework of the inexact dual PPA for solving the MNA problem and

establish its global and local convergence under certain conditions. The subproblems

reformulated as a system of nonsmooth equations are solved by an inexact semismooth

Newton method where the preconditioned conjugate gradient method is employed to

compute the Newton directions. The suplinear convergence of our inexact semismooth

Newton-CG method is established under the primal constraint nondegeneracy condi-

tion of subproblems, together with the strong semismoothness property of the metric

projection onto the unit nuclear norm ball. In addition, some numerical issues per-

taining to the efficient implementation of the semismooth Newton-CG method are also

addressed in this chapter. In chapter 5, we implement the ADM and the SNDPPA to

9
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solve a variety of problems, including random matrix norm approximation problems,

Chebyshev polynomial of matrices and FMMC/FDLA problems. Numerical results

demonstrate that our SNDPPA is very efficient and robust to solve the MNA problem

to a relatively high accuracy. In chapter 6, by using the smoothing function of ΠK

introduced in chapter 2, we introduce the squared smoothing Newton method for the

MNA problem where the Newton directions can be computed by solving the Schur

complement of the Newton system. We conclude the thesis in chapter 7.

Notation. For any given positive integerm and n, we denote by In, 1m×n and 0m×n the

n×n identity matrix, the m×n matrix of ones and zeros, respectively. We also use 1n

and 0n to denote the vector of ones and zeros, respectively. We frequently drop m,n

from the above notations when their size can be clear from the context. For any x ∈ ℜn,

diag(x) denotes the diagonal matrix with diagonal entries xi, i = 1, . . . , n, while for

any X ∈ ℜm×n, diag(X) denotes the main diagonal of X . Let α ⊆ {1, . . . , n} be an

index set, we use |α| to represent the cardinality of α and Xα to denote the sub-matrix

of X obtained by removing all the columns of X not in α. Let β ⊆ {1, . . . , n} be

another index set, we use Xαβ to denote the |α| × |β| sub-matrix of X obtained by

removing all the rows of X ∈ ℜm×n not in α and all the columns of X not in β. The

Hardamard product between matrices is denoted by “◦”, i.e., for any two matrices X

and Y in ℜm×n, the (i, j)-th entry of Z := X ◦ Y is Zij = XijYij .

10
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Chapter 2

Preliminaries

In this chapter, we review and develop some results on the semismooth mappings,

spectral operator, Moreau-Yosida regularization and smoothing functions, which are

useful for our subsequent discussion.

2.1 Semismooth mapping

In this section, we briefly review the basic concepts B-subdifferential, Clark gen-

eralized Jacobian and semismooth functions.

Let E be a finite-dimensional real Hilbert space and O be an open set in E . Let

E ′ be another finite dimension Hilbert space. Suppose that Φ : O → E ′ is a locally

Lipschitz continuous function on the open set O. By Rademacher’s theorem, Φ is

almost everywhere Féchet-differentiable in E . Let Ω be the set of points where Φ is

differentiable. For any x ∈ E , the B-subdifferential of Φ is defined by

∂BΦ(x) :=

{
lim

Ω∋xk→x
Φ′(xk)

}
and the Clark’s generalized Jacobian [16] of Φ at x is the convex hull of ∂BΦ(x), i.e.,

∂Φ(x) = conv {∂BΦ(x)} .

The concept semismooth was first introduced by Mifflin [61] for functionals and

then extended to vector valued functions by Qi and Sun [69]. See also [27, 59].

Definition 2.1. Let Φ : O ⊂ E → E ′ be a locally Lipschitz continuous function on

the open set E . The function Φ is said to be G-semismooth at a point x ∈ O if for any

y → x and V ∈ ∂Φ(y),

Φ(y)− Φ(x)− V (y − x) = o(∥y − x∥).

The function Φ is said to be γ order G-semismooth at x if for any y → x and V ∈
∂Φ(y),

Φ(y)− Φ(x)− V (y − x) = O(∥y − x∥γ+1).

11
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If γ = 1, Φ is strongly G-semismooth at x. Furthermore, if the (strongly, γ order)

G-semismooth function Φ is also directionally differentiable at x, then Φ is said to be

(strongly, γ order) semismooth at x.

The (strong) semismoothness property plays crucial role in establishing the (quadrat-

ic) suplinear convergence of the semismooth Newton method for solving the nonlinear

equations, as well as SC1 unconstrained optimization problems. Many common func-

tions such as convex functions and smooth functions can be verified to be semismooth

everywhere. Piecewise linear functions and twice continuously differentiable functions

are examples of strongly semismooth functions. In what follows, we provide a simple

sufficient (not necessary) criteria to recognize the semismoothness of functions, which

is based on the concept semialgebraic functions originally considered in the field of

algebraic geometry [4].

Definition 2.2. A set in ℜn is semialgebraic if it is a finite union of sets of the form

{x ∈ ℜn : pi(x) > 0, qj(x) = 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , k} ,

where all pi(x), qj(x) are polynomials. A map F : X ⊂ ℜn → ℜm is called semialge-

braic if its graph is a semialgebraic subset of ℜn+m.

The following semismoothness result on semialgebraic functions is a special case

of [5, Theorem 1] on tame functions. More characterizations of tame mappings can be

found in [48].

Proposition 2.1. Let a semialgebraic function F : ℜn → ℜm be locally Lipschitz.

Then there exists a rational number γ > 0 such that F is γ-order semismooth.

2.2 Spectral operator of matrices

In this section, we first list two useful results on the nonsymmetric matrices. The

following inequality is called von Neumann’s trace inequality [63].

Proposition 2.2. Let Y and Z be two matrices in ℜm×n. Then

⟨Y, Z⟩ ≤ ⟨σ(Y ), σ(Z)⟩,

where σ(Y ) and σ(Z) are the singular value vectors of Y and Z respectively.

12
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Proposition 2.3. (c.f. [52]) Suppose X ∈ ℜm×n has the SVD

X = U [Diag(σ) 0]V T . (2.1)

Then the orthogonal matrices P and W satisfy

P [Diag(σ) 0] = [Diag(σ) 0]W

if and only if there exist three orthogonal matrices Q ∈ ℜr×r, Q′ ∈ ℜ(m−r)×(m−r) and

Q′′ ∈ ℜ(n−r)×(n−r) such that

P =

[
Q 0

0 Q′

]
and W =

[
Q 0

0 Q′′

]
,

where r is the number of positive singular values of X and Q is a block diagonal

matrix.

Let X be a Euclidean space which is Cartesian product of Sm1 and ℜm×n, i.e.,

X := Sm1 ×ℜm×n.

For any X := (X1, X2), define κ(X) ∈ ℜm1+m by

κ(X) := (λ(X1), σ(X2)).

Let w be a mapping from ℜm1+m to ℜm1+m which can be decomposed into the form

w := (h, g),

where h : ℜm1+m → ℜm1 and g : ℜm1+m → ℜm. Suppose w is symmetric, that is for

any perturbation matrix Q1 and signed perturbation matrix Q2,

w(x) = [Q1 Q2]
Tw(Q1x1Q2x2), ∀x ∈ ℜm1+m,

where x1 ∈ ℜm1 , x2 ∈ ℜm and xT = [xT1 , x
T
2 ].

Definition 2.3. [20] Let X1 and X2 have the following respective eigenvalue and sin-

gular value decomposition

X1 = PDiag(λ)P T , (2.2)

X2 = U [Diag(σ) 0]V T . (2.3)
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The spectral operator G : X → X with respect to the symmetric function w is defined

by

G(X) := (G1(X), G2(X)), X = [X1, X2] ∈ X ,

where

Gk(X) :=

{
PDiag(h(κ))P T , if k = 1,

U [Diag(g(κ)) 0]V T , if k = 2,

and

κ = (λ(X1), σ(X2)).

Since w is symmetric, [20, Theorem 3.1] implies the spectral operator G : X →
X is well defined. Before moving to introduce the properties of G, we first give

some notations to simplify the subsequent discussion. Assume that g and h are F-

differentiable (i.e., Féchet-differentiable). For any x ∈ ℜm1+m, rewrite h and g as the

following form

h(x) := (h1(x), h2(x), . . . , hm1(x)),

and

g(x) := (g1(x), g2(x), . . . , gm(x)).

Define the matrices A(κ),Ω(κ),Γ(κ) ∈ ℜm×m and F(κ) ∈ ℜm×(n−m) by

[A(κ)]ij :=


hi(κ)− hj(κ)

λi − λj
if λi ̸= λj,

(h′(κ))ii − (h′(κ))ij if λi = λj, i ̸= j,

0 otherwise,

(2.4)

[Ω(κ)]ij :=


gi(κ)− gj(κ)

σi − σj
if σi ̸= σj,

(g′(κ))ii − (g′(κ))ij if σi = σj, i ̸= j,

0 otherwise,

(2.5)

[Γ(κ)]ij :=


gi(κ) + gj(κ)

σi + σj
if σi + σj ̸= 0,

(g′(κ))ii + (g′(κ))ij otherwise,

(2.6)

and

[F(κ)]ij :=


gi(κ)

σi
if σi ̸= 0,

(g′(σ))ii otherwise.
(2.7)
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Let the linear operators S and T be defined by

S(A) :=
1

2
(A+ AT ), T (A) :=

1

2
(A− AT ), ∀A ∈ ℜm×m.

Proposition 2.4. [20] Let X = [X1X2] ∈ X be given. Suppose X1 and X2 have the

eigenvalue decomposition (2.2) and the singular value decomposition (2.3), respective-

ly.

(i) The spectral operator G is F-differentiable at X if and only if the symmetric

mapping w is F-differentiable at κ.

(ii) If G is F-differentiable at X , then its derivative is given as follows for any H =

(A,B) ∈ X ,

G′(X)H =

 P
[
A ◦ Ã+Diag(h′(κ)diag(H̃))

]
P T ,

U
[
Ω ◦ S(B̃1) + Γ ◦ T (B̃1) + Diag(g′(κ)diag(H̃)), F ◦ B̃2

]
V T

 ,

where Ã = P TAP ∈ Sm1; B̃1 ∈ ℜm×m, B̃2 ∈ ℜm×(n−m) and [B̃1 B̃2] =

UTBV ; diag(H̃) = [diag(Ã); diag(B̃1)].

(iii) If w is locally Lipschitz continuous at κ, then the spectral operator G is (γ order,

strongly) G-semismooth at X if and only w is (γ order, strongly) G-semismooth

at κ.

2.3 The Moreau-Yosida regularization

Let f : E → (−∞,+∞] be a closed proper convex function, e.g. see [71]. The

Moreau-Yosida regularization [62, 92] of f at x ∈ E is defined by

ψβ
f (x) := min

y∈E
f(y) +

1

2β
∥y − x∥2. (2.8)

The unique optimal solution of (2.8), denoted by P β
f (x), is called the proximal point

of x associated with f .

Example 2.1. Let C ⊆ E be a closed convex set and δC be its indicator function.

Then, for any x ∈ E , the proximal point of x associated with δC reduces to the metric

projection of x onto C by noting the fact that

min
y∈E

δC(y) +
1

2
∥y − x∥2 ⇐⇒ min

y∈C

1

2
∥y − x∥2.
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For the Moreau-Yosida regularization, the following properties (see, e.g. [45, 46,

51]) are often very useful.

Proposition 2.5. Let f : E → (−∞,+∞] be a closed proper convex function, ψβ
f

be the Moreau-Yosida regularization of f , and P β
f be the associated proximal point

mapping. Then, the following properties hold:

(i) P β
f is firmly non-expansive, i.e., ∀x, y ∈ E ,

∥P β
f (x)− P β

f (y)∥
2 ≤ ⟨P β

f (x)− P β
f (y), x− y⟩. (2.9)

Consequently, P β
f is globally Lipschitz continuous with modulus 1.

(ii) ψβ
f is a continuously differentiable convex function, and

∇ψβ
f (x) =

1

β
(x− P β

f (x)), x ∈ E . (2.10)

A particular elegant and useful property on the Moreau-Yosida regularization is

the so-called Moreau decomposition.

Theorem 2.6. Let f : E → (−∞,+∞] be a closed proper convex function and f ∗ be

its conjugate. Define g : E → (−∞,+∞] by

g(x) = f ∗(x/β), ∀x ∈ E .

Then any x ∈ E has the decomposition

x = P β
f (x) + P β

g (x). (2.11)

Below, we state a well know result in convex analysis on the positive homogenous

functions. See [71] for its proof.

Proposition 2.7. Let f : E → (−∞,+∞] be a proper convex function. Then f is

positively homogeneous if and only if f ∗ is the indicator function of

C = {x∗ ∈ E : ⟨x, x∗⟩ ≤ f(x), ∀ x ∈ E}. (2.12)

If f(0) = 0, in particular if f is closed, then C = ∂f(0).

Combining this proposition with Moreau decomposition, we obtain the following

corollary directly, which provides a powerful tool for us to calculate the proximal point

mapping associated with the positive homogenous functions.
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Corollary 2.8. Suppose that the closed convex function f : E → (−∞,+∞] is posi-

tively homogenous. Then for any C, we have

P β
f (x) = x− ΠβC(x),

where βC represnets the set

βC := {βx | x ∈ C},

and C is defined by (2.12)

In what follows, we use Corollary 2.8 to calculate the proximal point mapping

associated with the spectral norm, which plays a crucial role in the efficient implemen-

tation of the ADM. For notational convenience, we write Bβ := {x ∈ ℜm | ∥x∥1 ≤ β}
and Bβ := {X ∈ ℜm×n | ∥X∥∗ ≤ β}. If β = 1, we just use B and B to denote the unit

l1 norm ball and nuclear norm ball, respectively.

Proposition 2.9. Let f(X) = ∥X∥2 be defined on ℜm×n and β > 0. Suppose X has

the following singular value decomposition (SVD)

X = U [Diag(σ) 0]V T , (2.13)

where σ = (σ1, σ2, . . . , σm)
T with σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0. Then it holds that

P β
f (X) = X − ΠBβ

(X), (2.14)

where ΠBβ
is the projection onto Bβ , and it is given by

ΠBβ
(X) = U [Diag(ΠBβ

(σ)) 0]V T . (2.15)

Proof. By directly computing the subdifferential of f , we have

∂f(0) = {X ∈ ℜm×n | ∥X∥∗ ≤ 1},

and then (2.14) follows immediately from Corollary 2.8. Note that ΠBβ
(X) is the

unique solution of the following optimization problem:

min
1

2
∥Y −X∥2

s.t. ∥Y ∥∗ ≤ β.

By the Von-Neumann’s trace inequality [63], we know that

∥σ(X)− σ(Y )∥ ≤ ∥X − Y ∥F .
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Since the metric projection onto Bβ is unique, we have

ΠBβ
(X) = U [Diag

(
σ(ΠBβ

(X))
)
0]V T .

Therefore, σ(ΠBβ
(X)) is the optimal solution of

min
1

2
∥y − σ(X)∥2

s.t. ∥y∥1 ≤ β,

which implies that

σ(ΠBβ
(X)) = ΠBβ

(σ).

This completes the proof of this assertion.

Now, we are ready to give the exact expression of the projection ΠBβ
. Let x be a

given vector in ℜm. Define the vector ζ(x) to be

ζi(x) =
1

i

( i∑
j=1

xj − β
)
, i = 1, 2, . . . ,m.

Let k1(x) and k2(x) denote respectively the maximal indexes of the following two sets:

{i : σi > ζi(x), 1 ≤ i ≤ m}, {i : σi ≥ ζi(x), 1 ≤ i ≤ m}.

From the breakpoint search algorithm in [41, 42], it follows that

ΠBβ
(x) =

 x, if ∥x∥1 ≤ 1,

max(x− ζk1(x)(x), 0), otherwise.
(2.16)

Also see [10, 12, 17] for breakpoint algorithm using medians. Let X have the singular

value decomposition (2.1). According to the analysis above, we are able to express

ΠBβ
(X) analytically by

ΠBβ
(X) =

 X, if ∥X∥∗ ≤ β,

U [Diag
(
max(σ − ζk1(σ)(σ), 0)

)
0]V T , otherwise.

(2.17)

Remark 2.1. From (2.17), it follows that ΠBβ
is differentiable at x if and only if x

satisfies one of the following two conditions:

(i) ∥x∥1 < β;
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(ii) ∥x∥1 > β and k1(x) = k2(x).

Also see [87] for a complete characterization of differentiability of metric projection

onto vector k-norm ball. Let X be a matrix in ℜm×n which admits the singular value

decomposition (2.1). Combining Proposition 2.4 (iii) with the conditions (i) and (ii),

we can easily deduce that ΠBβ
is differentiable at X if and only if X satisfies either of

the following two conditions:

(i) ∥X∥∗ < β;

(ii) ∥X∥∗ > β and k1(σ) = k2(σ).

Remark 2.2. Since ΠBβ
is piecewise linear thus strongly semismooth, by part (iii) of

Proposition 2.4, ΠBβ
is strongly G-semismoothn at any X ∈ ℜm×n.

Since the proximal point mapping P β
f is Lipschtiz continuous, it is differentiable

almost everywhere on E . Therefore, the B-subdifferential ∂BP
β
f and the Clarke gener-

alized Jacobian ∂P β
f of P β

f are well defined.

Proposition 2.10. Let f be a closed proper convex function on E . For any x ∈ E ,

∂Pf (x) has the following properties:

(i) Any V ∈ ∂Pf (x) is self-adjoint.

(ii) ⟨V d, d⟩ ≥ ∥V d∥2 for any V ∈ ∂Pf (x) and d ∈ E .

Proof. (i) Define ϕ : E → ℜ by ϕ(y) := 1
2
∥y∥2 − ψf (y), y ∈ E . It follows from

Proposition 2.5 that ϕ is continuously differentiable with ∇ϕ(y) = Pf (y), y ∈ E .

Therefore, (∇ϕ)′(y) is self-adjoint if it exists. It follows that any element in ∂BPf (x),

and thus that in ∂Pf (x) = conv ∂BPf (x), is self-adjoint.

(ii) Let d ∈ E and z ∈ DPf
:= {y ∈ E : Pf is differentiable at y} be arbitrarily

chosen. From Proposition 2.5, for any t ≥ 0, we have ⟨Pf (z + td) − Pf (z), td⟩ ≥
∥Pf (z + td)− Pf (z)∥2, from which it follows that⟨

t P ′
f (z) d, t d

⟩
+ o(t2) ≥

∥∥t P ′
f (z) d+ o(t)

∥∥2 . (2.18)

By taking limits for t→ 0 in (2.18), we obtain

⟨P ′
f (z) d, d⟩ ≥ ∥P ′

f (z) d∥2 ∀z ∈ DPf
. (2.19)
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Let V ∈ ∂Pf (x). Then there exists a positive integer m > 0, Vi ∈ ∂BPf (x), λi ≥
0, i = 1, 2, . . . ,m, such that

∑m
i=1 λi = 1 and V =

∑m
i=1 λiVi. For each i = 1, . . . ,m

and k = 1, 2, . . ., there exists xik ∈ DPf
such that ∥x− xik∥ ≤ 1/k and

∥P ′
f (x

ik)− Vi∥ ≤ 1/k.

By (2.19), we have ⟨P ′
f (x

ik) d, d⟩ ≥ ∥P ′
f (x

ik) d∥2. By taking limits, we get ⟨Vi d, d⟩ ≥
∥Vi d∥2, from which it follows that

⟨V d, d⟩ =
m∑
i=1

λi ⟨Vi d, d⟩ ≥
m∑
i=1

λi∥Vi d∥2 ≥

∥∥∥∥∥
m∑
i=1

λiVi d

∥∥∥∥∥
2

= ∥V d∥2, (2.20)

where the second inequality follows from Jensen’s inequality applied to the convex

function θ(y) := 1
2
∥y∥2, y ∈ E . Since d is arbitrarily chosen, part (ii) follows from

(6.40).

Remark 2.3. Let C be a closed convex set and f be its indicator function. In this

case, P β
f reduces to the metric projector onto C, and thus Proposition 2.10 recovers the

positive semidefiniteness of ∂ΠC established in [59].

2.4 Smoothing functions

Let ∥ · ∥∞ be the l∞ norm, i.e., for each x ∈ ℜm,

∥x∥∞ = max {|xi| |1 ≤ i ≤ m} .

Denote the epigraph of ∥·∥∞ by epi∞. For any (t, x) ∈ ℜ×ℜm, let Π∞(t, x) denote the

metric projection of (t, x) over l∞ norm, which is the unique solution of the following

optimization problem:

min
1

2
∥y − x∥2 + 1

2
(s− t)2

s.t. ∥y∥∞ ≤ s,

or equivalently,

min
1

2
∥y − x∥2 + 1

2
(s− t)2

s.t. −s ≤ yi ≤ s, 1 ≤ i ≤ m.
(2.21)

Write H(ε, t, x) = (s(ε, t, x), y(ε, t, x)) to denote the unique optimal solution of the

logarithmic penalty problem associated with (2.21), i.e.,

H(ε, t, x) = argmin

{
1

2
∥y − x∥2 + 1

2
(s− t)2 − ε2

m∑
i=1

log(s− yi)− ε2
m∑
i=1

log(s+ yi)

}
.

(2.22)
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Proposition 2.11. Let (t, x) be a given vector in ℜ×ℜm. Then the following statements

are valid.

(i) H(·, ·, ·) is continuously differentiable on ℜ++ × ℜ × ℜm, and for any ε > 0 and

(t, x)×ℜn ×ℜ,

0 ≺ ∂H(ε, t, x)

∂(t, x)
≺ I,

where ≺ means symmetric negative definiteness.

(ii) For any x0 ∈ ℜm and t0 ∈ ℜ,

lim
ε↓0,t→t0,x→x0

H(ε, t, x) = Π∞(t0, x0).

(iii) H(·, ·, ·) is γ order semismooth at (0, t0, x0) for some rational number γ > 0.

Furthermore, if t0 > −∥x0∥1, then H(·, ·, ·) is strongly semismooth at (0, t0, x0).

Proof. i) By the definition of H(ε, t, x), we know that
yi − xi + ε2

2yi
s2 − y2i

= 0,

s− t− ε2
m∑
i=1

2s

s2 − y2i
= 0,

s > |yi|,

i = 1, 2, . . . ,m (2.23)

For each 1 ≤ i ≤ m, write

ai =
1

(yi + s)2
− 1

(yi − s)2

and

bi =
1

(yi + s)2
+

1

(yi − s)2
.

Direct computation shows that 1 + ε2
m∑
i=1

bi ε2aT

ε2a I + ε2Diag(b)

 ∂H(ε, t, x)

∂(t, x)
= I, (2.24)

which implies the continuously differentiability of H(ε, ·, ·). Moreover, by simple al-

gebraic computation, one can easily establish that 1 + ε2
m∑
i=1

bi ε2aT

ε2a I + ε2Diag(b)

 ≻ I, (2.25)
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which, together with (2.24), completes the proof of (i).

ii) Since the Slater condition of (2.21) holds naturally, by [67, Proposition 4.1], it holds

that

lim
ε↓0,t→t0,x→x0

H(ε, t, x) = Π∞(t0, x0)

for any (t0, x0) ∈ ℜn+1.

iii) If t0 > −∥x0∥1, then Π∞(t0, x0) ̸= (0, 0), which implies that the linear indepen-

dence constraint qualification (LICQ) of (2.21) holds. By [67, Proposition 4.1], we

can easily obtain that H(·, ·, ·) is strongly semismooth at (0, t0, x0). Next, we show

H(·, ·, ·) is locally Lipshcitz at (0, t0, x0) for (t0, x0) satisfying t0 ≤ −∥x∥1. For any

given (ε, t, x), we know from (2.23) that

2nε2 =
m∑
i=1

(s− yi)
ε2

s− yi
+

m∑
i=1

(s+ yi)
ε2

s+ yi

= [s yT ]
( m∑

i=1

ε2

s− yi

[
1

−ei

]
+

n∑
i=1

ε2

s+ yi

[
1

ei

])
(2.26)

= s2 + ∥y∥2 − st− yTx,

where ei is the usual ith base vector. Write t = t0 + ∆t and x = x0 + ∆x. Then by

direct computation applied to (2.26), we have

2nε2 = s2 + ∥y∥2 − st0 − yTx0 − s∆t− yT∆x

≥ s2 + ∥y∥2 + s∥x0∥1 − ∥y∥∞∥x0∥1 − s|∆t| − ∥y∥∞∥∆x∥1
≥ s2 + ∥y∥2 − s(|∆t|+ ∥∆x∥1)
≥ s2 − s(|∆t|+

√
n∥∆x∥).

(2.27)

It therefore holds that

∥y∥∞ ≤ s ≤ ∥∆t∥+
√
n∥∆x∥+

√
2n|ε|,

which, together with G(0, t0, x0) = Π∞(t0, x0) = (0, 0), implies the local Lipschtiz-

ness of H(·, ·, ·) at (0, t0, x0). Since, for any ε ̸= 0, H(ε, t, x) is the unique solution

of the fractional system (2.23) and H(0, t, x) = Π∞(t, x) is a semialgebraic function

with respect to (t, x), it can be checked directly that H(·, ·, ·) is semialgebraic. There-

fore, by invoking Proposition 2.1, one can easily obtain the γ order semismoothness of

H(·, ·, ·) at any (0, t0, x0) for some rational number γ.

Proposition 2.12. Let (t, x) be a given vector in ℜ× ℜm
+ .
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(i) For any i = 1, 2, . . . ,m, 0 ≤ yi(ε, t, x) ≤ xi. In particular, if xi > 0, then

0 < yi(ε, t, x) < xi.

(ii) If xi < xj , then 0 < yj(ε, t, x)− yi(ε, t, x) < xj − xi.

Proof. i) Note that s(ε, t, x)2 > yi(ε, t, x)
2 for any 1 ≤ i ≤ m. Then one can easily

deduce from the first equality of(2.23) that yi(ε, t, x)− xi and yi(ε, t, x) have opposite

signs, which implies the first assertion.

ii) For fixed (ε, x, s), it is easy to check that yi and ε22yi
s2−y2i

are strictly increasing with

respect to yi for any i. It therefore follows from the first equality of (2.23) that yi < yj

when xi < xj and thus yi − xi > yj − xj , which is exactly the second assertion of this

proposition.

Let Z be any given matrix in ℜm×n. We use σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z)

to denote the singular values of Z (counting multiplicity). Let Z admit the following

singular value decomposition (SVD)

Z = U [diag(σ(Z)) 0]V T ,

where σ(Z) = [σ1(Z), σ2(Z), . . . , σm(Z)]
T and U ∈ ℜm×m and V ∈ ℜn× are orthog-

onal matrices. Define the spectral operator G(·, ·, ·) : ℜ × ℜm×n × ℜ → ℜ × ℜm×n

with respect to smoothing function H(·, ·, ·) as follows

G(ε, t, Z) :=

[
s(ε, t, σ(Z))

U [Diag(y(ε, t, σ(Z))), 0]V T

]
(2.28)

for any Z ∈ ℜm×, t ∈ ℜ and ε ∈ ℜ. The next proposition shows that G(·, ·, ·) is indeed

the smoothing function of the metric projector over the epigraph of the spectral norm.

Proposition 2.13. Let Z ∈ ℜm×n and t ∈ ℜ.

(i) The spectral operator G(·, ·, ·) is well-defined and, for any given ε > 0, t ∈ ℜ and

Z ∈ ℜm×n, G(·, ·, ·) is continuously differentiable at (ε, Z, t).

(ii) For any X0 ∈ ℜm×n and t0 ∈ ℜ,

lim
ε↓0,t→t0,X→X0

G(ε, t,X) = Π2(t
0, X0).

(iii) G(·, ·, ·) is γ order G-semismooth at (0, t0, X0) for any (t0, X0) in ℜ × ℜm×n for

some rational number γ > 0. Furthermore, if t0 > −∥X0∥2, then G(·, ·, ·) is

strongly G-semismooth at (0, t0, X0)
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Proof. i) Clearly, for given ε and t, H(ε, ·, t) is absolutely symmetric with respect to

ℜm. Therefore, G is well defined. Since H(·, ·, ·) is continuously differentiable on

ℜ\{0} × ℜ × ℜm, according to Proposition 2.4 (i), G(·, ·, ·) is continuously differen-

tiable on ℜ\{0} × ℜ × ℜm.

ii) For given ε ̸= 0 and t ∈ ℜ, it follows from Von Neumann’s trace inequality that

∥G(ε, t,X)−G(ε, t, Z)∥ ≤ ∥H(ε, t, σ(X))−H(ε, t, σ(Z))∥.

As stated in Proposition 2.11, H(·, ·, ·) is the smoothing function of Π∞(·, ·). Combin-

ing all these arguments, we deduce that

lim
ε↓0,t→t0,X→X0

G(ε, t,X) = Π2(t
0, X0).

iii) The last assertion follows directly from Proposition 2.11 (iii) and Proposition 2.4

(iii). We omit the details.

Next, we briefly review the CHKS smoothing functions for plus function. Let

hu(·, ·) : ℜ2 → ℜ be the CHKS function defined by

hu(ε, w) =

√
w2 + 4ε2 + w

2
, ∀ (w, ε) ∈ ℜ2,

One can easily extend these smoothing functions for scalar plus function to vector-

valued plus function. Indeed, define Hu(·, ·) : ℜm ×ℜ → ℜm by

Hu(ε, x) =


hu(ε, x1)

hu(ε, x2)
...

hu(ε, xm)


for any x ∈ ℜm and ε ∈ ℜ. It is easy to verify that Hu is smoothing functions for the

vector plus function max(x, 0), which is continuously differentiable on ℜ++×ℜm and

enjoy the strongly semismooth property on {0} × ℜm.
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Chapter 3

An alternating direction method

3.1 Introduction

Roughly speaking, alternating direction method (ADM) is an inexact implemen-

tation of the augmented Lagrangian method using the idea of Gauss-Seidel iteration. It

solves problems of the form

min f(x) + g(y)

s.t. Ax+By = b
(3.1)

with variables x ∈ ℜn and y ∈ ℜm, where f : ℜn → ℜ ∪ {+∞} and g : ℜm →
ℜ∪ {+∞} are proper closed convex functions, A ∈ ℜp×n, B ∈ ℜp×m, and b is vector

in ℜp. The augmented Lagrangian function of (3.1) is given by

Lβ(x, y, λ) = f(x) + g(y)− ⟨λ, Ax+By − b⟩+ β

2
∥Ax+By − b∥2,

where λ ∈ ℜp is a Lagrangian multiplier and β > 0 is a penalty parameter. The

classical augmented Lagrangian method [43, 64] consists of the iterations{
(xk+1, yk+1) = argminLβ(x, y, λ

k),

λk+1 = λk − γβ(Axk+1 +Byk+1 − b),
(3.2)

where γ ∈ (0, 2) guarantees the convergence. Seen clearly form (3.2), at each itera-

tion the simple scheme of ALM involves a joint minimization with respect to x and

y and therefore ignores the separable structure of (3.1). In contrast, the idea of ADM

is to decompose the minimization task of Lβ(·, ·, λ) into two easier and smaller sub-

problems such that the involved variables x and y can be minimized separately in the

alternative order. The decomposed subproblems are usually much easier than the join-

t minimization task in (3.2) and even for some applications admit analytic solutions

[14, 40, 54, 89, 93]. Given a couple (yk, λk), the ADM applied to problem (3.2) yields

the following iterative scheme
xk+1 = argminLβ(x, y

k, λk),

yk+1 = argminLβ(x
k+1, y, λk),

λk+1 = λk − β(Axk+1 −Byk+1 − b).

(3.3)
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Since its presence [30, 34] in the field of differential equation, ADM and its vari-

ants have been widely studied in many areas, such as convex programming and varia-

tional inequality. In [32, 33], the authors proposed an extension of the ADM (3.3), in

which a stepsize γ ∈ (0,
√
5+1
2

) is attached to the update of the Lagrangian multiplier

λ. Specifically, the extended ADM iterates as
xk+1 = argminLβ(x, y

k, λk),

yk+1 = argminLβ(x
k+1, y, λk),

λk+1 = λk − γβ(Axk+1 −Byk+1 − b).

(3.4)

Gabay [29] considered the ADM from the perspective of operator splitting and stated

that the classical ADM is the tight Douglas-Rachford splitting method [22, 55] for

finding a zero of the sum of two maximal monotone operators applied to the dual of

(3.1). Sequently, in [24], it is shown that the Douglas-Rachford splitting method is a

special implementation of the proximal point algorithm. Replacing the classical PPA

by the relaxed PPA introduced in [35], Eckstein and Bertsekas obtained the following

generalized alternating direction method:
∥xk+1 − argmin{f(x)− ⟨λk, Ax⟩+ β

2
∥Ax+Byk − b∥2}∥ ≤ uk,

∥yk+1 − argmin{g(y)− ⟨λk, By⟩+ β
2
∥ρk(Axk+1 − b) +B(y − (1− ρk)y

k)∥2}∥ ≤ vk,

λk+1 = λk − β(ρkAx
k+1 − (1− ρk)By

k +Byk+1),
(3.5)

where ρk ∈ (0, 2), uk > 0, vk > 0,
∑∞

i=1 uk < ∞ and
∑∞

i=1 vk < ∞. If ρk = 1,

the generalized ADM (3.5) reduces to the original version of ADM. Suggested by

Rockafellar, Eckstein [23] also considered a primal-dual saddle-point application of

the Douglas-Rachford splitting to the separable convex programming. This resulting

algorithm is known as the proximal alternating direction algorithm:
xk+1 = argmin{f(x)− ⟨λk, Ax⟩+ β

2
∥Ax+Byk − b∥2 + s

2
∥x− xk∥2},

yk+1 = argmin{g(y)− ⟨λk, By⟩+ β
2
∥Axk+1 +By − b∥2 + t

2
∥y − yk∥2},

λk+1 = λk − β(Axk+1 +Byk+1 − b).
(3.6)

By further investigating the contractive property of the proximal ADM, He et al. [39]

presented a new variant of ADM in which xk+1 and yk+1 is produced by inexact min-

imizing the subproblems and the parameter β, s, t are replaced by positive definite
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matrices. More specifically,
∥xk+1 − argmin{f(x)− ⟨λk, Ax⟩+ 1

2
∥Ax+Byk − b∥2Hk

+ 1
2
∥x− xk∥2Rk

∥} ≤ uk,

∥yk+1 − argmin{g(y)− ⟨λk, By⟩+ 1
2
∥Axk+1 +By − b∥2Hk

+ 1
2
∥y − yk∥2Sk

}∥ ≤ vk,

λk+1 = λk −Hk(Ax
k+1 +Byk+1 − b).

(3.7)

where uk > 0, vk > 0,
∑∞

k=1 uk < ∞ and
∑∞

k=1 vk < ∞; {Sk} and {Tk} are se-

quences of both lower and upper bounded symmetric positive definite matrices; for a

symmetric positive definite matrix G and a given vector x, ∥x∥G =
√
xTGx; Hk is re-

quired to satisfy some technical condition introduced in [39]. From the perspective of

contraction, Ye and Yuan [91] developed a variant of alternating direction method with

an optimal stepsize. Given a couple of (yk, λk), the new iterate of Ye-Yuan’s algorithm

is produced by 
xk+1 = argminLβ(x, y

k, λk),

ỹk+1 = argminLβ(x
k+1, y, λk),

λ̃k+1 = λk − β(Axk+1 +Bỹk+1 − b),

(3.8)

and {
yk+1 = yk − γα∗(yk − ỹk),

λk+1 = λk − γα∗(λk − λ̃k),
(3.9)

where γ ∈ (0, 2) and α∗ is defined by

α∗ :=
1

2

[
1 +

β∥Axk+1 +Byk − b∥2

β∥Byk −Bỹk∥2 + 1
β
∥λk − λ̃k∥2

]
.

Numerical results demonstrated that an additional computation on the optimal size

would improve the efficiency of the new variant of ADM. More recently, an ADM

based relaxed customized proximal point aiming at accelerating the ADM was pro-

posed by Cai et al. [11] for solving the separable convex programming (3.1). With the

given couple (yk, λk), this algorithm first generates a prediction point (x̃k, ỹk, λ̃k) by
x̃k = argminLβ(x, y

k, λk),

λ̃k = λk − β(Ax̃k −Byk − b),

ỹk = argminLβ(x̃
k, y, λ̃k),

(3.10)

and then updates (yk+1, λk+1) according to the following rules{
yk+1 = yk − γ(yk − ỹk),

λk+1 = λk − γ(λk − λ̃k),
(3.11)
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where γ ∈ (0, 2). As we will see later, the ADM based PPA is equivalent to a special

implementation of Eckstein and Bertsekas’ generalized ADM.

3.2 Equivalence of Eckstein-Bertseka’s ADM and ADM based
customized PPA

For ease of discussion and notations, we assume without generality that A = M

and B = −I . Then the separable convex programming collapses to:

min f(x) + g(y)

s.t. Mx = y.

and the exact implementation of Eckstein-Bertsekas’s generalized ADM goes as fol-

lows:
xk+1 = argmin{f(x) + β

2
∥Mx− yk + pk∥2},

wk+1 = argmin{g(y) + β

2
∥ρMxk+1 + (1− ρ)yk − y + pk∥2},

pk+1 = pk + ρMyk+1 + (1− ρ)yk − yk+1,

(3.12)

where ρ ∈ (0, 2) is a constant relax factor. Given the couple (xk, pk), the next iteration

of Cai et al.’s relaxed ADM is produced by

w̃k = argmin{g(y) + β

2
∥Mxk − y + pk∥2},

p̃k = pk +Mxk − ỹk,

x̃k = argmin{f(x) + β

2
∥Mx− ỹk + p̃k∥2},

xk+1 = (1− ρ)xk + ρx̃k,

pk+1 = (1− ρ)pk + ρp̃k.

(3.13)

Next we analyze Cai et al.’s algorithm in detail under the setting (p0, x0) = (0, 0).

Using the iterative formula in (3.13), it is easy to check that

Mxk+1 + pk+1 = (1− ρ)(Mxk + pk) + ρ(Mx̃k + p̃k),

which means

Mxk+1 + pk+1 =
k∑

j=0

ρ(1− ρ)j(Mx̃k−j + p̃k−j). (3.14)
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Then by the above equality and an easy manipulation, the iterative scheme (3.13) can

be reformulated as

w̃k = argmin{g(w) + β

2
∥

k−1∑
j=0

ρ(1− ρ)j(Mx̃k−1−j + p̃k−1−j)− w∥2},

p̃k =
k−1∑
j=0

ρ(1− ρ)j(Mx̃k−1−j + p̃k−1−j)− w̃k,

x̃k = argmin{f(x) + β

2
∥Mx− w̃k + p̃k∥2}.

(3.15)

By changing the implementation order ofw and p and replacing the notation (x̃k, p̃k, w̃k)

by (xk, pk, wk), we have an alternative form of (3.13):

xk+1 = argmin{f(x) + β

2
∥Mx− wk + pk∥2},

wk+1 = argmin{g(w) + β

2
∥

k∑
j=0

ρ(1− ρ)j(Mxk+1−j + pk−j)− w∥2},

pk+1 =
k∑

j=0

ρ(1− ρ)j(Mxk+1−j + pk−j)− wk+1.

(3.16)

On the other hand, it follows from a direct computation that

k∑
j=0

ρ(1− ρ)j(Mxk+1−j + pk−j) = ρ(Mxk+1 + pk) + (1− ρ)
k−1∑
j=0

ρ(1− ρ)j(Mxk−j + pk−1−j)

= ρ(Mxk+1 + pk) + (1− ρ)(pk + wk)

= pk + ρMxk+1 + (1− ρ)wk,

which implies

pk+1 = pk + ρMxk+1 + (1− ρ)wk − wk+1.

Substituting the above equality into (3.16) yields nothing but Eckstein and Berteskas’

generalized ADM.

3.3 Proximal alternating direction method

For the proximal alternating direction method (3.7), the positive definite matrix

Rk, Sk and Hk are allowed to variate according to some particular rules. However,

in many situations, Hk is set to be βI and the sequences {Sk} and {Tk} are constant

matrices. In this case, we suppress the subindex and write S and T for Sk and Tk

respectively. The convergence results provided in [39] need both S and T to be positive
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semidefinite, nevertheless this assumption may exclude some important applications

(see [89, 94] for example). In [28], by slightly revising the proof in [39], the authors

prove the convergence of the proximal alternating direction method under any of the

following conditions:

(a) f and g are strongly convex;

(b) f is strongly convex and BTB + T is positive definite;

(c) g is strongly convex and ATA+ S is positive definite;

(d) S is positive definite and B is injective;

(e) T is positive definite and A is injective;

(f) S and T are positive definite.

However, a moment’s observation reveals that the conditions listed above don’t cover

the basic convergence result of the original ADM in which S = 0, T = 0 and A,B are

required to be of full column rank. To fill the gap, we provide the following theorem

which summarizes more general convergence results of the proximal ADM. Although

the proof is a trivial extension of that in [39], we still include it here for the purpose of

clarity and completeness.

Theorem 3.1. Assume that problem (3.1) has at least a KKT point. Let (xk, yk, λk) be

generated by the following proximal ADM:
xk+1 = argmin{f(x)− ⟨λk, Ax⟩+ β

2
∥Ax+Byk − b∥2 + 1

2
∥x− xk∥2S},

yk+1 = argmin{g(y)− ⟨λk, By⟩+ β
2
∥Axk+1 +By − b∥2 + 1

2
∥y − yk∥2T},

λk+1 = λk − β(Axk+1 +Byk+1 − b).
(3.17)

where S and T are positive semidefinite. Then {(xk, yk)} converges to an optimal

solution to (3.5) and {λk} converges to an optimal solution to the dual of (3.5) if the

following conditions hold:

(a) f is strongly convex or

[
A

S

]
has full column rank;

(b) g is strongly convex or

[
B

T

]
has full column rank.
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Proof. We first note that the positive semidefiniteness ofATA+S (BTB+T ) is equiv-

alent to the augmented matrices [AT ST ]T ([BT T T ]T ) has full column rank. Hence,

it suffices to prove the convergence of the proximal ADM (3.17) under the condition

that both [AT ST ]T and [BT T T ]T are of full column rank since other cases have been

investigated in [28]. Let (x∗, y∗, λ∗) be a KKT point of (3.1). Then it holds that
ATλ∗ ∈ ∂f(x∗),

BTλ∗ ∈ ∂g(y∗),

Ax∗ +By∗ = b.

(3.18)

Since xk+1 and yk+1 solve L(·, yk, β) + 1
2
∥ · −xk∥2S and L(xk+1, ·, β) + 1

2
∥ · −yk∥2T

respectively, we deduce from the first order optimality conditions that
AT [λk − β(Axk+1 +Byk − b)]− S(xk+1 − xk) ∈ ∂f(xk+1),

BT [λk − β(Axk+1 +Byk+1 − b)]− T (yk+1 − yk) ∈ ∂g(yk+1),

λk+1 = λk − β(Axk+1 +Byk+1 − b).

(3.19)

By (3.19) and the monotonicity of ∂f(·) and ∂g(·), it is easily seen that

0 ≤ ⟨xk+1 − x∗, AT [λk − λ∗ − β(Axk+1 +Byk − b)]− S(xk+1 − xk)⟩
+⟨yk+1 − y∗, BT [λk − λ∗ − β(Axk+1 +Byk+1 − b)]− T (yk+1 − yk)⟩

+⟨λk+1 − λ∗,
λk − λk+1

β
− (Axk+1 +Byk+1 − b)⟩,

= ⟨xk+1 − x∗, AT [λk+1 − λ∗ − βB(yk − yk+1)]− S(xk+1 − xk)⟩
+⟨yk+1 − y∗, BT [λk+1 − λ∗]− T (yk+1 − yk)⟩

+⟨λk+1 − λ∗,
λk − λk+1

β
− [A(xk+1 − x∗) +B(yk+1 − y∗)]⟩,

(3.20)

which implies

⟨λk − λk+1, B(yk − yk+1)⟩+ ⟨B(yk+1 − y∗), βB(yk+1 − yk)⟩
+ ⟨xk+1 − x∗, S(xk+1 − xk)⟩+ ⟨yk+1 − y∗, T (yk+1 − yk)⟩

+ ⟨λk+1 − λ∗,
1

β
(λk+1 − λk)⟩ ≤ 0.

(3.21)

Using the elementary relationship ⟨u, v⟩ = 1
2
(∥u∥2 + ∥v∥2 − ∥u − v∥2), we further

obtain that

∥xk+1 − x∗∥2S + ∥yk+1 − y∗∥2T+βBTB + ∥λk+1 − λ∗∥2I
β

≤ ∥xk − x∗∥2S + ∥yk − y∗∥2T+βBTB + ∥λk − λ∗∥2I
β
− 2⟨λk − λk+1, B(yk − yk+1)⟩

−∥xk − xk+1∥2S − ∥yk − yk+1∥2T+βBTB − ∥λk − λk+1∥2I
β

.

(3.22)
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By the above inequality, it follows that the sequences {Sxk}, {(T + βBTB)yk} and

{λk/β} are bounded. Since T +βBTB and I
β

are positive semidefinite, we deduce that

{yk} and {λk} are also bounded. Recall that

Axk+1 = λk − λk+1 −Byk+1 + b. (3.23)

Hence, {(S+ βATA)xk} is bounded and this together with the positive definiteness of

S + βATA implies the boundedness of {xk}. Moreover, from (3.22), we see immedi-

ately that
∞∑
k=1

∥xk − xk+1∥2S + ∥yk − yk+1∥2T+βBTB + ∥λk − λk+1∥2I
β

+ 2
∞∑
k=1

⟨λk − λk+1, B(yk − yk+1)⟩ < +∞.

(3.24)

One the other hand, by the monotonicity of ∂g(·) combined with (3.19), we have

⟨yk − yk+1, BT (λk − λk+1)⟩

≥ ∥yk − yk+1∥2T + ⟨yk − yk+1, T (yk − yk−1)⟩

≥ ∥yk − yk+1∥2T − 1

2
∥yk − yk+1∥2T − 1

2
∥yk−1 − yk∥2T

=
1

2
∥yk − yk+1∥2T − 1

2
∥yk−1 − yk∥2T ,

(3.25)

which , by the boundedness of {yk}, implies that
∞∑
k=1

⟨yk − yk+1, BT (λk − λk+1)⟩ > −∞.

It therefore holds
∞∑
k=1

∥xk − xk+1∥2S < +∞,

∞∑
k=1

∥yk − yk+1∥βBTB+T < +∞

and
∞∑
k=1

∥λk − λk+1∥2I
β
< +∞.

This together with (3.23) shows

lim
k→∞

∥xk − xk+1∥ = 0, lim
k→∞

∥yk − yk+1∥ = 0, lim
k→∞

∥λk − λk+1∥ = 0. (3.26)

Since the sequences {xk}, {yk} and {λk} are bounded, there exists a triple (x∞, y∞, λ∞)

and a subsequence nk such that

lim
k→∞

xnk
= x∞, lim

k→∞
ynk

= y∞, lim
k→∞

λnk
= λ∞.
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Then, by taking the limits on the both sides of (3.19), using (3.26) and invoking the

upper semicontinuous of ∂g(·) [71], one can immediately write
ATλ∞ ∈ ∂f(x∞),

BTλ∞ ∈ ∂g(y∞),

Ax∞ +By∞ = b,

(3.27)

which means (x∞, y∞, λ∞) is a KKT point of (3.5). Hence, the inequality (3.22) is

also valid if (x∞, y∞, λ∞) is replaced by (x∗, y∗, λ∗). Then it holds that

∥xk+1 − x∞∥2S + ∥yk+1 − y∞∥2T+βBTB + ∥λk+1 − λ∞∥2I
β

≤ ∥xk − x∞∥2S + ∥yk − y∞∥2T+βBTB + ∥λk − λ∞∥2I
β

.
(3.28)

Since T + βBTB is positive definite, we deduce from (3.28) that

lim
k→∞

∥xk − x∞∥2S = 0, (3.29)

and

lim
k→∞

yk = y∞, lim
k→∞

λk = λ∞.

By the relationship (3.23) and Ax∞ +By∞ = b, it is easy to see

lim
k→∞

Axk = Ax∞,

which together with (3.29) and the positive definiteness of S + βBTB implies

lim
k→∞

xk = x∞

Therefore, we have shown that the whole sequence {(xk, yk, λk)} converges to (x∞, y∞, λ∞)

under the assumption of this theorem.

Remark 3.1. Theorem (3.1) provides more general conditions for the convergence of

the proximal ADM. It includes all the conditions in [28, Theorem 8.1] as its special

case. For S = 0 and T = 0, the proximal alternating direction method reduces to the

original ADM whose convergence can be established under the condition A,B have

full column rank. This basic convergence result is also included in Theorem 3.1 while

not contained in the six conditions provided in [28].
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Corollary 3.2. Assume that problem (3.5) has at least a KKT point. Let (xk, yk, λk) be

generated by the following linearized alternating direction method:
xk+1 = argmin{f(x)− ⟨λk, Ax⟩+ β⟨AT (Axk +Byk − b), x− xk⟩+ r

2
∥x− xk∥2,

yk+1 = argmin{g(y)− ⟨λk, By⟩+ β⟨BT (Axk+1 +Byk − b), y − yk⟩+ s
2
∥y − yk∥2,

λk+1 = λk − β(Axk+1 +Byk+1 − b),
(3.30)

where r ≥ β∥ATA∥2 > 0 and s ≥ β∥BTB∥2 > 0 . Then {(xk, yk)} converges to

an optimal solution to (3.5) and {λk} converges to an optimal solution to the dual of

(3.5).

Proof. The linearized ADM (3.30) is a special case of the proximal ADM (3.17)

where S is taken as rI − βATA and T is sI − βBTB. Note that the conditions

r ≥ β∥ATA∥2 > 0 and s ≥ β∥BTB∥2 > 0 ensure the full column rank property

of [AT ST ]T and [BT T T ]T . Therefore, this corollary follows immediately from Theo-

rem 3.1.

3.4 ADM for the matrix norm approximation problem

In this section, we employ the ADM to solve the matrix norm approximation

problem. Note that problem (1.1) can be expressed in the following equivalent form:

min ∥X∥2

s.t. A∗y +X = A0,

By − b = z, z ∈ Q.

(3.31)

The augmented Lagrangian function associated with (3.31) is given by

Lβ(y,X, z;Z,w) := ∥X∥2 − ⟨Z,A∗y +X − A0⟩ − ⟨w,By − b− z⟩

+
β

2
∥A∗y +X − A0∥2F +

β

2
∥By − b− z∥2, (3.32)

where Z and w are Lagrangian multipliers, and β > 0 is the penalty parameter. Given

X0, Z0 ∈ ℜm×n, z0, w0 ∈ ℜn1+n2 , and β0 > 0, the ADM for problem (3.31) at k-th
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iteration can be described as follows:

yk+1 = argmin{Lβk
(y,Xk, zk;Zk, wk)|y ∈ ℜp},

(Xk+1, zk+1) = argmin{Lβk
(yk+1, X, z;Zk, wk)|(X, z) ∈ ℜm×n ×Q},

Zk+1 = Zk − ϱβk(A∗yk+1 +Xk+1 − A0),

wk+1 = wk − ϱβk(By
k+1 − b− zk+1),

βk+1 = rβk, r ≥ 1

where ϱ ∈ (0, 1+
√
5

2
). It is easy to see that the minimizer yk+1 is the solution of the

following linear system of equations:

(AA∗ +BTB)yk+1 = A(A0 −Xk + Zk/βk) + BT (b+ zk + wk/βk). (3.33)

Since Lβk
(yk+1, X, z;Zk, wk) is separable in X and z, simple algebraic manipulations

then give

Xk+1 = A0 −A∗yk+1 + Zk/βk − ΠBβ
(A0 −A∗yk+1 + Zk/βk),

zk+1 = ΠQ(By
k − b− wk/βk).

As analyzed in the previous chapter, Xk+1 can be computed analytically. Moreover,

zk+1 is just a simple projection over Q. Specifically, for any given x ∈ ℜn1+n2 ,

(ΠQ(x))i =

{
0 if1 ≤ i ≤ n1

max(0, xi) if n1 + 1 ≤ i ≤ n1 + n2

.

Remark 3.2. In the implementation of ADM, the subproblem (3.33) is solved by a di-

rect solver using the Cholesky decomposition where the number of matrices p is small

or medium. For larger p, we employ the conjugate gradient method with a diagonal

preconditioner to obtain an approximate solution of (3.33). In addition, one can com-

pletely avoid solving the linear system by using a linearized technique in the ADM.

Thus, yk+1 is given by

yk+1 := argmin
y

{−⟨A∗ξk1 +Bξk2 , y⟩+ β⟨A(A∗yk +Xk+1 − A0), y − yk⟩+ r

2
∥y − yk∥2

+β⟨BT (Byk − b− zk+1), y − yk⟩+ s

2
∥y − yk∥2}. (3.34)

Direct calculation yields the closed form yk+1 satisfying

yk+1 = yk +
1

r + s
[A∗ξk1 +Bξk2 − βA(A∗yk +Xk+1 −A0)− βBT (Byk − b− zk+1)],

where r ≥ β∥AA∗∥2 > 0 and s ≥ β∥BTB∥2 > 0 guarantee the convergence.
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Remark 3.3. Some more general ADM-based methods in the literature can be easily

extended to solve (1.1). For example, the ADM-based descent method developed in

[91] and the ADM based customized PPA [11]. We here omit details of these general

ADM type methods for succinctness.
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Chapter 4

A semismooth Newton-CG dual proximal point algorithm

4.1 A dual proximal point algorithm framework

In this section, we shall introduce the framework of the inexact dual PPA for

solving the MNA problem and establish its global and local convergence.

4.1.1 Proximal point algorithm

Let H be a real Hilbert space with inner product ⟨·, ·⟩. A multifunction T : H →
H is a monotone operator if

⟨z − z′, w − w′⟩ ≥ 0, whenever w ∈ T (z), w′ ∈ T (z′).

It is said to be maximal monotone if, in addition, the graph

G(T ) = {(z, w) ∈ H ×H |w ∈ T (z)}

is not strictly contained in the graph of any other monotone operator T ′ : H → H . In

various fields of applied mathematics, many problems can be equivalently formulated

as a maximal monotone inclusion problem, that is, given a, possibly multi-valued,

maximal monotone operator T : H → H, it is to find a x ∈ X such that

0 ∈ T (x).

For example, let f : H → (−∞,∞] be a proper lower semicontinuous convex func-

tions. Then T = ∂f(·) is a maximal operator (see) and 0 ∈ T (z) means f(z) =

min f(x).

The proximal point method, initiated by [58] and later investigated extensively by

[72, 73]. The PPA [73] applied to the maximal monotone inclusion problem takes the

following scheme

xk+1 ≈ pλk
(xk) := (I + λkT )−1(xk),
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where λk > 0 is bounded away from zero. In [73], Rockafellar suggested computing

xk+1 only approximately to satisfy the following accuracy criteria:

∥xk+1 − pλk
(xk)∥ ≤ εk, εk > 0,

∑∞
k=1 εk <∞, (4.1)

∥xk+1 − pλk
(xk)∥ ≤ δk∥xk+1 − xk∥, δk > 0,

∑∞
k=1 δk <∞. (4.2)

In that paper, he also showed that the sequence generated above converges (in the

weak topology) to a zero point of T , if it exists. Moreover, if λk ↑ λ∞ ≤ ∞ and T −1

is Lipschitz continuous at 0, then condition (4.2) ensures that the local convergence is

linear and the rate is approximately proportional to 1/λ∞. If in addition λ∞ = ∞,

then the convergence becomes superlinear. A problem of particular importance is the

convex minimization min f(x) where f is assumed to be proper, lower semicontinuous

and convex. In this case, the above inexact PPA reduces to

xk+1 ≈ argmin f(x) +
1

2
∥x− xk∥2. (4.3)

The attractive feature of this approach is that the objective function in (4.3) is strongly,

which motivates us to apply an indirect method for solving (4.3) based on the duality

theory for convex programming.

Possibly due to its versatility and effectiveness, the proximal point algorithm re-

ceives continuous attention from numerous researchers and is well accepted as a pow-

erful tool for solving various classes of optimization problems, see, e.g.[37, 56, 72, 84,

95]. In this section, we consider the dual proximal point algorithm, i.e., applying the

idea to the maximal monotone operator associated with the dual problem. By rewriting

(1.1) as

min
{
∥X∥2 | A∗y +X = A0, By − b ∈ Q

}
, (4.4)

we can easily derive the following explicit form of its dual

min −⟨A0, Z⟩ − ⟨b, w⟩

s.t. AZ +BTw = 0,

∥Z∥∗ ≤ 1, w ∈ Q∗,

(4.5)

where ∥ · ∥∗ denotes the nuclear norm of a matrix which is defined as the sum of its

singular values and Q∗ is the dual cone of Q. For the convergence analysis later, we
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assume that the Slater condition for (4.5) holds, i.e., there exists (Z,w) ∈ ℜm×n ×
ℜn1+n2 such that 

∥Z∥∗ < 1,

wi > 0, i = n1 + 1, . . . , n1 + n2,

AZ +BTw = 0.

(4.6)

Write

Tl(X, y) = −

(
∂∥X∥2

0

)
+ ∂χF1(X, y), ∀X ∈ ℜm×n, y ∈ ℜp,

Tg(Z,w) = −

(
A0

b

)
+ ∂χF2(Z,w), ∀Z ∈ ℜm×n, w ∈ ℜn1+n2 ,

and

pλ(Z,w) = (I + λTg)
−1(Z,w),

where F1 and F2 are the feasible sets of (4.4) and (4.5) respectively.

For any given Zk ∈ ℜm×n, wk ∈ ℜn1+n2 and λk > 0, it is easy to see that

pλk
(Zk, wk) is the unique solution of the following minimization problem

min −⟨A0, Z⟩ − ⟨b, w⟩+ 1

2λk
∥Z − Zk∥2 + 1

2λk
∥w − wk∥2

s.t. AZ +BTw = 0,

∥Z∥∗ ≤ 1, w ∈ Q∗.

(4.7)

By attaching a lagrangian y to the equality constraint, the dual of (4.7) is of the follow-

ing form

max
y∈ℜp

{−⟨A0, Z⟩ − ⟨b, w⟩+ 1

2λk
∥Z − Zk∥2 + 1

2λk
∥w − wk∥2

−⟨y,AZ +BTw⟩| ∥Z∥∗ ≤ 1, w ∈ Q∗}.
(4.8)

Simple calculation shows that the dual of (4.7) can be further expressed as

max
y∈ℜp

θk(y) :=
1

2λk
∥ΠB(Z

k − λk(A∗y − A0))− (Zk − λk(A∗y − A0))∥2

+
1

2λk

(
∥Zk∥2 − ∥Zk − λk(A∗y − A0)∥2

)
+

1

2λk

(
∥wk∥2 − ∥ΠQ∗ [wk − λk(By − b)]∥2

)
.

(4.9)
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Clearly, the Slater condition (4.6) asserts that the optimal solution set of (4.9) is nonemp-

ty. Let yk+1 be a minimizer of (4.9). Then from the relationship between the primal

and dual variables, we have

pλk
(Zk, wk) =

 ΠB(Z
k − λk(A∗yk+1 − A0))

ΠQ∗(wk − λk(By
k+1 − b))

 . (4.10)

Therefore, to implement the proximal point algorithm, one need to solve (4.9) and then

update the variable (Z,w) by

(Zk+1, wk+1) ≈ pλk
(Zk, wk).

In view of (4.10), we are able to present the inexact dual PPA framework:

Algorithm 4.1 (An inexact dual PPA framework) Given (Z0, w0, y0) and λ0 > 0, at

the k-th iteration, do the following steps:

Step 1. For fixed Zk, wk and yk, compute an approximate maximizer

yk+1 ≈ argmax
y∈ℜp

θk(y),

where θk is defined in (4.9).

Step 2. Update the variables Zk+1, Xk+1 and wk+1 via

Zk+1 = ΠB 1
λk

(Zk − λk(A∗yk+1 − A0)),

wk+1 = ΠQ∗(wk − λk(By
k+1 − b)),

Xk+1 = (Zk − λk(A∗yk+1 − A0)− Zk+1)/λk.

Step 3. If max{∥A0 −A∗yk+1 −Xk+1∥F , ∥ΠQ∗(b−Byk+1)∥} ≤ ε, stop; else, update

λk to λk+1, end.
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4.1.2 Convergence analysis

In Step 1 of the dual PPA, we use the following stopping criteria:

max θk(y)− θk(y
k+1) ≤ ε2k

2λk
, εk > 0,

∑∞
k=1 εk <∞ (4.11)

max θk(y)− θk(y
k+1) ≤ δ2k

2λk
(∥Zk+1 − Zk∥2 + ∥wk+1 − wk∥2), δk > 0,

∑∞
k=1 δk <∞ (4.12)

∥∇yθk(y
k+1)∥ ≤ δ′k

λk

∥∥∥∥∥
(
Zk+1 − Zk

wk+1 − wk

)∥∥∥∥∥ , 0 ≤ δ′k → 0 (4.13)

to terminate our proposed dual PPA. For the constrained minimization (4.4), the aug-

mented Lagrangian is

Lβ(X, y, Z, w, λ) = min
z∈ℜp

+

{∥X∥2 +
λ

2
∥A∗y +X − A0 −

Z

λ
∥2F

+
λ

2
∥By − b− z − wk

λ
∥ − ∥wk∥2

λ
},

= ∥X∥2 +
λ

2
∥A∗y +X − A0 −

Z

λ
∥2F

+
1

2λ
∥Πℜn

+
(w − λ(By − b))∥2 − ∥wk∥2

λ
.

(4.14)

For k = 1, 2, . . ., let ϕk(X, y) = Lβ(X, y, Z
k, wk, λk). By the construction of Xk at

each k, we know

Xk = argmin
X

ϕk(X, y
k) (4.15)

and

θk(y
k+1) = −ϕk(X

k+1, yk+1).

Combining [72, Theorem 4-5] with the above preparation, we present below two results

on the global and local convergence of the dual PPA.

Theorem 4.1 (Global Convergence). Let the inexact PPA be executed with stopping

criterion (4.11). Suppose that the primal problem (4.4) satisfies the Slater condition.

Then the sequence {(Zk+1, wk+1)} ⊂ B×Q∗ generated by the inexact PPA is bounded

and it converges to an optimal solution of (4.5). Moreover, the sequence {yk} is also

bounded and any of its accumulation point is an optimal solution of (1.1).

Proof. Observing from the definition θk(y) and ϕ(X, y), we obtain by direct computa-

tion that

min
X,y

ϕk(X, y) = −max
y
θk(y).
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Therefore, the stopping criterion (4.11) can be written as

ϕk(X
k+1, yk+1)−min

X,y
ϕk(X, y) ≤

ε2k
2λk

, εk > 0,
∞∑
k=1

εk <∞,

which is the criterion (A′′) in [72]. Then by directly invoking [72, Theorem 4], we can

complete the proof of this theorem.

Theorem 4.2 (Local Convergence). Let the dual PPA be executed with stopping cri-

teria (4.11) and (4.12). Suppose that the Slater condition holds for (4.4). If T −1
g is

Lipschitz continuous at the origin with the modulus ag, then {(Zk+1, wk+1)} converges

to an optimal solution (Z, w̄) of (4.5), and∥∥∥∥∥∥
 Zk+1 − Z

wk+1 − w̄

∥∥∥∥∥∥ ≤ νk

∥∥∥∥∥∥
 Zk − Z

wk − w̄

∥∥∥∥∥∥ , for all k sufficiently large, (4.16)

where νk = [ag(ag + λ2k)
−1/2 + δk](1− δk)

−1 → ag(a
2
g + λ2∞)−1/2 < 1. Moreover, the

conclusion about {yk} in Theorem 4.1 is valid.

If in addition to (4.12) and the condition on T −1
g , one also has (4.13) and that T −1

l

is Lipschitz continuous at the origin with modulus al (≥ ag), then {yk+1} converges to

the unique optimal solution ȳ of (1.1), and∥∥∥∥∥
(
Xk+1 −X

yk+1 − ȳ

)∥∥∥∥∥ ≤ ν ′k

∥∥∥∥∥∥
 Zk+1 − Zk

wk+1 − wk

∥∥∥∥∥∥ , for all k sufficiently large,

where X = A0 −A∗ȳ, and ν ′k = al(1 + δ′k)/λk → al/λ∞.

Proof. Since

∂(X,y)ϕk(X
k+1, yk+1) =

[
∂Xϕk(X

k+1,yk+1
)

∇yϕk(X
k+1,yk+1

)

]
,

by using the first order optimality condition of (4.15), we deduce that

dist(0, ∂(X,y)ϕk(X
k+1, yk+1)) = ∥∇yϕk(X

k+1, yk+1)∥.

It can be established by direct computation that

∇yϕk(X
k+1, yk+1) = −∇yθ(y

k+1)

and therefore the criterion (4.13) is equivalent to

dist(0, ∂(X,y)ϕk(X
k+1,yk+1

)) ≤ δ′k
λk

∥∥∥∥∥
(
Zk+1 − Zk

wk+1 − wk

)∥∥∥∥∥ , 0 ≤ δ′k → 0 .
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Note that

min
X,y

ϕk(X, y) = −max
y
θk(y).

and

θk(y
k+1) = −ϕk(X

k+1, yk+1).

Then [72, Theorem 5] is applicable to the inexact proximal point algorithm and this

claim follows immediately.

Remark 4.1. In practical implementation, a proximal term − 1
2βk

∥y − yk∥2 can be

added to the dual objective function θk. This corresponds to the proximal method of

multiplier considered in [72, Section 5] whose convergence analysis can be conducted

in a parallel way for algorithm 4.1. Let θ̂k(y) be the resulted new dual objetive function,

i.e.,

θ̂k(y) = θk(y)−
1

2βk
∥y − yk∥2.

By the strong convexity of the new objective function, it holds that:

sup θ̂k(y)− θ̂k(y
k+1) ≤ 1

2β
∥∇θ̂k(yk+1)∥2.

Therefore, the stopping criterias (4.11) and (4.12) can be modified into the following

practical conditions respectively:

∥∇θ̂k(yk+1)∥ ≤ εk, ϵk ≥ 0,
∞∑
k=0

ϵk <∞

∥∇θ̂k(yk+1)∥ ≤ δk
√
∥Zk+1 − Zk∥2 + ∥wk+1 − wk∥2, δk > 0,

∞∑
k=1

δk <∞.

4.2 A semismooth Newton-CG method for the inner problem

In this section, we will apply the well-known inexact semismooth Newton method

to approximately solve the unconstrained subproblem (4.9). Using Proposition 2.5 (ii),

we know that the first order optimality condition for (4.9) is given by

0 = ∇θk(y) := AΠB
[
Zk − λk(A∗y − A0)] +BTΠQ∗ [wk − λk(By − b)

]
.

Since ΠB(·) and ΠQ∗(·) are Lipschitz continuous, ∇θk(·) is also Lipschitz continuous.

Hence the Clarke’s generalized Jacobian of ∇θk (which is the generalized Hessian of

θk and we denote it by ∂2θk) is well defined. Since it is difficult to derive the exact
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characterization of ∂2θk, we will slightly modify the classical semismooth Newton

method by selecting elements in a larger differentiable set ∂̂2θk instead of ∂2θk, where

∂̂2θk is a set-valued mapping defined by

∂̂2θk(y) := −λk
[
A∂ΠB(Z

k−λk(A∗y−A0))A∗+BT∂ΠQ∗(wk−λk(By−b))B
]
, ∀ y ∈ ℜp.

due to the fact [16, p.75]

∂2θk(y)H ⊆ ∂̂2θk(y)H

for any H ∈ ℜm×n.

4.2.1 Characterization of ∂̂2θk

To obtain the explicit expression of ∂̂2θk, it suffices to characterize ∂ΠB(·) and

∂ΠQ∗(·). For a given Y ∈ ℜm×n, suppose that it has the following SVD:

Y = U [diag(σ) 0]V T ,

where σ = (σ1, σ2, . . . , σm)
T with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σm.

Let {Y i}i≥1 be a sequence converging to Y such that every element Y i ∈ E0,

where E0 is defined by

E0 := {Y ∈ DΠB | σ1(Y ) > σ2(Y ) > . . . > σm(Y ) > 0},

where DΠB is the collection of the points at which ΠB(·) is differentiable. This implies

∥Y i∥∗ ̸= 1 for each i ≥ 1. Indeed, the expression (2.17) clearly shows that ΠB(·)
is non-differentiable at any x ∈ ℜm with ∥x∥1 = 1. Then, by Proposition 2.4 (i), we

know that ΠB(·) is also non-differentiable at any point Z ∈ ℜm×n satisfying ∥Z∥∗ = 1.

Let

∂E0ΠB(Y ) :=

{
lim

E0∋Y j→Y
Π′

B(Y
j)

}
.

Let the SVD of Y j be Y i = U i[diag(σi), 0](V i)T . We consider 3 cases.

Case 1: ∥Y ∥∗ < 1.

In this case, ΠB is continuously differentiable at Y and its generalized Jacobian is a

singleton set consisting of the identity operator I from ℜm×n to ℜm×n.

Case 2: ∥Y ∥∗ = 1.

In this case, a quick computation yields that k1(σ) = r and k2(σ) = m.
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Since Y can be approximated by a sequence in the interior of B, it follows that

the identity operator is always an element of ∂E0ΠB(Y ). To obtain other elements, we

consider the case in which {Y i} has an infinite subsequence outside B. Without loss

of generality, we assume that ∥Y i∥∗ > 1 for all i. By passing through a subsequence if

necessary, we know that there exists a positive integerN ∈ [r, m] such thatN = k1(σ
i)

for each i. Therefore, one has

(ΠB(σ
i))k =

 σi
k − 1

N

(∑N
j=1 σ

i
j − 1

)
, 1 ≤ k ≤ N,

0, otherwise

and

Π′
B(σ

i) =

[
IN 0

0 0

]
− 1

N

[
1N×N 0

0 0

]
.

where IN and 1N×N are the N ×N identity matrix and the m× n matrix respectively.

For notational simplicity, we write ΠB(σ
i) as

ΠB(σ
i) =: gi(σi) = (gi1(σ

i), . . . , giN(σ
i), 0, . . . , 0)T

and define the following four index sets

α1 := {1, 2, . . . , r}, α2 := {r + 1, r + 2, . . . , N}, (4.17)

α3 := {N + 1, N + 2, . . . ,m}, α4 := {m+ 1,m+ 2, . . . , n}.

Let Ωi and Γi be the following m×m symmetric matrices

Ωi =

 1N×N

Ωi
α1α3

Ωi
α2α3

(Ωi
α1α3

)T (Ωi
α2α3

)T 0

 , (4.18)

Γi =


Γi
α1α1

Γi
α1α2

Γi
α1α3

(Γi
α1α2

)T Γi
α2α2

Γi
α2α3

(Γi
α1α3

)T (Γi
α2α3

)T 0

 , (4.19)
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where
(Ωi

α1α3
)kj =

gik
σi
k−σi

j+N
, for k ∈ α1, j ∈ α3 −N,

(Ωi
α2α3

)kj =
gik+r

σi
k+r−σi

j+N
, for k ∈ α2 − r, j ∈ α3 −N,

(Γi
α1α1

)kj =
gik+gjk
σi
k+σi

j
, for k ∈ α1, j ∈ α1,

(Γi
α1α2

)kj =
gik+gij+r

σi
k+σi

j+r
, for k ∈ α1, j ∈ α2 − r,

(Γi
α1α3

)kj =
gik

σi
k+σi

j+N
, for k ∈ α1, j ∈ α3 −N,

(Γi
α2α2

)kj =
gik+r+gij+r

σi
k+r+σi

j+r
, for k ∈ α2 − r, j ∈ α2 − r,

(Γi
α2α3

)kj =
gik+r

σi
k+r+σi

j+N
, for k ∈ α2 − r, j ∈ α3 −N.

To simplify notation, we also write

Υi =

 Υi
α1

Υi
α2

 , with Υi
k :=

gik
σi
k

, k = 1, 2, . . . , N.

Now from Proposition 2.4, we know that for any given H ∈ ℜm×n,

Π′
B(Y

i)H = U i
[
W i

1 W i
2

]
(V i)T , (4.20)

where the matrices W i
1 ∈ ℜm×m and W i

2 ∈ ℜm×(n−m) are defined by

W i
1 = Ωi ◦ S(H̃ i

1) + Γi ◦ T (H̃ i
1)−

Tr(H̃ i
11)

N

[
IN 0

0 0

]
,

and

W i
2 =

 Υi1T
n−m

0

 ◦ H̃ i
2,

with H̃ i
1 ∈ ℜm×m, H̃ i

2 ∈ ℜm×(n−m), [H̃ i
1 H̃

i
2] = (U i)THV i and H̃ i

11 being the matrix

extracted from the first N columns and rows of H̃ i
1. By simple algebraic computation,

we are able to show

lim
i→∞

Ωi
α1α3

= 1r×(m−N),

lim
i→∞

Γi
α1α1

= 1r×r,

lim
i→∞

Γi
α1α2

= 1r×(N−r),

lim
i→∞

Ωi
α1α3

= 1N×(m−N),

lim
i→∞

Υi
α1

= 1r.
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Let SN be the set of cluster points of {(Ωi
α2α3

,Γi
α2α2

,Γi
α2α3

,Υi
α2
)}i≥1. By taking limits

on both sides of (4.20), we are able to establish the conclusion that V (̸= I) is an ele-

ment of ∂E0ΠB(Y ) if and only if there exist an integerN ∈ [r, m], {(Ω∞
α2α3

,Γ∞
α2α2

,Γ∞
α2α3

,Υ∞
α2
)} ∈

SN and singular vector matrices U∞, V ∞ of Y such that for any H ∈ ℜm×n,

VH = U∞ [W∞
1 W∞

2 ] (V ∞)T , (4.21)

where the matrices W∞
1 ∈ ℜm×m and W∞

2 ∈ ℜm×(n−m) are defined by

W∞
1 = Ω∞ ◦ S(H̃1) + Γ∞ ◦ T (H̃1)−

Tr(H̃11)

N

[
IN 0

0 0

]

and

W∞
2 =


1r×(n−m)

Υ∞
α2

1T
n−m

0

 ◦ H̃2,

here, H̃1 ∈ ℜm×m, H̃2 ∈ ℜm×(n−m), [H̃1 H̃2] = (U∞)THV ∞ and H̃11 is the matrix

extracted from the first N columns and rows of H̃1, and

Ω∞ =

 1N×N

1r×(m−N)

Ω∞
α2α3

1(m−N)×r (Ω∞
α2α3

)T 0


and

Γ∞ =


1r×r 1r×(N−r) 1r×(m−N)

1(N−r)×r Γ∞
α2α2

Γ∞
α2α3

1(m−N)×r (Γ∞
α2α3

)T 0

 .
By taking a convex hull of such V described above and the identity operator I, we can

obtain the generalized Jacobian of ΠB(·) at Y since it is indifference to sets of zero

measure [85].

Case 3: ∥Y ∥∗ > 1.

In this case, it is easily seen that k1(σ) ≤ k2(σ) ≤ r. By taking a subsequence if

necessary, there exists a positive integer N ∈ [k1(σ), k2(σ)] such that N = k1(σ
i) for

each i. Therefore,

ΠB(σ
i) =

 σi
k − 1

N

(∑N
j=1 σ

i
j − 1

)
, 1 ≤ k ≤ N,

0, otherwise,
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and

Π′
B(σ

i) =

[
IN 0

0 0

]
− 1

N

[
1N×N 0

0 0

]
.

For later discussion, we partition the set {1, 2, . . . ,m} into the following five subsets:

β1 := {1, 2, . . . , k1(σ)}, β2 := {k1(σ) + 1, k1(σ) + 2, . . . , N}

β3 := {N + 1, N + 2, . . . , k2(σ)}, β4 := {k2(σ) + 1, k2(σ) + 2, . . . , r}

β5 := {r + 1, r + 2, . . . ,m}

and write

γ1 := β1 ∪ β2, γ2 := β3 ∪ β4.

For each i, redefine Ωi,Γi and Υi by

Ωi :=



1N×N

Ωi
β1β3

Ωi
β2β3

Ωi
γ1β4

Ωi
γ1β5

(Ωi
β1β3

)T (Ωi
β2β3

)T

(Ωi
γ1β4

)T

(Ωi
γ1β5

)T

0(m−N)×(m−N)


, (4.22)

Γi =:


Γi
γ1γ1

Γi
γ1γ2

Γi
γ1β5

(Γi
γ1γ2

)T

(Γi
γ1β5

)T
0(m−N)×(m−N)

 ,
and

Υi :=
( gi1
σi
1

,
gi2
σi
2

, . . . ,
giN
σi
N

)T
,

where
(Ωi

β1β3
)kj =

gik
σi
k−σi

j+N
, for k ∈ β1, j ∈ β3 −N,

(Ωi
β2β3

)kj =
gi
k+k1(σ)

σi
k+k1(σ)

−σi
j+N

, for k ∈ β2 − k1(σ), j ∈ β3 −N,

(Ωi
γ1β4

)kj =
gik

σi
k−σi

j+k2(σ)

, for k ∈ γ1, j ∈ β4 − k2(σ),

(Ωi
γ1β5

)kj =
gik

σi
k−σi

j+r
, for k ∈ γ1, j ∈ β5 − r,

(Γi
γ1γ1

)kj =
gik+gij
σi
k+σi

j
, for k ∈ γ1, j ∈ γ1,

(Γi
γ1γ2

)kj =
gik

σi
k+σi

j+N
, for k ∈ γ1, j ∈ γ2 −N,

(Γi
γ1β5

)kj =
gik

σi
k+σi

j+r
, for k ∈ γ1, j ∈ β5 − r.
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Then the equality (4.20) is also valid. Simple calculation shows that

lim
i→∞

(Ωi
β1β3

)kj =
gk

σk−σj+N
:= (Ω∞

β1β3
)kj, for k ∈ β1, j ∈ β3 −N,

lim
i→∞

(Ωi
γ1β4

)kj =
gk

σk−σj+k2(σ)
:= (Ω∞

γ1β4
)kj, for k ∈ γ1, j ∈ β4 − k2(σ),

lim
i→∞

(Ωi
γ1β5

)kj =
gk
σk

:= (Ω∞
γ1β5

)kj, for k ∈ γ1, j ∈ β5 − r,

lim
i→∞

(Γi
γ1γ1

)kj =
gk+gj
σk+σj

:= (Γ∞
γ1γ1

)kj, for k ∈ γ1, j ∈ γ1,

lim
i→∞

(Γi
γ1γ2

)kj =
gk

σk+σj+N
:= (Γ∞

γ1γ2
)kj, for k ∈ γ1, j ∈ γ2 −N,

lim
i→∞

(Γi
γ1β5

)kj =
gk
σk

:= (Γ∞
γ1β5

)kj, for k ∈ γ1, j ∈ β5 − r,

lim
i→∞

(Υi)k =
gk
σk

:= (Υ∞)k, for k = 1, 2, . . . , N.

Redefine SN to be the set of limit points of {Ωi
β2β3

}. By taking limits on both sides of

(4.20), we have the conclusion that V is an element of ∂E0ΠB(Y ) if and only if there

exist an integer N ∈ [k1(σ), k2(σ)], Ω∞
β2β3

∈ SN and singular vector matrices U∞, V ∞

of Y such that for any H ∈ ℜm×n,

VH = U∞ [W∞
1 W∞

2 ] (V ∞)T , (4.23)

where the matrices W∞
1 ∈ ℜm×m and W∞

2 ∈ ℜm×(n−m) are defined by

W∞
1 = Ω∞ ◦ S(H̃1) + Γ∞ ◦ T (H̃1)−

Tr(H̃11)

N

[
IN 0

0 0

]
,

W∞
2 =

[
Υ∞1T

n−m

0

]
◦ H̃2,

here, H̃1 ∈ ℜm×m, H̃2 ∈ ℜm×(n−m), [H̃1 H̃2] = (U∞)THV ∞ and H̃11 is the matrix

extracted from the first N columns and rows of H̃1, and the matrices Ω∞ and Γ∞ are

defined by

Ω∞ =



1N×N

Ω∞
β1β3

Ω∞
β2β3

Ω∞
γ1β4

Ω∞
γ1β5

(Ω∞
β1β3

)T (Ω∞
β2β3

)T

(Ω∞
γ1β4

)T

(Ω∞
γ1β5

)T

0(m−N)×(m−N)


,
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Γ∞ =


Γ∞
γ1γ1

Γ∞
γ1γ2

Γ∞
γ1β5

(Γ∞
γ1γ2

)T

(Γ∞
γ1β5

)T
0(m−N)×(m−N)

 .
By taking a convex hull of those V described above, we can obtain the generalized

Jacobian of ΠB(·) at Y since it is blind to sets of zero measure [85].

In order to characterize ∂ΠQ∗(·) at z ∈ ℜn1+n2 , we define the following three

index sets:

J1 := {i : zi > 0, n1 + 1 ≤ i ≤ n1 + n2} ∪ {1, 2, . . . , n1},

J2 := {i : zi = 0, n1 + 1 ≤ i ≤ n1 + n2},

J3 := {i : zi < 0, n1 + 1 ≤ i ≤ n1 + n2}.

By direct calculation, it follows that V is an element of ∂ΠQ∗(z) if and only if there

exists a vector a ∈ [0, 1]|J2| such that

Vh =


hJ1

a ◦ hJ2

0

 , ∀h ∈ ℜn1+n2 . (4.24)

Remark 4.2. In the implementation of our inexact semismooth Newton-CG method,

we need to select an element V0
1 ∈ ∂ΠB(Y ) and an element V0

2 ∈ ∂ΠQ∗(z). If ∥Y ∥∗ ≤
1, V0

1 is chosen as the identity operator from ℜm×n to ℜm×n. For the case where Y is

outside of B, we take U∞ = U, V ∞ = V and N = k1(σ) in (4.23). Thus β2 = ∅ and

for any H ∈ ℜm×n,

V0
1H = U [W1 W2]V

T , (4.25)

where the matrices W1 ∈ ℜm×m and W2 ∈ ℜm×(n−m) are defined by

W1 = Ω∞ ◦ S(H̃1) + Γ∞ ◦ T (H̃1)−
Tr(H̃11)

N

[
IN 0

0 0

]
,

W2 =

[
Υ∞1T

n−m

0

]
◦ H̃2,

with H̃1 ∈ ℜm×m, H̃2 ∈ ℜm×(n−m), [H̃1 H̃2] = UTHV and H̃11 being the matrix

extracted from the first N columns and rows of H̃1, and

Ω∞ =


1N×N Ω∞

β1γ2
Ω∞

β1β5

(Ω∞
β1γ2

)T

(Ω∞
(β1β5

)T
0(m−N)×(m−N)

 ,
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Γ∞ =


Γ∞
β1γ1

Γ∞
β1γ2

Γ∞
β1β5

(Γ∞
β1γ2

)T

(Γ∞
β1β5

)T
0(m−N)×(m−N)

 .
As to the selection of V0

2 , we take a = 0 in (4.24) and

V0
2h =

[
hJ1

0

]
, ∀h ∈ ℜn1+n2 . (4.26)

4.2.2 Constraint nondegeneracy

For the convergence analysis of the semismooth Newton method, we need the

concept of constraint nondegeneracy which is originally introduced by Robinson [70]

and extended by Bonnans and Shapiro [6]. Let X and Y be two finite dimensional

space, Φ : X → Y be a continuously differentiable function and C be a closed convex

set. We use TC(x) and lin(TC(x)) to denote the tangent cone of C at x and its linearity

space, respectively. A feasible point x̄ to the feasibility problem {Φ(x) ∈ C, x ∈ X}
is constraint nondegenerate if

Φ′(x̄)X + lin(TC(Φ(x̄))) = Y .

Thus the constraint nondegeneracy condition associated with the minimizer (Ẑ, ŵ) of

(4.7) has the form
A BT

I 0

0 I


(

ℜm×n

ℜn1+n2

)
+


{0}p

lin(TB(Ẑ))

lin(TQ∗(ŵ))

 =


ℜp

ℜm×n

ℜn1+n2

 , (4.27)

or equivalently,

Alin(TB(Ẑ)) + BT lin(TQ∗(ŵ)) = ℜp. (4.28)

Proposition 4.3. Let (Ẑ, ŵ) be the unique solution pair of (4.7). Let Ẑ have the fol-

lowing SVD:

Ẑ = U [diag(σ(Ẑ)) 0]V T = [U1 U2][diag(σ(Ẑ)) 0][V1 V2]
T ,

where σ1(Ẑ) ≥ . . . ≥ σr(Ẑ) > 0 = σr+1(Ẑ) = . . . = σm(Ẑ), σ(Ẑ) := (σ1(Ẑ), . . . , σm(Ẑ))
T ,

and U = [U1 U2] and V = [V1 V2] with U1 ∈ ℜm×r, U2 ∈ ℜm×(m−r), V1 ∈ ℜn×r, V2 ∈
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ℜn×(n−r). Define the following two index sets κ1 and κ2 by

κ1 := {1, 2, . . . , n1} ∪ {i| ŵi > 0, n1 + 1 ≤ i ≤ n1 + n2},

κ2 := {i| ŵi = 0, n1 + 1 ≤ i ≤ n1 + n2}.

Then it holds that:

(i) if ∥Ẑ∥∗ < 1, the constraint nondegeneracy holds at (Ẑ, ŵ) if and only if Bκ1y = 0

A∗y = 0
=⇒ y = 0. (4.29)

(ii) if ∥Ẑ∥∗ = 1, the constraint nondegeneracy holds at (Ẑ, ŵ) if and only if, for any

given k ∈ ℜ, 

Bκ1y = 0

(U1)
T (A∗y)V1 = kIr

(U1)
T (A∗y)V2 = 0

(U2)
T (A∗y)V1 = 0

=⇒ y = 0. (4.30)

Proof. (i) Under the condition that ∥Ẑ∥∗ < 1, it is easy to see that

lin(TB(Ẑ)) = ℜm×n

and

lin(TQ∗(ŵ)) =

[
ℜ|κ1|

{0}|κ2|

]
.

Thus the constraints nondegeneracy condition (4.28) is reduced to

Aℜm×n +BT
κ1
ℜ|κ1| = ℜp, (4.31)

which, by taking orthogonal complement, is equivalent to (4.29).

(ii) Since

lin(TQ∗(ŵ)) =

[
ℜ|κ1|

{0}|κ2|

]
,

the constraints nondegeneracy condition (4.28) is reduced to

Alin(TB(Ẑ)) +BT
κ1
ℜ|κ1| = ℜp, (4.32)
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which is equivalent to  Bκ1y = 0

A∗y ∈ lin(TB(Ẑ))
⊥

=⇒ y = 0. (4.33)

Since from [86, Example 2] that

∂∥X∥∗ = {U1V
T
1 + U2TV

T
2 |T ∈ ℜ(m−r)×(n−r), ∥T∥2 ≤ 1},

it follows that

∥ · ∥∗(X;H) = max
V ∈∂∥X∥∗

⟨V, H⟩

= Tr((U1)
THV1) + max

T
{⟨U2TV

T
2 , H⟩ | ∥T∥2 ≤ 1 }

= Tr((U1)
THV1) + max

T
{⟨U2TV

T
2 , H⟩ | ∥T∥2 ≤ 1 }

= Tr((U1)
THV1) + max

T
{⟨T, UT

2 HV2⟩ | ∥T∥2 ≤ 1 }

= Tr((U1)
THV1) + ∥UT

2 HV2∥∗.

(4.34)

Then by [16, Proposition 2.3.6,Theorem 2.4.9], one can establish that

TB(Ẑ) = {H ∈ ℜm×n|Tr((U1)
THV1) + ∥(U2)

THV2∥∗ ≤ 0},

and therefore obtain

lin(TB(Ẑ)) = TB(Ẑ) ∩ {−TB(Ẑ)}

= {H ∈ ℜm×n|HV1 ∈ (U1)
⊥, (U2)

THV2 = 0}.

This implies

lin(TB(Ẑ))
⊥ = {Y ∈ ℜm×n | ⟨Y, H⟩ = 0, ∀H ∈ linTB},

= {Y ∈ ℜm×n | ⟨UTY V, UTHV ⟩ = 0, ∀H ∈ linTB},

= {Y ∈ ℜm×n | ⟨UTY V,

[
UT

1 HV1 UT
1 HV2

UT
2 HV1 0

]
= 0, HV1 ∈ (U1)

⊥ }

= {Y ∈ ℜm×n | ∃k ∈ ℜ, (U1)
TY V1 = kIr, (U1)

TY V2 = 0, (U2)
TY V1 = 0},

(4.35)

which, together with (6.37), completes the proof.

With the above proposition, we next establish a result which exploits the close

relationship between the constraint nondegeneracy of the optimal solution of (4.7) and

the negative definiteness of the elements of ∂̂2θk.
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Proposition 4.4. Suppose that the problem (4.7) satisfies the Slater condition (4.6). Let

(Ẑ, ŵ) and ŷ denote, respectively, the optimal solutions of (4.7) and (4.9). Then the

following conditions are equivalent:

(i) The constraint nondegeneracy condition (4.28) holds at (Ẑ, ŵ).

(ii) Every element in ∂̂2θk(ŷ) is symmetric and negative definite.

(iii) The operator

V0 = −λk(AV1
1A∗ +BTV0

2B)

is symmetric and negative definite, where V1
1 is the same as V0

1 in (4.25) except

when in the case of ∥Ŵ∥∗ = 1, the operator is defined by (4.23) with N being

the rank of Ŵ , where Ŵ := Zk − λk(A∗ŷ − A0).

Proof. Assume that the SVD of Ẑ and the index sets κ1, κ2 are given in Proposition

6.2.

“(i) ⇒ (ii)”. Let V be an arbitrary element of ∂̂2θk(ŷ). Then there exist V1 and

V2 in ∂ΠB[Z
k − λk(A∗ŷ − A0)] and ∂ΠQ∗ [wk − λk(Bŷ − b)], respectively, such that

V = −λk[AV1A∗ +BTV2B].

Therefore, V is self-adjoint. Moreover, it follows from [59, Proposition 1] that for any

h ∈ ℜp,

⟨h, Vh⟩ = −λk⟨h, AV1A∗h⟩ − λk⟨h, BTV2Bh⟩

= −λk⟨A∗h, V1A∗h⟩ − λk⟨Bh, V2Bh⟩

≤ −λk⟨V1A∗h, V1A∗h⟩ − λk⟨V2Bh, V2Bh⟩ (4.36)

≤ 0,

which implies that V is negative semidefinite. To complete the proof of this part, it

suffices to show that V is nonsingular. Consider the following linear system

Vh = 0, or equivalently,

{
V1A∗h = 0,

V2Bh = 0.
(4.37)

Now we proceed to prove that h = 0 by considering the following two cases.
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Case 1: ∥Ŵ∥∗ < 1.

In this case, ∥Ẑ∥∗ < 1 and V1 = I. Then, it follows from (4.37) that{
A∗h = 0,

Bκ1h = 0,
(4.38)

which, together with the constraint nondegeneracy assumption (4.29), implies that h =

0.

Case 2: ∥Ŵ∥∗ ≥ 1 and thus ∥Ẑ∥∗ = 1.

We first show the nonsingularity of V for the choice that V1 = I. In this situation,

(4.38) still holds and hence by taking k = 0 in (4.30), we know that V is negative defi-

nite. Next, we turn to the case in which V1 is another element selected from ∂E0ΠB(Ŵ ).

We consider two sub-cases.

Case 2.1: ∥Ŵ∥∗ = 1. Let H = A∗h. In view of the analysis in the previous

subsection, we know from V1(H) = 0 that

0 = U∞


 1N×N

1r×(m−N)

Ω∞
α2α3

1(m−N)×r (Ω∞
α2α3

)T 0

 ◦ S(H̃1)


1r×(n−m)

Υ∞
α2

1T
n−m

0

 ◦ H̃2

 (V ∞)T

+ U∞




1r×r 1r×(N−r) 1r×(m−N)

1(N−r)×r Γ∞
α2α2

Γ∞
α2α3

1(m−N)×r (Γ∞
α2α3

)T 0

 ◦ T (H̃1)−
Tr(H̃11)

N

[
IN 0

0 0

] (V ∞
1 )T ,

where V ∞
1 ∈ ℜm×m, V ∞

2 ∈ ℜm×(n−m) and V ∞ := [V ∞
1 V ∞

2 ], the index sets α1, α2, α3

and α4 are defined as in (4.17). This implies that
(U∞

α1
)T (H)V ∞

α1
=

1

N
Ir,

(U∞
α1
)T (H)V ∞

α2∪α3∪α4
= 0,

(U∞
α2∪α3

)T (H)V ∞
α1

= 0.

(4.39)

By Proposition 2.3, there exist orthogonal matrices Q ∈ ℜr×r, Q′ ∈ ℜ(m−r)×(m−r) and

Q′′ ∈ ℜ(n−r)×(n−r) such that

U∞
α1

= Uα1Q,

U∞
α2∪α3

= Uα2∪α3Q
′,

V ∞
α1

= QVα1 ,

V ∞
α2∪α3∪α4

= Q′′Vα2∪α3∪α4 .

(4.40)
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Moreover, we know from V2h = 0 that

Bκ1h = 0. (4.41)

Combining (4.30), (4.41), (4.39) with (6.56), we deduce h = 0 and hence V is negative

definite.

Case 2.2: ∥Ŵ∥∗ > 1. The proof of the negative definiteness of V is similar to that

of Case 2.1, with the equality (4.23) replacing (4.21).

By taking the convex hull of ∂E0ΠB(Ŵ ), we complete the proof of the first part.

“(ii) ⇒ (iii)”. This is trivial since V0 ∈ ∂̂2θk(ŷ).

“(iii) ⇒ (i)”. Assume the contrary that the constraint nondegeneracy condition

fails to hold at (Ẑ, ŵ). Again, we consider two cases.

Case 1: ∥Ŵ∥∗ < 1 and hence ∥Ẑ∥∗ < 1.

By assumption, there exists a z ̸= 0 such that A∗z = 0,

Bκ1z = 0.
.

namely,

V0z = 0.

This means that V0 is singular, which contradicts to (iii).

Case 2: ∥Ŵ∥∗ ≥ 1 and hence ∥Ẑ∥∗ = 1.

By assumption, there exist k ∈ ℜ and z ̸= 0 such that

Bκ1z = 0,

(U1)
T (A∗z)V1 = kIr,

(U1)
T (A∗z)V2 = 0,

(U2)
T (A∗z)V1 = 0.

(4.42)

Using the equalities above, simple computation yields V0z = 0. This contradicts to the

statement (iii). The proof is completed.

4.2.3 A semismooth Newton-CG algorithm

In this subsection, we briefly describe the semismooth Newton-CG algorithm for

solving (4.9). The basic template of the algorithm is given as follows. For simplicity,

we drop the outer iteration index k.
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Algorithm 4.2 (An inexact semismooth Newton-CG method)

Step 0. Given ς ∈ (0, 0.5), η ∈ (0, 1), τ1, τ2 ∈ (0, 1) and ρ ∈ (0, 1). Choose y0 ∈ ℜp.

Step 1. For j = 0, 1, 2, . . .,

Compute

ηj := min{η, ∥∇yθk(y
j)∥1+τ .

Step 1.1. Apply the PCG method to find an approximation solution dj to

(Vj − ϵjI)d = −∇yθk(y
j), (4.43)

where Vj = −λk(AV0
1A∗ + BTV0

2B) and ϵj = τ1 min{τ2, ∥∇yθk(y
j)∥},

such that dj satisfies the following condition:

∥(Vj − ϵjI)d+∇yθk(y
j)∥ ≤ ηj.

Step 1.2. Let mj be the smallest nonnegative integer m satisfying

θk(y
j + ρmdj)− θk(y

j) ≥ ςρm⟨∇yθk(y
j), dj⟩.

Set αj := ρmj and yj+1 := yj + αjd
j .

From the structures of V0
1 and V0

2 , we know that V is always negative semidefinite.

Hence V − ϵjI is always negative definite as long as ∇yθk(y
j) ̸= 0. So, it is reasonable

for us to apply the PCG method to solve (4.43). Furthermore, by noting the strong

semismoothness of ΠB(·) and ΠQ∗(·), and using a theorem similar to [95, Theorem

3.4], we can easily derive the following convergence result for Algorithm 4.2.

Theorem 4.5. Suppose that the Slater condition holds for (4.7). Then the inexact

semismooth Newton-CG algorithm 4.2 is well defined and any accumulation point ŷ of

{yj} generated by algorithm 4.2 is an optimal solution to the innear subproblem (4.9).

Theorem 4.6. Assume that the Slater condition holds for (4.7). Let ŷ be an accumu-

lation point of the infinite sequence {yj} generated by the Newton-CG algorithm for

solving (4.9). Suppose that at each step j ≥ 0, when the PCG algorithm terminates,

the tolerance ηj is achieved, i.e.,

∥(Vj − ϵjI)d+∇yθk(y
j)∥ ≤ ηj.
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Assume that the constraint nondegeneracy condition (4.28) holds at Zk − λk(A∗(ŷ)−
A0). Then the whole sequence {yj} converges to ŷ with η order convergence rate, i.e.,

∥yj+1 − ŷ∥ = O(∥yj − ŷ∥1+η).

4.3 Numerical issues

In applying the Newton-CG method to solve the innear problem (4.9), the most

expensive step is to compute the direction from the linear equation (4.43). As is well

known, the basic operation in implementing the PCG method is to calculate the mul-

tiplication V0y for any given y ∈ ℜp. With the exception of the trivial case in which

∥Zk − λk(A∗y −A0)∥∗ ≤ 1, we know from the analysis in subsection 4.2.1 that a full

SVD appears to be necessary.

For a problem in which m is moderate but n is large, the full SVD computation

would be expensive and huge memory space is also needed to store the large and dense

matrix V . However, as explained in [49], this can be done indirectly via an economical

SVD and a QR factorization. First, we can compute the economical SVD of Zk −
λk(A∗y − A0) as

Zk − λk(A∗y − A0) = UΣV T
1

and construct V2 ∈ ℜn×(n−r) by computing the QR factorization of V1

V1 = QR := [Q1 V2]R,

where Q ∈ ℜn×n is an orthogonal matrix and R ∈ ℜn×r is upper triangular. In the

numerical implementation, Householder transformations are used to compute the QR

factorization and only the Householder vectors are stored to compute the matrix-vector

product involving V2. After the SVD is done, one can easily calculate V1
0H via (4.25)

for any given H ∈ ℜm×n in about 4n(mk1(σ) + nk1(σ) + m2 − k1(σ)
2) flops. The

above computational complexity shows that our algorithm is able to utilize any low

rank or flat rectangular structure of a matrix to reduce the computational cost.

In fact, one can completely avoid the computation of V2 by carefully analyzing

the structure of (4.25). The part W2 in (4.25) is given as follows:

[W2V
T
2 ]1:k1(σ) :=

(
(Υ∞1T

n−m) ◦ (UT
β1
HV2)

)
V T
2

= diag(Υ∞)UT
β1
H(V2V

T
2 )

= diag(Υ∞)UT
β1
H(I − V1V

T
1 ). (4.44)
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From the above equation, it is obvious that one need not compute V2 in order to evaluate

W2 in (4.25). After the SVD is done, one can easily calculate V1
0H via (4.25) for any

given H ∈ ℜm×n in about O(k1(σ)mn) flops.

Next, we introduce two diagonal preconditioners to accelerate the convergence of

the CG method applied to solve the linear system (4.43). Let A and V be the matrix

representation of the linear mappings A and V0
1 , respectively. Then the coefficient

matrix in (4.43) has the following form

W = −λAVAT − λBT
J1
BJ1 − ϵI.

Note that we have omitted the iteration index for brevity. Let the standard basis in

ℜm×n be {Eij ∈ ℜm×n : 1 ≤ i ≤ m, 1 ≤ n}, where Eij is the matrix whose (i, j)-

th entry is one and zero otherwise. The diagonal element of V0
1 with respect to the

standard basis is given by

V(i,j),(i,j) = ⟨V0
1Eij, Eij⟩

= ((U ◦ U)Λ∞(V ◦ V ))ij −
1

k1(σ)
((U ′

1V
′T
1 ) ◦ (U ′

1V
′T
1 ))ij

+
1

2
⟨Hij ◦HT

ij , Ω
∞ − Γ∞⟩,

(4.45)

where

Λ∞ =

[
1

2
(Ω∞ + Γ∞)

Υ∞1T
k1(σ)×(n−m)

0(m−k1(σ))×(n−k2(σ))

]
, Hij = UTEijV1,

and U ′
1 and V ′

1 are the matrices formed by the first k1(σ) columns of U and V , respec-

tively. To avoid excessive computational cost, we only calculate the first two terms on

the right side of (4.45)

D(i,j),(i,j) = ((U ◦ U)Λ∞(V ◦ V ))ij −
1

k1(σ)
((U ′

1V
′T
1 ) ◦ (U ′

1V
′T
1 ))ij, (4.46)

as a good approximation of (4.45). Thus we propose the following diagonal pre-

conditioner for the coefficient matrix

M = λDiag(ADAT +BT
J1
BJ1) + ϵI. (4.47)

Clearly, to use the preconditioner above, we need the explicit form of V , which may

lead to memory difficulty when n is large. Thus when n is too large for V to be stored

explicitly, we just use the following simple diagonal preconditioner

M ′ = λDiag(AAT +BTB) + ϵI. (4.48)
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Chapter 5

Numerical results of ADM and SNDPPA for matrix norm
approximation problems

In this Chapter, we first employ the alternating direction method (ADM) to solve

the MNA problem and mainly report the numerical performance of the SNDPPA and

the ADM we have implemented to solve four different types of problem. All the codes

are written in MATLAB 7.6 and run an Intel 2.10GHz PC with 4GB memory.

We use Rp, Rd and gap to denote respectively the primal infeasibility, dual infea-

sibility and primal-dual relative gap, namely

Rp =
∥[A∗y +X − A0; ΠQ∗(b−By)]∥

1 + ∥[A0; b]∥
, Rd =

∥AZ +BTw∥
1 + ∥[A;BT ]∥

,

and

gap =
|pobj− dobj|

1 + |pobj|+ |dobj|
,

where pobj and dobj are the primal and dual objective values, respectively.

In our experiments, we start the ADM from the point (X, y, z, Z, w) = (0, 0, 0, 0, 0)

and is stopped when

max{Rp, Rd} < 10−6 (5.1)

or the maximum number of iterations exceeds 2000. Furthermore, the penalty param-

eter β in the ADM is adjusted according to the following rule dynamically. Starting

from the initial value of 10, we adjust β at every fifth step as follows:

βk+1 =


min(103, 2βk), if Rk

p/R
k
d < 0.1,

max(10−2, 0.5βk), if Rk
p/R

k
d > 10,

βk, otherwise.

(5.2)

For the SNDPPA, we first use the proposed ADM to generate a good starting point

by running ADM for at most 50 iterations. The ADM is stopped when max{Rp, Rd} <
5 · 10−3. The SNDPPA is stopped when the condition

max{Rp, Rd} < 10−6
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is met. For each outer iteration, we cap the number of Newton iterations for solving an

inner subproblem to 40. In solving the linear system associated with Newton direction,

the maximal number of PCG steps is set as 500. As the parameter λ plays a critical

role in the convergence speed of a PPA-based algorithm, we need to tune it carefully.

In our implementation, the parameter λ is initialized as 10 and updated according to

the following rule:

λk+1 =


3λk, Rk+1

p /Rk
p > 0.5 andRk+1

p > 10−4,

2λk, Rk+1
p /Rk

p > 0.5 andRk+1
p < 10−4,

λk, otherwise,

(5.3)

where λk is the kth value of the penalty parameter.

5.1 Random matrix norm approximation

We first consider randomly generated matrix norm approximation problems with/without

constraints. In the experiments, the matrices A0, A1, . . . , Ap are generated indepen-

dently from the multivariate uniform distribution on [0, 1]m×n.

In Table 5.1, we report the numerical performance of the SNDPPA and ADM

for solving different random matrix approximation instances without constraints. The

number of outer iterations (iter), primal infeasibility (Rp), dual infeasibility (Rd), pri-

mal objective value (pobj), relative gap (gap), and the CPU time (time) taken are listed

in the table. To better understand the performance of the SNDPPA, we also report the

number of Newton systems solved (itersub) and the average number PCG steps (pcg)

taken to solve each of the systems.

p |m |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

300 | 300 | 300 PPA 14(15|3.9) 9.44515934 0| 2.8-6 4.4-7| 3.2-8 22.8

ADM 300 9.44520938 0| 4.2-6 9.7-7| 2.5-7 73.8

500 | 500 | 500 PPA 17(18|3.9) 1.22905150 1| 3.7-6 4.3-7| 2.3-8 117.3

ADM 619 1.22905586 1| 1.9-5 6.8-7| 9.9-7 672.8

100 | 100 | 3000 PPA 16(18|3.8) 1.83807818 1| 8.3-6 9.4-7| 4.1-8 31.8

ADM 821 1.83807914 1| 6.5-6 9.9-7| 1.7-7 268.6

100 | 100 | 5000 PPA 16(17|3.8) 2.31039070 1| 5.6-6 9.3-7| 4.0-8 56.3

ADM 443 2.31040515 1| 3.2-6 9.9-7| 9.7-7 282.3

100 | 100 | 10000 PPA 18(19|3.8) 3.16771120 1| 2.8-6 5.4-7| 1.1-7 127.0

ADM 740 3.16774836 1| 7.4-6 9.5-7| 9.9-7 1096.7
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p |m |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

100 | 100 | 20000 PPA 16(17|3.8) 4.37704442 1| 1.2-7 7.3-7| 2.7-9 546.1

ADM 654 4.37704413 1| 9.9-6 4.6-7| 9.9-7 5774.7

Table 5.1: Results for unconstrained random matrix norm approximation prob-

lems.

As can been observed in Table 5.1, both the ADM and SNDPPA are able to solve

the unconstrained random matrix approximation problems to relatively high accuracy.

The SNDPPA substantially outperforms the ADM in terms of the CPU time taken to

solve the problems. For example, the ADM takes about 1.5 hours to solve the last

instance while our SNDPPA solves it in 10 minutes and with a better accuracy. It is

worth noting that for the instances with (p,m) = (100, 100), the CPU time taken by

each iteration of the SNDPPA and ADM increases almost linearly with n. But for a

solver (say the algorithm in [95]) that attempts to solve (1.1) via the SDP reformulation

(1.14), the cost per iteration would grow at least quadratically in n. This observation is

consistent with the fact mentioned in the previous section that our SNDPPA is capable

of exploiting the flat rectangular structure of the matrices involved.

Next, we test the SNDPPA on the MNA problems with constraints. A simple

example is to find a convex combination of given matrices A0, A1, . . . , Ap having the

minimal spectral norm, i.e.,

min ∥A0 −A∗y∥2

s.t.

p∑
i=1

yi = 1, y ≥ 0.
(5.4)

In what follows, we investigate the performance of the SNDPPA and ADM applied to

(6.59) where the matrices A1, . . . , Ap are randomly generated as before.

p |m |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

300 | 300 | 300 PPA 17(32|13.0) 9.59409291 0| 2.7-5 8.0-7| 3.2-8 90.2

ADM 2000 9.59309978 0| 3.8-6 4.2-6| 6.8-6 474.8

500 | 500 | 500 PPA 19(36|14.7) 1.24537638 1| 5.1-5 7.3-7| 6.0-7 447.7

ADM 2000 1.24556407 1| 1.2-4 1.1-5| 1.1-5 8822.5
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p |m |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

100 | 100 | 3000 PPA 21(27|4.7) 1.83873310 1| 3.5-6 5.2-7| 2.4-8 48.4

ADM 2000 1.83863304 1| 1.6-4 7.1-6| 6.7-6 678.3

100 | 100 | 5000 PPA 18(24|5.2) 2.31091411 1| 3.5-6 4.2-7| 2.8-8 78.8

ADM 2000 2.31077010 1| 1.0-4 8.3-6| 2.8-6 1325.5

100 | 100 | 10000 PPA 19(25|4.7) 3.16803831 1| 6.2-6 8.7-7| 1.6-8 169.6

ADM 2000 3.16798808 1| 1.0-5 3.0-6| 9.9-7 2957.5

100 | 100 | 20000 PPA 21(25|3.9) 4.37736720 1| 2.2-5 7.8-7| 9.3-7 965.3

ADM 2000 4.37716525 1| 6.2-5 4.5-6| 2.1-6 17563.7

Table 5.2: Results for the matrix norm approximation problem (6.59).

Table 5.2 lists the numerical results obtained by the SNDPPA and ADM. For

this collection of problems, we can easily see the superiority of the SNDPPA over the

first order algorithm ADM. While our SNDPPA solves all the tested instances to the

accuracy of 10−6 within 36 semismooth Newton iterations, the ADM fails to achieve

the required accuracy even after 2000 iterations. For the problem with (m,n, p) =

(100, 20000, 100), the ADM obtains a solution with the the accuracy in the order of

5 ∗ 10−6 after running for 4.5 hours while our SNDPPA is able to solve the problem

in about 15 mins. As one may deduce from the results in Table 2, the ADM may

encounter both computational and accuracy difficulties when constraints are imposed

on y.

5.2 Chebyshev polynomials of matrices

In this subsection, we apply the proposed SNDPPA to compute the Chebyshev

polynomials of a given matrix A. Since the power basis I, A, . . . , At is usually highly

ill conditioned, in [83] the authors suggested replacing this basis by a better-conditioned

alternative Q1, Q2, . . . , Qt+1 and consider the resulting problem

min
y∈ℜt

∥Qt+1 −
t∑

i=1

yiQi∥2. (5.5)

From the solution of (5.5), one can easily compute the coefficients of the Chebyshev

polynomials via Theorem 2 in [83]. In our experiments, the test examples are taken
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from Section 6 in [83] and Q1, Q2, . . . , Qt+1 is the orthogonal basis corresponding to

the power basis of A.

problem Algo. N | t it (itersub | pcg) pobj | gap Rp |Rd time

Rand PPA 500 | 50 16(18|7.7) 2.19977200-1| 3.5-7 3.4-7| 1.8-7 46.3

1000 | 100 14(15|8.7) 1.84595015-1| 1.4-7 2.5-7| 1.8-7 306.1

ADM 500 | 50 354 2.19977287-1| 6.2-8 3.0-7| 8.7-7 145.0

1000 | 100 661 1.84594835-1| 3.1-7 1.1-7| 9.1-7 2490.3

Randtri PPA 500 | 50 6( 9|10.9) 4.14987173-1| 8.5-8 4.1-8| 2.7-7 27.4

1000 | 100 9(12|13.9) 3.56518026-1| 4.8-7 3.0-7| 6.6-7 279.9

ADM 500 | 50 663 4.14987166-1| 1.4-6 7.1-8| 8.8-7 252.9

1000 | 100 786 3.56517734-1| 1.1-6 7.3-8| 9.1-7 2030.6

Diag PPA 500 | 50 16(44|9.3) 7.20404744-2| 5.8-8 1.4-9| 9.3-8 51.7

1000 | 100 15(27|9.1) 4.85090599-2| 1.8-7 3.1-8| 1.1-7 264.4

ADM 500 | 50 2000 7.20772064-2| 3.0-4 3.0-5| 3.6-4 308.6

1000 | 100 396 4.85093725-2| 2.7-7 4.6-7| 8.7-7 557.5

Bidiag PPA 500 | 50 11(37|19.1) 1.90877134-1| 6.0-7 2.0-7| 4.1-7 85.6

1000 | 100 18(80|38.9) 1.38036105-1| 4.6-7 2.0-7| 2.8-7 2212.3

ADM 500 | 50 1482 1.90877146-1| 2.2-7 2.0-7| 8.8-7 364.1

1000 | 100 2000 1.38036596-1| 5.4-7 1.0-6| 9.1-7 4122.5

Ellipse PPA 500 | 50 9(14|3.8) 5.51257423-2| 5.5-10 1.7-7| 1.7-9 14.2

1000 | 100 11(20|4.4) 3.90141290-2| 6.7-11 4.7-7| 4.6-10 188.0

ADM 500 | 50 269 5.51257424-2| 4.4-7 4.7-7| 8.7-7 62.2

1000 | 100 370 3.90141292-2| 3.6-7 4.8-7| 5.5-7 771.0

Grcar PPA 500 | 50 17(42|8.6) 7.19041068-2| 6.5-8 3.8-7| 3.2-8 57.3

1000 | 100 11(25|8.4) 5.07326772-2| 2.5-7 4.0-7| 4.0-7 313.0

ADM 500 | 50 2000 7.19051700-2| 2.2-6 2.4-6| 7.3-7 547.6

1000 | 100 865 5.07326793-2| 9.0-7 2.6-7| 9.1-7 2056.3

Lemniscate1 PPA 500 | 50 2( 2|1.0) 4.71404521-2| 4.2-15 4.1-10| 6.0-15 3.3

1000 | 100 2( 2|0.5) 3.33333333-2| 1.0-14 2.5-10| 5.4-15 24.4

ADM 500 | 50 17 4.71404521-2| 8.0-6 4.2-7| 4.5-14 4.7

1000 | 100 17 3.33333333-2| 5.6-6 2.9-7| 1.2-13 45.8

Lemniscate2 PPA 500 | 50 17(78|9.2) 8.09231049-2| 8.7-8 2.7-7| 3.0-7 116.5

1000 | 100 20(76|18.3) 3.33334398-2| 8.9-7 3.6-7| 1.6-7 1231.1

ADM 500 | 50 1104 8.09229960-2| 3.1-8 2.1-7| 8.7-7 315.6

1000 | 100 1154 3.33337454-2| 1.8-6 4.9-7| 8.6-7 2534.3
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problem Algo. N | t it (itersub | pcg) pobj | gap Rp |Rd time

Wilkinson PPA 500 | 50 14(26|6.0) 2.02888114-1| 3.5-8 1.9-7| 6.9-8 27.8

1000 | 100 13(29|7.6) 1.92544545-1| 5.8-7 1.5-7| 2.7-7 276.9

ADM 500 | 50 859 2.02888114-1| 1.2-6 5.0-7| 8.5-7 194.0

1000 | 100 1723 1.92544547-1| 9.2-8 5.8-8| 9.1-7 3487.7

Chebyshev PPA 500 | 50 10(15|8.7) 2.24960671-1| 2.8-6 1.5-7| 7.2-7 23.3

1000 | 100 12(18|11.7) 2.06618546-1| 8.8-7 3.8-7| 7.8-7 300.4

ADM 500 | 50 788 2.24960549-1| 1.3-6 3.4-7| 8.7-7 209.3

1000 | 100 2000 2.06629894-1| 2.7-4 4.8-6| 2.4-5 4030.0

Table 5.3: Chebyshev polynomials of matrices.

Table 5.3 shows that for most of the test instances, both the SNDPPA and ADM

are capable of obtaining solutions with an accuracy of less than 10−6. However, for

hard examples such as Bidiag(1000), the ADM fails to solve it within 2000 iterations

while the SNDPPA succeeds in achieving the required accuracy for all the instances.

This illustrates that our SNDPPA performs much more stably than the ADM. More-

over, the SNDPPA is much more efficient than the ADM in terms of computing time.

Specifically, the former is about 5 to 10 times faster than the latter. This is not sur-

prising since for most instances, the SNDPPA takes less than 30 semismooth Newton

iterations to generate a highly accurate solution and the average number of PCG steps

needed to solve each of the Newton systems is less than 15.

5.3 FMMC/FDLA Problem

In this subsection, we investigate the numerical performance of the two algorithms

for solving the fastest Markov mixing chain (FMMC) and fastest distributed linear av-

eraging (FDLA) problems. We first generate a family of graphs, all with 1000 vertices

as follows. First we generate a symmetric matrix ℜ ∈ ℜ1000∈1000, whose entries Rij

for i ≤ j, are independent and uniformly distributed on the interval [0, 1].

p |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

3960| 1000 PPA 4( 4|2.0) 1.00000000 0| 2.1-15 2.0-8| 0.0-16 62.6

FDLA ADM 34 1.00000000 0| 1.7-6 7.4-7| 2.8-8 72.0
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p |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

3960| 1000 PPA 7( 7|3.4) 1.00000000 0| 1.5-14 5.2-9| 0.0-16 95.4

FMMC ADM 2000 1.00000000 0| 4.3-3 1.7-6| 1.6-5 4154.8

8988| 1000 PPA 12(42|35.1) 4.49231089-1| 3.9-4 4.3-7| 6.2-7 838.4

FDLA ADM 2000 4.49650982-1| 5.8-4 6.9-5| 2.0-5 6829.1

8988| 1000 PPA 16(49|65.7) 4.56475004-1| 3.2-6 7.6-7| 8.7-8 2780.8

FMMC ADM 2000 4.56682293-1| 3.4-4 5.5-6| 1.7-5 7262.0

13882| 1000 PPA 12(34|44.3) 3.49261397-1| 3.1-4 4.0-7| 4.3-7 1416.1

FDLA ADM 2000 3.49460210-1| 3.9-4 3.8-5| 1.9-5 7288.6

13882| 1000 PPA 19(44|53.8) 3.51488679-1| 3.1-6 3.7-7| 4.6-8 2161.3

FMMC ADM 2000 3.53454384-1| 1.8-3 1.9-4| 6.1-5 7391.8

19032| 1000 PPA 10(22|31.8) 2.83598169-1| 1.8-5 4.4-7| 1.1-7 767.1

FDLA ADM 2000 2.84265573-1| 2.8-3 5.4-5| 6.0-5 7726.7

19032| 1000 PPA 14(42|46.7) 2.84032758-1| 2.2-6 5.8-7| 1.5-8 1991.3

FMMC ADM 2000 2.84198686-1| 1.2-3 9.9-6| 3.0-5 7599.6

24094| 1000 PPA 11(18|31.6) 2.45400905-1| 8.7-5 5.0-7| 1.6-7 640.4

FDLA ADM 2000 2.45475940-1| 6.3-4 4.1-6| 2.6-5 7141.7

24094| 1000 PPA 16(36|83.2) 2.45692830-1| 1.9-7 3.7-7| 9.9-9 2892.0

FMMC ADM 2000 2.85592249-1| 1.4-1 3.5-4| 2.7-4 7494.2

29170| 1000 PPA 14(15|15.0) 2.17515735-1| 3.2-6 9.3-7| 6.2-8 354.0

FDLA ADM 2000 2.17595850-1| 4.1-4 1.5-5| 2.0-5 7599.6

29170| 1000 PPA 18(36|54.7) 2.17715035-1| 4.1-7 9.4-7| 3.4-9 2116.8

FMMC ADM 2000 2.17985919-1| 9.2-4 3.4-5| 2.9-5 8705.7

Table 5.4: Performance of the SNDPPA and ADM for FMMC/FDLA problems

on random connected graphs.

As we can see clearly, our SNDPPA outperforms the ADM both in the sense of

accuracy and CPU time. While our SNDPPA is able to achieve the required accuracy of

less than 10−6 for all the test examples, the adm only succeed to achieve this accuracy

for the first instance. Moreover, the relative gap obtained by the ADM is of the order

10−3 to 10−3, which is substantially lower than that obtained by the SNDPPA.

The following tested graph instances are taken from the University of Florida

sparse matrix collection [18] but some are slightly modified to make them connected.

The data set is available at: http://www2.research.att.com/∼gyifanhu/GALLERY/

GRAPHS/search.html.
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problem p |n Algo. it (itersub | pcg) pobj | gap Rp |Rd time

FDLA–Cage 2562| 366 PPA 4( 6|1.7) 4.58554209-1| 9.2-6 6.8-7| 3.0-9 5.5

ADM 2000 4.75216058-1| 3.4-1 1.1-3| 1.3-3 231.8

FMMC–Cage 2562| 366 PPA 5( 6|1.7) 4.58545022-1| 5.7-7 4.1-8| 7.6-10 4.4

ADM 2000 5.87384195-1| 4.1-1 7.0-5| 1.5-3 198.0

FDLA–Erdos981 1381| 485 PPA 6( 6|2.7) 1.00000000 0| 2.3-14 0.0-8| 0.0-16 6.6

ADM 20 1.00000000 0| 3.7-5 7.1-7| 3.0-8 5.5

FMMC–Erdos981 1381| 485 PPA 7( 9|4.0) 1.00000000 0| 1.1-7 0.0-9| 4.5-9 10.2

ADM 2000 1.00001117 0| 1.3-3 3.9-5| 1.8-5 777.8

FDLA– 2203| 2114 PPA 11(15|4.1) 1.00000000 0| 4.6-14 0.0-9| 0.0-16 1395.1

NotreDame yeast ADM 97 1.00000000 0| 3.5-13 5.8-7| 1.3-8 2562.1

FMMC– 2203| 2114 PPA 8( 8|3.0) 1.00000000 0| 2.0-12 0.0-8| 0.0-16 741.1

NotreDame yeast ADM 2000 1.00002029 0| 6.7-3 7.5-6| 2.4-5 49781.3

FDLA–G46 9990| 1000 PPA 10(32|31.1) 4.17341777-1| 6.0-6 4.2-7| 2.8-7 590.0

ADM 429 4.17346539-1| 9.4-5 7.2-7| 9.9-7 971.6

FMMC–G46 9990| 1000 PPA 12(30|38.5) 4.19935830-1| 1.9-6 8.4-7| 4.4-8 629.5

ADM 2000 4.21142429-1| 9.8-4 1.2-4| 6.2-5 4228.1

FDLA–G15 4661| 800 PPA 15(39|36.4) 7.31904357-1| 7.2-5 9.4-7| 4.3-7 484.3

ADM 1122 7.31899758-1| 4.1-4 3.7-7| 9.9-7 1345.1

FMMC–G15 4661| 800 PPA 14(72|92.0) 7.85245424-1| 8.5-5 6.4-7| 3.8-7 1520.4

ADM 2000 7.86626977-1| 1.1-3 4.6-6| 3.6-5 2418.5

FDLA–G43 9990| 1000 PPA 11(51|39.7) 4.21305708-1| 1.5-5 4.7-7| 1.1-7 1279.3

ADM 490 4.21308585-1| 1.6-4 5.3-7| 9.9-7 1216.9

FMMC–G43 9990| 1000 PPA 16(49|59.7) 4.25983919-1| 4.2-7 4.6-7| 2.6-8 1637.9

ADM 2000 4.26209610-1| 8.5-4 6.3-6| 3.3-5 4808.9

FDLA–G54 5916| 1000 PPA 13(55|51.3) 7.32246398-1| 1.9-4 5.8-7| 8.0-7 1877.5

ADM 2000 7.33611791-1| 2.0-4 7.8-5| 2.9-5 5402.2

FMMC–G54 5916| 1000 PPA 15(71|75.6) 7.86520590-1| 2.5-5 7.1-7| 1.5-7 2847.4

ADM 2000 7.88923019-1| 1.7-3 4.2-6| 3.5-5 5227.8

FDLA–G3 19176| 800 PPA 11(16|31.8) 2.40597734-1| 3.2-4 9.3-7| 9.6-7 208.7

ADM 2000 2.41026286-1| 3.9-4 1.1-4| 5.3-6 2407.0

FMMC–G3 19176| 800 PPA 16(24|43.7) 2.40914608-1| 2.4-7 5.4-7| 1.0-8 388.9

ADM 2000 2.41009134-1| 8.7-4 5.4-6| 3.0-5 2445.3

Table 5.5: Performance of the SNDPPA and ADM for FMMC/FDLA problems

on connected graphs.
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Table 5.5 shows that our SNDPPA is able to achieve the required accuracy of less

than 10−6 for all the test examples. However, by comparing the results for FMM-

C/FDLA with those for random matrix approximation and Chebyshev polynomial

problems, we see that the SNDPPA is slower for the former cases. This behavior is

understandable because for FMMC/FDLA problems, the average PCG steps taken to

compute the Newton directions and the total number of semismooth Newton iterations

are significantly larger. For the FMMC problem, it is also not surprising that the ADM

fails to obtain solutions with the desired accuracy after 2000 iterations for all the in-

stances. In fact, the ADM can only obtain an approximate solution with the accuracy

in the order 10−4 to 10−5 for about 50% of the instances and the relative gap in the

order 10−3 to 10−4 for most computed examples.
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Chapter 6

A squared smoothing Newton method

6.1 Introduction

In this section, we briefly review the squared smoothing Newton method for the

nonsmooth equations F (x) = 0, where F : ℜn → ℜn is a locally Lipschitz continuous

function. Then, we apply this method to solving the equivalent nonsmooth equation

reformulation of the matrix norm approximation problems.

The feature of smoothing methods is to construct a smoothing approximation

function Gu : ℜ++ × ℜn → ℜn of F such that for ε > 0, Gu(ε, ·) is continuously

differentiable on ℜn and for any x ∈ ℜn,

∥Gu(ε, x)− F (x)∥ → 0, as ε ↓ 0

and then to find a solution of F (x) = 0 by solving a sequential smooth equations for a

positive sequence {εk}, k = 0, 1, 2, . . . ,

Gu(ε
k, x) = 0.

With the kth iterate (εk, xk), a natural idea to generate xk+1 is via

xk+1 = xk − tk[(Gu)x
′(εk, xk)]−1F (xk), (6.1)

where εk > 0, (Gu)x
′(εk, xk) is the derivative of G with respect to x at (εk, xk) and

tk > 0 is the stepsize. The smoothing Newton method (6.1) has attracted much at-

tention from lots of researchers, see [15, 65, 66] and references therein. Under certain

conditions depending strongly on the Jacobian consistency property, they proved that

each accumulation point is a solution of F (x) = 0. In [68], the authors proposed a class

of squared smoothing Newton method to solve the nonsmooth equation F (x) = 0 and

established its convergence without the Jacobian consistency property condition. De-

fine the operator E : ℜ× ℜn → ℜn+1 by

Eu(ε, x) :=

[
ε

Gu(ε, x)

]
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for any (ε, x) ∈ ℜ × ℜn. Let ϕu be the merit function associated with Eu, i.e.,

ϕu(ε, x) := ∥Eu(ε, x)∥2 .

Choose r ∈ (0, 1). Let

ψu(ε, x) := rmin{1, ϕu(ε, x)}.

The the smoothing Newton method [68] can be briefly descried as follows.

Algorithm 6.1 (A squared smoothing Newton method)

Step 0. Choose ε̂ ∈ (0,+∞) such that δ := rε̂ < 1. Select constants ρ ∈ (0, 1) and

σ ∈ (0, 1/2). Let ε0 := ε̂ and x0 ∈ ℜn be an arbitrary point. k := 0.

Step 1. If Eu(ε
k, xk) = 0 then stop. Otherwise, compute βk := ψu(ε

k, xk).

Step 2. Solving the following equation

Eu(ε
k, xk) + E ′

u(ε
k, xk)

[
∆εk

∆xk

]
=

[
βkε̂

0

]
, (6.2)

where ∆εk := −εk + βkε̂.

Step 3. Let lk be the smallest nonnegative integer l satisfying

ϕu(ε
k + ρlk∆εk, xk + ρl∆xk) ≤ [1− 2σ(1− σ)ρl]ϕu(ε

k, xk). (6.3)

Define

(εk+1, xk+1) := (εk + ρlk∆εk, xk + ρlk∆xk).

Step 4. Replace k by k + 1 and go to Step 1.

Let K be the epigraph cone of the spectral norm, i.e., K = {(t,X) | t ≥ ∥X∥2}.

Introducing an auxiliary scalar t ∈ ℜ, we can rewrite the matrix norm approximation

problem (1.1) as

min t

s.t. A∗y +X = A0,

By ∈ b+Q, (t,X) ∈ K.
(6.4)

72



CHAPTER 6 A SQUARED SMOOTHING NEWTON METHOD

Assume the strong duality holds for the problem (6.4) and its dual and there exists at

least one saddle point. Then solving the MNA problem is equivalent to the following

KKT system: 

(t,X) = ΠK(t− 1, X + Z)

AZ +BTw = 0,

A∗y +X = A0,

B1y = b1,

w2 = Πℜn2
+
(w2 −B2y + b2),

(6.5)

where Z and w are Lagrangian multipliers; wT = [wT
1 w

T
2 ] with w1 ∈ ℜn1 and w2 ∈

ℜn2 . Write W T = [t XT yT ZT wT ] and let

T (ε,W ) =



(t,X)−G(ε, t− 1, X + Z)

AZ +BTw

A∗y +X −A0

B1y − b1

w2 −Hu(ε, w2 −B2y + b2)


. (6.6)

Redefine the operator E : ℜ× ℜm×n ×ℜm×n ×ℜn ×ℜp by

Eu(ε,W ) :=

[
ε

T (ε,W )

]
.

Let ϕu be the merit function associated with Eu, i.e.,

ϕu(ε,W ) := ∥Eu(ε,W )∥2 .

Choose r ∈ (0, 1). Let

ψu(ε,W ) := rmin{1, ϕu(ε,W )}.

Thus the smoothing Newton algorithm 6.1 can be directly applied to solve the KKT

system (6.5), which byproduct solves the MNA problem (1.1).

Remark 6.1. Up to now, a lot of variants of smoothing Newton methods have been

proposed to solve nonsmooth equations. Most of them can be easily extended to solve

the problem (1.1). For instance, the inexact smoothing Newton method developed in

[31].
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6.2 The Newton systems

For given (ε, t,X) ∈ ℜ++×ℜ×ℜm×n, let J1 and J2 denote the partial derivatives

of G(·, ·, ·) with respect to the last two variables and the first argument at (ε, t,X),

respectively. We first claim that the linear system J1[t1, Y ] = [t2, X] has a unique

solution. Suppose X admits the following singular value decomposition:

X = U [Diag(σ) 0]V T ,

where σ = [σ1, σ2, . . . , σm]
T and U ∈ ℜm×m and V ∈ ℜn× are orthogonal matrices.

Let Ỹ = UTY V and X̃ = UTXV . Let y(·, ·, ·), s(·, ·, ·) and H(·, ·, ·) be defined by

(2.22). Denote by h′ and g′ the partial Jacobian of s(·, ·, ·) and y(·, ·, ·) with respect to

the last two variables at the point (ε, t, σ), respectively. For σi ̸= σj , we write

g−ij =
yi − yj
σi − σj

,

and

g+ij =
yi + yj
σi + σj

for σiσj ̸= 0. Let u1 > u2 > . . . > ur > ur+1 = 0 be the distinct singular values of X .

Define ak := {i |σi = uk}. By Proposition 2.4 (ii), it holds that t2 = h′
[
t1; diag(Ỹ )

]
,

X̃ =
[
Ω ◦ S(Ỹ1) + Γ ◦ T (Ỹ1) + Diag(g′

[
t1; diag(Ỹ )

]
), F ◦ Ỹ2

]
,

(6.7)

where Ỹ = [Ỹ1 Ỹ2] with Ỹ1 ∈ ℜm×m and Ỹ2 ∈ ℜm×(n−m); Ω,Γ and F are defined by

(2.4)-(2.7). We consider the following five cases.

Case 1: i ∈ ak1 , j ∈ ak2 , where 1 ≤ k1 ̸= k2 ≤ r. In this case, it follows from (6.7)

that 
X̃ij =

1

2
g−ij(Ỹij + Ỹji) +

1

2
g+ij(Ỹij − Ỹji)

X̃ji =
1

2
g−ij(Ỹij + Ỹji) +

1

2
g+ij(Ỹji − Ỹij)

. (6.8)

Then solving the linear equation directly yields that

Ỹij =
(g−ij + g+ij)X̃ij − (g−ij − g+ij)X̃ji

2g−ijg
+
ij

(6.9)

Case 2: i ∈ ak, j ∈ ak, where i ̸= j and 1 ≤ k ≤ r. Let

ηk = g′i(i+1) − g′i(j+1)
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and

g+ij =
yi + yj
σi + σj

=
yi
σi
.

By equation (6.7), it follows that
X̃ij =

1

2
ηk(Ỹij + Ỹji) +

1

2
g+ij(Ỹij − Ỹji),

X̃ji =
1

2
ηk(Ỹij + Ỹji) +

1

2
g+ij(Ỹji − Ỹij).

(6.10)

Then solving directly the linear equations above yield that

Ỹij =
(ηk + g+ij)X̃ij − (ηk − g+ij)X̃ji

2ηkg
+
ij

. (6.11)

Case 3: i ∈ ak, j ∈ ar+1∪{m+1,m+2, . . . , n} or i ∈ ar+1, j ∈ ak, where 1 ≤ k ≤ r.

In this case, we know from (6.7) that

X̃ij =
yi
σi
Ỹij, (6.12)

which implies

Ỹij =
σiX̃ij

yi
. (6.13)

Case 4: i ∈ ar+1, j ∈ ar+1 ∪ {m+ 1,m+ 2, . . . , n}. Similarly, it follows easily from

(6.7) that

Ỹij =
X̃ij

g′i(i+1)

. (6.14)

Case 5: i = j ∈ ak, where 1 ≤ k ≤ r. In this case, by (6.7), it is easy to establish that

t2

X̃11

X̃22

...

X̃ll


=

[
g′

h′

]
dd



t1

Ỹ11

Ỹ22
...

Ỹll


, (6.15)

where d = {1, 2, . . . , l + 1} and l = |a1| + |a2| + . . . + |ar|. By Proposition 2.11, we

know the symmetric matrix

[
g′

h′

]
dd

is positive definite and thus nonsingular. Hence,

it holds that 

t1

Ỹ11

Ỹ22
...

Ỹll


=

[
g′

h′

]−1

dd



t2

X̃11

X̃22

...

X̃ll


. (6.16)
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Remark 6.2. By similar analysis, for given (t2, X) ∈ ℜ × ℜm×n, it is not difficult to

show the following system [
t1

0

]
− J1

[
t1

Y

]
=

[
t2

X

]

also has a unique solution. To simplify the later discussion, we write this solution as

(t1, Y ) =

[
P1

P2

]
(t2, X).

With the above preparation, we are ready to prove the nonsingularity of the New-

ton system (6.2) in Algorithm 6.1.

Proposition 6.1. Suppose A1, · · · , Ap are linearly independent and B has full row

rank. Then for any W = (ε, t,X, y, Z, w) ∈ ℜ×ℜm×n×ℜm×n×ℜq ×ℜp with ε ̸= 0,

E ′
u(W ) is nonsingular.

Proof. Suppose there exists (∆ε,∆t,∆X,∆y,∆Z,∆w) ∈ ℜ×ℜm×n×ℜm×n×ℜq×
ℜp such that

E ′
u(ε,W )(∆ε,∆t,∆X,∆y,∆Z,∆w) = 0 ,

i.e., 

∆ε = 0,

(∆t,∆X) = J1(∆t,∆X +∆Z) + J2∆ε

A∆Z +BT∆w = 0

A∗∆y +∆X = 0

B1∆y = 0

∆w2 = J3(∆w2 −B2∆y) + J4∆ε

, (6.17)

where J3 and J4 are the partial Jacobian of Hu(·, ·) with respect to the first and second

variable at the point (ε, w2 − B2y + b2). Since ∆ε = 0, it follows from the second

equality in (6.17) that

(0,∆Z) = (J −1 − I)(∆t,∆X).

By the discussion on J −1
1 above and Proposition 2.11 and 2.12, it can be verify easily

that ⟨∆X, ∆Z⟩ ≥ 0; furthermore, ∆X = ∆Z = 0 if and only if ∆X is orthogonal to
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∆Z. Using the last equality of (6.17), we know there exists a diagonal matrix M with

nonnegative diagonal entries such that ∆w2 = −M(B2∆y). Hence, it holds

⟨∆X ,∆Z⟩ = −⟨A∗∆y, ∆Z⟩

= −⟨∆y, A∆Z⟩

= ⟨∆y, BT
1 ∆w1 +BT

2 ∆w2⟩

= ⟨B1∆y, w1⟩+ ⟨B2∆y, ∆w2⟩

= −⟨B1∆y, MB1∆y⟩

≤ 0, (6.18)

which implies the orthogonality of ∆X and ∆Z. This shows ∆X = ∆Z = 0 and

therefore ∆t = 0. Moreover since A1, A2, · · · , Ap are linearly independent and B has

full row rank, we have ∆y = 0 and ∆w = 0. This means the linear system (6.17) has

only zero solution and the proposition follows.

Note that the Newton system (6.2) is equivalent to

∆εk = −εk + βε̂

(∆tk,∆Xk)− J1(∆t
k,∆Xk +∆Zk) = δ1

A∆Zk +BT∆wk = δ2

A∗∆yk +∆Xk = δ3

B1∆y
k = δ4

∆wk
2 − J3(∆w

k
2 −B2∆y

k) = δ5

, (6.19)

where δ1 = J2∆ε
k + G(εk, tk − 1, Xk + Zk) − (tk, Xk), δ2 = −AZk − BTwk,

δ3 = −A∗yk − Xk, δ4 = −B1y
k and δ5 = J4∆ε

k + Hu(ε
k, wk

2 − B2y
k) − wk

2 . By

direct computation applied to (6.19) yields

∆Xk = δ3 −A∗∆yk,[
∆tk

∆Zk

]
=

[
P1

P2

] [
(J1 − I)

[
0

∆Xk

]
+ δ1

]
∆wk

2 = (I − J3)
−1
[
− J3B2∆y

k + δ5
]

A∆Zk +BT∆wk = δ2

B1∆y
k = δ4

. (6.20)

Define the linear operator χ1(·) by

χ2(X) := P2(J1 − I)

[
0

X

]
, ∀X ∈ ℜm×n.
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Substituting the first three equalities into the last two equalities, we can easily deduce

that 
[
Aχ2A∗ +BT

2 (I − J3)
−1J3B2

]
∆yk −BT

1 ∆w
k
1 = δ6,

B1∆y
k = δ4,

(6.21)

where

δ6 = A(χ2δ3 + P2δ1) +BT
2 (I − J3)

−1δ5 − δ2.

Now, we are ready to describe clearly the procedure for solving the Newton system in

the smoothing Newton method.

Algorithm 6.2: Solving Newton system (6.2)

Step 1. Computer ∆εk = −εk + βε̂.

Step 2. Compute ∆yk and ∆wk
2 from (6.21) (in fact this is the Schur complement

equation of the original Newton system).

Step 3. Computer ∆Xk,∆tk,∆Zk and ∆wk
1 from the first three equation in (6.20).

6.3 Convergence analysis

In this section, we establish the suplinear convergence of the smoothing Newton

method under the constraint nondegeneracy conditions. Let (t̄, X̄, ȳ) be a feasible so-

lution of (6.4). Then the primal constraint nondegeneracy of problem (6.4) at (t̄, X̄, ȳ)

is 
A∗ I
B 0

0 I


[

ℜd

ℜ× ℜm×n

]
+


{0}m×n

lin(TQ(Bȳ − b))

lin(TK(t̄, X̄))

 =


ℜm×n

ℜs

ℜ× ℜm×n

 , (6.22)

or equivalently [
A∗

B

]
ℜd +

[
K̂

lin(TQ(Bȳ − b))

]
=

[
ℜm×n

ℜs

]
, (6.23)

where K̂ is the projection of lin(TK(t̄, X̄)) onto ℜm×n. Denote by B the unit nuclear

ball. It is not difficult to see the dual constraint nondegeneracy associated with (6.4) at
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(Z̄, w̄) is of the form
A BT

I 0

0 I


[
ℜm×n

ℜs

]
+


{0}d

lin(TB(Z̄))

lin(TQ∗(w̄))

 =


ℜd

ℜm×n

ℜs

 , (6.24)

or equivalently

Alin(TB(Z̄)) + BT lin(TQ∗(w̄)) = ℜd. (6.25)

Let τ1, τ21, τ22 and τ3 denotes, respectively, the index sets identified by the equality

constraints, the strongly active inequality constraints, the weakly active inequality con-

straints and the nonactive constraints. Let τ2 = τ21 ∪ τ22.

Proposition 6.2. Let (t̄, X̄, ȳ, Z̄, w̄) be a solution of the smoothing system (6.5). Then

the following statements hold.

(i) There exist two orthogonal matrices U ∈ ℜm×m and V ∈ ℜn×n such that

X̄ = U [Diag(σ(X̄)) 0]V T and Z̄ = U [Diag(σ(Z̄)) 0]V T

with σ(X̄) and σ(Z̄) arranged in non-increasing order. Moreover, if the multi-

plicity of the largest singular value of X̄ is α and X̄ ̸= 0, then

σ1(Z̄) ≥ σ2(Z̄) . . . ≥ σα(Z̄) ≥ 0 = σα+1(Z̄) = . . . = σm(Z̄)

with σ1(Z̄) + σ2(Z̄) + . . .+ σα(Z̄) = 1.

(ii) Suppose X̄ ̸= 0. Then the primal constraint nondegeneracy holds at (t̄, X̄, ȳ) if

and only if 
AX +BT

τ1∪τ2w = 0

XV (2) = 0, (U (2))TX = 0

(U (1))TXV (1) ∈ Sα

Tr[(U (1))TXV (1)] = 0

=⇒

{
X = 0

w = 0
, (6.26)

where U (1) = [U1, U2, . . . , Uα] and V (1) = [V1, V2, . . . , Vα].

(iii) Suppose X̄ = 0. Then the primal constraint nondegeneracy holds at (0, 0, ȳ) if

and only if

AX +BT
τ1∪τ2w = 0 =⇒

{
X = 0

w = 0
. (6.27)
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(iv) If X̄ ̸= 0, then ∥Z̄∥∗ = 1 and the dual constraint nondegeneracy holds at (Z̄, w̄)

if and only if, for any k ∈ ℜ,
Bτ1∪τ21y = 0

(U1)T (A∗y)V 1 = kI

(U1)T (A∗y)V 2 = 0

(U2)T (A∗y)V 1 = 0

=⇒ y = 0, (6.28)

whereU1 = [U1, U2, . . . , Uβ] and V 1 = [V1, V2, . . . , Vβ] and β ≤ α is the number

of the nonzero singular values of Z̄.

(v) If ∥Z̄∥∗ < 1, the dual constraint nondegeneracy holds at (Z̄, w̄) if and only if Bτ1∪τ21y = 0

A∗y = 0
=⇒ y = 0. (6.29)

Proof. (i) From the first equality of (6.5) and the properties of projection, we know

K ∋

[
t̄

X̄

]
⊥

[
1

−Z̄

]
∈ K∗, (6.30)

which implies

t̄ = ⟨X̄, Z̄⟩ and ∥Z̄∥∗ ≤ 1.

By the von Neumann’s trace inequality applied to Ȳ and Z̄, it holds that

⟨X̄, Z̄⟩ ≤ ⟨σ(X̄), σ(Z̄)⟩ ≤ σ1(X̄). (6.31)

Since (t̄, X̄) ∈ K, then t̄ ≥ σ1(X̄) and hence the inequality above becomes equality.

Then part (i) of this proposition follows.

(ii) Since by direct computation lin(TQ(Bȳ − b)) can be derived as follows:

lin(TQ(Bȳ − b)) =

[
{0}n1+|τ2|

ℜ|τ3|

]
,

the primal constraint nondegeneracy condition (6.23) reduces to[
A∗

Bτ1∪τ2

]
ℜd +

[
K̂
0

]
=

[
ℜm×n

ℜn1+|τ2|

]
, (6.32)
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which is equivalent to AX +BT
τ1∪τ2w = 0

X ∈ K̂⊥
=⇒

{
X = 0

w = 0
. (6.33)

Since (t̄, X̄) is on the boundary of K, by Clark’s classical results on the characterization

of the tangent cone [16, Proposition 2.3.6 and Theorem 2.4.9], we deduce that

TK(t̄, X̄) = {(s, d) ∈ ℜ × ℜm×n | σ′
1(X̄; d) ≤ s}

= {(s, d) ∈ ℜ × ℜm×n |λ1[
(U (1))TdV (1) + (V (1))TdTU (1)

2
] ≤ s}.

Then the lineality space of K can be written

linTK(t̄, X̄) = {(s, d) ∈ ℜ × ℜm×n | (U (1))TdV (1) + (V (1))TdTU (1) = 2sI}

and its projection K̂ is

K̂(t̄, X̄) = {d ∈ ℜm×n | ∃s ∈ ℜ, (U (1))TdV (1) + (V (1))TdTU (1) = sI}.

By this equality and a quick computation, it can be shown that the orthogonal comple-

ment of K̂ is given by

K̂⊥ = {X ∈ ℜm×n|XV (2) = 0, (U (2))TX = 0, (U (1))TXV (1) ∈ Sα, Tr((U (1))TXV (1)) = 0}.

Combining with (6.33), we know the conclusion of part (ii) holds.

(iii) Since X̄ = 0, it follows from [16, Proposition 2.3.6 and Theorem 2.4.9] that

TK(t̄, X̄) = {(s, d) ∈ ℜ × ℜm×n | σ′
1(X̄; d) ≤ s}

= {(s, d) ∈ ℜ × ℜm×n | ∥d∥2 ≤ s},

which implies linTK(t̄, X̄) = {0} × {0}m×n and K̂ = {0}m×n. Hence the primal

constraint nondegeneracy condition (6.23) reduces to[
A∗

Bτ1∪τ2

]
ℜd =

[
ℜm×n

ℜn1+|τ2|

]
, (6.34)

which is equivalent to

AX +BT
τ1∪τ2w = 0 =⇒

{
X = 0

w = 0
. (6.35)
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(iv) Direct computation establishes that

lin(TQ∗(w̄)) =

[
ℜn1+|τ21|

{0}|τ22|+|τ3|

]
and then the dual constraints nondegeneracy condition (6.25) is reduced to

Alin(TB(Z̄)) + BT
τ1∪τ21ℜ

n1+|τ21| = ℜd, (6.36)

which is equivalent to  BT
τ1∪τ21y = 0

A∗y ∈ lin(TB(Z̄))
⊥

=⇒ y = 0. (6.37)

By part (ii) of this proposition we know Z̄ is on the boundary of B. Invoking [16,

Proposition 2.3.6 and Theorem 2.4.9] and [71, Theorem 2.7], one can establish

lin(TB(Z̄)) = {Y ∈ ℜm×n|HV 1 ∈ (U1)⊥, (U2)THV 2 = 0}.

A simple calculation shows

lin(TB(Z̄))
⊥ = {Y ∈ ℜm×n| ∃k ∈ ℜ, (U1)TY V 1 = kIβ, (U

1)TY V 2 = 0, (U2)TY V 1 = 0},

which, together with (6.37), completes the proof of this part.

(v) Since Z̄ = 0, by direct computation, it holds that

TB(Z̄) = ℜm×n and lin(TB(Z̄)) = ℜm×n.

Substituting the equality above into (6.37), we can easily obtain the conclusion.

Lemma 6.3. Let H(·, ·, ·) be the smoothing function of Π∞(·, ·) defined by (2.22) and

t̄ ∈ ℜ and x̄ ∈ ℜm×n be given. Then for any (t, x) ∈ ℜ × ℜm and V ∈ ∂H(0, ε̄, x̄),

the following inequality holds:

⟨V (0, t, x), (t, x)⟩ ≥ ∥V (0, t, x)∥2. (6.38)

Proof. Denote M = {0} × ℜ × ℜm whose Lebesgue measure is 0 and let

∂MH(0, t̄, x̄) :=
{
lim
k→∞

H ′(εk, tk, xk) : (εk, tk, xk) → (0, t̄, x̄), εk ̸= 0
}
.

From Proposition 2.11 part (i), for any (εk, tk, xk) ∈ ℜ\{0} × ℜ × ℜm, it follows that

⟨H ′(εk, tk, xk)(0, t, x), (t, x)⟩ ≥ ∥H ′(εk, tk, xk)(0, t, x)∥2. (6.39)

82



CHAPTER 6 A SQUARED SMOOTHING NEWTON METHOD

By taking limits for k → +∞ in (6.39), we know the inequality (6.38) is valid for any

V ∈ ∂MH(0, t̄, x̄). Let V ∈ ∂H(0, t̄, x̄). Since the generalized Jacobian is blind to sets

of zero measure, then there exists a positive integer m > 0, Vi ∈ ∂MH(0, t̄, x̄), λi ≥
0, i = 1, 2, . . . ,m, such that

∑m
i=1 λi = 1 and V =

∑m
i=1 λiVi. Therefore,

⟨V (0, t, x), (t, x)⟩ =
∑m

i=1 λi ⟨Vi (0, t, x), (t, x)⟩

≥
m∑
i=1

λi∥Vi (0, t, x)∥2

≥

∥∥∥∥∥
m∑
i=1

λiVi (0, t, x)

∥∥∥∥∥
2

= ∥V (0, t, x)∥2,

(6.40)

which completes the proof.

Lemma 6.4. Let (t̄, X̄, ȳ, Z̄, w̄) be a solution of the smoothing system (6.5). Suppose

t̄ > 0. For any V ∈ ∂MH(0, t̄− 1, σ(X̄) + σ(Z̄)) and (t, x) ∈ ℜ × ℜm, it holds that

V (0, t, x) =

[
f f [1β l 0m−α]

f [1β l 0m−α]T Diag([0β 1− l 1m−α]) + f [1β l 0m−α]T [1β l 0m−α]

][
t

x

]
,

where f ∈ (0, 1) and l ∈ [0, 1]α−β .

Proof. Let V be an element in ∂MH(0, t̄ − 1, σ(X̄) + σ(Z̄)). Then there exists a

sequence {(εk, tk, xk)} ∈ ℜ\{0}×ℜ×ℜm with (εk, tk, xk) → (0, σ(X̄)+σ(Z̄), t̄−1)

such that V = lim
k→∞

H ′(εk, tk, xk). For any given (0, t, x), it holds that

H ′(εk, tk, xk)(0, t, x) =
∂H(εk, tk, xk)

(t, x)
(t, x). (6.41)

On the other hand, by a direct computation applied to (2.24), we have

∂H(εk, tk, xk)

(t, x)
=

 αk −αk

( ε2kak
1 + ε2kbk

)T
−α ε2kak

1 + ε2kbk
Diag(1 + ε2kbk)

−1 + αk
ε2kak

1 + ε2kbk

( ε2kak
1 + ε2kbk

)T
 ,

where, for each k and i = 1, 2, . . . ,m

(ak)i =
1

((yk)i + sk)2
− 1

((yk)i − sk)2
, (bk)i =

1

((yk)i + sk)2
+

1

((yk)i − sk)2
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and

αk =
1

1 + ε2k

m∑
i=1

(bk)i −
m∑
i=1

ε4k(ak)
2
i

1 + ε2k(bk)i

.

Since (εk, tk, xk) → (0, t̄ − 1, σ(X̄) + σ(Z̄)), by Proposition 2.11 and 6.2, we can

easily deduce that

lim
k→∞

yk = σ(X̄), lim
k→∞

s(εk, tk, xk) = σ1(X̄).

Using the above equalities and (6.6), it is easy to see

lim
k→∞

ε2k
((yk)i − sk)2

= 0, α + 1 ≤ i ≤ m

and

lim
k→∞

ε2k
((yk)i − sk)2

= ∞, 1 ≤ i ≤ β.

Since ε2kak/(1 + ε2kbk) is bounded, by taking a subsequence if necessary, there exists a

vector l ∈ [0, 1]α−β such that

lim
k→∞

ε2kak/(1 + ε2bk) = [1β l 0m−α]T ,

which implies

lim
k→∞

1

1 + ε2kbk
= [0β 1− l 1m−α]T , f := lim

k→∞
αk = 1/(1 + β +

β−α∑
i=1

li) ∈ (0, 1).

This, together with (6.41), completes the proof.

Proposition 6.5. Let Ω1,Ω2 ∈ [0, 1]m×m be two symmetric matrices. Then for any

A ∈ ℜm×m,

⟨A, Ω1 ◦ S(A) + Ω2 ◦ T (A)⟩ ≥ ∥Ω1 ◦ S(A) + Ω2 ◦ T (A)∥2F .

Proof. By simple manipulation, it can be seen immediately that

⟨A, Ω1 ◦ S(A) + Ω2 ◦ T (A)⟩

= ⟨S(A), Ω1 ◦ S(A)⟩+ ⟨T (A), Ω2 ◦ T (A)⟩

≥ ∥Ω1 ◦ S(A)∥2F + ∥Ω2 ◦ T (A)∥2F
≥ ∥Ω1 ◦ S(A) + Ω2 ◦ T (A)∥2F .

The proof is completed.
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Proposition 6.6. Let (t̄, X̄, ȳ, Z̄, w̄) be a solution of (6.5). If the primal constraint

nondegeneracy condition (6.23) holds at (t̄, X̄, ȳ) and the dual constraint nondegen-

eracy conditions (6.25) holds at (Z̄, w̄), then any element in ∂E(0, t̄, X̄, ȳ, Z̄, w̄) is

nonsingular.

Proof. For any W ∈ ∂E(0, t̄, X̄, ȳ, Z̄, w̄), let (∆ε,∆t, ∆X,∆y,∆Z,∆w) be a solu-

tion of the linear system:

W [∆ε,∆t,∆X,∆y,∆, λ,∆u] = 0.

Therefore, there exist a Ξ1 ∈ ∂G(0, t̄ − 1, X̄ + Z̄) and a Ξ2 ∈ ∂Hu(0, ū2 − Bȳ + b)

such that 

∆ε = 0,

(∆t,∆X) = Ξ1(∆ε,∆t,∆X +∆Z)

A∆Z +BT∆w = 0

A∗∆y +∆X = 0

B1∆y = 0

∆w2 = Ξ2(∆ε,∆w2 −B2∆y)

. (6.42)

By the equation above, we know that:

(i) if i ∈ τ21, thus (Hu)i(·, ·) is continuously differentiable at (0, (w̄2 −B2ȳ+ b)i) with

(0, 1) as its derivative. This implies Bτ21∆y = 0.

(ii) if i ∈ τ22, then (∆w2)i = ξi(∆w2 −B2∆y)i, where 0 ≤ ξi ≤ 1. This shows

⟨(∆w)τ22 , (B2∆y)τ22⟩ ≤ 0.

(iii) if i ∈ τ3, then (B2ȳ − b)i > 0 and (w̄2)i = 0. (Hu)i(ε, x) is continuously

differentiable with the derivative (0, 0), and hence ∆wτ3 = 0.

In summary, for any i ∈ τ2 ∪ τ3, it holds that ⟨∆w2, B2∆y⟩ ≥ 0. and then

⟨∆X, ∆Z⟩ = −⟨∆y, (B2)
T∆w⟩ ≤ 0. (6.43)

We next proceed to prove this proposition by considering the following two cases.

Case 1: t̄ = 0 and then X̄ = 0. Since the primal constraint nondegeneracy condition

holds at (t̄, X̄, ȳ), we know Z̄ = 0 and w̄ = 0. Let (εk, tk, Zk) be a sequence con-

verging to (0,−1, 0, 0)) with εk ̸= 0. Denote by σk the singular value of Zk and write
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(sk, yk) = H(εk, tk, σk). By the definition of (sk, (yk)1), we know that
(yk)1 − (σk)1 + ε2k

2(yk)1
s2k − (yk)21

= 0,

sk − tk − ε2k

m∑
i=1

2sk
s2k − (yk)2i

= 0, i = 1, 2, . . . ,m
. (6.44)

Since (yk)1 is the largest element in yk, we know

lim inf
k→∞

ε2k
2sk

s2k − (yk)21
≥ 1

m
,

which, together with the first equality of (6.44), implies that

lim
k→∞

(yk)1
sk

= 0

and then, for i = 1, 2, . . . ,m, it holds

lim
k→∞

(yk)i
sk

= 0, lim
k→∞

sk − (yk)i
sk + (yk)i

= 1.

By taking a subsequence if necessary, we are able to show, for i = 2, 3, . . . ,m,

lim
k→∞

2skε
2
k

s2k − (yk)2i
=

1

m
,

which implies that

lim
k→∞

εk
sk − (yk)i

= lim
k→∞

εk
sk + (yk)i

= ∞.

By simple algebraic manipulation, we know

αk → 0,
1

1 + ε2kbk
→ 0

and
(yk)i − (yk)j
(σk)i − (σk)j

→ 0,
(yk)i + (yk)j
(σk)i + (σk)j

→ 0.

This shows Ξ1 = 0 and, then ∆t = 0 and ∆X = −A∗∆y = 0. On the other hand, by

the analysis above, it holds that A∆Z +BT
τ1∪τ2y = 0

Bτ1∪τ21y = 0
(6.45)

Then one can invoke part (iii) and (v) in Proposition 6.2 and deduce that

∆Z = 0 and ∆w = 0, ∆y = 0.
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This proves the proposition for this case.

Case 2: t̄ > 0. In this case, we break the proof into two steps.

Step 1: In this step, we prove ∆y = 0 and ∆X = 0. Denote N = {0} × ℜ × ℜm×n

whose Lebesgue measure is 0 and let

∂NG(0, t̄−1, Z̄+λ̄) :=
{
lim
k→∞

G′(εk, tk, Zk) : (εk, tk, Zk) → (0, t̄− 1, Z̄ + λ̄), εk ̸= 0
}
.

Since the generalized Jacobian is blind to sets of zero measure, we obtain that

∂G(0, t̄− 1, Z̄ + λ̄) = conv∂NG(0, t̄− 1, σ(Z̄ + λ̄)).

Let ∆X̃ = UTXV and ∆Z̃ = UT∆ZV . Let u1 > u2 > . . . > ur > ur+1 = 0 be

the distinct singular values of X + Z. Redefine ak := {i | σi = uk}. We consider 10

subcases.

Subcase 1: i ∈ ak1 , j ∈ ak2 , k1 ̸= k2, where 1 ≤ i ≤ β and 1 ≤ j ≤ α. Since

Ω̄ij := lim
k→∞

Ωk
ij = 0

and

Γ̄ij := lim
k→∞

Γk
ij =

2σ1(X)

2σ1(X) + σi(Z) + σj(Z)
∈ (0, 1).

By Proposition 2.4, it follows easily that
∆X̃ij =

Γ̄ij

2
[∆X̃ij +∆Z̃ij −∆X̃ji −∆Z̃ji],

∆X̃ji =
Γ̄ij

2
[∆X̃ji +∆Z̃ji −∆X̃ij −∆Z̃ij].

(6.46)

By solving the linear system above, we obtain that

∆X̃ij = −∆X̃ji =
Γ̄ij

2(1− Γ̄ij)
[∆Z̃ij −∆Z̃ji] .

which, by direct computation, yields that

⟨∆X̃ij, ∆Z̃ij⟩+ ⟨∆X̃ji, ∆Z̃ji⟩ =
2(1− Γ̄ij)

Γ̄ij

(∆X̃ij)
2 .

Subcase 2: 1 ≤ i ≤ β and α + 1 ≤ j ≤ m. In this subcase,

Ω̄ij := lim
k→∞

Ωk
ij =

σ1(X)− σj(X)

σ1(X) + σi(Z)− σj(X)
∈ (0, 1),
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and

Γ̄ij := lim
k→∞

Γk
ij =

σ1(X) + σj(X)

σ1(X) + σi(Z) + σj(Z)
∈ (0, 1).

By Proposition 2.4, we can easily deduce that
∆X̃ij =

Ω̄ij

2
[∆X̃ij +∆Z̃ij +∆X̃ji +∆Z̃ji] +

Γ̄ij

2
[∆X̃ij +∆Z̃ij −∆X̃ji −∆Z̃ji],

∆X̃ji =
Ω̄ij

2
[∆X̃ji +∆Z̃ji +∆X̃ij +∆Z̃ij] +

Γ̄ij

2
[∆X̃ji +∆Z̃ji −∆X̃ij −∆Z̃ij],

which by simple algebraic computation shows that
∆Z̃ij =

1

2
(ϵ1 + ϵ2)∆X̃ij +

1

2
(ϵ1 − ϵ2)∆̃Xji

∆Z̃ji =
1

2
(ϵ1 + ϵ2)∆X̃ji +

1

2
(ϵ1 − ϵ2)∆̃X ij

, (6.47)

where

ϵ1 =
σi(Z)

σ1(X)− σj(X)
, ϵ2 =

σi(Z)

σ1(X) + σj(X)
.

From (6.47), taking into account ϵ1, ϵ2 > 0, we can write

⟨∆X̃ij, ∆Z̃ij⟩+ ⟨∆X̃ji, ∆Z̃ji⟩ =
ϵ1
2
(∆X̃ij +∆X̃ji)

2 +
ϵ2
2
(∆X̃ij −∆X̃ji)

2

Subcase 3: 1 ≤ i ≤ β and m+ 1 ≤ j ≤ n. In this subcase,

F̄ij := lim
k→∞

Fk
ij =

σ1(X)

σ1(X) + σi(Z)
,

and it therefore holds

∆X̃ij = F̄ij(∆X̃ij +∆Z̃ij).

This implies

⟨∆X̃ij, ∆Z̃ij⟩ =
σi(Z)

σ1(X)
(∆X̃ij)

2.

Subcase 4: α + 1 ≤ i ≤ m and β + 1 ≤ j ≤ α; or α + 1 ≤ i ≤ r and

r + 1 ≤ j ≤ m;

or i ∈ ak1 and j ∈ ak2 , where k1 ̸= k2 and α + 1 ≤ i, j ≤ r. In these subcases, by

direct computation, we can easily deduce that

Ω̄ij := lim
k→∞

Ωk
ij = 1

and

Γ̄ij := lim
k→∞

Γk
ij = 1.
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Hence, by Proposition 2.4 (ii), it holds that ∆X̃ij = ∆X̃ij +∆Z̃ij

∆X̃ji = ∆X̃ji +∆Z̃ji

, (6.48)

which implies ∆Z̃ij = ∆Z̃ji = 0.

Subcase 5: β +1 ≤ i ≤ r and m+1 ≤ j ≤ n. Since F̄ij := limk→∞Fk
ij = 1, we

know from Proposition 2.4 (ii) that

∆X̃ij = ∆X̃ij +∆Z̃ij,

which means ∆Z̃ij = 0.

Subcase 6: i, j ∈ ak, where 1 ≤ i, j ≤ β and i ̸= j. By an easily manipulation

applied to (2.23), it holds that

(σk)i − (σk)j
(yk)i − (yk)j

− 1 =
ε2k

(sk − (yk)i)(sk − (yk)j)
+

ε2k
(sk + (yk)i)(sk + (yk)j)

, (6.49)

which implies

lim
k→∞

(yk)i − (yk)j
(σk)i − (σk)j

= 0.

Combining the equality above with lemma 6.4 and Proposition 2.4, we know
∆X̃ij =

σ1(X)

2σ1(X) + σi(Z) + σj(Z)
(∆X̃ij +∆Z̃ij −∆X̃ji −∆Z̃ji)

∆X̃ji =
σ1(X)

2σ1(X) + σi(Z) + σj(Z)
(∆X̃ji +∆Z̃ji −∆X̃ij −∆Z̃ij)

, (6.50)

which, by simple algebraic computation, shows that

∆X̃ij = −∆X̃ji =
σ1(X)

σi(X) + σj(X)
(∆Z̃ij −∆Z̃ji).

It therefore holds that

⟨∆X̃ij, ∆Z̃ij⟩+ ⟨∆X̃ji, ∆Z̃ji⟩ =
σi(X) + σj(X)

σ1(X)
(∆X̃ji)

2.

Subcase 7: i, j ∈ ak, where α + 1 ≤ i, j ≤ r. From the subcase 6, we have

lim
k→∞

(yk)i − (yk)j
(σk)i − (σk)j

= 1.
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Therefore, it is easy to check that

∆X̃akak =
v∑

i=1

µiQi

{
Qi

T ∆X̃akak +∆Z̃akak + (∆X̃akak +∆Z̃akak)
T

2
Qi

}
Qi

T

+
1

2

[
∆X̃akak +∆Z̃akak − (∆X̃akak +∆Z̃akak)

T
]
,

=∆X̃akak +∆Z̃akak ,

which implies that ∆Z̃akak = 0.

Subcase 8: r + 1 ≤ i, j ≤ m. For i ̸= j, by simple manipulation applied to

equation (2.23) , we know the following equality holds

(σk)i + (σk)J
(yk)i + (yk)J

− 1 =
ε2

(sk − (yk)i)(sk + (yk)j)
+

ε2

(sk − (yk)j)(sk + (yk)i)
,

which together with (6.49) implies

Ω̄ij := lim
k→∞

Ωk
ij = 1, Γ̄ij := lim

k→∞
Γk
ij = 1.

Then, similar as subcase 7, we can deduce easily that ∆Z̃akak = 0.

Subcase 9: r + 1 ≤ i ≤ m and m + 1 ≤ j ≤ n. Using simple algebraic

computation, we know
(σk)i
(yk)i

− 1 =
2ε2k

(sk)2 − (yk)2i

and it then holds

lim
k→∞

(yk)i
(σk)i

= 1.

Similarly, we have ∆Z̃ij = 0 for any i, j in this subcase.

Subcase 10: β + 1 ≤ i ̸= j ≤ α; or 1 ≤ i = j ≤ β. For notational simplicity, we

use I1, I2 and I to denote the following indexes:

I1 := {1, 2 . . . , β}, I2 := {β + 1, β + 2, . . . , α}, I := {1, 2, . . . , α + 1}.

Since [
∆t

∆X

]
= Ξ1(∆ε,∆t,∆X +∆Z), (6.51)
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it follows from lemma 6.4 that
∆t

diag(∆X̃)I1

∆X̃I2I2

 =
v∑

i=1

ui


0

0

Qi(Ω̄
i ◦ S(QT

i (∆X̃ +∆Z̃)Qi) + Γ̄i ◦ T (QT
i ∆(X̃ + Z̃)Qi)Q

T
i )



+


1 0 0

0 1 0

0 0 Qi

Diag

[
ϑi
I∪{α+2},I∪{α+2}


0

∆t

diag(∆X̃ +∆Z̃)I1

diag(QT
i (∆X̃ +∆Z̃)I2I2Qi)


]

1 0 0

0 1 0

0 0 QT
i

 ,
(6.52)

where Qi ∈ ℜ(α−β)×(α−β) is orthogonal matrix, ui > 0,
∑v

i=1 ui = 1 and ϑi ∈
∂H(0, t̄ − 1, σ(X̄ + Z̄)) for i = 1, 2, . . . , v. Then by Lemma 6.3 and Lemma 6.5,

using a simple manipulation, we have

⟨diag(∆X̃)I1 , diag(∆Z̃)I1⟩+ ⟨∆X̃I2I2 , ∆Z̃I2I2⟩ ≥ 0.

On the other hand, by the structure of ϑi and equation (6.52) , we can also deduce that

diag(∆X̃)I1 is a quantity vector.

After checking all the subcases above and noting (6.43), we can see clearly that

∆y and ∆X satisfy 
Bτ1∪τ21∆y = 0

(U1)T∆XV 1 = kI

(U1)T∆XV 2 = 0

(U2)T∆XV 1 = 0

(6.53)

Using the fact ∆X = −A∗∆y and part (iii) of Proposition (6.2), we know ∆y = 0 and

∆X = 0.

Step2: Consider i, j ∈ ak, where β + 1 ≤ i ̸= j ≤ α. By the construction of

generalized Jacobian, there exists a ηij depending on S(∆Z̃akak), such that
0 = ηij +

∆Z̃ij −∆Z̃ji

2

0 = ηij +
∆Z̃ji −∆Z̃ij

2

. (6.54)

Hence, ∆Z̃ji = ∆Z̃ij . In order to use the primal constraint nondegeneracy of (1.1), we

need to prove Tr[(U (1))T∆ZV (1)] = 0. Since[
∆t

0

]
= Ξ1(∆ε,∆t,∆Z), (6.55)
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it follows from Lemma 6.4 that
∆t =

v∑
i=1

uifi(∆t+ Tr(∆Z̃I1I1)) +
v∑

i=1

uifil
idiag[QT

i ∆Z̃I2I2Qi],

0 =
v∑

i=1

uifi(∆t+ Tr(∆Z̃I1I1)) +
v∑

i=1

uifil
idiag[QT

i ∆Z̃I2I2Qi].

(6.56)

Observing the first two equalities above, we know

∆t = 0 and
v∑

i=1

uifi(Tr(∆Z̃I1I1) + lidiag[QT
i ∆Z̃I2I2Qi]) = 0. (6.57)

Hence, it holds that

0 =
v∑

i=1

uiQi

(
Diag[fi(l

i)TTr(∆Z̃I1I1) + (Diag(1− (li)T ) + fi(l
i)T li)diag(QT

i ∆Z̃I2I2Qi)]
)
QT

i

+uiQi

(
Ω̄i ◦ S(QT

i ∆Z̃I2I2Qi)
)
QT

i .
(6.58)

Using Lemma 6.3 and Lemma 6.5, we are able to show Tr(∆Z̃I1I1) + lidiag[QT
i ∆Z̃I2I2Qi] = 0

Tr(∆Z̃I2I2) = lidiag[QT
i ∆Z̃I2I2Qi]

, ∀ i ∈ {j |uj > 0, j = 1, 2, . . . , v},

which implies Tr(∆Z̃)1:α,1:α = 0. Then one can invoke the part (ii) in Proposition 6.2

and establish that

∆Z = 0 and ∆w = 0.

This completes the proof.

By combining Proposition 2.11, Proposition 6.1 and Proposition 6.6, we immedi-

ately obtain the convergence of smoothing Newton method.

Theorem 6.7. Suppose A1, · · · , Ap are linearly independent and B has full row rank.

Then an infinite sequence of {εk,W k} is generated by Algorithm 6.1 and each ac-

cumulation point (0, W̄ ) of {εk,W k} is a solution of Eu(ε,W ) = 0. Let W̄ =

(t̄, X̄, ȳ, Z̄, w̄) ∈ ℜ × ℜm×n × ℜp × ℜm×n × ℜn1+n2 . If the primal constraint non-

degeneracy condition (6.23) holds at (t̄, X̄, ȳ) and the dual constraint nondegenera-

cy condition (6.25) holds at (Z̄, w̄), then the whole sequence {εk,W k} converges to

(0, W̄ ) in the order of 1 + γ where γ > 0 is some rational number, i.e.,

∥εk+1,W k+1 − W̄∥ = O(∥εk,W k − W̄∥γ+1).

Furthermore, if t̄ > 0, in particular A0, A1, . . . , Ap are linearly independent, then the

the convergence rate becomes quadratic.
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6.4 Preliminary numerical results

In this section, we consider the unconstrained randomly generated matrix norm

approximation problems

min ∥A0 −A∗y∥2 (6.59)

In the experiments, the matrices A0, A1, . . . , Ap are generated independently from the

multivariate uniform distribution on [0, 1]m×n. For the squared smoothing Newton

method, we generate a warm starting point by running ADM for at most 50 iterations.

The ADM is stopped when max{Rp, Rd} < 5 · 10−3. The squared smoothing Newton

method is stopped when the condition ϕ(εk,W k) < 10−5 is met.

m |n | p ϕ it pobj | gap Rp |Rd time

5 | 800 | 100 9.7-7 5 8.39614503 0| 1.2-6 7.6-7| 1.5-7 0.4

10| 800 | 100 4.3-6 7 8.53608711 0| 2.0-6 7.5-7| 1.4-8 0.3

20| 800 | 100 5.7-7 8 8.91663710 0| 8.6-7 1.9-6| 5.0-7 2.1

30| 800 | 100 1.6-6 7 9.43725030 0| 3.3-6 5.4-7| 6.4-8 2.3

50| 800 | 100 3.3-6 11 9.84953792 0| 3.5-6 6.6-7| 5.3-8 4.1

80| 800 | 100 4.9-7 8 1.05945024 1| 3.9-6 7.7-7| 3.3-7 7.8

100| 800 | 100 5.2-6 7 1.07990485 1| 4.6-6 5.7-6| 8.6-6 30.6

200| 800 | 100 3.8-6 15 1.20325115 1| 4.3-6 6.1-7| 8.7-7 49.4

400| 800 | 100 7.8-8 12 1.37761589 1| 4.4-6 4.2-7| 6.1-8 85.1

600| 800 | 100 4.1-6 15 1.49803951 1| 8.4-6 9.7-7| 2.3-7 204.7

800| 800 | 100 3.5-7 13 1.60569712 1| 5.4-7 7.6-7| 5.3-8 656.1

Table 6.1: Results for unconstrained random matrix norm approximation prob-

lems.

Table 6.1 shows the smoothing Newton methods work well for all the tested ex-

amples, especially for the casem << n. It is able to obtain solutions with relative high

accuracy in a few iterations. However, with the increased scale of m, the consumed

time grows up quickly. Then, as one can expect from the Interior point methods, the

smoothing Newton method would encounter the high computational cost issues, which

limits its application to large scale problems.
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Chapter 7

Conclusion remark

In this thesis, we designed efficient algorithms for solving the matrix norm ap-

proximation problems. We first proposed a first order alternating direction method

(ADM) to solve this problem. At each iteration, the subproblem involved can either

be solved by a fast algorithm or it has a closed form solution, which makes the ADM

easily implementable.

To obtain solutions of high accuracy, we also proposed a semismooth Newton-CG

dual proximal point algorithm (SNDPPA) to solve large scale matrix norm approxima-

tion problems. In each iteration, the dual PPA solves its subproblem by a semismooth

Newton method and the Newton direction is computed inexactly by a PCG solver.

Theoretical results to guarantee the global convergence and local superlinear conver-

gence of the dual PPA are established based on the classical analysis of proximal point

algorithms. Capitalizing on the recent advances on spectral operator and related per-

turbation analysis, we also characterize the nonsingularity of the semismooth Newton

systems. The latter property is an important condition for the fast convergence of the

semismooth Newton method. Extensive numerical experiments on problems arising

from different areas are conducted to evaluate the performance of the SNDPPA against

the ADM. The numerical results show that the SNDPPA is very efficient and robust,

and it substantially outperforms the ADM.

Motivated by the great success of Interior point methods for the second order

cone programming, we also designed a squared smoothing Newton method for the

MNA problem in which the matrix is of much more columns than rows. Suplinear

convergence of this method is also established under the primal and dual constraint

nondegenerate conditions for the MNA problems and its dual at the primal dual opti-

mal solution pairs. We conduct preliminary numerical experiments to investigate the

performance of the smoothing Newton method. When the problem scale is small or

moderate, the numerical results reveals that our smoothing Newton method is robust

and efficient for the matrix norm approximation problems which is of the flat structure.
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Rev. Française Automat. Informat. Recherche Opérationnelle 9, 41–76.

[35] Gol’shtein, E., Tret’yakov, N., 1979. Modified lagrangians in convex programming and

their generalizations. Point-to-Set Maps and Mathematical Programming , 86–97.

[36] Greenbaum, A., Trefethen, L.N., 1994. GMRES/CR and Arnoldi/Lanczos as matrix approxi-

mation problems. SIAM J. Sci. Comput. 15, 359–368. Iterative methods in numerical linear

algebra (Copper Mountain Resort, CO, 1992).

[37] Ha, C.D., 1990. A generalization of the proximal point algorithm. SIAM J. Control Optim.

28, 503–512.

[38] Hastings, W., 1970. Monte carlo sampling methods using markov chains and their applica-

tions. Biometrika 57, 97–109.

[39] He, B., Liao, L., Han, D., Yang, H., 2002. A new inexact alternating directions method for

monotone variational inequalities. Mathematical Programming 92, 103–118.

[40] He, B., Xu, M., Yuan, X., 2011. Solving large-scale least squares semidefinite programming

by alternating direction methods. SIAM Journal on Matrix Analysis and Applications 32,

136.

[41] Held, M., Wolfe, P., Crowder, H.P., 1974. Validation of subgradient optimization. Math.

Programming 6, 62–88.

[42] Helgason, R., Kennington, J., Lall, H., 1980. A polynomially bounded algorithm for a singly

constrained quadratic program. Mathematical Programming 18, 338–343.

99



[43] Hestenes, M., 1969. Multiplier and gradient methods. Journal of optimization theory and

applications 4, 303–320.

[44] Hille, E., 2005. Analytic function theory. volume 2. American Mathematical Society (RI).
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