

An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP

Defeng Sun

Department of Mathematics and Risk Management Institute National University of Singapore

Based on a joint work with Kaifeng Jiang and Kim Chuan Toh at NUS

NUS/SUN – 1 / 33

Consider the following convex (SDP) problem:

$$(P) \quad \min\left\{f(x) : \mathcal{A}(x) = b, \ x \succeq 0, \ x \in \mathcal{S}^n\right\}$$

where f is a smooth convex function on S^n , $\mathcal{A} : S^n \to \mathbb{R}^m$ is a linear map, $b \in \mathbb{R}^m$, and S^n is the space of $n \times n$ symmetric matrices. The notation $x \succeq 0$ means that x is positive semidefinite.

Let \mathcal{A}^* be the adjoint of \mathcal{A} . The dual problem associated with (P)

$$(D) \max\left\{f(x) - \langle \nabla f(x), x \rangle + \langle b, p \rangle : \nabla f(x) - \mathcal{A}^* p - z = 0, \ \frac{z \succeq 0}{x \succeq 0}\right\}$$

Assume that the linear map \mathcal{A} is surjective, and that strong duality holds for (*P*) and (*D*). Let x_* be an optimal solution of (*P*) and (x_*, p_*, z_*) be an optimal solution of (*D*). Then, they must satisfy the following KKT conditions:

$$\mathcal{A}(x) = b, \quad \nabla f(x) - \mathcal{A}^* p - z = 0, \quad \langle x, z \rangle = 0, \quad x \succeq 0, \ z \succeq 0.$$

The problem (P) contains the following important special case of convex quadratic semidefinite programming (QSDP):

$$\min\left\{\frac{1}{2}\langle x, \mathcal{Q}(x)\rangle + \langle c, x\rangle : \mathcal{A}(x) = b, x \succeq 0\right\},\tag{1}$$

where $Q: S^n \to S^n$ is a given self-adjoint positive semidefinite linear operator and $c \in S^n$.

A typical example of QSDP is the nearest correlation matrix problem [Higham 2002]. Given a symmetric matrix $u \in S^n$, we want to solve

$$\min\left\{\frac{1}{2}\|\mathcal{L}(x-u)\|^2 : \text{Diag}(x) = e, \ x \succeq 0\right\},$$
 (2)

where $\mathcal{L} : S^n \to \mathbb{R}^{n \times n}$ is a linear map and $e \in \mathbb{R}^n$ is the vector of all ones. Here $\mathcal{Q} = \mathcal{L}^* \mathcal{L}$ and $c = -\mathcal{L}^* \mathcal{L}(u)$. A well studied special case of (2) is the *W*-weighted nearest correlation matrix problem

$$\min\left\{\frac{1}{2}\|W^{1/2}(x-u)W^{1/2}\|^2 : \operatorname{Diag}(x) = e, \ x \succeq 0\right\},\$$

where $W \in S^n$ is a given positive definite matrix.

For the *W*-weighted nearest correlation matrix problem, we have

- The alternating projection method [Higham 2002]
- The quasi-Newton method [Malick 2004]
- An inexact semismooth Newton-CG method [Qi and Sun 2006]
- An inexact interior-point method [Toh, Tütüncü and Todd 2007]

The second case is the *H*-weighted case of (2)

$$\min\left\{\frac{1}{2}\|H\circ(x-u)\|^2 : \text{Diag}(x) = b, \ x \succeq 0\right\},$$
 (3)

where $H \in S^n$ with nonnegative entries and " \circ " denoting the Hardamard product of two matrices defined by $(A \circ B)_{ij} = A_{ij}B_{ij}$.

The weight matrix H represents one's confidence levels on the estimated matrix on a component by component basis.

The corresponding entries of H are zeros for missing entries of u.

For the *H*-weighted nearest correlation matrix problem, we have

- An inexact interior-point method for a general convex QSDP [Toh 2008].
- an augmented Lagrangian dual method [Qi and Sun 2010]

If the weight matrix H is very sparse or ill-conditioned, the conjugate gradient (CG) method would have great difficulty in solving the linear system of equations.

- A semismooth Newton-CG augmented Lagrangian method for convex quadratic programming over symmetric cones [Zhao 2009].
- A modified alternating direction method for convex quadratically constrained QSDPs [Sun and Zhang 2010].

Assume that we are interested in solving the unconstrained problem

 $\min f(x)$

with highly ill conditioned Hessian $\nabla f^2(x)$. Then

- Newton's method including inexact ones is certainly not feasible.
- Quasi Newton methods are out of touch due to high dimension.
- Gradient type methods are very few possible choices.

The accelerated proximal gradient (APG) method was first proposed by [Nesterov 1983] for minimizing smooth convex functions, later extended by [Beck and Teboulle 2009] to composite convex objective functions, and studied in a unifying manner by [Tseng 2008]. The algorithm we propose is based on the APG method (FISTA) [Beck and Teboulle 2009], where in the *k*th iteration with iterate \overline{x}_k , a subproblem of the following form must be solved:

$$\min_{x \in \mathcal{S}^n} \left\{ \langle \nabla f(\overline{x}_k), x - \overline{x}_k \rangle + \frac{1}{2} \langle x - \overline{x}_k, \mathcal{H}_k(x - \overline{x}_k) \rangle : \mathcal{A}(x) = b, x \succeq 0 \right\},$$
(4)

where $\mathcal{H}_k : S^n \to S^n$ is a given self-adjoint positive definite linear operator.

Assume that $\nabla f(\cdot)$ is globally Lipschitz continuous. That is, there exists L > 0 such that

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\| \quad \forall x, y.$$

Attractive iteration complexity: $O(\sqrt{L/\varepsilon})$ for APG vs $O(L/\varepsilon)$ for proximal gradient (PG) method.

Limitations of FISTA:

- 1 \mathcal{H}_k is restricted to $L\mathcal{I}$, where $\mathcal{I}: S^n \to S^n$ denotes the identity map and L is the Lipschitz constant of ∇f . (L could be very large)
- 2 The subproblem (4) must be solved exactly to generate the next iterate x_{k+1} .

For more generality, we consider the following minimization problem

$$\min\{F(x) := f(x) + g(x) : x \in \mathcal{X}\}$$
(5)

where \mathcal{X} is a finite-dimensional Euclidean space. The functions $f: \mathcal{X} \to \mathbb{R}, g: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ are proper, lower semi-continuous convex functions (possibly nonsmooth). We assume that $\operatorname{dom}(g) := \{x \in \mathcal{X} : g(x) < \infty\}$ is closed, f is continuously differentiable on \mathcal{X} and its gradient ∇f is Lipschitz continuous with modulus L on \mathcal{X} . It is a well known property that

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2 \quad \forall x, y \in \mathcal{X}.$$

We also assume that the problem (5) is solvable with an optimal solution $x_* \in \text{dom}(g)$.

Algorithm 1. Given a tolerance $\varepsilon > 0$. Input $y_1 = x_0 \in \text{dom}(g)$, $t_1 = 1$. Set k = 1. Iterate the following steps.

Step 1. Find an approximate minimizer

$$x_k \approx \arg\min_{y \in \mathcal{X}} \Big\{ f(y_k) + \langle \nabla f(y_k), y - y_k \rangle + \frac{1}{2} \langle y - y_k, \mathcal{H}_k(y - y_k) \rangle + g(y) \Big\},\$$

where \mathcal{H}_k is a self-adjoint positive definite linear operator that is chosen by the user.

Step 2. Compute $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$.

Step 3. Compute $y_{k+1} = x_k + \left(\frac{t_k - 1}{t_{k+1}}\right)(x_k - x_{k-1}).$

Given any positive definite linear operator $\mathcal{H}_j : \mathcal{X} \to \mathcal{X}$, and $y_j \in \mathcal{X}$, we define $q_j(\cdot) : \mathcal{X} \to \mathbb{R}$ by

$$q_j(x) = f(y_j) + \langle \nabla f(y_j), x - y_j \rangle + \frac{1}{2} \langle x - y_j, \mathcal{H}_j(x - y_j) \rangle.$$

Let $\{\xi_k\}, \{\epsilon_k\}$ be given convergent sequences of nonnegative numbers such that $\sum_{k=1}^{\infty} \xi_k < \infty$ and $\sum_{k=1}^{\infty} \epsilon_k < \infty$. In the *j*-th iteration of Algorithm 1, we assume the approximation minimizer x_j satisfies the following conditions

$$F(x_j) \leq q_j(x_j) + g(x_j) + \frac{\xi_j}{2t_j^2},$$
 (6)

 $\nabla f(y_j) + \mathcal{H}_j(x_j - y_j) + \gamma_j = \delta_j \text{ with } \|\mathcal{H}_j^{-1/2}\delta_j\| \le \epsilon_j/(\sqrt{2}t_j) \quad (7)$

where $\gamma_j \in \partial g(x_j; \frac{\xi_j}{2t_j^2})$ (the set of $\frac{\xi_j}{2t_j^2}$ -subgradients of g at x_j).

Note that for x_j to be an approximate minimizer, we must have $x_j \in \text{dom}(g)$. We let $\tau = \frac{1}{2} \langle x_0 - x_*, \mathcal{H}_1(x_0 - x_*) \rangle, \ \bar{\epsilon}_k = \sum_{j=1}^k \epsilon_j, \ \bar{\xi}_k = \sum_{j=1}^k (\xi_j + \epsilon_j^2).$

Theorem 1 Suppose the conditions (6) and (7) hold, and $\mathcal{H}_{k-1} \succeq \mathcal{H}_k \succ 0$ for all k. Then

$$0 \le F(x_k) - F(x_*) \le \frac{4}{(k+1)^2} \left((\sqrt{\tau} + \bar{\varepsilon}_k)^2 + 2\bar{\xi}_k \right)$$

NUS/SUN – 14 / 33

For the problem (P), we have $g(\cdot) = \delta(\cdot | \Omega)$ where $\Omega = \{x \in S^n : A(x) = b, x \succeq 0\}$ is the feasible set of (P). We need to solve the following constrained minimization problem:

$$\min\left\{\langle \nabla f(y_k), x - y_k \rangle + \frac{1}{2} \langle x - y_k, \mathcal{H}_k(x - y_k) \rangle : \mathcal{A}(x) = b, x \succeq 0 \right\}.$$
 (8)

Suppose we have an approximate solution (x_k, p_k, z_k) to the KKT optimality conditions for (8):

$$\nabla f(y_k) + \mathcal{H}_k(x_k - y_k) - \mathcal{A}^* p_k - z_k =: \delta_k \approx 0$$

$$\mathcal{A}(x_k) - b = 0 \qquad (9)$$

$$\langle x_k, z_k \rangle =: \varepsilon_k \approx 0, \quad x_k, z_k \succeq 0.$$

Let $\gamma_k = -\mathcal{A}^* p_k - z_k$. Then γ_k is an ε_k -subgradient of g at $x_k \in \Omega$ if $z_k \succeq 0$. However, in practice, we have $x_k \succeq 0$ but $r_k := \mathcal{A}(x_k) - b \neq 0$.

Suppose that there exists $\bar{x} \succ 0$ such that $\mathcal{A}(\bar{x}) = b$. Since \mathcal{A} is surjective, $\mathcal{A}\mathcal{A}^*$ is nonsingular. Let $\omega_k = -\mathcal{A}^*(\mathcal{A}\mathcal{A}^*)^{-1}(r_k)$. Note that $\mathcal{A}(x_k + \omega_k) = b$. However, $x_k + \omega_k$ may not be positive semidefinite. Thus we consider the following iterate:

$$\tilde{x}_k = \lambda(x_k + \omega_k) + (1 - \lambda)\bar{x} = \lambda x_k + (\lambda\omega_k + (1 - \lambda)\bar{x}), \ \lambda \in [0, 1].$$

It is clear that $A\tilde{x}_k = b$. By choosing $\lambda = 1 - \|\omega_k\|_2 / (\|\omega_k\|_2 + \lambda_{\min}(\bar{x}))$, we can have that \tilde{x}_k is positive semidefinite. We can also have that (\tilde{x}_k, p_k, z_k) satisfies the condition (6) if

$$\|\omega_k\|_2 \le \min\left\{\frac{\xi_k}{4t_k^2\sqrt{n}\|\boldsymbol{z}_k\|} \left(1 + \frac{\lambda_{\max}(\bar{\boldsymbol{x}})}{\lambda_{\min}(\bar{\boldsymbol{x}})}\right)^{-1}, \frac{\varepsilon_k}{2\sqrt{2n\lambda_{\max}(\mathcal{H}_1)}} t_k \left(1 + \frac{\|\bar{\boldsymbol{x}}-\boldsymbol{x}_k\|_2}{\lambda_{\min}(\bar{\boldsymbol{x}})}\right)^{-1}\right\}.$$

Let $q_k(x) = f(y_k) + \langle \nabla f(y_k), x - y_k \rangle + \frac{1}{2} \langle x - y_k, \mathcal{H}_k(x - y_k) \rangle$, $x \in S^n$. **Algorithm 2.** Given a tolerance $\varepsilon > 0$. Input $y_1 = x_0 \in S^n$, $t_1 = 1$. Set k = 1. Iterate the following steps.

Step 1. Find an approximate minimizer

$$x_k \approx \arg\min_{x \in \mathcal{X}} \left\{ q_k(x) \, : \, x \in \Omega \right\},$$
 (10)

where
$$x_k \in \Omega_k \supseteq \Omega$$
.

Step 2. Compute $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$.

Step 3. Compute $y_{k+1} = x_k + \left(\frac{t_k - 1}{t_{k+1}}\right)(x_k - x_{k-1}).$

When $\Omega_k = \Omega$, the dual problem of (10) is given by

$$\max\left\{q_k(x) - \langle \nabla q_k(x), x \rangle + \langle b, p \rangle \mid \nabla q_k(x) - \mathcal{A}^* p - z = 0, \ z \succeq 0, x \succeq 0\right\}.$$
 (11)

NUS/SUN – 17 / 33

Let $\{\xi_k\}, \{\epsilon_k\}, \{\mu_k\}$ be given convergent sequences of nonnegative numbers such that $\sum_{k=1}^{\infty} \xi_k < \infty$, $\sum_{k=1}^{\infty} \epsilon_k < \infty$, and $\sum_{k=1}^{\infty} \mu_k < \infty$, and Δ be a given positive number. We assume that (x_k, p_k, z_k) satisfies the following conditions:

 $f(x_k) \leq q_k(x_k) + \xi_k/(2t_k^2)$ $|\langle \nabla q_k(x_k), x_k \rangle - \langle b, p_k \rangle| \leq \Delta$ $\nabla q_k(x_k) - \mathcal{A}^* p_k - z_k = \delta_k, \text{ with } \|H_k^{-1/2} \delta_k\| \leq \epsilon_k/(\sqrt{2}t_k)$ $\|\mathcal{A}(x_k) - b\| \leq \mu_k/t_k^2$ $\langle x_k, z_k \rangle \leq \xi_k/(2t_k^2), \quad x_k \succeq 0, \ z_k \succeq 0.$

NUS/SUN – 18 / 33

We also assume that $\mu_k/t_k^2 \ge \mu_{k+1}/t_{k+1}^2$ and $\epsilon_k/t_k \ge \epsilon_{k+1}/t_{k+1}$ for all k. We can have that (x_k, p_k, z_k) is an approximate optimal solution of (10) and (11). Note that $\Omega_k := \left\{ x \in S^n : ||\mathcal{A}(x) - b|| \le \mu_k/t_k^2, x \succeq 0 \right\}$ and $\Omega_{k+1} \subseteq \Omega_k$.

We let (x_*, p_*, z_*) be an optimal solution of (*P*) and (*D*),

1

$$\tau = \frac{1}{2} \langle x_0 - x_*, \mathcal{H}_1(x_0 - x_*) \rangle, \ \chi_k = \| p_{k-1} - p_k \| \mu_{k-1}, \text{ with } \chi_1 = 0,$$

$$\bar{\epsilon}_k = \sum_{j=1}^k \epsilon_j, \quad \bar{\chi}_k = \sum_{j=1}^k (\xi_j + \epsilon_j^2), \quad \bar{\xi}_k = \sum_{j=1}^k \chi_j.$$

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012.

NUS/SUN – 19 / 33

Theorem 2 Suppose $M_k = \max_{1 \le j \le k} \{ \sqrt{(\|p_*\| + \|p_j\|)\mu_j} \}$. Then we have

$$-\frac{4\|p_*\|\mu_k}{(k+1)^2} \le f(x_k) - f(x_*)$$

$$\le \frac{4}{(k+1)^2} \Big((\sqrt{\tau} + \bar{\epsilon}_k)^2 + \|p_k\|\mu_k + 2\bar{\epsilon}_k M_k + 2(\bar{\xi}_k + \bar{\chi}_k) \Big).$$

 $\{\|p_k\|\}$ bounded (?) \Longrightarrow $\{M_k\}$ and $\{\bar{\chi}_k\}$ bounded \Longrightarrow $O(1/k^2)$.

Lemma 1 Suppose that there exists $(\bar{x}, \bar{p}, \bar{z})$ such that

 $\mathcal{A}(\bar{x}) = b, \ \bar{x} \succeq 0, \quad \nabla f(\bar{x}) = \mathcal{A}^* \bar{p} + \bar{z}, \ \bar{z} \succ 0.$

If the sequence $\{f(x_k)\}$ is bounded from above, then the sequence $\{x_k\}$ is bounded.

Lemma 2 Suppose that $\{x_k\}$ is bounded and there exists \hat{x} such that

 $\mathcal{A}(\hat{x}) = b, \ \hat{x} \succ 0.$

Then the sequence $\{z_k\}$ is bounded. In addition, the sequence $\{p_k\}$ is also bounded.

In many cases, such as the nearest correlation matrix problem (2), the condition that $\{f(x_k)\}$ is bounded above or that $\{x_k\}$ is bounded can be ensured since Ω_1 is bounded.

A semismooth Newton-CG method for inner subproblems

Suppose that at each iteration we are able to choose the self-adjoint positive definite linear operator \mathcal{H}_k of the form:

$$\mathcal{H}_k(x) := w_k \circledast w_k(x) = w_k x w_k$$
, where $w_k \in S^n$ positive definite,

such that $f(x) \le q_k(x)$ for all $x \in \Omega$ (A simple choice: $w_k = \sqrt{LI}$). Then $q_k(\cdot)$ in (10) can equivalently be written as

$$q_k(x) = \frac{1}{2} \|w_k^{1/2}(x - u_k)w_k^{1/2}\|^2 + f(y_k) - \frac{1}{2} \|w_k^{-1/2}\nabla f(y_k)w_k^{-1/2}\|^2,$$

where $u_k = y_k - w_k^{-1} \nabla f(y_k) w_k^{-1}$.

Then (10) can be equivalently written as the following well-studied *W*-weighted semidefinite least squares problem

$$\min\left\{\frac{1}{2}\|w_k^{1/2}(x-u_k)w_k^{1/2}\|^2 : \mathcal{A}(x) = b, x \succeq 0\right\},$$
 (12)

which can be efficiently solved by the SSNCG method in [Qi and Sun 2006].

The availability of the SSNCG is vital for our inexact APG to work.

For example, for a 2000 by 2000 weighted nearest correlation matrix problem, SSNCG needs 23 seconds to get error less than 10^{-9} while the APG needs more than 4980 seconds to get gradient error as 0.68.

Symmetrized Kronecker product approximation

NUS National University of Singapore

• For the *H*-weighted NCM problem where $Q(x) = (H \circ H) \circ x$, let $w = \operatorname{diag}(d)$, where the vector $d \in \mathbb{R}^n$ can be chosen as

$$d_j = \max\left\{\epsilon, \max_{1 \le i \le n} \{H_{ij}\}\right\}, \ j = 1, \dots, n,$$

where $\epsilon > 0$ is a small positive number.

If Q(x) = B ⊛ I(x) = (Bx + xB)/2, B ∈ Sⁿ₊. Suppose we have the eigenvalue decomposition B = PΛP^T, where Λ = diag(λ) and λ = (λ₁,...,λ_n)^T is the vector of eigenvalues of B. Let M = ¹/₂(λe^T + eλ^T) with e ∈ IRⁿ being the vector of all ones. We consider the following nonconvex minimization problem:

$$\min\Big\{\sum_{i=1}^{n}\sum_{j=1}^{n}h_{i}h_{j}\mid h_{i}h_{j}-M_{ij}\geq 0\;\forall\;i,j=1,\ldots,n,\;h\in\mathbb{R}^{n}_{+}\Big\}.$$

If \hat{h} is a feasible solution to the above problem, let $w_k = P \operatorname{diag}(\hat{h}) P^T$.

In our numerical experiments, we stop the inexact APG algorithm when

 $\max\{R_P, R_D\} \le 10^{-6}.$

Example 1 We consider the following *H*-weighted nearest correlation matrix problem

$$\min \left\{ \frac{1}{2} \| H \circ (x - u) \|^2 \mid \text{Diag}(x) = e, x \succeq 0 \right\}.$$

We compare the performance of our inexact APG (IAPG) method and the augmented Lagrangian dual method (AL) studied by [Qi and Sun 2010]. We set the tolerance $Toll = 10^{-4}$ in AL. Given the correlation matrices \hat{u} , we perturb \hat{u} to

 $u := (1 - \alpha)\widehat{u} + \alpha E,$

where $\alpha \in (0, 1)$ and *E* is a randomly generated symmetric matrix with entries in [-1, 1].

The weight matrix H is a sparse random symmetric matrix with about 50% nonzero entries.

Algo.	problem (n)	α	iter/newt	R_P	R_D	pobj	time	rank
IAPG	ER (692)	0.1	167/172	2.27e-10	9.92e-7	1.26095534e+1	3:30	189
		0.05	187/207	3.93e-11	9.54e-7	1.14555927e+0	3:40	220
AL	ER (692)	0.1	12	3.73e-7	4.63e-7	1.26095561e+1	9:28	189
		0.05	12	3.21e-7	1.02e-6	1.14555886e+0	14:14	220
IAPG	Arabidopsis (834)	0.1	125/133	3.28e-10	9.36e-7	3.46252363e+1	4:01	191
		0.05	131/148	2.41e-10	9.75e-7	5.50148194e+0	4:09	220
AL	Arabidopsis (834)	0.1	13	2.28e-7	7.54e-7	3.46252429e+1	12:35	191
		0.05	12	2.96e-8	1.01e-6	5.50148169e+0	22:49	220
IAPG	Leukemia (1255)	0.1	104/111	5.35e-10	7.97e-7	1.08939600e+2	9:24	254
		0.05	96/104	4.81e-10	9.31e-7	2.20789464e+1	8:35	276
AL	Leukemia (1255)	0.1	12	3.06e-7	2.74e-7	1.08939601e+2	22:04	254
		0.05	11	2.90e-7	8.57e-7	2.20789454e+1	28:37	276
IAPG	hereditarybc (1869) 0.1	67/87	2.96e-10	8.68e-7	4.57244497e+2	17:56	233
		0.05	64/85	9.58e-10	7.04e-7	1.13171325e+2	17:32	236
AL	hereditarybc (1869) 0.1	13	2.31e-7	3.55e-7	4.57244525e+2	38:35	233
		0.05	11	2.51e-7	6.29e-7	1.13171335e+2	36:31	236

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012.

We consider the same problem as in Example 1, but the weight matrix H is generated from a weight matrix H_0 used by a hedge fund company. The matrix H_0 is a 93×93 symmetric matrix with all positive entries.

• It has 24% of the entries equal to 10^{-5} and the rest are in the interval $[2, 1.28 \times 10^3]$.

• It has 28 eigenvalues in [-520, -0.04], 11 eigenvalues in $[-5 \times 10^{-13}, 2 \times 10^{-13}]$, and the rest 54 eigenvalues in $[10^{-4}, 2 \times 10^{4}]$.

We set the tolerance $Toll = 10^{-2}$ in AL. ("*" means "> 24 hours")

Algo.	problem (n)	α	iter/newt	R_P	R_D	pobj	time	rank
IAPG	ER (692)	0.1	62/156	2.48e-9	9.72e-7	1.51144194e+7	2:33	254
		0.05	56/145	3.58e-9	9.55e-7	3.01128282e+6	2:22	295
AL	ER (692)	0.1	16	1.22e-5	5.80e-6	1.51144456e+7	2:05:38	288
		0.05	12	3.11e-5	6.29e-6	3.01123631e+6	53:15	309
IAPG	Arabidopsis (834)	0.1	61/159	6.75e-9	9.98e-7	2.69548461e+7	4:01	254
		0.05	54/145	1.06e-8	9.82e-7	5.87047119e+6	3:41	286
AL	Arabidopsis (834)	0.1	19	3.04e-6	3.94e-6	2.69548769e+7	4:49:00	308
		0.05	13	1.69e-5	6.76e-6	5.87044318e+6	1:28:59	328
IAPG	Leukemia (1255)	0.1	65/158	8.43e-9	9.86e-7	7.17192454e+7	11:32	321
		0.05	55/143	1.19e-7	9.80e-7	1.70092540e+7	10:18	340
AL	Leukemia (1255)	0.1	*	*	*	*	*	*
		0.05	13	3.19e-5	5.15e-6	1.70091646e+7	5:55:21	432
IAPG	hereditarybc (1869	9) 0.1	48/156	2.08e-8	9.16e-7	2.05907938e+8	29:07	294
		0.05	49/136	6.39e-8	9.61e-7	5.13121563e+7	26:16	297
AL	hereditarybc (1869	9) 0.1	*	*	*	*	*	*
		0.05	*	*	*	*	*	*

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012.

NUS/SUN - 30 / 33

Example 3 We consider the linearly constrained convex QSDP problem, where $Q(x) = \frac{1}{2}(Bx + xB)$ for a given $B \succ 0$ and $\mathcal{A}(x) = \text{Diag}(x)$.

n; m	cond(B)	iter/new ⁻	t R_P	R_D	pobj	dobj	time
500; 500	9.21e+0	9/9	3.24e-10	9.70e-7	-4.09219187e+4	-4.09219188e+4	13
1000; 1000	9.43 <mark>e+</mark> 0	9/9	3.68e-10	9.28e-7	-8.41240999e+4	-8.41241006e+4	1:13
2000; 2000	9.28 <mark>e+</mark> 0	9/9	3.16e-10	8.53e-7	-1.65502323e+5	-1.65502325e+5	8:49
2500; 2500	9.34e+0	9/9	3.32e-10	8.57e-7	-2.07906307e+5	-2.07906309e+5	16:15
3000; 3000	9.34 <mark>e+</mark> 0	9/9	2.98e-10	8.13e-7	-2.49907743e+5	-2.49907745e+5	29:02

NUS/SUN - 31 / 33

Example 4 We consider the same problem as Example 3, but the linear map \mathcal{A} is generated by using the first generator in [Malick, Povh, Rendl, and Wiegele 2009] with order p = 3. The positive definite matrix B is generated by using MATLAB's built-in function: B = gallery('lehmer', n) with cond(B) $\in [n, 4n^2]$.

Γ	n; m	cond(B)	iter/newt	R_P	R_D	pobj	dobj	time
Γ	500; 10000	2.67e+5	51/102	3.02e-8	9.79e-7	-9.19583895e+3	-9.19584894e+3	1:29
	1000; 50000	1.07e+6	62/115	2.43e-8	9.71e-7	-1.74777588e+4	-1.74776690e+4	11:46
2	000; 100000	4.32e+6	76/94	5.24e-9	5.28e-7	-3.78101950e+4	-3.78101705e+4	1:14:04
2	500; 100000	6.76e+6	80/96	4.62e-9	5.64e-7	-4.79637904e+4	-4.79637879e+4	2:11:01

We need more creative ideas!

The 9th National Conference on Mathematical Programming of China/Hangzhou, April 20-24, 2012.

NUS/SUN - 33 / 33