An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP

Defeng Sun
Department of Mathematics and Risk Management Institute
National University of Singapore

Based on a joint work with Kaifeng Jiang and Kim Chuan Toh at NUS

Convex semidefinite programming (SDP)

Consider the following convex (SDP) problem:

$$
(P) \quad \min \left\{f(x): \mathcal{A}(x)=b, x \succeq 0, x \in \mathcal{S}^{n}\right\}
$$

where f is a smooth convex function on $\mathcal{S}^{n}, \mathcal{A}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, $b \in \mathbb{R}^{m}$, and \mathcal{S}^{n} is the space of $n \times n$ symmetric matrices. The notation $x \succeq 0$ means that x is positive semidefinite.

Let \mathcal{A}^{*} be the adjoint of \mathcal{A}. The dual problem associated with (P)
$(D) \max \left\{f(x)-\langle\nabla f(x), x\rangle+\langle b, p\rangle: \nabla f(x)-\mathcal{A}^{*} p-z=0, \begin{array}{c}z \succeq 0, \\ x \succeq 0\end{array}\right\}$.

Assume that the linear map \mathcal{A} is surjective, and that strong duality holds for (P) and (D).
Let x_{*} be an optimal solution of (P) and $\left(x_{*}, p_{*}, z_{*}\right)$ be an optimal solution of (D). Then, they must satisfy the following KKT conditions:

$$
\mathcal{A}(x)=b, \quad \nabla f(x)-\mathcal{A}^{*} p-z=0, \quad\langle x, z\rangle=0, \quad x \succeq 0, z \succeq 0 .
$$

The problem (P) contains the following important special case of convex quadratic semidefinite programming (QSDP):

$$
\begin{equation*}
\min \left\{\frac{1}{2}\langle x, \mathcal{Q}(x)\rangle+\langle c, x\rangle: \mathcal{A}(x)=b, x \succeq 0\right\}, \tag{1}
\end{equation*}
$$

where $\mathcal{Q}: \mathcal{S}^{n} \rightarrow \mathcal{S}^{n}$ is a given self-adjoint positive semidefinite linear operator and $c \in \mathcal{S}^{n}$.

The nearest correlation matrix problem

A typical example of QSDP is the nearest correlation matrix problem [Higham 2002].
Given a symmetric matrix $u \in \mathcal{S}^{n}$, we want to solve

$$
\begin{equation*}
\min \left\{\frac{1}{2}\|\mathcal{L}(x-u)\|^{2}: \operatorname{Diag}(x)=e, x \succeq 0\right\}, \tag{2}
\end{equation*}
$$

where $\mathcal{L}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{n \times n}$ is a linear map and $e \in \mathbb{R}^{n}$ is the vector of all ones. Here $\mathcal{Q}=\mathcal{L}^{*} \mathcal{L}$ and $c=-\mathcal{L}^{*} \mathcal{L}(u)$. A well studied special case of (2) is the W-weighted nearest correlation matrix problem

$$
\min \left\{\frac{1}{2}\left\|W^{1 / 2}(x-u) W^{1 / 2}\right\|^{2}: \operatorname{Diag}(x)=e, x \succeq 0\right\},
$$

where $W \in \mathcal{S}^{n}$ is a given positive definite matrix.

For the W-weighted nearest correlation matrix problem, we have

- The alternating projection method [Higham 2002]
- The quasi-Newton method [Malick 2004]
- An inexact semismooth Newton-CG method [Qi and Sun 2006]
- An inexact interior-point method [Toh, Tütüncü and Todd 2007]

The second case is the H-weighted case of (2)

$$
\begin{equation*}
\min \left\{\frac{1}{2}\|H \circ(x-u)\|^{2}: \operatorname{Diag}(x)=b, x \succeq 0\right\} \tag{3}
\end{equation*}
$$

where $H \in \mathcal{S}^{n}$ with nonnegative entries and"o" denoting the Hardamard product of two matrices defined by $(A \circ B)_{i j}=A_{i j} B_{i j}$.

The weight matrix H represents one's confidence levels on the estimated matrix on a component by component basis.

The corresponding entries of H are zeros for missing entries of u.

For the H-weighted nearest correlation matrix problem, we have

- An inexact interior-point method for a general convex QSDP [Toh 2008].
- an augmented Lagrangian dual method [Qi and Sun 2010]

If the weight matrix H is very sparse or ill-conditioned, the conjugate gradient (CG) method would have great difficulty in solving the linear system of equations.

- A semismooth Newton-CG augmented Lagrangian method for convex quadratic programming over symmetric cones [Zhao 2009].
- A modified alternating direction method for convex quadratically constrained QSDPs [Sun and Zhang 2010].

Motivation: Choice of Algorithms

Assume that we are interested in solving the unconstrained problem

$$
\min f(x)
$$

with highly ill conditioned Hessian $\nabla f^{2}(x)$. Then

- Newton's method including inexact ones is certainly not feasible.
- Quasi Newton methods are out of touch due to high dimension.
- Gradient type methods are very few possible choices.

Why the APG method?

The accelerated proximal gradient (APG) method was first proposed by [Nesterov 1983] for minimizing smooth convex functions, later extended by [Beck and Teboulle 2009] to composite convex objective functions, and studied in a unifying manner by [Tseng 2008]. The algorithm we propose is based on the APG method (FISTA) [Beck and Teboulle 2009], where in the k th iteration with iterate \bar{x}_{k}, a subproblem of the following form must be solved:

$$
\begin{equation*}
\min _{x \in \mathcal{S}^{n}}\left\{\left\langle\nabla f\left(\bar{x}_{k}\right), x-\bar{x}_{k}\right\rangle+\frac{1}{2}\left\langle x-\bar{x}_{k}, \mathcal{H}_{k}\left(x-\bar{x}_{k}\right)\right\rangle: \mathcal{A}(x)=b, x \succeq 0\right\}, \tag{4}
\end{equation*}
$$

where $\mathcal{H}_{k}: \mathcal{S}^{n} \rightarrow \mathcal{S}^{n}$ is a given self-adjoint positive definite linear operator.

Assume that $\nabla f(\cdot)$ is globally Lipschitz continuous. That is, there exists $L>0$ such that

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| \quad \forall x, y
$$

Attractive iteration complexity: $O(\sqrt{L / \varepsilon})$ for APG vs $O(L / \varepsilon)$ for proximal gradient (PG) method.

Limitations of FISTA:

$1 \mathcal{H}_{k}$ is restricted to $L \mathcal{I}$, where $\mathcal{I}: \mathcal{S}^{n} \rightarrow \mathcal{S}^{n}$ denotes the identity map and L is the Lipschitz constant of ∇f. (L could be very large)

2 The subproblem (4) must be solved exactly to generate the next iterate x_{k+1}.

An inexact APG method

For more generality, we consider the following minimization problem

$$
\begin{equation*}
\min \{F(x):=f(x)+g(x): x \in \mathcal{X}\} \tag{5}
\end{equation*}
$$

where \mathcal{X} is a finite-dimensional Euclidean space. The functions $f: \mathcal{X} \rightarrow \mathbb{R}, g: \mathcal{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ are proper, lower semi-continuous convex functions (possibly nonsmooth). We assume that $\operatorname{dom}(g):=\{x \in \mathcal{X}: g(x)<\infty\}$ is closed, f is continuously differentiable on \mathcal{X} and its gradient ∇f is Lipschitz continuous with modulus L on \mathcal{X}. It is a well known property that

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|^{2} \quad \forall x, y \in \mathcal{X} .
$$

We also assume that the problem (5) is solvable with an optimal solution $x_{*} \in \operatorname{dom}(g)$.

Algorithm 1: An inexact APG for (5)

Algorithm 1. Given a tolerance $\varepsilon>0$. Input $y_{1}=x_{0} \in \operatorname{dom}(g), t_{1}=1$. Set $k=1$. Iterate the following steps.

Step 1. Find an approximate minimizer

$$
x_{k} \approx \arg \min _{y \in \mathcal{X}}\left\{f\left(y_{k}\right)+\left\langle\nabla f\left(y_{k}\right), y-y_{k}\right\rangle+\frac{1}{2}\left\langle y-y_{k}, \mathcal{H}_{k}\left(y-y_{k}\right)\right\rangle+g(y)\right\},
$$

where \mathcal{H}_{k} is a self-adjoint positive definite linear operator that is chosen by the user.

Step 2. Compute $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
Step 3. Compute $y_{k+1}=x_{k}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(x_{k}-x_{k-1}\right)$.

Given any positive definite linear operator $\mathcal{H}_{j}: \mathcal{X} \rightarrow \mathcal{X}$, and $y_{j} \in \mathcal{X}$, we define $q_{j}(\cdot): \mathcal{X} \rightarrow \mathbb{R}$ by

$$
q_{j}(x)=f\left(y_{j}\right)+\left\langle\nabla f\left(y_{j}\right), x-y_{j}\right\rangle+\frac{1}{2}\left\langle x-y_{j}, \mathcal{H}_{j}\left(x-y_{j}\right)\right\rangle
$$

Let $\left\{\xi_{k}\right\},\left\{\epsilon_{k}\right\}$ be given convergent sequences of nonnegative numbers such that $\sum_{k=1}^{\infty} \xi_{k}<\infty$ and $\sum_{k=1}^{\infty} \epsilon_{k}<\infty$. In the j-th iteration of Algorithm 1, we assume the approximation minimizer x_{j} satisfies the following conditions

$$
\begin{gather*}
F\left(x_{j}\right) \leq q_{j}\left(x_{j}\right)+g\left(x_{j}\right)+\frac{\xi_{j}}{2 t_{j}^{2}}, \tag{6}\\
\nabla f\left(y_{j}\right)+\mathcal{H}_{j}\left(x_{j}-y_{j}\right)+\gamma_{j}=\delta_{j} \text { with }\left\|\mathcal{H}_{j}^{-1 / 2} \delta_{j}\right\| \leq \epsilon_{j} /\left(\sqrt{2} t_{j}\right) \tag{7}
\end{gather*}
$$

where $\gamma_{j} \in \partial g\left(x_{j} ; \frac{\xi_{j}}{2 t_{j}^{2}}\right)$ (the set of $\frac{\xi_{j}}{2 t_{j}^{2}}$-subgradients of g at x_{j}).

Note that for x_{j} to be an approximate minimizer, we must have $x_{j} \in \operatorname{dom}(g)$. We let
$\tau=\frac{1}{2}\left\langle x_{0}-x_{*}, \mathcal{H}_{1}\left(x_{0}-x_{*}\right)\right\rangle, \bar{\epsilon}_{k}=\sum_{j=1}^{k} \epsilon_{j}, \bar{\xi}_{k}=\sum_{j=1}^{k}\left(\xi_{j}+\epsilon_{j}^{2}\right)$.

Theorem 1 Suppose the conditions (6) and (7) hold, and $\mathcal{H}_{k-1} \succeq \mathcal{H}_{k} \succ 0$ for all k. Then

$$
0 \leq F\left(x_{k}\right)-F\left(x_{*}\right) \leq \frac{4}{(k+1)^{2}}\left(\left(\sqrt{\tau}+\bar{\varepsilon}_{k}\right)^{2}+2 \bar{\xi}_{k}\right)
$$

Specialized to $g(\cdot)=\delta(\cdot \mid \Omega)$

For the problem (P), we have $g(\cdot)=\delta(\cdot \mid \Omega)$ where $\Omega=\left\{x \in \mathcal{S}^{n}: \mathcal{A}(x)=b, x \succeq 0\right\}$ is the feasible set of (P). We need to solve the following constrained minimization problem:

$$
\begin{equation*}
\min \left\{\left\langle\nabla f\left(y_{k}\right), x-y_{k}\right\rangle+\frac{1}{2}\left\langle x-y_{k}, \mathcal{H}_{k}\left(x-y_{k}\right)\right\rangle: \mathcal{A}(x)=b, x \succeq 0\right\} \tag{8}
\end{equation*}
$$

Suppose we have an approximate solution $\left(x_{k}, p_{k}, z_{k}\right)$ to the KKT optimality conditions for (8):

$$
\begin{align*}
\nabla f\left(y_{k}\right)+\mathcal{H}_{k}\left(x_{k}-y_{k}\right)-\mathcal{A}^{*} p_{k}-z_{k}=: \delta_{k} & \approx 0 \\
\mathcal{A}\left(x_{k}\right)-b & =0 \tag{9}\\
\left\langle x_{k}, z_{k}\right\rangle=: \varepsilon_{k} & \approx 0, \quad x_{k}, z_{k} \succeq 0 .
\end{align*}
$$

Let $\gamma_{k}=-\mathcal{A}^{*} p_{k}-z_{k}$. Then γ_{k} is an ε_{k}-subgradient of g at $x_{k} \in \Omega$ if $z_{k} \succeq 0$. However, in practice, we have $x_{k} \succeq 0$ but $r_{k}:=\mathcal{A}\left(x_{k}\right)-b \neq 0$.

Suppose that there exists $\bar{x} \succ 0$ such that $\mathcal{A}(\bar{x})=b$. Since \mathcal{A} is surjective, $\mathcal{A} \mathcal{A}^{*}$ is nonsingular. Let $\omega_{k}=-\mathcal{A}^{*}\left(\mathcal{A} \mathcal{A}^{*}\right)^{-1}\left(r_{k}\right)$. Note that $\mathcal{A}\left(x_{k}+\omega_{k}\right)=b$. However, $x_{k}+\omega_{k}$ may not be positive semidefinite. Thus we consider the following iterate:

$$
\tilde{x}_{k}=\lambda\left(x_{k}+\omega_{k}\right)+(1-\lambda) \bar{x}=\lambda x_{k}+\left(\lambda \omega_{k}+(1-\lambda) \bar{x}\right), \lambda \in[0,1] .
$$

It is clear that $\mathcal{A} \tilde{x}_{k}=b$. By choosing
$\lambda=1-\left\|\omega_{k}\right\|_{2} /\left(\left\|\omega_{k}\right\|_{2}+\lambda_{\text {min }}(\bar{x})\right)$, we can have that \tilde{x}_{k} is positive semidefinite. We can also have that $\left(\tilde{x}_{k}, p_{k}, z_{k}\right)$ satisfies the condition (6) if
$\left\|\omega_{k}\right\|_{2} \leq \min \left\{\frac{\xi_{k}}{4 t_{k}^{2} \sqrt{n}\left\|z_{k}\right\|}\left(1+\frac{\lambda_{\max }(\bar{x})}{\lambda_{\min }(\bar{x})}\right)^{-1}, \frac{\varepsilon_{k}}{2 \sqrt{2 n \lambda_{\max }\left(\mathcal{H}_{1}\right)} t_{k}}\left(1+\frac{\left\|\bar{x}-x_{k}\right\|_{2}}{\lambda_{\min }(\bar{x})}\right)^{-1}\right\}$.

An inexact APG for (P)

Let $q_{k}(x)=f\left(y_{k}\right)+\left\langle\nabla f\left(y_{k}\right), x-y_{k}\right\rangle+\frac{1}{2}\left\langle x-y_{k}, \mathcal{H}_{k}\left(x-y_{k}\right)\right\rangle, x \in \mathcal{S}^{n}$. Algorithm 2. Given a tolerance $\varepsilon>0$. Input $y_{1}=x_{0} \in \mathcal{S}^{n}, t_{1}=1$. Set $k=1$. Iterate the following steps.

Step 1. Find an approximate minimizer

$$
\begin{equation*}
x_{k} \approx \arg \min _{x \in \mathcal{X}}\left\{q_{k}(x): x \in \Omega\right\}, \tag{10}
\end{equation*}
$$

where $x_{k} \in \Omega_{k} \supseteq \Omega$.
Step 2. Compute $t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}$.
Step 3. Compute $y_{k+1}=x_{k}+\left(\frac{t_{k}-1}{t_{k+1}}\right)\left(x_{k}-x_{k-1}\right)$.
When $\Omega_{k}=\Omega$, the dual problem of (10) is given by

$$
\begin{equation*}
\max \left\{q_{k}(x)-\left\langle\nabla q_{k}(x), x\right\rangle+\langle b, p\rangle \mid \nabla q_{k}(x)-\mathcal{A}^{*} p-z=0, z \succeq 0, x \succeq 0\right\} \tag{11}
\end{equation*}
$$

Let $\left\{\xi_{k}\right\},\left\{\epsilon_{k}\right\},\left\{\mu_{k}\right\}$ be given convergent sequences of nonnegative numbers such that $\sum_{k=1}^{\infty} \xi_{k}<\infty, \sum_{k=1}^{\infty} \epsilon_{k}<\infty$, and $\sum_{k=1}^{\infty} \mu_{k}<\infty$, and Δ be a given positive number. We assume that $\left(x_{k}, p_{k}, z_{k}\right)$ satisfies the following conditions:

$$
\begin{gathered}
f\left(x_{k}\right) \leq q_{k}\left(x_{k}\right)+\xi_{k} /\left(2 t_{k}^{2}\right) \\
\left|\left\langle\nabla q_{k}\left(x_{k}\right), x_{k}\right\rangle-\left\langle b, p_{k}\right\rangle\right| \leq \Delta \\
\nabla q_{k}\left(x_{k}\right)-\mathcal{A}^{*} p_{k}-z_{k}=\delta_{k}, \text { with }\left\|H_{k}^{-1 / 2} \delta_{k}\right\| \leq \epsilon_{k} /\left(\sqrt{2} t_{k}\right) \\
\left\|\mathcal{A}\left(x_{k}\right)-b\right\| \leq \mu_{k} / t_{k}^{2} \\
\left\langle x_{k}, z_{k}\right\rangle \leq \xi_{k} /\left(2 t_{k}^{2}\right), \quad x_{k} \succeq 0, z_{k} \succeq 0 .
\end{gathered}
$$

We also assume that $\mu_{k} / t_{k}^{2} \geq \mu_{k+1} / t_{k+1}^{2}$ and $\epsilon_{k} / t_{k} \geq \epsilon_{k+1} / t_{k+1}$ for all k. We can have that $\left(x_{k}, p_{k}, z_{k}\right)$ is an approximate optimal solution of (10) and (11). Note that
$\Omega_{k}:=\left\{x \in \mathcal{S}^{n}:\|\mathcal{A}(x)-b\| \leq \mu_{k} / t_{k}^{2}, x \succeq 0\right\}$ and $\Omega_{k+1} \subseteq \Omega_{k}$.
We let $\left(x_{*}, p_{*}, z_{*}\right)$ be an optimal solution of (P) and (D),

$$
\begin{gathered}
\tau=\frac{1}{2}\left\langle x_{0}-x_{*}, \mathcal{H}_{1}\left(x_{0}-x_{*}\right)\right\rangle, \quad \chi_{k}=\left\|p_{k-1}-p_{k}\right\| \mu_{k-1}, \text { with } \chi_{1}=0, \\
\bar{\epsilon}_{k}=\sum_{j=1}^{k} \epsilon_{j}, \quad \bar{\chi}_{k}=\sum_{j=1}^{k}\left(\xi_{j}+\epsilon_{j}^{2}\right), \quad \bar{\xi}_{k}=\sum_{j=1}^{k} \chi_{j} .
\end{gathered}
$$

Theorem 2 Suppose $M_{k}=\max _{1 \leq j \leq k}\left\{\sqrt{\left(\left\|p_{*}\right\|+\left\|p_{j}\right\|\right) \mu_{j}}\right\}$. Then we have

$$
\begin{aligned}
-\frac{4\left\|p_{*}\right\| \mu_{k}}{(k+1)^{2}} & \leq f\left(x_{k}\right)-f\left(x_{*}\right) \\
& \leq \frac{4}{(k+1)^{2}}\left(\left(\sqrt{\tau}+\bar{\epsilon}_{k}\right)^{2}+\left\|p_{k}\right\| \mu_{k}+2 \bar{\epsilon}_{k} M_{k}+2\left(\bar{\xi}_{k}+\bar{\chi}_{k}\right)\right) .
\end{aligned}
$$

$\left\{\left\|p_{k}\right\|\right\}$ bounded $(?) \Longrightarrow\left\{M_{k}\right\}$ and $\left\{\bar{\chi}_{k}\right\}$ bounded $\Longrightarrow O\left(1 / k^{2}\right)$.

Boundedness of $\left\{p_{k}\right\}$

Lemma 1 Suppose that there exists $(\bar{x}, \bar{p}, \bar{z})$ such that

$$
\mathcal{A}(\bar{x})=b, \bar{x} \succeq 0, \quad \nabla f(\bar{x})=\mathcal{A}^{*} \bar{p}+\bar{z}, \bar{z} \succ 0 .
$$

If the sequence $\left\{f\left(x_{k}\right)\right\}$ is bounded from above, then the sequence $\left\{x_{k}\right\}$ is bounded.

Lemma 2 Suppose that $\left\{x_{k}\right\}$ is bounded and there exists \hat{x} such that

$$
\mathcal{A}(\hat{x})=b, \hat{x} \succ 0 .
$$

Then the sequence $\left\{z_{k}\right\}$ is bounded. In addition, the sequence $\left\{p_{k}\right\}$ is also bounded.

In many cases, such as the nearest correlation matrix problem (2), the condition that $\left\{f\left(x_{k}\right)\right\}$ is bounded above or that $\left\{x_{k}\right\}$ is bounded can be ensured since Ω_{1} is bounded.

A semismooth Newton-CG method for inner subproblems

Suppose that at each iteration we are able to choose the self-adjoint positive definite linear operator \mathcal{H}_{k} of the form:

$$
\mathcal{H}_{k}(x):=w_{k} \circledast w_{k}(x)=w_{k} x w_{k}, \quad \text { where } w_{k} \in \mathcal{S}^{n} \text { positive definite, }
$$

such that $f(x) \leq q_{k}(x)$ for all $x \in \Omega$ (A simple choice: $w_{k}=\sqrt{L} I$). Then $q_{k}(\cdot)$ in (10) can equivalently be written as

$$
q_{k}(x)=\frac{1}{2}\left\|w_{k}^{1 / 2}\left(x-u_{k}\right) w_{k}^{1 / 2}\right\|^{2}+f\left(y_{k}\right)-\frac{1}{2}\left\|w_{k}^{-1 / 2} \nabla f\left(y_{k}\right) w_{k}^{-1 / 2}\right\|^{2},
$$

where $u_{k}=y_{k}-w_{k}^{-1} \nabla f\left(y_{k}\right) w_{k}^{-1}$.

Then (10) can be equivalently written as the following well-studied W-weighted semidefinite least squares problem

$$
\begin{equation*}
\min \left\{\frac{1}{2}\left\|w_{k}^{1 / 2}\left(x-u_{k}\right) w_{k}^{1 / 2}\right\|^{2}: \mathcal{A}(x)=b, x \succeq 0\right\} \tag{12}
\end{equation*}
$$

which can be efficiently solved by the SSNCG method in [Qi and Sun 2006].

The availability of the SSNCG is vital for our inexact APG to work.
For example, for a 2000 by 2000 weighted nearest correlation matrix problem, SSNCG needs 23 seconds to get error less than 10^{-9} while the APG needs more than 4980 seconds to get gradient error as 0.68 .

Symmetrized Kronecker product approximation

- For the H-weighted NCM problem where $\mathcal{Q}(x)=(H \circ H) \circ x$, let $w=\operatorname{diag}(d)$, where the vector $d \in \mathbb{R}^{n}$ can be chosen as

$$
d_{j}=\max \left\{\epsilon, \max _{1 \leq i \leq n}\left\{H_{i j}\right\}\right\}, j=1, \ldots, n,
$$

where $\epsilon>0$ is a small positive number.

- If $\mathcal{Q}(x)=B \circledast I(x)=(B x+x B) / 2, B \in \mathcal{S}_{+}^{n}$. Suppose we have the eigenvalue decomposition $B=P \Lambda P^{T}$, where $\Lambda=\operatorname{diag}(\lambda)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{T}$ is the vector of eigenvalues of B. Let $M=\frac{1}{2}\left(\lambda e^{T}+e \lambda^{T}\right)$ with $e \in \mathbb{R}^{n}$ being the vector of all ones. We consider the following nonconvex minimization problem:
$\min \left\{\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} h_{j} \mid h_{i} h_{j}-M_{i j} \geq 0 \forall i, j=1, \ldots, n, h \in \mathbb{R}_{+}^{n}\right\}$.
If \hat{h} is a feasible solution to the above problem, let
$w_{k}=P \operatorname{diag}(\hat{h}) P^{T}$.

Numerical results for convex QSDP problems

In our numerical experiments, we stop the inexact APG algorithm when

$$
\max \left\{R_{P}, R_{D}\right\} \leq 10^{-6}
$$

Example 1 We consider the following H-weighted nearest correlation matrix problem

$$
\min \left\{\left.\frac{1}{2}\|H \circ(x-u)\|^{2} \right\rvert\, \operatorname{Diag}(x)=e, x \succeq 0\right\}
$$

We compare the performance of our inexact APG (IAPG) method and the augmented Lagrangian dual method (AL) studied by [Qi and Sun 2010]. We set the tolerance Tol1 $=10^{-4}$ in AL. Given the correlation matrices \widehat{u}, we perturb \widehat{u} to

$$
u:=(1-\alpha) \widehat{u}+\alpha E,
$$

where $\alpha \in(0,1)$ and E is a randomly generated symmetric matrix with entries in $[-1,1]$.

The weight matrix H is a sparse random symmetric matrix with about 50% nonzero entries.

Example 2: "bad" weight matrix H

We consider the same problem as in Example 1, but the weight matrix H is generated from a weight matrix H_{0} used by a hedge fund company. The matrix H_{0} is a 93×93 symmetric matrix with all positive entries.

- It has 24% of the entries equal to 10^{-5} and the rest are in the interval $\left[2,1.28 \times 10^{3}\right]$.
- It has 28 eigenvalues in [$-520,-0.04], 11$ eigenvalues in $\left[-5 \times 10^{-13}, 2 \times 10^{-13}\right]$, and the rest 54 eigenvalues in $\left[10^{-4}, 2 \times 10^{4}\right]$.
We set the tolerance Toll $=10^{-2}$ in AL. ("*" means " >24 hours")

Example 3 We consider the linearly constrained convex QSDP problem, where $\mathcal{Q}(x)=\frac{1}{2}(B x+x B)$ for a given $B \succ 0$ and $\mathcal{A}(x)=\operatorname{Diag}(x)$.

$\mathrm{n} ; \mathrm{m}$	cond $(B) \mid$ iter/newt	R_{P}	R_{D}	pobj	dobj	time
$500 ; 5009.21 \mathrm{e}+0$	$9 / 9$	$3.24 \mathrm{e}-10$	$9.70 \mathrm{e}-7-4.09219187 \mathrm{e}+4$	$-4.09219188 \mathrm{e}+4$	13	
$1000 ; 10009.43 \mathrm{e}+0$	$9 / 9$	$3.68 \mathrm{e}-10$	$9.28 \mathrm{e}-7-8.41240999 \mathrm{e}+4$	$-8.41241006 \mathrm{e}+4$	$1: 13$	
$200 ; 2009.28 \mathrm{e}+0$	$9 / 9$	$3.16 \mathrm{e}-10$	$8.53 \mathrm{e}-7-1.65502323 \mathrm{e}+5$	$-1.65502325 \mathrm{e}+5$	$8: 49$	
$2000 ; 25009.34 \mathrm{e}+0$	$9 / 9$	$3.32 \mathrm{e}-10$	$8.57 \mathrm{e}-7-2.0790630 \mathrm{e}+5$	$-2.07906309 \mathrm{e}+5$	$16: 15$	
$3000 ; 30009.34 \mathrm{e}+0$	$9 / 9$	$2.98 \mathrm{e}-10$	$8.13 \mathrm{e}-7-2.49907743 \mathrm{e}+5$	$-2.49907745 \mathrm{e}+5$	$29: 02$	

Example 4 We consider the same problem as Example 3, but the linear map \mathcal{A} is generated by using the first generator in [Malick, Povh, Rendl, and Wiegele 2009] with order $p=3$. The positive definite matrix B is generated by using MATLAB's built-in function: B $=$ gallery ('lehmer', n) with $\operatorname{cond}(B) \in\left[n, 4 n^{2}\right]$.

$\mathrm{n} ; \mathrm{m} \quad \operatorname{cond}(B)$	iter/newt R_{P}	R_{D}	pobj	dobj	time
500; 100002.67e+5	51/102 3.02e-8	9.79e-7	7-9.19583895e+3	-9.19584894e+3	1:29
1000; 500001.07e+6	62/115 2.43e-8	$9.71 \mathrm{e}-7$	-1.74777588e+4	-1.74776690e+4	11:46
2000; 1000004.32e+6	76/94 5.24e-9	$5.28 \mathrm{e}-7$	-3.78101950e+4	-3.78101705e+4	1:14:04
2500; 1000006.76e+6	80/96 4.62e-9	$5.64 \mathrm{e}-7$	7-4.79637904e+4	$-4.79637879 \mathrm{e}+4$	2:11:01

We need more creative ideas!

