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Proximal point algorithm (PPA)

X : real finite dimensional Euclidean space endowed inner product
〈·, ·〉 and norm ‖ · ‖. Consider a maximal monotone operator T :
X → X .

Solve the following inclusion problem: 0 ∈ T (z)

Given c > 0, the proximal mapping associated with cT

P := (I + cT )−1

The proximal point algorithm (PPA):

zk+1 ≈ Pk(zk), Pk = (I + ckT )−1

Criterion for approximate calculation of Pk(z
k):

(A) : ‖zk+1 − Pk(zk)‖ ≤ δk‖zk+1 − zk‖,
∞∑
k=0

δk <∞
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Let Z := {z ∈ X | 0 ∈ T (z)} 6= ∅.
Error bound condition for T : ∃ a > 0, τ > 0

dist(z, Z) ≤ a‖w‖, ∀z ∈ T −1(w), ‖w‖ ≤ τ

Theorem 1 (Luque 1984, based on Rockafellar 1976)

Let zk be generated by PPA using criterion (A) with ck
nondecreasing (ck ↑ c∞ ≤ +∞). Suppose that the above error
bound condition holds for T . Then,

dist(zk, Z)→ 0 linearly with a rate bounded from above by

a√
a2 + c2

∞
< 1 (fast linear convergence)

If c∞ = +∞, the convergence is superlinear.
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Alternating direction method of multipliers (ADMM)

Consider
min f(u) + g(v)

s.t. F∗u+ G∗v = c.

Closed proper convex functions: f : U → (−∞,+∞], g : V →
(−∞,+∞]

Linear maps F : X → U , G : X → V
Given σ > 0, the augmented Lagrangian function:

Lσ(u, v;x) = f(u)+g(v)+〈x, F∗u+G∗v−c〉+σ

2
‖F∗u+G∗v−c‖2.

Its dual:
max {−〈c, x〉 − f∗(−Fx)− g∗(−Gx)}

Let A(x) := c−F∗∂f∗(−Fx), B(x) := −G∗∂g∗(−Gx).
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ADMM

Algorithm ADMM(τ): An ADMM with step-length τ

For k = 0, 1, 2, ..., iterate

1. Compute
uk+1 = arg min

u
Lσ(u, vk;xk)

2. Compute
vk+1 = arg min

v
Lσ(uk+1, v;xk)

3. Compute xk+1 = xk + τσ(F∗uk+1 + G∗vk+1 − c).
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DR Splitting

Consider a general inclusion model

0 ∈ (A+B)(z), (1)

where A,B : Z ⇒ Z are maximal monotone operators. Given
σ > 0, let

JσA(z) := (I + σA)−1(z), JσB(z) := (I + σB)−1(z)

be the resolvents of σA and σB, respectively. Let {tk}∞k=0 be the se-
quence generated by the following Douglas-Rachford splitting (DR-
splitting) method

tk+1 = (JσA ◦ (2JσB − I) + (I − JσB))tk. (2)
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ADMM =⇒ DR Splitting =⇒ PPA

Assume that the KKT solution set is nonempty.

• Gabay (1983) showed that ADMM(1) with FF∗ � 0 and GG∗ � 0
can be viewed as a DR-splitting method applied to 0 ∈ (A+B)(x)

• Eckstein (PhD Thesis, 1989) showed that the DR-splitting is in
fact a PPA corresponding to the following maximal monotone oper-
ator:

SA,B := {(y + σb, z − y) | b ∈ B(z), a ∈ A(y), y + σa = z − σb}

Caution: ADMM(1) is PPA. But in general ADMM(τ) is not PPA.
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Piece-wise linear-quadratic functions

Theorem 2 (J. Sun, PhD Thesis (1986))

Let f be a closed proper convex function. Then f is piecewise
linear-quadratic iff the graph of ∂f is piecewise polyhedral.
Moreover, f is piecewise linear-quadratic iff f∗ (Fenchel conjugate
function) is piecewise linear-quadratic.

Theorem 3 (Robinson 1981)

If the multi-valued mapping F : X ⇒ Y is piecewise polyhedral,
then F is calm at x0, i.e., ∃κ0 > 0 and a neighborhood V of x0

such that

F (x) ⊆ F (x0) + κ0‖x− x0‖BY , ∀x ∈ V.

Thus, the error bound condition holds for SA,B corresponding to the
convex piecewise quadratic programming (QP).
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Linear convergence rate for ADMM(1)

Linear convergence rate of ADMM(1) for convex piecewise QP:

(1). ADMM(1) with FF∗ � 0 and GG∗ � 0 is a PPA corresponding
to SA,B.

(2). The error bound condition holds for the corresponding maximal
monotone operator SA,B [Robinson + J. Sun].
(1) + (2) =⇒ Linear convergence rate.

All the above are essentially known by 1989. There are several recent
papers with more direct proofs ...
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Convex composite optimization

The convex composite optimization problem

min
y∈Y, z∈Z

{ϑ(y) + g(y) + ϕ(z) + h(z) : A∗y + B∗z = c},

where Y and Z are two finite-dimensional real Euclidean spaces each
equipped with an inner product 〈·, ·〉 and its induced norm ‖ · ‖.

ϑ : Y → (−∞,+∞], ϕ : Z → (−∞,+∞] proper closed
convex functions

g : Y → (−∞,+∞) and h : Z → (−∞,+∞) are two C1

convex functions (e.g., convex quadratic functions)
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The augmented Lagrangian function

Write ϑg(·) ≡ ϑ(·) + g(·) and ϕh(·) ≡ ϕ(·) + h(·).

The augmented Lagrangian function is defined by

Lσ(y, z;x) := ϑg(y) + ϕh(z) + 〈x,A∗y + B∗z − c〉

+
σ

2
‖A∗y + B∗z − c‖2,
∀ (y, z, x) ∈ Y × Z × X .
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sPADMM

Step 0. Input (y0, z0, x0) ∈ dom ϑ× dom ϕ×X . Let τ ∈ (0,∞) be a
positive parameter (e.g., τ ∈ (0, (1+

√
5)/2) ), and S : Y → Y

and T : Z → Z be two self-adjoint positive semi-definite, not
necessarily positive definite, linear operators. Set k := 0.

Step 1. Set

yk+1 ∈ arg min Lσ(y, zk;xk) + 1
2‖y − y

k‖2S ,

zk+1 ∈ arg min Lσ(yk+1, z;xk) + 1
2‖z − z

k‖2T ,

xk+1 = xk + τσ(A∗yk+1 + B∗zk+1 − c).

(3)

Step 2. If a termination criterion is not met, set k := k + 1 and go to
Step 1.

Assumption 1

The KKT system has a non-empty solution set.
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Denote u := (y, z, x) for y ∈ Y, z ∈ Z and x ∈ X . Let

U := Y × Z × X .

Define the KKT mapping R : U → U as

R(u) :=

 y − Prϑ[y − (∇g(y) +Ax)]
z − Prϕ[z − (∇h(z) + Bx)]

c−A∗y − B∗z

 , ∀u ∈ U ,

where Prθ(·) denotes the Moreau-Yosida proximal mapping. The
mapping R(·) is at least continuous on U and

∀u ∈ U , R(u) = 0⇐⇒ u ∈ Ω.
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Global convergence of sPADMM

The global convergence of the sPADMM is established in Appendix
B of Fazel-Pong-S.-Tseng (2013). For the iteration complexity on
sPADMM(1), see Shefi and Teboulle (2014).

There exist two self-adjoint and positive semi-definite linear opera-
tors (could be zero operators) Σg and Σh such that for all y′, y ∈
domϑ, and for all z′, z ∈ domϕ,

〈∇g(y′)−∇g(y), y′ − y〉 ≥ ‖y′ − y‖2Σg
,

〈∇h(z′)−∇h(z), z′ − z〉 ≥ ‖z′ − z‖2Σh
.
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Linear convergence rate of sPADMM

For any τ ∈ (0,∞), define

sτ :=
5− τ − 3 min{τ, τ−1}

4
& tτ :=

1− τ + min{τ, τ−1}
8

.

1/4 ≤ sτ ≤ 5/4 & 0 < tτ ≤ 1/8, ∀ τ ∈ (0, (1 +
√

5)/2).

Let E : X → U := Y × Z × X be a linear operator such that its
adjoint E∗ satisfies

E∗(y, z, x) = A∗y + B∗z

for any (y, z, x) ∈ Y × Z × X .
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Denote

M := Diag
(
S + Σg, T + Σh + σBB∗, (τσ)−1I

)
+ sτσEE∗

H := Diag

(
S +

1

2
Σg, T +

1

2
Σh + τσBB∗, 4tτ (τ2σ)−1I

)
+tτσEE∗.

Proposition 1

Let τ ∈ (0, (1 +
√

5)/2). Then

Σg + S + σAA∗ � 0 & Σh + T + σBB∗ � 0

m

M � 0⇐⇒ H � 0.
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Proposition 2

Let τ ∈ (0, (1 +
√

5)/2) and {(yk, zk, xk)} be an infinite sequence
generated by the sPADMM. Then for any ū = (ȳ, z̄, x̄) ∈ Ω and
any k ≥ 1,

‖uk+1 − ū‖2M + ‖zk+1 − zk‖2T
≤
(
‖uk − ū‖2M + ‖zk − zk−1‖2T

)
− ‖uk+1 − uk‖2H.

(1)

Consequently, we have for all k ≥ 1,

dist2
M(uk+1,Ω) + ‖zk+1 − zk‖2T

≤
(
dist2

M(uk,Ω) + ‖zk − zk−1‖2T
)
− ‖uk+1 − uk‖2H.

(2)
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For establishing the linear rate of convergence of the sPADMM, we
need the following error bound condition with respect to ū ∈ Ω.

Assumption 2

For some given ū ∈ Ω, there exist positive constants δ and η > 0
such that

dist(u,Ω) ≤ η‖R(u)‖, ∀u ∈ {u ∈ U : ‖u− ū‖ ≤ δ}. (3)
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Theorem 1

Let τ ∈ (0, (1 +
√

5)/2). Suppose that Assumptions 1 and 2 hold.
Assume Σg + S + σAA∗ � 0 & Σh + T + σBB∗ � 0. Then for all
k sufficiently large,

dist2
M(uk+1,Ω) + ‖zk+1 − zk‖2T

≤ µ
[
dist2

M(uk,Ω) + ‖zk − zk−1‖2T
]
,

(4)

where µ := (1 + 2κ4)−1(1 + κ4) < 1 with

κ4 := min{τ, 4tτ}
(
η2κλmax(M)

)−1
> 0,

κ := max {κ1, κ2, κ3} ,

κ1 := 3‖S‖, κ2 := max{3σλmax(AA∗), 2‖T ‖},

κ3 := 3(1− τ)2σλmax(AA∗) + 2(1− τ)2σλmax(BB∗) + σ−1.
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(cont.) Moreover, there exists a positive number ς ∈ [µ, 1) such
that for all k ≥ 1,

dist2
M(uk+1,Ω) + ‖zk+1 − zk‖2T

≤ ς
[
dist2

M(uk,Ω) + ‖zk − zk−1‖2T
]
.

(5)
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Corollary 2

Let τ ∈ (0, (1 +
√

5)/2). Suppose that Ω 6= ∅ and that
Σg + S + σAA∗ � 0 & Σh + T + σBB∗ � 0. Assume that the
mapping R : U → U is piecewise polyhedral. Then there exists a
constant ς ∈ (0, 1) such that

dist2
M(uk+1,Ω) + ‖zk+1 − zk‖2T

≤ ς
[
dist2

M(uk,Ω) + ‖zk − zk−1‖2T
]
, ∀ k ≥ 1.

If [S � 0 and T � 0] or if [one of them is positive definite and the
other is zero], one can use PPA or Ha’s partial PPA (1990) to derive
the linear convergence with τ = 1 though in forms different from
the above.
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Application to multi-block conic QP

The convex composite quadratic conic programming

min
1

2
〈x,Qx〉+ 〈c, x〉+ φ(x)

s.t. Ax = b, x ∈ K,
(6)

where c ∈ X , b ∈ <m, Q : X → X is a self-adjoint positive semi-
definite linear operator, A : X → <m is a linear operator which is
surjective, K is a closed convex cone in X and φ : X ∈ (−∞,∞] is a
proper closed convex function whose epigraph is convex polyhedral,
i.e., φ is a closed proper convex polyhedral function.
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The Lagrange dual of problem (6) takes the form of

max inf
x∈X

{
1

2
〈x,Qx〉+ 〈v, x〉

}
+ 〈b, y〉 − φ∗(−z)

s.t. s+A∗y + v + z = c, s ∈ K∗,

which is equivalent to

min δK∗(s)− 〈b, y〉+
1

2
〈w,Qw〉+ φ∗(−z)

s.t. s+A∗y −Qw + z = c, w ∈ W := RangeQ.
(7)

One may call problem (7) the restricted Wolfe dual to problem (6).

sGS-ADMM: For (7).

Step 0. Input (s0, y0, w0, z0, x0) ∈ K∗ × <m × W ×
(−dom φ∗)×X . Let τ ∈ (0,∞) be a positive parameter
(e.g., τ ∈ (0, (1 +

√
5)/2) ). Set k := 0.
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Step 1. Set

wk+ 1
2 = arg minLσ(sk, yk, w, zk;xk)

yk+ 1
2 = arg minLσ(sk, y, wk+ 1

2 , zk;xk)

sk+1 = arg minLσ(s, yk+ 1
2 , wk+ 1

2 , zk;xk)

yk+1 = arg minLσ(sk+1, y, wk+ 1
2 , zk;xk)

wk+1 = arg minLσ(sk+1, yk+1, w, zk;xk)

zk+1 = arg minLσ(sk+1, yk+1, wk+1, z;xk)

xk+1 = xk + τσ(sk+1 +A∗yk+1 −Qwk+1 + zk+1 − c).

Step 2. If a termination criterion is not met, set k := k + 1 and
go to Step 1.
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The global convergence of Algorithm sGS-ADMM is to convert it
into an equivalent sPADMM scheme (3) with S � 0 but S � 0 and
T = 0.

By using the same connection, one can use Theorem 1 to derive the
linear rate convergence of the infinite sequence {(sk, yk, wk, zk, xk)}
generated by Algorithm sGS-ADMM if Assumptions 1 and 2 hold
for problem (7) and τ ∈ (0, (1 +

√
5)/2). Assumption 2 holds

automatically if K is convex polyhedral.
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Error bounds for convex quadratic SDP

For convex quadratic SDP, the error bound condition is valid if the
second order sufficient conditions for both the primal and dual prob-
lems hold (almost best possible), one of 8 equivalent conditions.

For multi-block SDPs, the sGS-ADMM is not only convergent but
also is more efficient than the naive direct extension. This is different
from others.

Essentially, a desirable ADMM for many core multi-block convex
optimization problems has been designed and analyzed (using dual).
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