Digital Object Identifier (DOI) 10.1007/s10107-005-0577-4

Defeng Sun¹ · Jie Sun²

Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions

Received: December 26, 2002 / Accepted: January 14, 2005 Published online: March 14, 2005 - © Springer-Verlag 2005

Abstract. We show that the Fischer-Burmeister complementarity functions, associated to the semidefinite cone (SDC) and the second order cone (SOC), respectively, are strongly semismooth everywhere. Interestingly enough, the proof relys on a relationship between the singular value decomposition of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix.

Key words. Fischer-Burmeister function, SDC, SOC, SVD, strong semismoothness

1. Introduction

Let $\mathcal{M}_{p,q}$ be the linear space of $p \times q$ real matrices. We denote the *ij*th entry of $A \in \mathcal{M}_{p,q}$ by A_{ij} . For any two matrices A and B in $\mathcal{M}_{p,q}$, we write

$$A \bullet B := \sum_{i=1}^{p} \sum_{j=1}^{q} A_{ij} B_{ij} = \operatorname{tr}(AB^{T})$$

for the Frobenius inner product between A and B, where "tr" denotes the trace of a matrix. The *Frobenius norm* induced by the above inner product on $\mathcal{M}_{p,q}$ is defined as $||A||_{\mathcal{F}} := \sqrt{A \bullet A}$. The identity matrix in $\mathcal{M}_{p,p}$ is denoted by *I*.

Let S^p be the linear space of $p \times p$ real symmetric matrices; let S^p_+ denote the cone of $p \times p$ symmetric positive semidefinite matrices. For any vector $y \in \Re^p$, let diag (y_1, \ldots, y_p) denote the $p \times p$ diagonal matrix with its *i*th diagonal entry being y_i . We write $X \succeq 0$ to mean that X is a symmetric positive semidefinite matrix. Throughout this paper, we let X_+ denote the (Frobenius) projection of $X \in S^p$ onto S^p_+ . The projection X_+ has an explicit representation; namely, if

$$X = P\Lambda(X)P^{I} , \qquad (1)$$

Mathematics Subject Classification (2000): 90C33, 90C22, 65F15, 65F18

D. Sun: Department of Mathematics, National University of Singapore, Republic of Singapore. e-mail: matsundf@nus.edu.sg. Fax: 65-6779 5452.

J. Sun: School of Business and Singapore-MIT Alliance, National University of Singapore, Republic of Singapore. e-mail: jsun@nus.edu.sg.

¹The author's research was partially supported by Grant R146-000-035-101 of National University of Singa-

pore. ²The author's research was partially supported by Grant R314-000-042/057-112 of National University of Singapore and a grant from the Singapore-MIT Alliance.

where $\Lambda(X) := \operatorname{diag}(\lambda_1, ..., \lambda_p)$ is the diagonal matrix of eigenvalues of X and *P* is the corresponding orthogonal matrix of orthonormal eigenvectors, then $X_+ = P\Lambda(X)_+ P^T$, where $\Lambda(X)_+ := \operatorname{diag}(\max(\lambda_1, 0), ..., \max(\lambda_p, 0))$. If $X \in S^p_+$, then we use $\sqrt{X} := P\sqrt{\Lambda(X)} P^T$ to denote the square root of X, where X has the spectral decomposition (1) and $\sqrt{\Lambda(X)} := \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_p})$. For $X \in S^p$, we let $|X| := \sqrt{X^2}$.

A function $\Phi^{\text{sdc}} : S^p \times S^p \to S^p$ is called a semidefinite cone (SDC) complementarity function if

$$\Phi^{\rm sdc}(X,Y) = 0 \iff \mathcal{S}^p_+ \ni X \perp Y \in \mathcal{S}^p_+, \tag{2}$$

where the symbol \perp means "perpendicular under the Frobenius matrix inner product"; i.e., $X \perp Y \Leftrightarrow X \bullet Y = 0$ for any two matrices X and Y in S^p . Of particular interest are two SDC complementarity functions

$$\Phi_{\min}^{\text{sdc}}(X,Y) := X - (X - Y)_+$$
(3)

and

$$\Phi_{\rm FB}^{\rm sdc}(X,Y) := X + Y - \sqrt{X^2 + Y^2} \,. \tag{4}$$

The function Φ_{\min}^{sdc} is called the matrix-valued min-function. It is known that Φ_{\min}^{sdc} is globally Lipschitz continuous, directionally differentiable [1], and strongly semismooth [15] (see [14] for the definition of strong semismoothness). Strong semismoothness plays a fundamental role in the analysis of the quadratic convergence of Newton's method for solving systems of nonsmooth equations [13, 14]. Newton-type methods for solving the semidefinite programming and the semidefinite complementarity problem based on a smoothed form of Φ_{\min}^{sdc} are discussed in [4, 5, 12, 17]. The function Φ_{FB}^{sdc} is called the matrix-valued Fischer-Burmeister function. When

The function $\Phi_{\text{FB}}^{\text{sdc}}$ is called the matrix-valued Fischer-Burmeister function. When p = 1, $\Phi_{\text{FB}}^{\text{sdc}}$ is reduced to the scalar-valued Fischer-Burmeister function $\phi_{\text{FB}}(a, b) := a + b - \sqrt{a^2 + b^2}$, $a, b \in \Re$, which is introduced by Fischer [8]. In [18], Tseng proves that $\Phi_{\text{FB}}^{\text{sdc}}$ satisfies (2). Borwein and Lewis also suggest a proof in their recent book [2, Exercise 5.2.11]. A desirable property of $\Phi_{\text{FB}}^{\text{sdc}}$ is its continuous differentiability [18]. For other properties of SDC complementarity functions, see [18, 19].

The primary motivation of this paper is to prove that Φ_{FB}^{sdc} is globally Lipschitz continuous, directionally differentiable, and strongly semismooth. This goal is achieved in Section 2 by using a relationship between the singular value decomposition of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix in higher dimension and by using the same properties of the function |Y|, $Y \in S^p$, obtained in [15]. We then proceed to study similar properties of the vector-valued complementarity functions associated with the second order cone (SOC) in Section 3.

2. Strong Semismoothness of Φ_{FR}^{sdc}

Let $A \in M_{n,m}$ and assume $n \le m$. Then there exist orthogonal matrices $U \in \mathcal{M}_{n,n}$ and $V \in \mathcal{M}_{m,m}$ such that A has the following singular value decomposition (SVD)

$$U^T A V = [\Sigma(A) \ 0], \tag{5}$$

where $\Sigma(A) = \text{diag}(\sigma_1(A), \dots, \sigma_n(A))$ and $\sigma_1(A) \ge \sigma_2(A) \ge \dots \ge \sigma_n(A) \ge 0$ are singular values of A [11, Chapter 2]. Write $V \in \mathcal{M}_{m,m}$ in the form $V = [V_1 \ V_2]$, where $V_1 \in \mathcal{M}_{m,n}$ and $V_2 \in \mathcal{M}_{m,m-n}$. We define the orthogonal matrix $Q \in \mathcal{M}_{n+m,n+m}$ by

$$Q := \frac{1}{\sqrt{2}} \begin{bmatrix} U & U & 0\\ V_1 - V_1 & \sqrt{2}V_2 \end{bmatrix}.$$
 (6)

Define the following matrix valued function $G^{\text{mat}} : \mathcal{M}_{n,m} \to \mathcal{S}^n$ by

$$G^{\text{mat}}(A) := \sqrt{AA^T} = U \text{diag}(\sigma_1(A), \dots, \sigma_n(A)) U^T, \qquad (7)$$

where $A \in \mathcal{M}_{n,m}$ has the SVD as in (5). Define two linear operators $\Xi : \mathcal{M}_{n,m} \to \mathcal{S}^{n+m}$ and $\pi : \mathcal{S}^{n+m} \to \mathcal{S}^n$ by

$$\Xi(B) := \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}, \quad B \in \mathcal{M}_{n,m}$$
(8)

and

$$(\pi(W))_{ij} := W_{ij}, i, j = 1, \dots, n, W \in \mathcal{S}^{n+m},$$
(9)

respectively. Then, by [11, Section 8.6], when $A \in \mathcal{M}_{n,m}$ has an SVD as in (5) and Q is defined in (6), the matrix $\Xi(A)$ has the following spectral decomposition:

$$\Xi(A) = Q \begin{bmatrix} \Sigma(A) & 0 & 0 \\ 0 & -\Sigma(A) & 0 \\ 0 & 0 & 0 \end{bmatrix} Q^{T},$$
(10)

i.e., the eigenvalues of $\Xi(A)$ are $\pm \sigma_i(A)$, i = 1, ..., n, and 0 of multiplicity m - n. Thus, $\sigma_i(A) = \lambda_i(\Xi(A))$, i = 1, ..., n, where $\lambda_i(\Xi(A))$ is the *i*th largest eigenvalue of $\Xi(A)$. This, together with the linearity of $\Xi(\cdot)$ and Theorem 4.7 in [16] on the strong semismoothness of eigenvalue functions of symmetric matrices, shows that $\sigma_1(\cdot), \ldots, \sigma_n(\cdot)$ are strongly semismooth everywhere in $\mathcal{M}_{n,m}$. In a similar way to [16], the strong semismoothness of the singular value functions can be used to study the quadratic convergence of generalized Newton methods for solving inverse singular value problems. For a survey on inverse eigenvalue and singular value problems, see [7].

Proposition 2.1. Suppose that $A \in \mathcal{M}_{n,m}$ has an SVD as in (5). Then it holds that

$$G^{\text{mat}}(A) = \pi(|\Xi(A)|).$$
 (11)

Proof. By (6) and (10), we have

$$\begin{split} |\Xi(A)| &= \frac{1}{2} \begin{bmatrix} U & U & 0 \\ V_1 - V_1 & \sqrt{2}V_2 \end{bmatrix} \begin{bmatrix} |\Sigma(A)| & 0 & 0 \\ 0 & |-\Sigma(A)| & 0 \\ 0 & 0 & |0| \end{bmatrix} \begin{bmatrix} U^T & V_1^T \\ U^T & -V_1^T \\ 0 & \sqrt{2}V_2^T \end{bmatrix} \\ &= \begin{bmatrix} U\Sigma(A)U^T & 0 \\ 0 & V_1\Sigma(A)V_1^T \end{bmatrix}. \end{split}$$

Thus, $\pi(|\Xi(A)|) = U\Sigma(A)U^T = G^{\text{mat}}(A).$

The next theorem is our main result of this section.

Theorem 2.2. The function $G^{\text{mat}} : \mathcal{M}_{n,m} \to S^n$ defined by (7) is globally Lipschitz continuous, continuously differentiable around any $A \in \mathcal{M}_{n,m}$ of full row rank, and strongly semismooth everywhere in $\mathcal{M}_{n,m}$.

Proof. First, by Proposition 2.1, for any $A, B \in \mathcal{M}_{n,m}$, we have

$$\left\| G^{\max}(A) - G^{\max}(B) \right\|_{\mathcal{F}} = \|\pi \left(|\Xi(A)| - |\Xi(B)| \right)\|_{\mathcal{F}} \le \sqrt{2\|A - B\|_{\mathcal{F}}^2},$$

which proves that G^{mat} is globally Lipschitz continuous.

Second, the continuous differentiability of G^{mat} around any $A \in \mathcal{M}_{n,m}$ of full row rank can be obtained easily by using [5, Lemma 4], the definition of G^{mat} , and the fact that AA^T is positive definite when A is of full row rank. The details are omitted here.

Finally, it is known that $|Y|, Y \in S^{n+m}$ is strongly semismooth everywhere [15, Theorem 4.12]. Then Proposition 2.1 and the linearity of $\Xi(\cdot)$ imply that G^{mat} is strongly semismooth at any $A \in \mathcal{M}_{n,m}$.

Let the matrix valued Fischer-Burmeister function $\Phi_{FB}^{sdc} : S^p \times S^p \to S^p$ be defined as in (4). By noting the fact that for any $(X, Y) \in S^p \times S^p$, $\Phi_{FB}^{sdc}(X, Y) = X + Y - G^{mat}([X Y])$, we obtain from Theorem 2.2 the following corollary.

Corollary 2.3. The matrix valued Fischer-Burmeister function $\Phi_{FB}^{sdc} : S^p \times S^p \to S^p$ is globally Lipschitz continuous, continuously differentiable around any $(X, Y) \in S^p \times S^p$ if [X Y] is of full row rank, and strongly semismooth everywhere in $S^p \times S^p$.

3. The FB Function Associated with the SOC

The second order cone (SOC) in \Re^n $(n \ge 2)$, also called the Lorentz cone or the icecream cone, is defined as $\mathcal{K}^n := \{(x_1, x_2^T)^T \mid x_1 \in \Re, x_2 \in \Re^{n-1} \text{ and } x_1 \ge \|x_2\|\}$. Here and below, $\|\cdot\|$ denotes the l_2 -norm in \Re^n and, for convenience, we write $x = (x_1, x_2)$ instead of $x = (x_1, x_2^T)^T$. For any $x = (x_1, x_2)$, $y = (y_1, y_2) \in \Re \times \Re^{n-1}$, we define their Jordan product as

$$x \cdot y := \begin{bmatrix} x^T y \\ y_1 x_2 + x_1 y_2 \end{bmatrix}.$$
 (12)

Denote $e = (1, 0, ..., 0)^T \in \mathbb{R}^n$. Let x_+ be the orthogonal projection of $x \in \mathbb{R}^n$ onto \mathcal{K}^n . Denote $x^2 := x \cdot x$ and $|x| := \sqrt{x^2}$, where for any $y \in \mathcal{K}^n$, \sqrt{y} is the unique vector in \mathcal{K}^n such that $y = \sqrt{y} \cdot \sqrt{y}$. Then, by [10], we know that $x_+ = (x + |x|)/2$.

A function $\phi^{\text{soc}}: \Re^n \times \Re^n \to \Re^n$ is called an SOC complementarity function if

$$\phi^{\text{soc}}(x, y) = 0 \iff \mathcal{K}^n \ni x \perp y \in \mathcal{K}^n, \tag{13}$$

where $x \perp y \Leftrightarrow x \cdot y = 0$. By [10], both the vector-valued min-function

$$\phi_{\min}^{\text{soc}}(x, y) := x - (x - y)_+ \tag{14}$$

and the vector valued Fischer-Burmeister function

$$\phi_{\text{FB}}^{\text{soc}}(x, y) := x + y - \sqrt{x^2 + y^2}$$
(15)

are SOC complementarity functions. The strong semismoothness of ϕ_{\min}^{soc} can be checked directly and has been done in [3, 6]. In this section, we shall prove that $\phi_{\text{FB}}^{\text{soc}}$ is strongly semismooth.

For any $x = (x_1, x_2) \in \Re \times \Re^{n-1}$, let $L(x), M(x) \in S^n$ be defined by

$$L(x) := \begin{bmatrix} x_1 & x_2^T \\ x_2 & x_1 I \end{bmatrix} \text{ and } M(x) := \begin{bmatrix} 0 & 0^T \\ 0 & N(x_2) \end{bmatrix},$$
(16)

respectively, where for any $z \in \Re^{n-1}$, $N(z) \in S^{n-1}$ denotes

$$N(z) := \|z\|(I - zz^{T}/\|z\|^{2}) = \|z\|I - zz^{T}/\|z\|$$
(17)

and the convention " $\frac{0}{0} = 0$ " is adopted. A direct calculation shows that

$$L(x^{2}) = (L(x))^{2} + (M(x))^{2}, \quad \forall x = (x_{1}, x_{2}) \in \Re \times \Re^{n-1}.$$
 (18)

Lemma 3.1. The operator $N(\cdot)$ is globally Lipschitz continuous, twice continuously differentiable around any $0 \neq z \in \Re^{n-1}$, and strongly semismooth everywhere in \Re^{n-1} .

Proof. Suppose that $z^{(1)}$, $z^{(2)}$ are two arbitrary points in \Re^{n-1} . If the line segment $[z^{(1)}, z^{(2)}]$ connecting $z^{(1)}$ and $z^{(2)}$ contains the origin 0, then

$$\|N(z^{(1)}) - N(z^{(2)})\|_{\mathcal{F}} \le \sqrt{n-2} \|z^{(1)}\| + \sqrt{n-2} \|z^{(2)}\| = \sqrt{n-2} \|z^{(1)} - z^{(2)}\|.$$

If the line segment $[z^{(1)}, z^{(2)}]$ does not contain the origin 0, then by the mean value theorem we have

$$\|N(z^{(1)}) - N(z^{(2)})\|_{\mathcal{F}} \le \int_0^1 \|N'(z^{(1)} + t[z^{(2)} - z^{(1)}])(z^{(2)} - z^{(1)})\|_{\mathcal{F}} dt,$$

which, together with the fact that for any $z \neq 0$, N is differentiable at z with

$$N'(z)(\Delta z) = \frac{(\Delta z)^T z}{\|z\|} [I + zz^T / \|z\|^2] - \frac{1}{\|z\|} [z(\Delta z)^T + (\Delta z)z^T]$$
(19)

and

$$\|N'(z)(\Delta z)\|_{\mathcal{F}} \le \sqrt{n-2} \|\Delta z\| \ \forall \ \Delta z \in \Re^{n-1},$$

implies that

$$||N(z^{(1)}) - N(z^{(2)})||_{\mathcal{F}} \le \sqrt{n-2}||z^{(1)} - z^{(2)}||_{\mathcal{F}}$$

Therefore, N is globally Lipschitz continuous.

By equation (19), we know that N is at least twice continuously differentiable around any $z \neq 0$, and so strongly semismooth at any $0 \neq z \in \Re^{n-1}$. Now it suffices to show that N is strongly semismooth at $z^* := 0$.

Note that N is a positive homogeneous mapping, i.e., for any $t \ge 0$ and $z \in \mathbb{R}^{n-1}$, N(tz) = tN(z). Hence, N is directionally differentiable at 0 and for any $0 \ne z \in \mathbb{R}^{n-1}$, N'(0; z) = N(z). By (19), for any $0 \ne z \in \mathbb{R}^{n-1}$,

$$N(z^* + z) - N(z^*) - N'(z^* + z)(z) = N(z) - N(0) - N'(z)(z) = 0,$$

which, together with [15, Theorem 3.7], the Lipschitz continuity, and the directional differentiability of N, shows that N is strongly semismooth at $z^* = 0$.

Suppose that the operators L and M are defined by (16). For any $a^1, \ldots, a^p \in \Re^n$, let

$$\chi(a^1, \dots, a^p) := \sqrt{\sum_{i=1}^p (a^i)^2}$$
(20)

and

$$\Gamma(a^1,\ldots,a^p) := [L(a^1)\ldots L(a^p)M(a^1)\ldots M(a^p)].$$
⁽²¹⁾

By [3, Lemma 4.1]¹, for any $x \in \Re^n$ we have $\sqrt{|x|} = (\sqrt{L(|x|)}) e$. This, together with the fact that $v := \sum_{i=1}^{p} (a^i)^2 \in \mathcal{K}^n$ and (18), implies

$$\chi(a^1,\ldots,a^p) = \sqrt{v} = \left(\sqrt{L(v)}\right)e = \left(\sqrt{\Gamma(a^1,\ldots,a^p)}\left(\Gamma(a^1,\ldots,a^p)\right)^T\right)e.$$
(22)

Therefore, by (22), for any $a^1, \ldots, a^p \in \Re^n$, we have

$$\chi(a^1,\ldots,a^p) = G^{\mathrm{mat}}(\Gamma(a^1,\ldots,a^p))e, \qquad (23)$$

where G^{mat} is defined by (7)

Theorem 3.2. For any $a^1, \ldots, a^p \in \Re^n$, let $\chi(a^1, \ldots, a^p)$ be defined by (20). Then χ is globally Lipschitz continuous, continuously differentiable around any (a^1, \ldots, a^p) if

 $v_1 \neq ||v_2||$, where $v = (v_1, v_2) \in \Re \times \Re^{n-1}$ and $v := \sum_{i=1}^{\nu} (a^i)^2$, and strongly semismooth

everywhere.

Proof. First, the global Lipschitz continuity of χ can be obtained directly by Theorem 2.2, Lemma 3.1, and equation (23).

Second, let $a^i \in \Re^n$, i = 1, ..., p be such that $v_1 \neq ||v_2||$, where $v = (v_1, v_2) \in \Re \times$ \Re^{n-1} and $v = \sum_{i=1}^{p} (a^{(i)})^2$. Then, from (23), Theorem 2.2, and the fact that $\Gamma(a^{(1)}, ..., a^{(m)})$ $(\Gamma(a^{(1)}, ..., a^{(m)}))^T = L(v)$ (cf. (18)) is positive definite when $v_1 \neq ||v_2||$, we know that χ is continuously differentiable around $(a^1, ..., a^p)$.

Finally, we know from [9] that the composite of two strongly semismooth functions is strongly semismooth. Hence, by (23), Theorem 2.2, and the fact that the mapping Γ is strongly semismooth (cf. Lemma 3.1), we can draw the conclusion that χ is strongly semismooth everywhere.

¹ P. Tseng presented this result in "The Third International Conference on Complementarity Problems", held in Cambridge University, United Kingdom, July 29 -August 1, 2002.

Theorem 3.2 generalizes the results discussed in [6] from the absolute value function |x| to the function χ . By Theorems 2.2 and 3.2, we have the following results, which do not require a proof.

Corollary 3.3. The vector-valued Fischer-Burmeister function $\phi_{\text{FB}}^{\text{soc}} : \mathfrak{N}^n \times \mathfrak{N}^n \to \mathfrak{N}^n$ is globally Lipschitz continuous, continuously differentiable around any $(x, y) \in \mathfrak{N}^n \times \mathfrak{N}^n$ if $v_1 \neq ||v_2||$, where $v := x^2 + y^2$, and strongly semismooth everywhere.

Corollary 3.4. The smoothed version of Φ_{FB}^{sdc} ,

$$\bar{\Phi}_{\mathrm{FB}}^{\mathrm{sdc}}: \mathcal{S}^p \times \mathcal{S}^p \times \mathfrak{R} \to \mathcal{S}^p, \quad \bar{\Phi}_{\mathrm{FB}}^{\mathrm{sdc}}(X, Y, \varepsilon) := X + Y - \sqrt{X^2 + Y^2 + \varepsilon^2 I}$$

and the smoothed version of ϕ_{FB}^{soc} ,

$$\bar{\phi}_{\text{FB}}^{\text{soc}}:\mathfrak{N}^n\times\mathfrak{N}^n\times\mathfrak{N}\to I\!\!R^n, \quad \bar{\phi}_{\text{FB}}^{\text{soc}}(x,y,\varepsilon):=x+y-\sqrt{x^2+y^2+\varepsilon^2e}$$

are strongly semismooth everywhere.

References

- Bonnans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–493 (1999)
- Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer-Verlag, New York, 2000
- Chen, J., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Prog. Series B 101, 95–117 (2004)
- Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix functions with applications to semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)
- Chen, X., Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity problems. Math. Prog. 95, 431–474 (2003)
- Chen, X.D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)
- 7. Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40, 1-39 (1998)
- 8. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
- Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Prog. Series B 76, 513–532 (1997)
- Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)
- Golub, G.H., Van Loan, C.F.: Matrix Computations. 3rd edn, The Johns Hopkins University Press, Baltimore, USA, 1996
- Kanzow, C., Nagel, C.: Semidefinite programs: new search directions, smoothing-type methods. SIAM J. Optim. 13, 1–23 (2002)
- 13. Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
- 14. Qi, L., Sun, J.: A nonsmooth version of Newton's method. Math. Prog. 58, 353–367 (1993)
- 15. Sun, D., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150-169 (2002)
- Sun, D., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems. SIAM J. Numer. Anal. 40, 2352–2367 (2002)
- Sun, J., Sun, D., Qi, L.: A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems. SIAM J. Optim. 14, 783–806 (2004)
- 18. Tseng, P.: Merit functions for semidefinite complementarity problems. Math. Prog. 83, 159–185 (1998)
- Yamashita, N., Fukushima, M.: A new merit function and a descent method for semidefinite complementarity problems. In: M. Fukushima, L. Qi (eds.), Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Boston, Kluwer Academic Publishers, 1999, pp. 405–420