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Abstract. We show that the Fischer-Burmeister complementarity functions, associated to the semidefinite
cone (SDC) and the second order cone (SOC), respectively, are strongly semismooth everywhere. Interestingly
enough, the proof relys on a relationship between the singular value decomposition of a nonsymmetric matrix
and the spectral decomposition of a symmetric matrix.
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1. Introduction

Let Mp,q be the linear space of p × q real matrices. We denote the ij th entry of
A ∈ Mp,q by Aij . For any two matrices A and B in Mp,q , we write

A • B : =
p∑

i=1

q∑

j=1

AijBij = tr(ABT )

for the Frobenius inner product between A and B, where “tr” denotes the trace of a
matrix. The Frobenius norm induced by the above inner product on Mp,q is defined as
‖ A ‖F : = √

A • A. The identity matrix in Mp,p is denoted by I .
Let Sp be the linear space of p × p real symmetric matrices; let Sp

+ denote the
cone of p × p symmetric positive semidefinite matrices. For any vector y ∈ �p, let
diag(y1, . . . , yp) denote the p × p diagonal matrix with its ith diagonal entry being yi .
We write X � 0 to mean that X is a symmetric positive semidefinite matrix. Through-
out this paper, we let X+ denote the (Frobenius) projection of X ∈ Sp onto Sp

+. The
projection X+ has an explicit representation; namely, if

X = P�(X)P T , (1)
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where �(X) := diag (λ1, ..., λp) is the diagonal matrix of eigenvalues of X and
P is the corresponding orthogonal matrix of orthonormal eigenvectors, then X+ =
P�(X)+P T , where �(X)+ := diag

(
max(λ1, 0), ..., max(λp, 0)

)
. If X ∈ Sp

+, then
we use

√
X : = P

√
�(X) P T to denote the square root of X, where X has the spec-

tral decomposition (1) and
√

�(X) := diag (
√

λ1, . . . ,
√

λp). For X ∈ Sp, we let

|X| : =
√

X2 .

A function �sdc : Sp × Sp → Sp is called a semidefinite cone (SDC) complemen-
tarity function if

�sdc(X, Y ) = 0 ⇐⇒ Sp
+ 	 X ⊥ Y ∈ Sp

+ , (2)

where the symbol ⊥ means “perpendicular under the Frobenius matrix inner product”;
i.e., X ⊥ Y ⇔ X • Y = 0 for any two matrices X and Y in Sp. Of particular interest
are two SDC complementarity functions

�sdc
min(X, Y ) : = X − (X − Y )+ (3)

and

�sdc
FB (X, Y ) : = X + Y −

√
X2 + Y 2 . (4)

The function �sdc
min is called the matrix-valued min-function. It is known that �sdc

min is
globally Lipschitz continuous, directionally differentiable [1], and strongly semismooth
[15] (see [14] for the definition of strong semismoothness). Strong semismoothness plays
a fundamental role in the analysis of the quadratic convergence of Newton’s method for
solving systems of nonsmooth equations [13, 14]. Newton-type methods for solving the
semidefinite programming and the semidefinite complementarity problem based on a
smoothed form of �sdc

min are discussed in [4, 5, 12, 17].
The function �sdc

FB is called the matrix-valued Fischer-Burmeister function. When
p = 1, �sdc

FB is reduced to the scalar-valued Fischer-Burmeister function φFB(a, b) :=
a +b−√

a2 + b2 , a, b ∈ � , which is introduced by Fischer [8]. In [18], Tseng proves
that �sdc

FB satisfies (2). Borwein and Lewis also suggest a proof in their recent book [2,
Exercise 5.2.11]. A desirable property of �sdc

FB is its continuous differentiability [18].
For other properties of SDC complementarity functions, see [18, 19].

The primary motivation of this paper is to prove that �sdc
FB is globally Lipschitz

continuous, directionally differentiable, and strongly semismooth. This goal is achieved
in Section 2 by using a relationship between the singular value decomposition of a
nonsymmetric matrix and the spectral decomposition of a symmetric matrix in higher
dimension and by using the same properties of the function |Y |, Y ∈ Sp, obtained in
[15]. We then proceed to study similar properties of the vector-valued complementarity
functions associated with the second order cone (SOC) in Section 3.

2. Strong Semismoothness of Φsdc
FB

Let A ∈ Mn,m and assume n ≤ m. Then there exist orthogonal matrices U ∈ Mn,n and
V ∈ Mm,m such that A has the following singular value decomposition (SVD)

UT AV = [�(A) 0], (5)
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where �(A) = diag(σ1(A), . . . , σn(A)) and σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 are
singular values of A [11, Chapter 2]. Write V ∈ Mm,m in the form V = [V1 V2] , where
V1 ∈ Mm,n and V2 ∈ Mm,m−n. We define the orthogonal matrix Q ∈ Mn+m,n+m by

Q : = 1√
2

[
U U 0

V1 −V1
√

2V2

]
. (6)

Define the following matrix valued function Gmat : Mn,m → Sn by

Gmat(A) : =
√

AAT = Udiag(σ1(A), . . . , σn(A))UT , (7)

where A ∈ Mn,m has the SVD as in (5). Define two linear operators � : Mn,m → Sn+m

and π : Sn+m → Sn by

�(B) : =
[

0 B

BT 0

]
, B ∈ Mn,m (8)

and

(π(W))ij : = Wij , i , j = 1, . . . , n , W ∈ Sn+m, (9)

respectively. Then, by [11, Section 8.6], when A ∈ Mn,m has an SVD as in (5) and Q

is defined in (6), the matrix �(A) has the following spectral decomposition:

�(A) = Q





�(A) 0 0

0 −�(A) 0

0 0 0



 QT , (10)

i.e., the eigenvalues of �(A) are ±σi(A), i = 1, . . . , n, and 0 of multiplicity m − n.

Thus, σi(A) = λi(�(A)), i = 1 , . . . , n, where λi(�(A)) is the ith largest eigen-
value of �(A). This, together with the linearity of �(·) and Theorem 4.7 in [16] on
the strong semismoothness of eigenvalue functions of symmetric matrices, shows that
σ1(·), . . . , σn(·) are strongly semismooth everywhere in Mn,m. In a similar way to [16],
the strong semismoothness of the singular value functions can be used to study the qua-
dratic convergence of generalized Newton methods for solving inverse singular value
problems. For a survey on inverse eigenvalue and singular value problems, see [7].

Proposition 2.1. Suppose that A ∈ Mn,m has an SVD as in (5). Then it holds that

Gmat(A) = π(|�(A)|) . (11)

Proof. By (6) and (10), we have

|�(A)| = 1

2

[
U U 0
V1 −V1

√
2V2

] 


|�(A)| 0 0

0 | − �(A)| 0
0 0 |0|








UT V T

1
UT −V T

1
0

√
2V T

2





=
[

U�(A)UT 0
0 V1�(A)V T

1

]
.

Thus, π(|�(A)|) = U�(A)UT = Gmat(A). ��



578 D. Sun, J. Sun

The next theorem is our main result of this section.

Theorem 2.2. The function Gmat : Mn,m → Sn defined by (7) is globally Lipschitz
continuous, continuously differentiable around any A ∈ Mn,m of full row rank, and
strongly semismooth everywhere in Mn,m.

Proof. First, by Proposition 2.1, for any A, B ∈ Mn,m, we have

∥∥Gmat(A) − Gmat(B)
∥∥F = ‖π (|�(A)| − |�(B)|)‖F ≤

√
2‖A − B‖2

F ,

which proves that Gmat is globally Lipschitz continuous.
Second, the continuous differentiability of Gmat around any A ∈ Mn,m of full row

rank can be obtained easily by using [5, Lemma 4], the definition of Gmat, and the fact
that AAT is positive definite when A is of full row rank. The details are omitted here.

Finally, it is known that |Y |, Y ∈ Sn+m is strongly semismooth everywhere [15,
Theorem 4.12]. Then Proposition 2.1 and the linearity of �(·) imply that Gmat is strongly
semismooth at any A ∈ Mn,m. ��
Let the matrix valued Fischer-Burmeister function �sdc

FB : Sp × Sp → Sp be defined
as in (4). By noting the fact that for any (X, Y ) ∈ Sp × Sp, �sdc

FB (X, Y ) = X + Y −
Gmat([X Y ]), we obtain from Theorem 2.2 the following corollary.

Corollary 2.3. The matrix valued Fischer-Burmeister function �sdc
FB : Sp×Sp → Sp is

globally Lipschitz continuous, continuously differentiable around any (X, Y ) ∈ Sp×Sp

if [X Y ] is of full row rank, and strongly semismooth everywhere in Sp × Sp.

3. The FB Function Associated with the SOC

The second order cone (SOC) in �n (n ≥ 2), also called the Lorentz cone or the ice-
cream cone, is defined as Kn := {(x1, x

T
2 )T | x1 ∈ �, x2 ∈ �n−1 and x1 ≥ ‖x2‖}. Here

and below, ‖ · ‖ denotes the l2-norm in �n and, for convenience, we write x = (x1, x2)

instead of x = (x1, x
T
2 )T . For any x = (x1, x2), y = (y1, y2) ∈ � × �n−1, we define

their Jordan product as

x · y :=
[

xT y

y1x2 + x1y2

]
. (12)

Denote e = (1, 0, . . . , 0)T ∈ �n . Let x+ be the orthogonal projection of x ∈ �n onto
Kn. Denote x2 := x · x and |x| :=

√
x2, where for any y ∈ Kn,

√
y is the unique vector

in Kn such that y = √
y · √

y. Then, by [10], we know that x+ = (x + |x|)/2.

A function φsoc : �n × �n → �n is called an SOC complementarity function if

φsoc(x, y) = 0 ⇐⇒ Kn 	 x ⊥ y ∈ Kn, (13)

where x ⊥ y ⇔ x · y = 0. By [10], both the vector-valued min-function

φsoc
min(x, y) := x − (x − y)+ (14)
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and the vector valued Fischer-Burmeister function

φsoc
FB (x, y) := x + y −

√
x2 + y2 (15)

are SOC complementarity functions. The strong semismoothness of φsoc
min can be checked

directly and has been done in [3, 6]. In this section, we shall prove that φsoc
FB is strongly

semismooth.
For any x = (x1, x2) ∈ � × �n−1, let L(x), M(x) ∈ Sn be defined by

L(x) :=
[

x1 xT
2

x2 x1I

]
and M(x) :=

[
0 0T

0 N(x2)

]
, (16)

respectively, where for any z ∈ �n−1, N(z) ∈ Sn−1 denotes

N(z) := ‖z‖(I − zzT /‖z‖2) = ‖z‖I − zzT /‖z‖ (17)

and the convention “ 0
0 = 0" is adopted. A direct calculation shows that

L(x2) = (L(x))2 + (M(x))2, ∀x = (x1, x2) ∈ � × �n−1. (18)

Lemma 3.1. The operator N(·) is globally Lipschitz continuous, twice continuously
differentiable around any 0 �= z ∈ �n−1, and strongly semismooth everywhere in �n−1.

Proof. Suppose that z(1), z(2) are two arbitrary points in �n−1. If the line segment
[z(1), z(2)] connecting z(1) and z(2) contains the origin 0, then

‖N(z(1)) − N(z(2))‖F ≤ √
n − 2‖z(1)‖ + √

n − 2‖z(2)‖ = √
n − 2‖z(1) − z(2)‖.

If the line segment [z(1), z(2)] does not contain the origin 0, then by the mean value
theorem we have

‖N(z(1)) − N(z(2))‖F ≤
∫ 1

0
‖N ′(z(1) + t[z(2) − z(1)])(z(2) − z(1))‖Fdt,

which, together with the fact that for any z �= 0, N is differentiable at z with

N ′(z)(	z) = (	z)T z

‖z‖ [I + zzT /‖z‖2] − 1

‖z‖ [z(	z)T + (	z)zT ] (19)

and

‖N ′(z)(	z)‖F ≤ √
n − 2‖	z‖ ∀ 	z ∈ �n−1,

implies that

‖N(z(1)) − N(z(2))‖F ≤ √
n − 2‖z(1) − z(2)‖.

Therefore, N is globally Lipschitz continuous.
By equation (19), we know that N is at least twice continuously differentiable around

any z �= 0, and so strongly semismooth at any 0 �= z ∈ �n−1. Now it suffices to show
that N is strongly semismooth at z∗ := 0.
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Note that N is a positive homogeneous mapping, i.e., for any t ≥ 0 and z ∈ �n−1,
N(tz) = tN(z). Hence, N is directionally differentiable at 0 and for any 0 �= z ∈ �n−1,
N ′(0; z) = N(z). By (19), for any 0 �= z ∈ �n−1,

N(z∗ + z) − N(z∗) − N ′(z∗ + z)(z) = N(z) − N(0) − N ′(z)(z) = 0,

which, together with [15, Theorem 3.7], the Lipschitz continuity, and the directional
differentiability of N , shows that N is strongly semismooth at z∗ = 0. ��
Suppose that the operators L and M are defined by (16). For any a1, . . . , ap ∈ �n, let

χ(a1, . . . , ap) :=
√√√√

p∑

i=1

(
ai

)2 (20)

and

�(a1, . . . , ap) := [L(a1) . . . L(ap)M(a1) . . . M(ap)]. (21)

By [3, Lemma 4.1]1, for any x ∈ �n we have
√|x| = (√

L(|x|)) e. This, together with
the fact that v := ∑p

i=1(a
i)2 ∈ Kn and (18), implies

χ(a1, . . . , ap) = √
v =

(√
L(v)

)
e =

(√
�(a1, . . . , ap)

(
�(a1, . . . , ap)

)T
)

e.

(22)

Therefore, by (22), for any a1, . . . , ap ∈ �n, we have

χ(a1, . . . , ap) = Gmat(�(a1, . . . , ap))e, (23)

where Gmat is defined by (7)

Theorem 3.2. For any a1, . . . , ap ∈ �n, let χ(a1, . . . , ap) be defined by (20). Then χ

is globally Lipschitz continuous, continuously differentiable around any (a1, . . . , ap) if

v1 �= ‖v2‖, where v = (v1, v2) ∈ �×�n−1 and v :=
p∑

i=1

(ai)2, and strongly semismooth

everywhere.

Proof. First, the global Lipschitz continuity of χ can be obtained directly by Theorem
2.2, Lemma 3.1, and equation (23).

Second, letai ∈ �n, i = 1, . . . , p be such thatv1 �= ‖v2‖, wherev = (v1, v2) ∈ �×
�n−1 andv=

p∑

i=1

(a(i))2.Then, from (23),Theorem 2.2, and the fact that�(a(1), . . . , a(m))

(
�(a(1), . . . , a(m))

)T = L(v) (cf. (18)) is positive definite when v1 �= ‖v2‖, we know
that χ is continuously differentiable around (a1, . . . , ap).

Finally, we know from [9] that the composite of two strongly semismooth functions
is strongly semismooth. Hence, by (23), Theorem 2.2, and the fact that the mapping �

is strongly semismooth (cf. Lemma 3.1), we can draw the conclusion that χ is strongly
semismooth everywhere. ��

1 P. Tseng presented this result in “The Third International Conference on Complementarity Problems",
held in Cambridge University, United Kingdom, July 29 -August 1, 2002.
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Theorem 3.2 generalizes the results discussed in [6] from the absolute value function
|x| to the function χ . By Theorems 2.2 and 3.2, we have the following results, which do
not require a proof.

Corollary 3.3. The vector-valued Fischer-Burmeister function φsoc
FB : �n×�n → �n is

globally Lipschitz continuous, continuously differentiable around any (x, y) ∈ �n ×�n

if v1 �= ‖v2‖, where v := x2 + y2, and strongly semismooth everywhere.

Corollary 3.4. The smoothed version of �sdc
FB ,

�̄sdc
FB : Sp × Sp × � → Sp, �̄sdc

FB (X, Y, ε) := X + Y −
√

X2 + Y 2 + ε2I

and the smoothed version of φsoc
FB ,

φ̄soc
FB : �n × �n × � → IRn, φ̄soc

FB (x, y, ε) := x + y −
√

x2 + y2 + ε2e

are strongly semismooth everywhere.

References

1. Bonnans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second
order tangent sets. SIAM J. Optim. 9, 466–493 (1999)

2. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples.
Springer-Verlag, New York, 2000

3. Chen, J., Chen, X., Tseng, P.:Analysis of nonsmooth vector-valued functions associated with second-order
cones. Math. Prog. Series B 101, 95–117 (2004)

4. Chen, X., Qi, H., Tseng, P.: Analysis of nonsmooth symmetric-matrix functions with applications to
semidefinite complementarity problems. SIAM J. Optim. 13, 960–985 (2003)

5. Chen, X.,Tseng, P.: Non-interior continuation methods for solving semidefinite complementarity prob-
lems. Math. Prog. 95, 431–474 (2003)

6. Chen, X.D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing
Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56
(2003)

7. Chu, M.T.: Inverse eigenvalue problems. SIAM Rev. 40, 1–39 (1998)
8. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)
9. Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math.

Prog. Series B 76, 513–532 (1997)
10. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity prob-

lems. SIAM J. Optim. 12, 436–460 (2002)
11. Golub, G.H., Van Loan, C.F.: Matrix Computations. 3rd edn, The Johns Hopkins University Press, Bal-

timore, USA, 1996
12. Kanzow, C., Nagel, C.: Semidefinite programs: new search directions, smoothing-type methods. SIAM

J. Optim. 13, 1–23 (2002)
13. Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
14. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Prog. 58, 353–367 (1993)
15. Sun, D., Sun, J.: Semismooth matrix valued functions. Math. Oper. Res. 27, 150–169 (2002)
16. Sun, D., Sun, J.: Strong semismoothness of eigenvalues of symmetric matrices and its application to

inverse eigenvalue problems. SIAM J. Numer. Anal. 40, 2352–2367 (2002)
17. Sun, J., Sun, D., Qi, L.: A squared smoothing Newton method for nonsmooth matrix equations and its

applications in semidefinite optimization problems. SIAM J. Optim. 14, 783–806 (2004)
18. Tseng, P.: Merit functions for semidefinite complementarity problems. Math. Prog. 83, 159–185 (1998)
19. Yamashita, N., Fukushima, M.: A new merit function and a descent method for semidefinite comple-

mentarity problems. In: M. Fukushima, L. Qi (eds.), Reformulation - Nonsmooth, Piecewise Smooth,
Semismooth and Smoothing Methods, Boston, Kluwer Academic Publishers, 1999, pp. 405–420


