Recent Developments in Nonlinear Optimization Theory

Defeng Sun
Department of Mathematics
National University of Singapore
Republic of Singapore

July 9-11, 2006

2 Variational Analysis on Metric

 Projectors Over Closed Convex SetsLet Z be a finite-dimensional Hilbert vector space equipped with a scalar product $\langle\cdot, \cdot\rangle$ and its induced norm $\|\cdot\|$ and D be a nonempty closed convex set in Z. For any $z \in Z$, let $\Pi_{D}(z)$ denote the metric projection of z onto D :

$$
\begin{array}{ll}
\min & \frac{1}{2}\langle y-z, y-z\rangle \tag{1}\\
\text { s.t. } & y \in D
\end{array}
$$

The operator $\Pi_{D}: Z \rightarrow Z$ is called the metric projection operator or metric projector over D.

Proposition 2.1 Let D be a nonempty closed convex set in Z.
Then the point $y \in D$ is an optimal solution to (1) if and only if it satisfies

$$
\begin{equation*}
\langle z-y, d-y\rangle \leq 0 \quad \forall d \in D . \tag{2}
\end{equation*}
$$

Proof. " \Rightarrow " Suppose that $y \in D$ is an optimal solution to (1). Let d be an arbitrary point in D. Then $y_{t}:=(1-t) y+t d \in D$ for any $t \in[0,1]$. This, together with the fact that y is an optimal solution, implies that

$$
\left\|z-y_{t}\right\|^{2} \geq\|z-y\|^{2} \quad \forall t \in[0,1]
$$

which further implies

$$
\|(1-t)(z-y)+t(z-d)\|^{2} \geq\|z-y\|^{2} \quad \forall t \in[0,1] .
$$

Thus,

$$
\left(t^{2}-2 t\right)\|z-y\|^{2}+2 t(1-t)\langle z-y, z-d\rangle+t^{2}\|z-d\|^{2} \geq 0 \forall t \in[0,1] .
$$

By taking $t \downarrow 0$ and dividing t on both sides of the above equation, we obtain

$$
-2\|z-y\|^{2}+2\langle z-y, z-d\rangle \geq 0
$$

which turns into (2).
" \Leftarrow " Suppose that $y \in D$ satisfies (2). Assume on the contrary that y does not solve (1). Then we have by the assumption,

$$
\left\langle z-y, \Pi_{D}(z)-y\right\rangle \leq 0
$$

and by the sufficiency part,

$$
\left\langle z-\Pi_{D}(z), y-\Pi_{D}(z)\right\rangle \leq 0 .
$$

Summing up the above two inequalities leads to

$$
\left\langle\Pi_{D}(z)-y, \Pi_{D}(z)-y\right\rangle \leq 0 .
$$

This implies that $y=\Pi_{D}(z)$. The contradiction shows that y solves (1).

Note that Proposition 2.1 holds even if Z is infinite-dimensional.
If D is a nonempty closed convex cone, then (2) is equivalent to

$$
\begin{equation*}
\left\langle z-\Pi_{D}(z), \Pi_{D}(z)\right\rangle=0 \quad \& \quad\left\langle z-\Pi_{D}(z), d\right\rangle \leq 0 \quad \forall d \in D \tag{3}
\end{equation*}
$$

Proposition 2.2 Let D be a nonempty closed convex set in Z.
Then the metric projector $\Pi_{D}(\cdot)$ satisfies

$$
\begin{equation*}
\left\langle y-z, \Pi_{D}(y)-\Pi_{D}(z)\right\rangle \geq\left\|\Pi_{D}(y)-\Pi_{D}(z)\right\|^{2} \quad \forall y, z \in Z \tag{4}
\end{equation*}
$$

Note that (4) implies

$$
\left\|\Pi_{D}(y)-\Pi_{D}(z)\right\| \leq\|y-z\| \quad \forall y, z \in Z
$$

Proof. Let $y, z \in Z$. Then by Proposition 2.1, we have

$$
\left\langle z-\Pi_{D}(z), \Pi_{D}(y)-\Pi_{D}(z)\right\rangle \leq 0
$$

and

$$
\left\langle y-\Pi_{D}(y), \Pi_{D}(z)-\Pi_{D}(y)\right\rangle \leq 0
$$

Summing them up gives the desired inequality (4).

The metric projector $\Pi_{D}(\cdot)$ is only globally Lipschitz continuous and is not differentiable everywhere, but we have

Proposition 2.3 Let D be a nonempty closed convex set in Z. Let

$$
\theta(z):=\frac{1}{2}\left\|z-\Pi_{D}(z)\right\|^{2}, \quad z \in Z .
$$

Then θ is continuously differentiable with

$$
\nabla \theta(z)=z-\Pi_{D}(z), \quad z \in Z
$$

Proof. For any $z \in Z$, let

$$
Q(z):=z-\Pi_{D}(z)
$$

Then we have for $\Delta z \rightarrow 0$ that

$$
\begin{aligned}
& \theta(z+\Delta z)-\theta(z) \\
= & \frac{1}{2}\langle Q(z+\Delta z)-Q(z), Q(z+\Delta z)+Q(z)\rangle \\
= & \frac{1}{2}\left\langle\Delta z-\left[\Pi_{D}(z+\Delta z)-\Pi_{D}(z)\right], Q(z+\Delta z)+Q(z)\right\rangle \\
= & \left\langle\Delta z-\left[\Pi_{D}(z+\Delta z)-\Pi_{D}(z)\right], Q(z)\right\rangle+O\left(\|\Delta z\|^{2}\right) \\
= & \langle Q(z), \Delta z\rangle-\left\langle\Pi_{D}(z+\Delta z)-\Pi_{D}(z), Q(z)\right\rangle+O\left(\|\Delta z\|^{2}\right) \\
= & \langle Q(z), \Delta z\rangle-\left\langle\Pi_{D}(z+\Delta z)-\Pi_{D}(z), z-\Pi_{D}(z)\right\rangle+O\left(\|\Delta z\|^{2}\right) \\
\geq & \langle Q(z), \Delta z\rangle+O\left(\|\Delta z\|^{2}\right) \quad(\text { by }(2))
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& \theta(z+\Delta z)-\theta(z) \\
= & \frac{1}{2}\left\langle\Delta z-\left[\Pi_{D}(z+\Delta z)-\Pi_{D}(z)\right], Q(z+\Delta z)+Q(z)\right\rangle \\
= & \left\langle\Delta z-\left[\Pi_{D}(z+\Delta z)-\Pi_{D}(z)\right], Q(z+\Delta z)\right\rangle+O\left(\|\Delta z\|^{2}\right) \\
= & \langle Q(z+\Delta z), \Delta z\rangle-\left\langle\Pi_{D}(z+\Delta z)-\Pi_{D}(z), Q(z+\Delta z)\right\rangle+O\left(\|\Delta z\|^{2}\right) \\
= & \langle Q(z), \Delta z\rangle+\left\langle\Pi_{D}(z)-\Pi_{D}(z+\Delta z), Q(z+\Delta z)\right\rangle+O\left(\|\Delta z\|^{2}\right) \\
\leq & \langle Q(z), \Delta z\rangle+O\left(\|\Delta z\|^{2}\right) \quad(\text { by }(2)) .
\end{aligned}
$$

Thus θ is Fréchet differentiable at z with

$$
\nabla \theta(z)=z-\Pi_{D}(z)
$$

The continuity of $\nabla \theta(\cdot)$ follows from the global Lipschitz continuity of $\Pi_{D}(\cdot)$.

Recall that the normal cone $\mathcal{N}_{D}(y)$ at y in the sense of convex analysis is

$$
\mathcal{N}_{D}(y)= \begin{cases}\{d \in Y:\langle d, z-y\rangle \leq 0 \quad \forall z \in D\} & \text { if } y \in D \\ \emptyset & \text { if } y \notin D\end{cases}
$$

Proposition 2.4 Let D be a nonempty closed convex set in Z. Then a point $\mu \in \mathcal{N}_{D}(y)$ if and only if

$$
\begin{equation*}
y=\Pi_{D}(y+\mu) . \tag{5}
\end{equation*}
$$

Note that $\mu \in \mathcal{N}_{D}(y)$ already implies that $y \in D$.

Proof. " \Rightarrow " Suppose that $\mu \in \mathcal{N}_{D}(y)$. Then $y \in D$ and

$$
\langle\mu, z-y\rangle \leq 0 \quad \forall z \in D .
$$

Thus,

$$
\langle(y+\mu)-y, z-y\rangle \leq 0 \quad \forall z \in D,
$$

which, according to Proposition 2.1, implies $y=\Pi_{D}(y+\mu)$.
" \Leftarrow " Suppose that $y=\Pi_{D}(y+\mu)$. Then $y \in D$. By Proposition
2.1, we have

$$
\langle(y+\mu)-y, z-y\rangle \leq 0 \quad \forall z \in D
$$

i.e.,

$$
\langle\mu, z-y\rangle \leq 0 \quad \forall z \in D
$$

That is, $\mu \in \mathcal{N}_{D}(y)$.

Proposition 2.5 Let D be a nonempty closed convex cone in Z and $D^{o}:=-D^{*}$ be the polar of D. Then any $z \in Z$ can be uniquely decomposed into

$$
\begin{equation*}
z=\Pi_{D}(z)+\Pi_{D^{o}}(z) \tag{6}
\end{equation*}
$$

Proof. Let $u:=z-\Pi_{D}(z)$. By (3), we have

$$
\left\langle u, \Pi_{D}(z)\right\rangle=0 \quad \& \quad\langle u, d\rangle \leq 0 \quad \forall d \in D
$$

Thus $u \in D^{o},\langle z-u, u\rangle=0$, and

$$
\langle z-u, w\rangle=\left\langle z-\left(z-\Pi_{D}(z)\right), w\right\rangle=\left\langle\Pi_{D}(z), w\right\rangle \leq 0 \quad \forall w \in D^{o} .
$$

Hence, $u=\Pi_{D^{o}}(z)$. The uniqueness of the decomposition is obvious.

For A and B in \mathcal{S}^{p}, define

$$
\langle A, B\rangle:=\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}(A B),
$$

where "Tr" denotes the trace of a square matrix (i.e., the sum of all diagonal elements of the symmetric matrix). Let $A \in \mathcal{S}^{p}$ have the following spectral decomposition

$$
A=P \Lambda P^{T}
$$

where Λ is the diagonal matrix of eigenvalues of A and P is a corresponding orthogonal matrix of orthonormal eigenvectors.

Let

$$
A_{+}:=P \Lambda_{+} P^{T}
$$

Then, $\left\langle A-A_{+}, A_{+}\right\rangle=\left\langle\Lambda-\Lambda_{+}, \Lambda_{+}\right\rangle=0$ and

$$
\left\langle A-A_{+}, H\right\rangle=\left\langle\Lambda-\Lambda_{+}, P^{T} H P\right\rangle \leq 0 \quad \forall H \in \mathcal{S}_{+}^{p} .
$$

Thus, by (3), we obtain that :

$$
\Pi_{\mathcal{S}_{+}^{p}}(A)=A_{+}=P \Lambda_{+} P^{T}
$$

Let $\Xi: \mathcal{O} \subseteq Y \rightarrow Z$ be a locally Lipschitz continuous function on the open set \mathcal{O}, where Y is another finite-dimensional REAL Hilbert space.

Then by the Rademacher theorem, Ξ is almost everywhere (in the Lebesgue sense) Fréchet differential in \mathcal{O}. We denote by \mathcal{O}_{Ξ} the set of points in \mathcal{O} where Ξ is Fréchet differentiable. If $\mathcal{O} \equiv Y$, we use \mathcal{D}_{Ξ} to represent Y_{Ξ}. Then Clarke's generalized Jacobian of Ξ at y is:

$$
\partial \Xi(y):=\operatorname{conv}\left\{\partial_{B} \Xi(y)\right\},
$$

where "conv" denotes the convex hull and

$$
\partial_{B} \Xi(y):=\left\{V: V=\lim _{k \rightarrow \infty} \mathcal{J} \Xi\left(y^{k}\right), y^{k} \rightarrow y, y^{k} \in \mathcal{O}_{\Xi}\right\}
$$

Proposition 2.6 Let D be a nonempty closed convex set in Z. For any $y \in Z$ and $V \in \partial \Pi_{D}(y)$,
(i) V is self-adjoint;
(ii) $\langle d, V d\rangle \geq 0 \quad \forall d \in Z$; and
(iii) $\langle V d, d-V d\rangle \geq 0 \quad \forall d \in Z$.

Proof. (i) Define $\varphi: Z \rightarrow \Re$ by

$$
\varphi(z):=\frac{1}{2}\left[\langle z, z\rangle-\left\langle z-\Pi_{D}(z), z-\Pi_{K}(z)\right\rangle\right], \quad z \in Z .
$$

Then, by Proposition $2.3, \varphi$ is continuously differentiable with

$$
\nabla \varphi(z)=z-\left[z-\Pi_{D}(z)\right]=\Pi_{D}(y), \quad z \in Z
$$

It then follows that if $\Pi_{D}(\cdot)$ is Fréchet differentiable at some z, then $\mathcal{J} \Pi_{D}(z)$ is self-adjoint. Thus, V, as the limit of $\mathcal{J} \Pi_{D}\left(y^{k}\right)$ for some $y^{k} \in \mathcal{D}_{\Pi_{D}}$ converging to y, is also self-adjoint.
(ii) is a special case of (iii).
(iii) First, we consider $z \in \mathcal{D}_{\Pi_{D}}$. By Proposition 2.2 , for any $d \in Z$ and $t \geq 0$, we have

$$
\left\langle\Pi_{D}(z+t d)-\Pi_{D}(z), t d\right\rangle \geq\left\|\Pi_{D}(z+t d)-\Pi_{D}(z)\right\|^{2}, \quad \text { for all } t \geq 0
$$

Hence,

$$
\begin{equation*}
\left\langle\mathcal{J} \Pi_{D}(z) d, d\right\rangle \geq\left\langle\mathcal{J} \Pi_{D}(z) d, \mathcal{J} \Pi_{D}(z) d\right\rangle \tag{7}
\end{equation*}
$$

Next, let $V \in \partial \Pi_{D}(y)$. Then, by Carathéodory's theorem, there exist a positive integer $\kappa>0, V^{i} \in \partial_{B} \Pi_{D}(y), i=1,2, \ldots, \kappa$ such that

$$
V=\sum_{i=1}^{\kappa} \lambda_{i} V^{i}
$$

where $\lambda_{i} \geq 0, i=1,2, \ldots, \kappa$, and $\sum_{i=1}^{\kappa} \lambda_{i}=1$.

Let $d \in Z$. For each $i=1, \ldots, \kappa$ and $k=1,2, \ldots$, there exists $y^{i_{k}} \in \mathcal{D}_{\Pi_{D}}$ such that

$$
\left\|y-y^{i_{k}}\right\| \leq 1 / k
$$

and

$$
\left\|\mathcal{J} \Pi_{D}\left(y^{i_{k}}\right)-V^{i}\right\| \leq 1 / k
$$

By (7), we have

$$
\left\langle\mathcal{J} \Pi_{D}\left(y^{i_{k}}\right) d, d\right\rangle \geq\left\langle\mathcal{J} \Pi_{D}\left(y^{i_{k}}\right) d, \mathcal{J} \Pi_{D}\left(y^{i_{k}}\right) d\right\rangle
$$

Hence,

$$
\left\langle V^{i} d, d\right\rangle \geq\left\langle V^{i} d, V^{i} d\right\rangle
$$

and so,

$$
\begin{equation*}
\sum_{i=1}^{\kappa} \lambda_{i}\left\langle V^{i} d, d\right\rangle \geq \sum_{i=1}^{\kappa} \lambda_{i}\left\langle V^{i} d, V^{i} d\right\rangle \tag{8}
\end{equation*}
$$

Define $\theta(z):=\|z\|^{2}, z \in Z$. By the convexity of θ, we have

$$
\theta\left(\sum_{i=1}^{\kappa} \lambda_{i} V^{i} d\right) \leq \sum_{i=1}^{\kappa} \lambda_{i} \theta\left(V^{i} d\right)=\sum_{i=1}^{\kappa} \lambda_{i}\left\langle V^{i} d, V^{i} d\right\rangle=\sum_{i=1}^{\kappa} \lambda_{i}\left\|V^{i} d\right\|^{2}
$$

Hence,

$$
\begin{equation*}
\sum_{i=1}^{\kappa} \lambda_{i}\left\|V^{i} d\right\|^{2} \geq\left\langle\sum_{i=1}^{\kappa} \lambda_{i} V^{i} d, \sum_{i=1}^{\kappa} \lambda_{i} V^{i} d\right\rangle \tag{9}
\end{equation*}
$$

By using (8) and (9), we obtain for all $d \in Z$ that

$$
\langle V d, d\rangle \geq\langle V d, V d\rangle
$$

The proof is completed.

Recall that if $A \in \mathcal{S}^{p}$ has the following spectral decomposition

$$
A=P \Lambda P^{T}
$$

where Λ is the diagonal matrix of eigenvalues of A and P is a corresponding orthogonal matrix of orthonormal eigenvectors, then

$$
A_{+}=\Pi_{\mathcal{S}_{+}^{p}}(A)=P \Lambda_{+} P^{T}
$$

Define

$$
\alpha:=\left\{i: \lambda_{i}>0\right\}, \beta:=\left\{i: \lambda_{i}=0\right\}, \gamma:=\left\{i: \lambda_{i}<0\right\} .
$$

Write

$$
\Lambda=\left[\begin{array}{ccc}
\Lambda_{\alpha} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \Lambda_{\gamma}
\end{array}\right] \text { and } P=\left[\begin{array}{ccc}
P_{\alpha} & P_{\beta} & P_{\gamma}
\end{array}\right]
$$

Define $U \in \mathcal{S}^{p}$:

$$
U_{i j}:=\frac{\max \left\{\lambda_{i}, 0\right\}+\max \left\{\lambda_{j}, 0\right\}}{\left|\lambda_{i}\right|+\left|\lambda_{j}\right|}, \quad i, j=1, \ldots, p,
$$

where $0 / 0$ is defined to be 1 .

The operator $\Pi_{\mathcal{S}_{+}^{p}}(\cdot)$ is strongly semismooth at A, i.e., in addition to the directional differentiability of $\Pi_{\mathcal{S}_{+}^{p}}(\cdot)$ at A, for any $H \in \mathcal{S}^{p}$ and $V \in \partial \Pi_{\mathcal{S}_{+}^{p}}(A+H)$ we have

$$
\begin{equation*}
\Pi_{\mathcal{S}_{+}^{p}}(A+H)-\Pi_{\mathcal{S}_{+}^{p}}(A)-V(H)=O\left(\|H\|^{2}\right) \tag{10}
\end{equation*}
$$

The directional derivatve of $\Pi_{\mathcal{S}_{+}^{p}}(\cdot)$ at A has a very compact form

$$
\Pi_{\mathcal{S}_{+}^{p}}^{\prime}(A ; H)=P\left[\begin{array}{ccc}
P_{\alpha}^{T} H P_{\alpha} & P_{\alpha}^{T} H P_{\beta} & U_{\alpha \gamma} \circ P_{\alpha}^{T} H P_{\gamma} \\
P_{\beta}^{T} H P_{\alpha} & \Pi_{\mathcal{S}_{+}^{|\beta|}}\left(P_{\beta}^{T} H P_{\beta}\right) & 0 \\
P_{\gamma}^{T} H P_{\alpha} \circ U_{\alpha \gamma}^{T} & 0 & 0
\end{array}\right] P^{T}
$$

where \circ denotes the Hadamard product. Note that $\Pi_{\mathcal{S}_{+}^{p}}^{\prime}(A ; H)$ does not depend on any particularly chosen P.

The following result needs a long but not very complicated proof.
Proposition 2.7 Let

$$
\Theta(\cdot):=\Pi_{\mathcal{S}_{+}^{p}}^{\prime}(A ; \cdot)
$$

It holds that

$$
\partial_{B} \Pi_{\mathcal{S}_{+}^{p}}(A)=\partial_{B} \Theta(0)
$$

Proposition 2.8 Let $\Psi: X \rightarrow Y$ be continuously differentiable on an open neighborhood \hat{N} of \bar{x} and $\Xi: \mathcal{O} \subseteq Y \rightarrow Z$ be a locally Lipschitz continuous function on an open set \mathcal{O} containing $\bar{y}:=\Psi(\bar{x})$.

Suppose that Ξ is directionally differentiable at every point in \mathcal{O} and that $\mathcal{J} \Psi(\bar{x}): \bar{X} \rightarrow Y$ is onto. Then it holds that

$$
\partial_{B} \Phi(\bar{x})=\partial_{B} \Xi(\bar{y}) \mathcal{J} \Psi(\bar{x}),
$$

where $\Phi: \widehat{N} \rightarrow Z$ is defined by

$$
\Phi(x):=\Xi(\Psi(x)), \quad x \in \widehat{N} .
$$

Proof. By shrinking \hat{N} if necessary, we may assume that $\Xi(\widehat{N}) \subseteq \mathcal{O}$. Then Ξ is Lipschitz continuous and directionally differentiable on \mathcal{O}. By further shrinking \widehat{N} if necessary, we may also assume that for each $x \in \widehat{N}, \mathcal{J} \Psi(x)$ is onto.

We shall first show that Φ is F-differentiable at $x \in \widehat{N}$ if and only if Ξ is F-differentiable at $\Psi(x)$, which ensures that

$$
\partial_{B} \Phi(\bar{x}) \subseteq \partial_{B} \Xi(\bar{y}) \mathcal{J} \Psi(\bar{x}) .
$$

Certainly, Φ is F-differentiable at $x \in \widehat{N}$ if Ξ is F-differentiable at $\Psi(x)$. Now, suppose that Φ is F-differentiable at $x \in \widehat{N}$. Then, since Ξ is directionally differentiable at $\Psi(x)$, for any $d \in X$ we have

$$
\mathcal{J} \Phi(x) d=\Xi^{\prime}(\Psi(x) ; \mathcal{J} \Psi(x) d)
$$

which implies that for any $s, t \in \Re$ and $u, v \in X$,

$$
\begin{aligned}
& \Xi^{\prime}(\Psi(x) ; s \mathcal{J} \Psi(x) u+t \mathcal{J} \Psi(x) v)=\Xi^{\prime}(\Psi(x) ; \mathcal{J} \Psi(x)(s u+t v)) \\
= & \mathcal{J} \Phi(x)(s u+t v) \\
= & s \mathcal{J} \Phi(x) u+t \mathcal{J} \Phi(x) v \\
= & s \Xi^{\prime}(\Psi(x) ; \mathcal{J} \Psi(x) u)+t \Xi^{\prime}(\Psi(x) ; \mathcal{J} \Psi(x) v) .
\end{aligned}
$$

By the surjectivity of $\mathcal{J} \Psi(x)$, we can conclude that $\Xi^{\prime}(\Psi(x) ; \cdot)$ is a linear operator and so Ξ is Gâteau differentiable at $\Psi(x)$. Since Ξ is assumed to be locally Lipschitz continuous on \mathcal{O}, Ξ is F-differentiable at $\Psi(x)$.

Next, we show that the second half inclusion holds:

$$
\partial_{B} \Phi(\bar{x}) \supseteq \partial_{B} \Xi(\bar{y}) \mathcal{J} \Psi(\bar{x}) .
$$

Let $W \in \partial_{B} \Xi(\bar{y})$. Then there exists a sequence $\left\{y^{k}\right\}$ in \mathcal{O} converging to \bar{y} such that Ξ is F-differentiable at y^{k} and $W=\lim _{k \rightarrow \infty} \mathcal{J} \Xi\left(y^{k}\right)$.

By applying the classical Inverse Function Theorem to

$$
\Psi\left(\bar{x}+\mathcal{J} \Psi(\bar{x})^{*}(y-\bar{y})\right)-\Psi(\bar{x})=0
$$

we obtain that there exists a sequence $\left\{\tilde{y}^{k}\right\}$ in \mathcal{O} converging to \bar{y} such that

$$
\Psi\left(\bar{x}+\mathcal{J} \Psi(\bar{x})^{*}\left(\tilde{y}^{k}-\bar{y}\right)\right)-\Psi(\bar{x})=y^{k}-\Psi(\bar{x})
$$

for all k sufficiently large.

Let $\tilde{x}^{k}:=\bar{x}+\mathcal{J} \Psi(\bar{x})^{*}\left(\tilde{y}^{k}-\bar{y}\right)$. Then $y^{k}=\Psi\left(\tilde{x}^{k}\right)$ and Φ is F-differentiable at \tilde{x}^{k} with

$$
\mathcal{J} \Phi\left(\tilde{x}^{k}\right)=\mathcal{J} \Xi\left(y^{k}\right) \mathcal{J} \Psi\left(\tilde{x}^{k}\right)
$$

By using the fact that $\tilde{y}^{k} \rightarrow \bar{y}$ implies $\tilde{x}^{k} \rightarrow \bar{x}$, we know that there exists a $V \in \partial_{B} \Phi(\bar{x})$ such that
$W \mathcal{J} \Psi(\bar{x})=\lim _{k \rightarrow \infty} \mathcal{J} \Xi\left(y^{k}\right) \lim _{k \rightarrow \infty} \mathcal{J} \Psi\left(\tilde{x}^{k}\right)=\lim _{k \rightarrow \infty} \mathcal{J} \Phi\left(\tilde{x}^{k}\right)=V \in \partial_{B} \Phi(\bar{x})$.
This completes the proof.

Proposition 2.9 For any $V \in \partial_{B} \Pi_{\mathcal{S}_{+}^{p}}(A)$ (respectively, $\partial \Pi_{\mathcal{S}_{+}^{p}}(A)$), there exists a $W \in \partial_{B} \Pi_{\mathcal{S}_{+}^{|\beta|}}(0)$ (respectively, $\left.\partial \Pi_{\mathcal{S}_{+}^{|\beta|}}(0)\right)$ such that

$$
V(H)=P\left[\begin{array}{ccc}
\widetilde{H}_{\alpha \alpha} & \widetilde{H}_{\alpha \beta} & U_{\alpha \gamma} \circ \widetilde{H}_{\alpha \gamma} \tag{11}\\
\widetilde{H}_{\alpha \beta}^{T} & W\left(\widetilde{H}_{\beta \beta}\right) & 0 \\
\widetilde{H}_{\alpha \gamma}^{T} \circ U_{\alpha \gamma}^{T} & 0 & 0
\end{array}\right] P^{T} \quad \forall H \in \mathcal{S}^{p}
$$

where $\widetilde{H}:=P^{T} H P$.
Conversely, for any $W \in \partial_{B} \Pi_{\mathcal{S}_{+}^{|\beta|}}(0)$ (respectively, $\partial \Pi_{\mathcal{S}_{+}^{|\beta|}}(0)$), there exists a $V \in \partial_{B} \Pi_{\mathcal{S}_{+}^{p}}(A)$ (respectively, $\left.\partial \Pi_{\mathcal{S}_{+}^{p}}(A)\right)$ such that (11) holds.

Proof. We only need to prove that (11) holds for $V \in \partial_{B} \Pi_{\mathcal{S}_{+}^{p}}(A)$ and $W \in \partial_{B} \Pi_{\mathcal{S}_{+}^{|\beta|}}(0)$.
Let $\Theta(\cdot):=\Pi_{\mathcal{S}_{+}^{p}}^{\prime}(A ; \cdot)$. Define $\Psi: \mathcal{S}^{p} \rightarrow \mathcal{S}^{p}$ by $\Psi(H):=P^{T} H P$, $H \in \mathcal{S}^{p}$ and $\Xi: \mathcal{S}^{p} \rightarrow \mathcal{S}^{p}$ by

$$
\Xi(B):=P\left[\begin{array}{ccc}
B_{\alpha \alpha} & B_{\alpha \beta} & U_{\alpha \gamma} \circ B_{\alpha \gamma} \\
B_{\alpha \beta}^{T} & \Pi_{\mathcal{S}_{+}^{|\beta|}}\left(B_{\beta \beta}\right) & 0 \\
B_{\alpha \gamma}^{T} \circ U_{\alpha \gamma}^{T} & 0 & 0
\end{array}\right] P^{T}, \quad B \in \mathcal{S}^{p}
$$

Then we have

$$
\Theta(H)=\Xi(\Psi(H)), \quad H \in \mathcal{S}^{p} .
$$

Since $\Pi_{\mathcal{S}_{+}^{|\beta|}}$ is directionally differentiable everywhere and $\mathcal{J} \Psi(H): \mathcal{S}^{p} \rightarrow \mathcal{S}^{p}$ is onto, we know from Proposition 2.8 that

$$
\partial_{B} \Theta(0)=\partial_{B} \Xi(0) \mathcal{J} \Psi(0)
$$

This, together with Proposition 2.7, completes the proof.

Next, we consider an application of the variational analysis of the metric projector to a financial engineering problem: Given a symmetric matrix $G \in \mathcal{S}^{n}$, its nearest correlation matrix is the optimal solution to

$$
\begin{array}{ll}
\min & \frac{1}{2}\|G-X\|^{2} \\
\text { s.t. } & X_{i i}=1, \quad i=1, \ldots, n \tag{12}\\
& X \in \mathcal{S}_{+}^{n}
\end{array}
$$

Define: $\mathcal{A}: \mathcal{S}^{n} \rightarrow \Re^{n}$ by

$$
\mathcal{A}(X)=\left(X_{11}, X_{22}, \ldots, X_{n n}\right)^{T}
$$

The adjoint of \mathcal{A} is given by

$$
\mathcal{A}^{*}(y)=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Then, by using the Karush-Kuhn-Tucker (KKT) theory, we may solve the correlation matrix problem by solving the equation:

$$
F(y):=\mathcal{A}\left(G+\mathcal{A}^{*} y\right)_{+}-e=0, \quad y \in \Re^{n},
$$

where $e \in \Re^{n}$ is the vector of all ones.
Let y^{*} be a root of $F(y)=0$. Then we can recover the optimal solution to the correlation matrix problem by letting

$$
X^{*}=\left(G+\mathcal{A}^{*} y^{*}\right)_{+}
$$

Indeed, the dual problem is
$\min \theta(y)$
where

$$
\theta(y)=\frac{1}{2}\left\|\Pi_{\mathcal{S}_{+}^{n}}\left(G+\mathcal{A}^{*} y\right)\right\|^{2}-\langle e, y\rangle-\frac{1}{2}\|G\|^{2}, \quad y \in \Re^{n} .
$$

Then we have

$$
F(y)=\nabla \theta(y)=\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(G+\mathcal{A}^{*} y\right)-e=0, \quad y \in \Re^{n} .
$$

In numerical computations, we use the following globalized Newton's method for solving the dual problem. Recall that for any $y \in \Re^{n}, \nabla \theta(y)=F(y)-e$.

Algorithm 2.1 (Newton's Method)

Step 0. Given $y^{0} \in \Re^{n}, \eta \in(0,1), \rho, \sigma \in(0,1 / 2) . k:=0$.
Step 1. Select an element $V_{k} \in \partial F\left(y^{k}\right)$ and apply the conjugate gradient (CG) method of Hestenes and Stiefel to find an approximate solution d^{k} to

$$
\begin{equation*}
\nabla \theta\left(y^{k}\right)+V_{k} d=0 \tag{13}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|\nabla \theta\left(y^{k}\right)+V_{k} d^{k}\right\| \leq \eta_{k}\left\|\nabla \theta\left(y^{k}\right)\right\| \tag{14}
\end{equation*}
$$

where $\eta_{k}:=\min \left\{\eta,\left\|\nabla \theta\left(y^{k}\right)\right\|\right\}$.

Step 2. (continued)
If (14) is not achievable or if the condition

$$
\begin{equation*}
\nabla \theta\left(y^{k}\right)^{T} d^{k} \leq-\eta_{k}\left\|d^{k}\right\|^{2} \tag{15}
\end{equation*}
$$

is not satisfied, let $d^{k}:=-B_{k}^{-1} \nabla \theta\left(y^{k}\right)$, where B_{k} is any symmetric positive definite matrix in \mathcal{S}^{n}.
Let m_{k} be the smallest nonnegative integer m such that

$$
\theta\left(y^{k}+\rho^{m} d^{k}\right)-\theta\left(y^{k}\right) \leq \sigma \rho^{m} \nabla \theta\left(y^{k}\right)^{T} d^{k} .
$$

Set $t_{k}=\rho^{m_{k}}$ and $y^{k+1}=y^{k}+t_{k} d^{k}$.
Step 3. Replace k by $k+1$ and go to Step 1 .

Theorem 2.1 Suppose that in Algorithm 2.1 both $\left\{\left\|B_{k}\right\|\right\}$ and $\left\{\left\|B_{k}^{-1}\right\|\right\}$ are uniformly bounded. Then the iteration sequence $\left\{y^{k}\right\}$ generated by Algorithm 2.1 converges to the unique solution y^{*} of $F(y)=0$ quadratically.

For details on the above Newton's method for computing the nearest correlation matrix problem, see

- H.-D. Qi and D. Sun. A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications (2006).

Source code in MatLab is available at http://www.math.nus.edu.sg/ matsundf

The material on the basic properties of metric projectors is quite standard. For the properties on the Jacobian of metric projectors, see the following papers:

- D. Sun and J. Sun. Semismooth matrix valued functions. Mathematics of Operations Research 27 (2002) 150-169.
- J.S. Pang, D. Sun, and J. Sun. Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Mathematics of Operations Research 28 (2003) 39-63.
- F. Meng, D. Sun, and G. Zhao. Semismoothness of solutions to generalized equations and the Moreau-Yosida regularization. Mathematical Programming 104 (2005) 561-581.
- D. Sun. The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Mathematics of Operations Research 31 (2006).

