An Introduction to Correlation Stress Testing

Defeng Sun

Department of Mathematics and Risk Management Institute National University of Singapore

This is based on a joint work with GAO Yan at NUS

March 05, 2010

The model

These problems can be modeled in the following way

$$
\begin{array}{ll}
\min & \|H \circ(X-G)\|_{F} \\
\text { s.t. } & X_{i i}=1, i=1, \ldots, n \\
& X_{i j}=e_{i j}, \quad(i, j) \in \mathcal{B}_{e}, \\
& X_{i j} \geq l_{i j}, \quad(i, j) \in \mathcal{B}_{l}, \tag{1}\\
& X_{i j} \leq u_{i j}, \quad(i, j) \in \mathcal{B}_{u}, \\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

where $\mathcal{B}_{e}, \mathcal{B}_{l}$, and \mathcal{B}_{u} are three index subsets of $\{(i, j) \mid 1 \leq i<j \leq n\}$ satisfying $\mathcal{B}_{e} \cap \mathcal{B}_{l}=\emptyset, \mathcal{B}_{e} \cap \mathcal{B}_{u}=\emptyset$, and $l_{i j}<u_{i j}$ for any $(i, j) \in \mathcal{B}_{l} \cap \mathcal{B}_{u}$.

continued

Here \mathcal{S}^{n} and \mathcal{S}_{+}^{n} are, respectively, the space of $n \times n$ symmetric matrices and the cone of positive semidefinite matrices in \mathcal{S}^{n}.
$\|\cdot\|_{F}$ is the Frobenius norm defined in \mathcal{S}^{n}.
$H \geq 0$ is a weight matrix.

- $H_{i j}$ is larger if $G_{i j}$ is better estimated.
- $H_{i j}=0$ if $G_{i j}$ is missing.

A matrix $X \in \mathcal{S}_{+}^{n}$ is called a correlation matrix if $X \succeq 0$ (i.e., $X \in \mathcal{S}_{+}^{n}$) and $X_{i i}=1, i=1, \ldots, n$.

NUS

A simple correlation matrix model

$$
\begin{array}{ll}
\min & \|H \circ(X-G)\|_{F} \\
\text { s.t. } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

The simplest corr. matrix model

$$
\begin{array}{ll}
\min & \|(X-G)\|_{F} \\
\text { s.t. } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq 0,
\end{array}
$$

In finance and statistics, correlation matrices are in many situations found to be inconsistent, i.e., $X \nsucceq 0$.

These include, but are not limited to,

■ Structured statistical estimations; data come from different time frequencies

■ Stress testing regulated by Basel II;

■ Expert opinions in reinsurance, and etc.

One correlation matrix

Partial market data ${ }^{1}$

$$
G=\left[\begin{array}{rrrrrr}
1.0000 & 0.9872 & 0.9485 & 0.9216 & -0.0485 & -0.0424 \\
0.9872 & 1.0000 & 0.9551 & 0.9272 & -0.0754 & -0.0612 \\
0.9485 & 0.9551 & 1.0000 & 0.9583 & -0.0688 & -0.0536 \\
0.9216 & 0.9272 & 0.9583 & 1.0000 & -0.1354 & -0.1229 \\
-0.0485 & -0.0754 & -0.0688 & -0.1354 & 1.0000 & 0.9869 \\
-0.0424 & -0.0612 & -0.0536 & -0.1229 & 0.9869 & 1.0000
\end{array}\right]
$$

The eigenvalues of G are: $0.0087,0.0162,0.0347,0.1000,1.9669$, and 3.8736.
${ }^{1}$ RiskMetrics (www.riskmetrics.com/stddownload_edu.html)

Stress tested

Let's change G to
[change $G(1,6)=G(6,1)$ from -0.0424 to -0.1000]
$\left[\begin{array}{rrrrrr}1.0000 & 0.9872 & 0.9485 & 0.9216 & -0.0485 & -\mathbf{0 . 1 0 0 0} \\ 0.9872 & 1.0000 & 0.9551 & 0.9272 & -0.0754 & -0.0612 \\ 0.9485 & 0.9551 & 1.0000 & 0.9583 & -0.0688 & -0.0536 \\ 0.9216 & 0.9272 & 0.9583 & 1.0000 & -0.1354 & -0.1229 \\ -0.0485 & -0.0754 & -0.0688 & -0.1354 & 1.0000 & 0.9869 \\ -\mathbf{0 . 1 0 0 0} & -0.0612 & -0.0536 & -0.1229 & 0.9869 & 1.0000\end{array}\right]$

The eigenvalues of G are: $-0.0216,0.0305,0.0441,0.1078,1.9609$, and 3.8783 .

Missing data

On the other hand, some correlations may not be reliable or even missing:

$$
G=\left[\begin{array}{rrrrrr}
1.0000 & 0.9872 & 0.9485 & 0.9216 & -0.0485 & --- \\
0.9872 & 1.0000 & 0.9551 & 0.9272 & -0.0754 & -0.0612 \\
0.9485 & 0.9551 & 1.0000 & 0.9583 & -0.0688 & -0.0536 \\
0.9216 & 0.9272 & 0.9583 & 1.0000 & -0.1354 & -0.1229 \\
-0.0485 & -0.0754 & -0.0688 & -0.1354 & 1.0000 & 0.9869 \\
--- & -0.0612 & -0.0536 & -0.1229 & 0.9869 & 1.0000
\end{array}\right]
$$

$$
H=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Let us rewrite the problem:

$$
\begin{array}{ll}
\min & \frac{1}{2}\|H \circ(X-G)\|_{F}^{2} \\
\text { s.t. } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq 0 .
\end{array}
$$

When $H=E$, the matrix of ones, we get

$$
\begin{array}{ll}
\min & \frac{1}{2}\|X-G\|_{F}^{2} \\
\text { s.t. } & X_{i i}=1, \quad i=1, \ldots, n \\
& X \succeq 0
\end{array}
$$

which is known as the nearest correlation matrix (NCM) problem, a terminology coined by Nick Higham (2002).

The story starts

The NCM problem is a special case of the best approximation problem

$$
\begin{array}{ll}
\min & \frac{1}{2}\|x-c\|^{2} \\
\text { s.t. } & \mathcal{A} x \in b+Q, \\
& x \in K
\end{array}
$$

where \mathcal{X} is a real Euclidean space equipped with a scalar product $\langle\cdot, \cdot\rangle$ and its induced norm $\|\cdot\|$
$\mathcal{A}: \mathcal{X} \rightarrow \Re^{m}$ is a bounded linear operator
$Q=\{0\}^{p} \times \Re_{+}^{q}$ is a polyhedral convex cone, $1 \leq p \leq m, q=m-p$, and K is a closed convex cone in \mathcal{X}.

The KKT conditions

The Karush-Kuhn-Tucker conditions are

$$
\left\{\begin{array}{l}
(x+z)-c-\mathcal{A}^{*} y=0 \\
Q^{*} \ni y \perp \mathcal{A} x-b \in Q \\
K^{*} \ni z \perp x \in K
\end{array}\right.
$$

where " \perp " means the orthogonality. $Q^{*}=\Re^{p} \times \Re_{+}^{q}$ is the dual cone of Q and $K^{* 2}$ is the dual cone of K.

$$
{ }^{2} K^{*}:=\{d \in \mathcal{X} \mid\langle d, x\rangle \geq 0 \forall x \in K\}
$$

Equivalently,

$$
\left\{\begin{array}{l}
(x+z)-c-\mathcal{A}^{*} y=0 \\
Q^{*} \ni y \perp \mathcal{A} x-b \in Q \\
x-\Pi_{K}(x+z)=0
\end{array}\right.
$$

where $\Pi_{K}(x)$ is the unique optimal solution to

$$
\begin{array}{ll}
\min & \frac{1}{2}\|u-x\|^{2} \\
\text { s.t. } & u \in K .
\end{array}
$$

Consequently, by first eliminating $(x+z)$ and then x, we get

$$
Q^{*} \ni y \perp \mathcal{A} \Pi_{K}\left(c+\mathcal{A}^{*} y\right)-b \in Q,
$$

which is equivalent to

$$
F(y):=y-\Pi_{Q^{*}}\left[y-\left(\mathcal{A} \Pi_{K}\left(c+\mathcal{A}^{*} y\right)-b\right)\right]=0, \quad y \in \Re^{m} .
$$

The dual formulation

The above is nothing but the first order optimality condition to the convex dual problem

$$
\begin{array}{ll}
\max & -\theta(y):=-\left[\frac{1}{2}\left\|\Pi_{K}\left(c+\mathcal{A}^{*} y\right)\right\|^{2}-\langle b, y\rangle-\frac{1}{2}\|c\|^{2}\right] \\
\text { s.t. } & y \in Q^{*}
\end{array}
$$

Then F can be written as

$$
F(y)=y-\Pi_{Q^{*}}(y-\nabla \theta(y)) .
$$

Now, we only need to solve

$$
F(y)=0, \quad y \in \Re^{m} .
$$

However, the difficulties are:
■ F is not differentiable at y;

■ F involves two metric projection operators;

■ Even if F is differentiable at y, it is too costly to compute $F^{\prime}(y)$.

The NCM problem

For the nearest correlation matrix problem,

- $\mathcal{A}(X)=\operatorname{diag}(X)$, a vector consisting of all diagonal entries of X.
- $\mathcal{A}^{*}(y)=\operatorname{diag}(y)$, the diagonal matrix.
- $b=e$, the vector of all ones in \Re^{n} and $K=\mathcal{S}_{+}^{n}$.

Consequently, F can be written as

$$
F(y)=\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(G+\mathcal{A}^{*} y\right)-b .
$$

The projector

For $n=1$, we have

$$
x_{+}:=\Pi_{\mathcal{S}_{+}^{1}}(x)=\max (0, x) .
$$

Note that

- x_{+}is only piecewise linear, but not smooth.
- $\left(x_{+}\right)^{2}$ is continuously differentiable with

$$
\nabla\left\{\frac{1}{2}\left(x_{+}\right)^{2}\right\}=x_{+}
$$

but is not twice continuously differentiable.

The one dimensional case

The multi-dimensional case

The projector for $K=\mathcal{S}_{+}^{n}$:

Let $X \in \mathcal{S}^{n}$ have the following spectral decomposition

$$
X=P \Lambda P^{T}
$$

where Λ is the diagonal matrix of eigenvalues of X and P is a corresponding orthogonal matrix of orthonormal eigenvectors.

Then

$$
X_{+}:=P_{\mathcal{S}_{+}^{n}}(X)=P \Lambda_{+} P^{T} .
$$

We have

- $\left\|X_{+}\right\|^{2}$ is continuously differentiable with

$$
\nabla\left(\frac{1}{2}\left\|X_{+}\right\|^{2}\right)=X_{+}
$$

but is not twice continuously differentiable.

- X_{+}is not piecewise smooth, but strongly semismooth ${ }^{3}$.
${ }^{3}$ D.F. Sun and J. Sun. Semismooth matrix valued functions. Mathematics of Operations Research 27 (2002) 150-169.

A quadratically convergent Newton's method is then designed by Qi and Sun ${ }^{4}$ The written code is called CorNewton.m.
"This piece of research work is simply great and practical. I enjoyed reading your paper." March 20, 2007, a home loan financial institution based in McLean, VA.
"It's very impressive work and I've also run the Matlab code found in Defeng's home page. It works very well."- August 31, 2007, a major investment bank based in New York city.

[^0]
Inequality constraints

If we have lower and upper bounds on X, F takes the form

$$
F(y)=y-\Pi_{Q^{*}}\left[y-\left(\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(G+\mathcal{A}^{*} y\right)-b\right)\right],
$$

which involves double layered projections over convex cones.
A quadratically convergent smoothing Newton method is designed by Gao and Sun ${ }^{5}$.

Again, highly efficient.

[^1]
Back to the original problem

$$
\begin{array}{ll}
\min & \frac{1}{2}\|H \circ(X-G)\|_{F}^{2} \\
\text { s.t. } & \mathcal{A}(X) \in b+Q, \\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

The Majorization Method

Let $d \in \Re^{n}$ be a positive vector such that

$$
H \circ H \leq d d^{T} .
$$

For example, $d=\max \left(H_{i j}\right)$ e. Let $D^{1 / 2}=\operatorname{diag}\left(d_{1}^{0.5}, \ldots, d_{n}^{0.5}\right)$.
Let

$$
f(X):=\frac{1}{2}\|H \circ(X-G)\|_{F}^{2} .
$$

Then g is majorized by
$f^{k}(X):=f\left(X^{k}\right)+\left\langle H \circ H\left(X^{k}-G\right), X-X^{k}\right\rangle+\frac{1}{2}\left\|D^{1 / 2}\left(X-X^{k}\right) D^{1 / 2}\right\|_{F}^{2}$,
i.e.,

$$
f\left(X^{k}\right)=f^{k}\left(X^{k}\right) \quad \text { and } \quad f(X) \leq f^{k}(X)
$$

The idea of majorization

The idea of the majorization is to solve, for given X^{k}, the following problem

$$
\begin{array}{ll}
\min & f^{k}(X) \\
\text { s.t. } & \mathcal{A}(X) \in b+Q, \\
& X \in \mathcal{S}_{+}^{n},
\end{array}
$$

which is a diagonal weighted least squares correlation matrix problem

$$
\begin{array}{ll}
\min & \frac{1}{2}\left\|D^{1 / 2}\left(X-\bar{X}^{k}\right) D^{1 / 2}\right\|_{F}^{2} \\
\text { s.t. } & \mathcal{A}(X) \in b+Q, \\
& X \in \mathcal{S}_{+}^{n} .
\end{array}
$$

Now, we can use the two Newton methods introduced earlier for the majorized subproblems!

$$
f\left(X^{k+1}\right)<f\left(X^{k}\right)<\cdots<f\left(X^{1}\right)
$$

A small example: $n=4$

$$
G=\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
1 & -1 & 1 & 0.5 \\
-1 & 1 & 0.5 & 1
\end{array}\right]
$$

Suppose that $G(1,2)$ and $G(2,1)$ are missing.

$$
G=\left[\begin{array}{rrrr}
1 & * & 1 & -1 \\
* & 1 & -1 & 1 \\
1 & -1 & 1 & 0.5 \\
-1 & 1 & 0.5 & 1
\end{array}\right]
$$

A small example: $n=4$ (continued)

We take

$$
G=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

After 4 iterations, we get

$$
X^{*}=\left[\begin{array}{rrrr}
1.000 & -1.000 & 0.6894 & -0.6894 \\
-1.000 & 1.000 & -0.6894 & 0.6894 \\
0.6894 & -0.6894 & 1.000 & 0.0495 \\
-0.6894 & 0.6894 & 0.0495 & 1.000
\end{array}\right]
$$

This is the same solution as the case with no-missing data.

Large examples

Example 1	CorrMajor		AugLag	
n	time	residue	time	residue
100	0.9	2.9006 e 1	1.1	2.9006 e 1
200	1.8	6.6451 e 1	3.2	6.6451 e 1
500	9.7	1.8815 e 2	23.5	1.8815 e 2
1000	51.3	4.0108 e 2	223.4	4.0108 e 2

Table 1: Numerical results for Example 1

Final remarks

- A code named CorrMajor.m can efficiently solve correlation matrix problems with all sorts of bound constraints.
- The techniques may be used to solve many other problems, e.g., low rank matrix problems with sparsity.
- The limitation is that it cannot solve problems for matrices exceeding the dimension 5,000 by 5,000 on a PC due to memory constraints.

End of talk

Thank you! :)

[^0]: ${ }^{4}$ H.D. Qi And D.F. Sun. A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications 28 (2006) 360-385.

[^1]: ${ }^{5}$ Y. Gao and D.F. Sun. Calibrating least squares covariance matrix problems with equality and inequality constraints, SIAM Journal on Matrix Analysis and Applications 31 (2009), 1432-1457.

