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The model
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These problems can be modeled in the following way

min ‖H ◦ (X − G)‖F

s.t. Xii = 1, i = 1, . . . , n

Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(1)

where Be, Bl, and Bu are three index subsets of {(i, j) | 1 ≤ i < j ≤ n}
satisfying Be ∩Bl = ∅, Be ∩Bu = ∅, and lij < uij for any (i, j) ∈ Bl ∩Bu.



continued
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Here Sn and Sn
+ are, respectively, the space of n × n symmetric

matrices and the cone of positive semidefinite matrices in Sn.

‖ · ‖F is the Frobenius norm defined in Sn.

H ≥ 0 is a weight matrix.

• Hij is larger if Gij is better estimated.

• Hij = 0 if Gij is missing.

A matrix X ∈ Sn
+ is called a correlation matrix if X � 0 (i.e., X ∈ Sn

+)
and Xii = 1, i = 1, . . . , n.



A simple correlation matrix model
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min ‖H ◦ (X − G)‖F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 ,

(2)



The simplest corr. matrix model
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min ‖(X − G)‖F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 ,

(3)
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In finance and statistics, correlation matrices are in many situations
found to be inconsistent, i.e., X � 0.

These include, but are not limited to,

■ Structured statistical estimations; data come from different time
frequencies

■ Stress testing regulated by Basel II;

■ Expert opinions in reinsurance, and etc.



One correlation matrix
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Partial market data1

G =

















1.0000 0.9872 0.9485 0.9216 −0.0485 −0.0424

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.0424 −0.0612 −0.0536 −0.1229 0.9869 1.0000

















The eigenvalues of G are: 0.0087, 0.0162, 0.0347, 0.1000, 1.9669, and
3.8736.

1RiskMetrics (www.riskmetrics.com/stddownload edu.html)



Stress tested
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Let’s change G to

[change G(1, 6) = G(6, 1) from −0.0424 to −0.1000]

















1.0000 0.9872 0.9485 0.9216 −0.0485 −0.1000

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.1000 −0.0612 −0.0536 −0.1229 0.9869 1.0000

















The eigenvalues of G are: −0.0216, 0.0305, 0.0441, 0.1078, 1.9609, and
3.8783.



Missing data
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On the other hand, some correlations may not be reliable or even missing:

G =

















1.0000 0.9872 0.9485 0.9216 −0.0485 −−−
0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−−− −0.0612 −0.0536 −0.1229 0.9869 1.0000

















H =

















1 1 1 1 1 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 1 1 1 1 1
















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Let us rewrite the problem:

min
1

2
‖H ◦ (X − G)‖2

F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 .

(4)

When H = E, the matrix of ones, we get

min
1

2
‖X − G‖2

F

s.t. Xii = 1 , i = 1, . . . , n

X � 0 .

(5)

which is known as the nearest correlation matrix (NCM) problem, a
terminology coined by Nick Higham (2002).



The story starts
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The NCM problem is a special case of the best approximation problem

min
1

2
‖x − c‖2

s.t. Ax ∈ b + Q ,

x ∈ K ,

where X is a real Euclidean space equipped with a scalar product 〈·, ·〉
and its induced norm ‖ · ‖

A : X → ℜm is a bounded linear operator

Q = {0}p × ℜq
+ is a polyhedral convex cone, 1 ≤ p ≤ m, q = m − p,

and K is a closed convex cone in X .



The KKT conditions
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The Karush-Kuhn-Tucker conditions are






















(x + z) − c −A∗y = 0

Q∗ ∋ y ⊥ Ax − b ∈ Q

K∗ ∋ z ⊥ x ∈ K ,

,

where “⊥” means the orthogonality. Q∗ = ℜp × ℜq
+ is the dual cone of

Q and K∗2 is the dual cone of K.

2K∗
:= {d ∈ X | 〈d, x〉 ≥ 0 ∀x ∈ K}.
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Equivalently,






















(x + z) − c −A∗y = 0

Q∗ ∋ y ⊥ Ax − b ∈ Q

x − ΠK(x + z) = 0

,

where ΠK(x) is the unique optimal solution to

min
1

2
‖u − x‖2

s.t. u ∈ K .
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Consequently, by first eliminating (x + z) and then x, we get

Q∗ ∋ y ⊥ AΠK(c + A∗y) − b ∈ Q ,

which is equivalent to

F (y) := y − ΠQ∗ [y − (AΠK(c + A∗y) − b)] = 0, y ∈ ℜm .



The dual formulation
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The above is nothing but the first order optimality condition to the
convex dual problem

max −θ(y) := −

[

1

2
‖ΠK(c + A∗y)‖2 − 〈b, y〉 −

1

2
‖c‖2

]

s.t. y ∈ Q∗ .

Then F can be written as

F (y) = y − ΠQ∗(y −∇θ(y)) .
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Now, we only need to solve

F (y) = 0, y ∈ ℜm .

However, the difficulties are:

■ F is not differentiable at y;

■ F involves two metric projection operators;

■ Even if F is differentiable at y, it is too costly to compute F ′(y).



The NCM problem
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For the nearest correlation matrix problem,

• A(X) = diag(X), a vector consisting of all diagonal entries of X.
.

• A∗(y) = diag(y), the diagonal matrix.

• b = e, the vector of all ones in ℜn and K = Sn
+.

Consequently, F can be written as

F (y) = AΠSn

+
(G + A∗y) − b.



The projector
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For n = 1, we have

x+ := ΠS1
+
(x) = max(0, x).

Note that
• x+ is only piecewise linear, but not smooth.
• (x+)2 is continuously differentiable with

∇
{1

2
(x+)2

}

= x+,

but is not twice continuously differentiable.



The one dimensional case

Second Singapore Conference on Quantitative Finance NUS/SUN – 24 / 38



The multi-dimensional case
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The projector for K = Sn
+:

x

x

 
Convex Cone 

x2 3

1

ΠK

η

(η)
K

0
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Let X ∈ Sn have the following spectral decomposition

X = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of X and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.

Then

X+ := PSn

+
(X) = PΛ+P T .
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We have

• ‖X+‖
2 is continuously differentiable with

∇
(1

2
‖X+‖

2

)

= X+,

but is not twice continuously differentiable.

• X+ is not piecewise smooth, but strongly semismooth3.

3 D.F. Sun and J. Sun. Semismooth matrix valued functions. Mathematics of

Operations Research 27 (2002) 150–169.
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A quadratically convergent Newton’s method is then designed by Qi and
Sun4 The written code is called CorNewton.m.

"This piece of research work is simply great and

practical. I enjoyed reading your paper." –
March 20, 2007, a home loan financial institution based in
McLean, VA.

"It’s very impressive work and I’ve also run the
Matlab code found in Defeng’s home page. It
works very well."– August 31, 2007, a major investment
bank based in New York city.

4H.D. Qi and D.F. Sun. A quadratically convergent Newton method for comput-
ing the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications

28 (2006) 360–385.



Inequality constraints
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If we have lower and upper bounds on X, F takes the form

F (y) = y − ΠQ∗ [y − (AΠSn

+
(G + A∗y) − b)] ,

which involves double layered projections over convex cones.

A quadratically convergent smoothing Newton method is designed by
Gao and Sun5.

Again, highly efficient.

5Y. Gao and D.F. Sun. Calibrating least squares covariance matrix problems
with equality and inequality constraints, SIAM Journal on Matrix Analysis and Appli-
cations 31 (2009), 1432–1457.



Back to the original problem
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min
1

2
‖H ◦ (X − G)‖2

F

s.t. A(X) ∈ b + Q ,

X ∈ Sn
+ ,



The Majorization Method

Second Singapore Conference on Quantitative Finance NUS/SUN – 31 / 38

Let d ∈ ℜn be a positive vector such that

H ◦ H ≤ ddT .

For example, d = max(Hij)e. Let D1/2 = diag(d0.5
1 , . . . , d0.5

n ).
Let

f(X) :=
1

2
‖H ◦ (X − G)‖2

F .

Then g is majorized by

fk(X) := f(Xk)+〈H ◦H(Xk−G), X−Xk〉+
1

2
‖D1/2(X−Xk)D1/2‖2

F ,

i.e.,
f(Xk) = fk(Xk) and f(X) ≤ fk(X) .



The idea of majorization
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The idea of the majorization is to solve, for given Xk, the following
problem

min fk(X)

s.t. A(X) ∈ b + Q ,

X ∈ Sn
+ ,

which is a diagonal weighted least squares correlation matrix problem

min
1

2
‖D1/2(X − X

k
)D1/2‖2

F

s.t. A(X) ∈ b + Q ,

X ∈ Sn
+ .
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Now, we can use the two Newton methods introduced earlier for the
majorized subproblems!

f(Xk+1) < f(Xk) < · · · < f(X1).



A small example: n = 4

Second Singapore Conference on Quantitative Finance NUS/SUN – 34 / 38

G =









1 −1 1 −1

−1 1 −1 1

1 −1 1 0.5

−1 1 0.5 1









Suppose that G(1, 2) and G(2, 1) are missing.

G =









1 ∗ 1 −1

∗ 1 −1 1

1 −1 1 0.5

−1 1 0.5 1











A small example: n = 4

(continued)
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We take

G =









1 0 1 1

0 1 1 1

1 1 1 1

1 1 1 1









After 4 iterations, we get

X∗
=









1.000 −1.000 0.6894 −0.6894

−1.000 1.000 −0.6894 0.6894

0.6894 −0.6894 1.000 0.0495

−0.6894 0.6894 0.0495 1.000









This is the same solution as the case with no-missing data.



Large examples
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Example 1 CorrMajor AugLag

n time residue time residue

100 0.9 2.9006e1 1.1 2.9006e1
200 1.8 6.6451e1 3.2 6.6451e1
500 9.7 1.8815e2 23.5 1.8815e2
1000 51.3 4.0108e2 223.4 4.0108e2

Table 1: Numerical results for Example 1



Final remarks
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• A code named CorrMajor.m can efficiently solve correlation matrix
problems with all sorts of bound constraints.

• The techniques may be used to solve many other problems, e.g.,
low rank matrix problems with sparsity.

• The limitation is that it cannot solve problems for matrices
exceeding the dimension 5, 000 by 5, 000 on a PC due to memory
constraints.



End of talk
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Thank you! :)


	 

