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Summary

It is well known that the eigenvalues of a real symmetric matrix are not every-

where differentiable. Ky Fan’s classical result [11] states that each eigenvalue of a

symmetric matrix is the difference of two convex functions, which implies that the

eigenvalues are semismooth functions. Based on a recent result of Sun and Sun [30],

it is further proved that the eigenvalues of symmetric matrix are strongly semi-

smooth everywhere. The concept of semismoothness of functionals was originally

studied by Mifflin [19]. Later Qi and Sun developed this idea to strong semismooth-

ness [26] for vector valued functions. Recently, both concepts are further extended

to matrix valued functions [29]. Generally speaking, strong semismoothness of

an equation is tied with quadratic convergence of the Newton method applied to

the equation and semismoothness corresponds to superlinear convergence. It was

shown that smooth functions, piecewise smooth functions, and convex and concave

functions are semismooth functions. They are not, however, necessarily strongly

semismooth functions.
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Summary 4

In this thesis, we consider a smooth approximation function to the sum of the κ

largest eigenvalues. Thus the κth largest eigenvalue function can be approximated

by the difference of two smooth functions. To make it applicable to a wide class

of applications, the study is conducted on the composite function of a smoothing

function fκ(ε, ·) and the eigenvalue function λ(·). Namely, we find a smoothing

function fκ(ε, λ(X)) for fκ(λ(X)), such that fκ(ε, λ(Y )) → fκ(λ(X)), as (ε, Y ) →
(0+, X). It is proved in [28] that via convolution any nonsmooth function has

its approximate smoothing function. But the proof does not give any concrete

smoothing function. The main aim of this thesis is to find a computable smooth

function to approximate every eigenvalue function.

As applications, we can use this smooth convex approximation function to solve

some minmax problems and inverse eigenvalue problems (IEPs).

The organization of this thesis is as follows. Some introduction of previous

research works done in this area is presented in Chapter 1. Then in Chapter 2, we

give the smoothing approximation function of the κth largest component which is

the difference of two convex smooth functions. We use primal-dual excessive gap

algorithm to test the computability and give the results. Chapter 3 concentrates

on showing the strong semismoothness of gκ(ε, x). Chapter 4, we give out the most

important discovery in this thesis: we find the smoothing approximate function for

the sum of the κ largest eigenvalues. Therefore every eigenvalue function can be

approximated by the difference of two smooth functions. In the last Chapter, we

apply the smoothing approximate function to solve some special case of inverse

eigenvalue problems.



List of Notation

• A, B, . . . denote matrices.

• Sn is the set of real symmetric matrices; On is the set of all n×n orthogonal

matrices.

• A superscript “T” represents the transpose of matrices and vectors.

• For a matrix M , Mi· and M·j represent the ith row and j th column of M ,

respectively. Mij denotes the (i, j)th entry of M .

• A diagonal matrix is written as Diag(β1, . . . , βn) and a block-diagonal matrix

is denoted by Diag(B1, . . . , Bs) where B1, . . . , Bs are matrices.

• We use ◦ to denote the Hadamard product between matrices, i.e.

X ◦ Y = [XijYij]
n
i,j=1.

• Let A0, A1, . . . , Am ∈ Sn be given, and define an operator A : Rm → Sn by

Ay :=

m∑

i=1

yiAi and A(y) := A0 + Ay, ∀y ∈ R
m. (1)
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List of Notation 6

• We let A∗ : Sn → Rm be the adjoint operator of the linear operator A :

Rm → Sn defined by (1) and satisfies for all (d, D) ∈ Rm × Sn

dTA∗D := 〈D,Ad〉.

Hence, for all D ∈ Sn,

A∗D = (〈A1, D〉, . . . , 〈Am, D〉)T .

• The eigenvalues of X ∈ S is designated by λi(X), i = 1, . . . , n.

• We write X = O(α) (respectively, o(α)) if ‖X‖/|α| is uniformly bounded

(respectively, tends to zero) as α → 0.

• F represents the scalar field of either real R or complex C.

• M,N , . . . denote certain subsets of square matrices of which the size is clear

from the context.



Chapter 1

Introduction

As we mentioned in the part of summary, the eigenvalue function is usually not

differentiable, which inevitably gives rise to extreme difficulties in a gradient-

dependent numerical method (e.g., Newton’s method). To see this point more

clearly, let us consider the following example

X =



 x1 x2

x2 x3



 (1.1)

where x1, x2 and x3 are parameters. In this case, we have

λ1(X) =
x1 + x3 +

√
(x1 − x3)2 + 4x2

2

2
(1.2)

and

λ2(X) =
x1 + x3 −

√
(x1 − x3)2 + 4x2

2

2
(1.3)

Since λ1(·) and λ2(·) are not differentiable at X with x1 = x3 and x2 = 0, the clas-

sical optimization methods (often using the information of gradient and Hessian of

objective functions) may get into trouble. The works conducted recently by Lewis

[16], Lewis and Sendov [17], Qi and Yang [25] within a very general framework

of spectral functions open ways in such extensions. A function f on the space

of n−by−n real symmetric matrices is called spectral if it depends only on the

7
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eigenvalues of its argument. Spectral functions are just symmetric functions of

the eigenvalues. We can think of a spectral function as a composite function of

a symmetric function f : Rn → R and the eigenvalue function λ(·). A function

f : R
n → R is symmetric if f is invariant under coordinate, i.e., f(Pµ) = f(µ) for

any µ ∈ Rn and P ∈ P, the set of all permutation matrices. Hence the spectral

function defined by f and λ can be written as (f ◦ λ) : Sn → R with

(f ◦ λ)(X) = f(λ(X))

= f(λ1(X), λ2(X), . . . , λn(X)) for any X ∈ Sn.
(1.4)

It seems that the spectral function, thought of as a composition of λ(·) and a

symmetric function f , would inherit the nonsmoothness of the eigenvalue function.

However, Lewis proved in [16] that (f◦λ) is indeed (strictly) differentiable at X ∈ S
if and only if f is (strictly) differentiable at λ(X). Moreover, it is further proved

in [17] that (f ◦ λ) is twice (continuously) differentiable at X ∈ S if and only if

f is twice (continuously) differentiable at λ(X). These results play an important

role in this thesis.

Spectral function is normally nondifferentiable. For example ,let

f1(x) := max{x1, . . . , xn} (1.5)

Then

λ1(X) = (f1 ◦ λ)(X), ∀X ∈ Sn, (1.6)

where λ(X) is the vector function of eigenvalues of X, λ1(X) is the maximum

eigenvalue function, i.e., λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X). According to (1.2), we

know spectral function (f1 ◦ λ)(X) may not be differentiable.

A well known smoothing function to the maximum function (1.5) is the expo-

nential penalty function:

f1(ε, x) := ε ln

(
n∑

i=1

exi/ε

)
, on R++ × R

n. (1.7)
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It is a C∞ convex function and has the following uniform approximation to f1 [7]:

0 ≤ f1(ε, x) − f1(x) ≤ ε lnn. (1.8)

The penalty function, sometimes called the aggregation function, is used in a num-

ber of occasions [2, 14, 18, 23, 24, 32, 33].

It is easy to see that the exponential penalty function (1.7) is symmetric in Rn

and the well defined spectral function f1(ε, λ(X)) is a uniform approximation to

λ1(·), i.e.,

0 ≤ f1(ε, λ(X))− λ1(X) ≤ ε lnn, ∀(ε, X) ∈ R++ × Sn. (1.9)

According to [8, Lemma 3.1], we obtain

∇Xf1(ε, λ(X)) = UDiag[∇ςf1(ε, ς)]U
T = UDiag[µ(ε, ς)]UT , (1.10)

with

µi(ε, ς) =
eςi/ε

n∑

j=1

eςj/ε

, (1.11)

where we denote ς := λ(X) for simplicity.

We can look back to the example (1.1). Since we have gradient form (1.10), we

can immediately apply the classical optimization method (e.g., gradient method)

by using the smooth approximate function f1(ε, λ(X)) instead of λ1(X) to help

solve some optimization problems.

According to (1.7), we have a method to smoothly approximate the maximum

eigenvalue function. In the rest of this thesis, we will search for a smooth ap-

proximate function of every eigenvalue. And more importantly, this smoothed

approximate function has a good property of computability.



Chapter 2

The Smoothing Function for the κth

Largest Component

2.1 The Sum of the κ largest components

For x ∈ Rn we denote by x[κ] the κth largest component of x, i.e.,

x[1] ≥ x[2] ≥ · · · ≥ x[κ] ≥ · · · ≥ x[n]

sorted in nonincreasing order. Define

fκ(x) =

κ∑

i=1

x[i]

as the sum of the κ largest components of x. Since

fκ(x) =

κ∑

i=1

x[i] = max{xi1 + · · · + xiκ |1 ≤ i1 < i2 < · · · < iκ ≤ n}

is the maximum of all possible sums of κ different components of x. It is the

pointwise maximum of n!/(κ!(n−κ)!) linear functions, which means fκ(x) is convex

and strongly semismooth (we will give out the definition of semismooth in Chapter

3).

10



2.1 The Sum of the κ largest components 11

To characterize the components that achieve the maximum in the following re-

sults, information about the multiplicity of the components of x = (x1, . . . , xn)T is

needed. Let

x[1] ≥ · · · ≥ x[r] >

x[r+1] = · · · = x[κ] = · · · = x[r+t] >

x[r+t+1] ≥ · · · ≥ x[n],

(2.1)

where t ≥ 1 and r ≥ 0 are integers. The multiplicity of the κth component is t.

The number of components larger than x[κ] is r. Here r may be zero; in particular

this must be the case if κ = 1. Note that by definition

r + 1 ≤ κ ≤ r + t ≤ n,

so t ≥ κ − r. Also, t = 1 implies that κ = r + 1.

Clearly, we can express fκ(x) in the following way:

fκ(x) = max xT v

s.t.
n∑

i=1

vi = κ

0 ≤ vi ≤ 1, i = 1, 2, . . . , n

(2.2)

If the components of x ∈ R
n are arranged in the order of (2.1), then directly from

the property of (2.2), we have

argmax{xT v :
n∑

i=1

vi = κ, 0 ≤ vi ≤ 1, i = 1, 2, . . . , n}

=






v ∈ Rn :

vi = 1 if i = [1], . . . , [r],

0 ≤ vi ≤ 1 if i = [r + 1], . . . , [r + t], and

[r+t]∑

i=[r+1]

vi = κ − r

vi = 0 if i = [r + t + 1], . . . , [n]






.

(2.3)

From (2.3) we know fκ(x) may not be differentiable at any x ∈ Rn. However,

when κ = n, fκ(x) = fn(x) is the sum of all components. Clearly, fn(x) is already



2.2 The smoothing function of the sum of the κ largest components 12

a continuously differentiable function. So in the following sections and chapters,

we only need to find a smoothing function of a nonsmooth function fκ(x) when

κ ∈ {1, 2, . . . , n − 1}.

2.2 The smoothing function of the sum of the κ

largest components

In this section, we will give a smoothing function gκ(ε, x) of a nonsmooth function

fκ(x), where gκ(·, ·) : R × R
n → R, such that

gκ(ε, y) → fκ(x), as (ε, y) → (0, x). (2.4)

Here the function gκ(·, ·) is required to be continuously differentiable around (ε, x)

unless ε = 0.

We separate into two steps to obtain gκ(ε, x):

1. find a smoothing function fκ(ε, x) on R++ × Rn,

2. then gκ(ε, x) is constructed by

gκ(ε, x) =






fκ(ε, x), ε > 0

fκ(x), ε = 0

fκ(−ε, x), ε < 0.

(2.5)

2.2.1 Smoothing function fκ(ε, x)

Denote by Q the convex set in Rn:

Q = {v ∈ R
n :

n∑

i=1

vi = κ, 0 ≤ vi ≤ 1, i = 1, 2, . . . , n}, (2.6)

and

p(z) =





z ln z, z ∈ (0, 1]

0, z = 0
(2.7)
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then let

r(v) =
n∑

i=1

p(vi) +
n∑

i=1

p(1 − vi) + R, v ∈ Q (2.8)

where R = n lnn − κ lnκ − (n − κ) ln(n − κ). So r(v) is continuous and strongly

convex on Q. Denote

v0 = argmin{r(v) : v ∈ Q}. (2.9)

By using the KKT condition, we calculate as follows

v0 = (
κ

n
,
κ

n
, . . . ,

κ

n
)T , (2.10)

and

r(v0) = 0. (2.11)

It is easy to check that the maximal value of r(v) is R. So we have

0 ≤ r(v) ≤ R, v ∈ Q. (2.12)

Define fκ(·, ·) : R++ × Rn → R as:

fκ(ε, x) = max xT v − εr(v)

s.t.

n∑

i=1

vi = κ

0 ≤ vi ≤ 1, i = 1, . . . , n.

(2.13)

Lemma 2.1. fκ(ε, x) in (2.13) is equivalent to f̃κ(·, ·) : R++ × Rn → R as:

f̃κ(ε, x) = max xT v − εr(v)

s.t.
n∑

i=1

vi = κ

0 < vi < 1, i = 1, . . . , n.

(2.14)
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Proof. Since r(v) in (2.8) is strongly convex, the optimal solution of (2.13) is

unique. On the other hand, the first order necessary and sufficient optimality

conditions for (2.14) look as follows:




−xi + ε(ln vi − ln(1 − vi)) + α = 0, i = 1, . . . , n
n∑

i=1

vi = κ
(2.15)

where α is the Lagrangian multiplier for
n∑

i=1

vi = κ in (2.14). Clearly, we obtain

vi(ε, x) =
1

1 + e
α(ε,x)−xi

ε

, i = 1, . . . , n, (2.16)

where
n∑

i=1

1

1 + e
α(ε,x)−xi

ε

= κ. (2.17)

By using numerical method such as Newton’s method and bisection, we can solve

α(ε, x) through (2.17). Substituting α(ε, x) to (2.16), we can obtain our optimal

solution v(ε, x). (2.16) and (2.17) also satisfy the first order necessary and sufficient

optimality conditions for (2.13). Therefore v(ε, x) in (2.16) is the optimal solution

of (2.13). Since the optimal solution of (2.13) is unique, v(ε, x) is the only optimal

solution to (2.13), which means (2.13) and (2.14) are equivalent.

Before proving fκ(ε, x) is continuously differentiable on R++ × Rn, we will give

the following lemma:

Lemma 2.2. v(ε, x) in (2.16), which is the optimal solution to (2.13), is contin-

uously differentiable on R++ × Rn, with

∇v(ε, x) = − γi
n∑

j=1

γj

( n∑

j=1

βj , γ1, γ2, . . . , γn

)T

+
(
βi, γ1, γ2, . . . , γn

)T

, (2.18)

where

βi =
(α(ε, x) − xi)e

(α(ε,x)−xi)/ε

ε2(1 + e(α(ε,x)−xi)/ε)2
(2.19)
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and

γi =
e(α(ε,x)−xi)/ε

ε(1 + e(α(ε,x)−xi)/ε)2
. (2.20)

Proof. From (2.16), we know the continuity and differentiability of v(ε, x) depend

on α(ε, x). First we show α(ε, x) is continuously differentiable on R++ × Rn. Let

h((ε, x), α(ε, x)) :=

n∑

i=1

1

1 + e
α(ε,x)−xi

ε

− κ. (2.21)

From (2.17), we have the equation

h((ε, x), α(ε, x)) = 0. (2.22)

Taking derivatives on both sides of (2.22),

∇αh((ε, x), α(ε, x))∇α(ε, x) + ∇(ε,x)h((ε, x), α(ε, x)) = 0. (2.23)

where

∇αh((ε, x), α(ε, x)) = −
n∑

i=1

e(α(ε,x)−xi)/ε

ε(1 + e(α(ε,x)−xi)/ε)2
< 0, (2.24)

and

∇(ε,x)h((ε, x), α(ε, x)) = (µ(ε, x), ν1(ε, x), . . . , νn(ε, x))T , (2.25)

with

µ(ε, x) =
n∑

i=1

(α(ε, x) − xi)e
(α(ε,x)−xi)/ε

ε2(1 + e(α(ε,x)−xi)/ε)2
and νi(ε, x) =

e(α(ε,x)−xi)/ε

ε(1 + e(α(ε,x)−xi)/ε)2
.

(2.26)

Since ∇(ε,x)h((ε, x), α(ε, x)) is continuous and ∇αh((ε, x), α(ε, x)) < 0, we have

α(ε, x) is continuously differentiable. Moreover

∇α(ε, x) = −∇(ε,x)h((ε, x), α(ε, x))

∇αh((ε, x), α(ε, x))
. (2.27)

Now, we will show v(ε, x) is continuously differentiable. Denote the right hand side

of (2.16) by ρi((ε, x), α(ε, x)) :=
1

1 + e
α(ε,x)−xi

ε

, Taking derivatives on both sides of

vi(ε, x) = ρi((ε, x), α(ε, x)), (2.28)
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we have

∇vi(ε, x) = ∇αρi((ε, x), α(ε, x))∇α(ε, x) + ∇(ε,x)ρi((ε, x), α(ε, x)), (2.29)

where

∇αρi((ε, x), α(ε, x)) = − e(α(ε,x)−xi)/ε

ε(1 + e(α(ε,x)−xi)/ε)2
, (2.30)

∇α(ε, x) is of (2.27) and

∇(ε,x)ρi = (σi(ε, x), ν1(ε, x), . . . , νn(ε, x))T , (2.31)

with

σi(ε, x) =
(α(ε, x) − xi)e

(α(ε,x)−xi)/ε

ε2(1 + e(α(ε,x)−xi)/ε)2
(2.32)

and νi(ε, x) of (2.26). According to equations from (2.28) to (2.32), we have showed

v(ε, x) is continuously differentiable. Directly from (2.29) to (2.32), we obtain

(2.18) with (2.19) and (2.20) .

Now we are ready to give the following Theorem,

Theorem 2.3. fκ(ε, x) in (2.13) is continuously differentiable on R++ × Rn.

Proof. Sine fκ(ε, x) = xT v(ε, x)−εr(v(ε, x)), where v(ε, x) is the optimal solution,

and directly from Lemma 2.2, we can obtain fκ(ε, x) is continuously differentiable.

Lemma 2.4. fκ(ε, x) is convex on R++ × Rn.

Proof. For any λ ∈ [0, 1] and (ε, x), (τ, y) ∈ R++ × Rn, we have

fκ(λε + (1 − λ)τ, λx + (1 − λ)y)

= max
v∈Q

{(λx + (1 − λ)y)Tv − (λε + (1 − λ)τ)r(v)}

= max
v∈Q

{λ(xT v − εr(v)) + (1 − λ)(yTv − τr(v))}

≤ max
v∈Q

{λ(xT v − εr(v))} + max
v∈Q

{(1 − λ)(yTv − τr(v))}

= λfκ(ε, x) + (1 − λ)fκ(τ, y)

(2.33)
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Since R = max{r(v) : v ∈ Q}, we have

fκ(ε, x) ≤ fκ(x) ≤ fκ(ε, x) + εR, ε > 0. (2.34)

Thus, we have the following conclusion:

Theorem 2.5. The function fκ(ε, ·) for each ε > 0 is a smooth convex approxi-

mation of the function fκ(·).

Proof. It is a direct result of Theorem 2.3, Lemma 2.4 and inequalities (2.34).

In order to show the gradient of fκ(ε, x), let us introduce some basic concepts.

Definition 1. Let D be a nonempty convex set in Rn, and let f : D → R be

convex. Then ξ is called a subgradient of f at x̄ ∈ D if

f(x) ≥ f(x̄) + ξT (x − x̄) for all x ∈ D. (2.35)

The collection of subgradients of f at x̄ is called the subdifferential of f at x̄,

denoted by ∂f(x̄).

Lemma 2.6. [27, Theorem 25.1, Page 242] Let D be a nonempty convex set in

Rn, and let f : D → R be convex. Suppose that f is differentiable at x̄ ∈ intD.

Then ∂f(x̄) = {∇f(x̄)}.

Theorem 2.7. The gradient of fκ(ε, x) on R++ × Rn is

∇fκ(ε, x) =


 −r(v(ε, x))

v(ε, x)


 , (2.36)

where v(ε, x) is the optimal solution of (2.13).
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Proof. ∀(τ, y) ∈ R++ × Rn, we have

fκ(τ, y) = max
v∈Q

(τ, yT )


 −r(v)

v




≥ (τ, yT )


 −r(v(ε, x))

v(ε, x)




= fκ(ε, x) + (−r(v(ε, x)), v(ε, x)T )


 τ − ε

y − x


 ,

(2.37)

where v(ε, x) is the optimal solution of fκ(ε, x). Since fκ(ε, x) is convex (by Theo-

rem 2.4) and continuously differentiable (by Theorem 2.3), and according to Lemma

2.6, we have {∇fκ(ε, x)} = ∂fκ(ε, x) on R++ × R
n.

2.2.2 Smoothing function gκ(ε, x)

Now we are ready to define gκ(·, ·) : R × Rn → R as:

gκ(ε, x) =





fκ(ε, x), ε > 0

fκ(x), ε = 0

fκ(−ε, x), ε < 0.

(2.38)

According to the nice properties of fκ(ε, x), we know gκ(ε, x) is a smoothing func-

tion of a nonsmooth function fκ(x) , with

gκ(ε, y) → fκ(x), as (ε, y) → (0, x). (2.39)

Here the function gκ(·, ·) is continuously differentiable around (ε, x) unless ε = 0.

Function gκ(ε, x) is convex on R+ × R
n and R− × R

n, but may not convex on

R × Rn. The gradient of gκ(·, ·) is

∇gκ(ε, x) = ∇fκ(ε, x), on R++ × R
n (2.40)

and

∇gκ(ε, x) = ∇fκ(|ε|, x), on R−− × R
n. (2.41)
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In this section we find a smoothing function of the sum of the κ largest com-

ponents which is computable. In the next section, we will show some numerical

results and discuss the complexity.

2.3 Computational results for minmax problems

In this section, we continue the research by Nesterov [20] and [21]. It is shown that

some structured non-smooth problem can be solved with efficiency estimates O(1
ε
),

where ε is the desired accuracy of the solution. We extend Nesterov’s primal-dual

symmetric technique to the sum of the κ largest components. Here we treat ε as

a parameter.

Denote

Q1 = {x ∈ R
n :

n∑

i=1

xi = κ1, 0 ≤ xi ≤ 1},

and

Q2 = {v ∈ R
m :

m∑

j=1

vj = κ2, 0 ≤ vj ≤ 1}.

Let A : Rn → Rm, x ∈ Rn and v ∈ Rm. Consider the following minmax problem:

min
x∈Q1

max
v∈Q2

{(Ax)T v}. (2.42)

This problem is reduced to :

min
x∈Q1

f(x), f(x) = max
v∈Q2

{(Ax)T v}, (2.43)

max
v∈Q2

g(v), g(v) = min
x∈Q1

{(AT v)T x}. (2.44)

Let’s choose the Entropy Distance:

‖x‖1 =

n∑

i=1

|xi|, ‖v‖1 =

m∑

j=1

|vj|,
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and

R1 = n lnn − κ1 ln κ1 − (n − κ1) ln(n − κ1),

R2 = m lnm − κ2 ln κ2 − (m − κ2) ln(m − κ2).

We have primal form:

f ε2(x) = max
v∈Q2

{(Ax)T v − ε2r2(v)}, ε2 > 0, (2.45)

where

r2(v) =
m∑

j=1

vj ln vj +
m∑

j=1

(1 − vj) ln(1 − vj) + R2 (2.46)

is a continuous and strongly convex. According to Nesterov [20, Theorem 1], we

know

∇f ε2(x) = AT vε2(x), (2.47)

where vε2(x) is the optimal solution of (2.45).

Similarly, we have dual form:

gε1(v) = min
x∈Q1

{(AT v)T x + ε1r1(x)}, ε1 > 0, (2.48)

where

r1(x) =
n∑

i=1

xi ln xi +
n∑

i=1

(1 − xi) ln(1 − xi) + R1 (2.49)

is a continuous and strongly convex. According to Nesterov [20, Theorem 1], we

know

∇gε1(v) = Axε1(v), (2.50)

where xε1(v) is the optimal solution of (2.48).

2.3.1 Algorithm

In order to apply Nesterov primal-dual excessive gap technique [21], we need to

introduce the Bregman distance and the Bregman projection.
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Bregman distances were introduced in [3] as an extension to the usual metric

discrepancy measure (x, y) → ‖x − y‖2 and have since found numerous applica-

tions in optimization, convex feasibility, convex inequalities, variational inequal-

ities, monotone inclusions, equilibrium problems; see [1, 4, 6] and the references

therein. If f is a real convex differentiable function, then the Bregman distance

between two parameters z and x is defined as

ξ(z, x) = f(x) − f(z) − 〈∇f(z), x − z〉, x, z ∈ Q, (2.51)

where 〈·, ·〉 is the standard inner product, ∇f(z) is the gradient of f at z, and Q

is a convex set. When the function f has the form f(z) =
∑n

i=1 gi(zi), with the

gi(t) = t2, for all i. Then the function f(z) =
∑n

i=1 gi(zi) =
∑n

i=1 z2
i is a separable

Bregman function and ξ(z, x) is the squared Euclidean distance between z and x.

The appendix of [5] gives out detailed definitions of Bregman functions, distances

and projections.

The problem under consideration in this thesis is the Bregman distance between

z and x as

ξ1(z, x) = r1(x) − r1(z) −∇r1(z)T (x − z), x, z ∈ Q1, (2.52)

where r1(x) is differentiable for any x and z from Q1. Define the Bregman projection

of h as follows:

V1(z, h) = argmin{hT (x − z) + ξ1(z, x) : x ∈ Q1}. (2.53)

Similarly, we have

ξ2(w, v) = r2(v) − r2(w) −∇r2(w)T (v − w), w, v ∈ Q2, (2.54)

and

V2(w, l) = argmax{lT (v − w) − ξ2(w, v) : v ∈ Q2}. (2.55)

Now we are ready to give the algorithm [21]:
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1. Initialization:

Choose an arbitrary ε2 > 0, and any ε1 ≥ 1
ε2

. Set

x̄0 = V1(x0, ε2∇f ε2(x0)), v̄0 = vε2(x0), ε1,0 = ε1, ε2,0 = ε2, (2.56)

where x0 = (κ1

n
, κ1

n
, . . . , κ1

n
)T .

2. Iterations (k ≥ 0):

• Set τk = 2
k+3

.

• If k is even then generate (x̄k+1, v̄k+1) from (x̄k, v̄k) using:

x̂k = (1 − τk)x̄k + τkx
ε1,k(v̄k),

v̄k+1 = (1 − τk)v̄k + τkv
ε2,k(x̂k),

x̃k = V1(x
ε1,k(v̄k),

τk

(1−τk)ε1,k
∇f ε2,k(x̂k)),

x̄k+1 = (1 − τk)x̄k + τkx̃k,

ε1,k+1 = (1 − τk)ε1,k.

• If k is odd then generate (x̄k+1, v̄k+1) from (x̄k, v̄k) using:

v̂k = (1 − τk)v̄k + τkv
ε2,k(x̄k),

x̄k+1 = (1 − τk)x̄k + τkx
ε1,k(v̂k),

ṽk = V2(v
ε2,k(x̄k),

τk

(1−τk)ε2,k
∇gε1,k(v̂k)),

v̄k+1 = (1 − τk)v̄k + τkṽk,

ε2,k+1 = (1 − τk)ε2,k.

According to Nesterov [21, Theorem 3], we have the following statement:

Theorem 2.8. Let the sequences {x̄k}∞k=0 and {v̄k}∞k=0 be generated by the above

method. We have

f(x̄k) − g(v̄k) ≤
4‖A‖1,2

k + 1

√
R1R2, (2.57)

where ‖A‖1,2 = max
x,v

{(Ax)T v : ‖x‖1 = 1, ‖v‖1 = 1}.
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2.3.2 Computational complexity

Let’s discuss the complexity of above algorithm. At each iteration we need to

compute the following objects.

1. Computation of vε2(x) and xε1(v).

vε2(x) is the optimal solution of:

f ε2(x) = max {(Ax)T v − ε2r2(v)}

s.t.

m∑

j=1

vi = κ2

0 ≤ vj ≤ 1, j = 1, 2, . . . , m.

(2.58)

Using the KKT condition, we need to solve the following equations:






cj + ε2(ln vj − ln(1 − vj)) + α = 0, j = 1, . . . , m
m∑

j=1

vj = κ2

(2.59)

with c = −Ax. Clearly,

vj =
1

1 + e
α+cj

ε2

, j = 1, . . . , m, (2.60)

where
m∑

j=1

1

1 + e
α+cj

ε2

= κ2. (2.61)

We can use numerical method (e.g. Newton’s method, bisection method,

etc.) to solve α through (2.61). Since the dimension of α is one, it is quite

easy to solve. By substituting α to (2.60), we can obtain our optimal solution

vε2(x) which is unique.

It is almost the same stroke to compute xε1(v), so we skip the discussion.

2. Computation of V1(z, h) and V2(w, l).

Let’s first study V1(z, h). Applying the KKT condition to (2.53), we have
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the following equations:




hi + ln xi − ln(1 − xi) − ln zi + ln(1 − zi) + β = 0, i = 1, . . . , n
n∑

i=1

xi = κ1

(2.62)

Clearly,

xi =
zi

ehieβ(1 − zi) + zi
, i = 1, . . . , n, (2.63)

where
n∑

i=1

zi

ehieβ(1 − zi) + zi
= κ1. (2.64)

We can use numerical method (e.g. Newton’s method, bisection method,

etc.) to solve β through (2.64). Since the dimension of β is one, it is quite

easy to solve. By substituting β to (2.63), we can obtain V
(i)
1 (z, h) = xi(z, h).

The computation of V2(w, l) is the same as V1(z, h).

Thus, we have shown that all computations at each iteration of our algorithm is

very cheap.

2.3.3 Computational results

We will present the computational results of minmax problem (2.42):

min
x∈Q1

max
v∈Q2

{(Ax)T v}.

The matrix A is generated randomly. Each of its entries is uniformly distributed

in the interval [−1, 1]. Thus ‖A‖1,2 ≤ 1.

We want to test the stability of our algorithm and the rate of convergence namely

the order O( 1
k
), where k is the iteration count.

Set ε as the desired accuracy of the solution, i.e., f(x̄k) − g(v̄k) ≤ ε. According

to (2.57), we have the predicted iteration value N : N = d(4
ε

√
R1R2)e. It is the

smallest integer which is larger than or equal to 4
ε

√
R1R2.
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We implement the algorithm exactly as it is presented in this thesis and choose

different values of accuracy ε, dimension m, n and different values of κ1, κ2 respec-

tively, to get different results.

Results for ε = 0.01, κ1 = κ2 = 1.

m \ n 100 300 1000 3000

100 328 406 552 604

300 402 540 623 660

1000 460 620 689 720

(2.65)

Number of iterations: 15-25% of predicted values.

Results for ε = 0.001, κ1 = κ2 = 1.

m \ n 100 300 1000 3000

100 2948 4104 4702 4952

300 4100 4560 5184 5860

1000 4512 5024 5610 6520

(2.66)

Number of iterations: 15-25% of predicted values.

Results for ε = 0.01, κ1 = κ2 = 2.

m \ n 100 300 1000 3000

100 545 564 572 614

300 622 650 686 722

1000 716 740 765 810

(2.67)

Number of iterations: 10-20% of predicted values.

Results for ε = 0.01, κ1 = 10, κ2 = 20.
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m \ n 50 100 150 300

50 2322 3176 4496 4920

100 3962 5162 7546 8990

150 4914 7700 8930 10840

(2.68)

Number of iterations: 20-55% of predicted values.

From these tables, we conclude that the actual iterations are better than our

predicted values. When the accuracy or dimension increased, iterations are also

increased, but with a decelerating speed. For future studies, we can apply this

primal dual method to other minmax problems, such as

min
x∈Q1

max
v∈Q2

{(Ax)T v + cT x + bT v}.

2.4 The κth Largest Component

From previous sections, we already know the sum of the κ largest components

fκ(x) and the smoothing function fκ(ε, x) of it. So the κth largest component of

x = (x1, x2, · · · , xn)T can be expressed by

x[κ] = fκ(x) − fκ−1(x). (2.69)

Therefore, we denote φκ(ε, x) by the difference of following two functions:

φκ(ε, x) = fκ(ε, x) − fκ−1(ε, x). (2.70)

Clearly, φκ(ε, x) is a smooth function, which approximates to the κth largest com-

ponent of x, as ε approaches zero.

2.5 Summary

In this chapter, we first give the function fκ(x) as the sum of the κ largest com-

ponents of x ∈ Rn, which is a convex function. After introducing the smooth
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convex function fκ(ε, x), we give the gradient of fκ(ε, x). Then we find a smooth-

ing function gκ(ε, x) on R × Rn unless ε = 0. According to primal-dual excessive

gap algorithm, we use this smooth function to solve some minmax problem and

test the results.

Since fκ(ε, x) is the smoothing approximation function of the sum of the κ largest

components, we can use the difference of fκ(ε, x) and fκ−1(ε, x) to approximate to

the κth largest component, i.e.,

φκ(ε, y) =
(
fκ(ε, y) − fκ−1(ε, y)

)
−→ x[κ], as (ε, y) → (0+, x). (2.71)

Thus φκ(ε, x) is the smooth approximate function of the κth largest component.



Chapter 3

Semismoothness

In this chapter we first introduce some basic concepts and preliminary results used

in our analysis.

3.1 Preliminaries

In order to establish superlinear convergence of generalized Newton methods for

nonsmooth equations, we need the concept of semismoothness. Semismoothness

was originally introduced by Mifflin [19] for functionals. Convex functions, smooth

functions, and piecewise linear functions are examples of semismooth functions.

The composition of semismooth functions is still a semismooth function [19]. Semi-

smooth functionals play an important role in the global convergence theory of non-

smooth optimization. In [26], Qi and Sun extended the definition of semismooth

functions to vector-valued functions. Let F : R
n → R

m be a locally Lipschitz

continuous function. According to Rademacher’s Theorem, F is differentiable al-

most everywhere. Let DF be the set of differentiable points of F and let F ′ be the

Jacobian of F whenever it exists. Denote

∂BF (x) := {V ∈ R
m×n| V = lim

xk→x
F ′(xk), xk ∈ DF}.

28
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Then Clarke’s generalized Jacobian [10] is

∂F (x) = conv{∂BF (x)},

where “conv” stands for the convex hull in the usual sense of convex analysis [27].

Definition 2. Suppose that F : Rn → Rm is a locally Lipschitz continuous func-

tion. F is said to be semismooth at x ∈ Rn if F is directionally differentiable at x

and for any V ∈ ∂F (x + ∆x),

F (x + ∆x) − F (x) − V (∆x) = o(‖∆x‖). (3.1)

F is said to be p−order (0 < p < ∞) semismooth at x if F is semismooth at x and

F (x + ∆x) − F (x) − V (∆x) = O(‖∆x‖1+p). (3.2)

In particular, F is called strongly semismooth at x if F is 1-order semismooth at

x.

A function F is said to be a (strongly) semismooth function if it is (strongly)

semismooth everywhere on Rn. The next result [29, Theorem 3.7] provides a

convenient tool for proving strong semismoothness.

Theorem 3.1. Suppose that F : Rn → Rm is locally Lipschitzian and directionally

differentiable in a neighborhood of x. Then for any p ∈ (0,∞) the following two

statements are equivalent:

(a) for any V ∈ ∂F (x + ∆x),

F (x + ∆x) − F (x) − V (∆x) = O(‖∆x‖1+p); (3.3)

(b) for any x + ∆x ∈ DF ,

F (x + ∆x) − F (x) − F ′(x + ∆x)(∆x) = O(‖∆x‖1+p). (3.4)

Later we will use (b) to prove the p−order (0 < p < ∞) semismoothness of gκ(ε, x).
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3.2 Semismoothness of gκ(ε, x)

We have

gκ(ε, x) =






fκ(ε, x), ε > 0

fκ(x), ε = 0

fκ(−ε, x), ε < 0.

(3.5)

where gκ(·, ·) : R × Rn → R, fκ(x) is in the form of (2.2) and fκ(ε, x) is in the

form of (2.13). Before discussing semismoothness of gκ(ε, x), we will first introduce

some lemmas.

Lemma 3.2. gκ(ε, x) is Lipschitz continuous on R × Rn.

Proof. i) When ε > 0 and τ > 0, we have

|gκ(ε, x) − gκ(τ, y)| =
∣∣∣
∫ 1

0

∇gκ((ε + θ(ε − τ)), (x + θ(x − y)))dθ
∣∣∣

≤
∣∣∣∣(−r(v), v)

( ε − τ

x − y

)∣∣∣∣

≤
∥∥(−r(v), v)

∥∥
∥∥∥∥
( ε − τ

x − y

)∥∥∥∥

≤ M

∥∥∥∥
( ε − τ

x − y

)∥∥∥∥,

(3.6)

where M =
√

R2 + 1.

ii) When ε ≥ 0, τ ≥ 0 and at least one of them equals zero, we take limit on both

sides of (3.6), inequality (3.6) still holds.

iii) When at least one of ε, τ is negative, we have

|gκ(ε, x) − gκ(τ, y)| = |gκ(|ε|, x) − gκ(|τ |, y)|

≤ M

∥∥∥∥
( |ε| − |τ |

x − y

)∥∥∥∥

≤ M

∥∥∥∥
( |ε − τ |

x − y

)∥∥∥∥.

(3.7)
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Actually, gκ(ε, x) is globally Lipschitz continuous on R × Rn.

Lemma 3.3. gκ(ε, x) is directionally differentiable in a neighbourhood of (0, x).

Proof. Consider (∆ε, ∆x) ∈ R × R
n,

i) when ∆ε ≥ 0 and t > 0, denote by

ζ(t) :=
gκ(0 + t∆ε, x + t∆x) − g(0, x)

t
. (3.8)

According to the convexity of gκ(·, ·) on R+ × Rn, we have

ζ(t1) ≤ ζ(t2) ∀ 0 < t1 ≤ t2. (3.9)

From Lemma 3.2, there exists a constant C, such that |ζ(t)| ≤ C. Therefore

lim
t↓0

ζ(t) exists.

ii) When ∆ε < 0 and t > 0, we have

lim
t↓0

ζ(t) = lim
t↓0

gκ(0 + t|∆ε|, x + t∆x) − g(0, x)

t
. (3.10)

According to case i), we know the existence of limt↓0 ζ(t).

For the simplicity of notation, we assume that vector x = (x1, . . . , xn)T is in the

non-increasing order, i.e.,

x1 ≥ · · · ≥ xr >

xr+1 = · · · = xκ = · · · = xr+t >

xr+t+1 ≥ · · · ≥ xn,

(3.11)

where t ≥ 1 and r ≥ 0 are integers. The multiplicity of the κth element is t. The

number of elements larger than xκ is r. Here r may be zero; in particular this must

be the case if κ = 1. Note that by definition

r + 1 ≤ κ ≤ r + t ≤ n,

so t ≥ κ − r. Also, t = 1 implies that κ = r + 1.
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Lemma 3.4. If x = (x1, . . . , xn)T is in the order of (3.11), then for any (∆ε, ∆x) →
0 with ∆ε > 0, we have

lim
(∆ε,∆x)→(0+,0)

sup α(∆ε, x + ∆x) ≤ x1 (3.12)

and

lim
(∆ε,∆x)→(0+,0)

inf α(∆ε, x + ∆x) ≥ xn, (3.13)

where α is in the form of (2.17).

Proof. Suppose by contrary that (3.12) does not hold. Then there exists a sequence

{(∆εk, ∆xk)} with (∆εk, ∆xk) → (0+, 0) such that

lim
k→∞

α(∆εk, x + ∆xk) > x1. (3.14)

According to (2.16), we have

vi(∆εk, x + ∆xk) =
1

1 + e
α(∆εk,x+∆xk)−(xi+∆xk

i
)

∆εk

, for i = 1, . . . , n. (3.15)

By noting that x = (x1, . . . , xn)T is in the order of (3.11), the inequality (3.14) and

the equation(3.15), we have

lim
k→∞

vi(∆εk, x + ∆xk) = 0, for i = 1, . . . , n, (3.16)

which contradicts to

n∑

i=1

vi(∆εk, x + ∆xk) = κ, where κ ∈ {1, 2, . . . , n − 1}. (3.17)

Therefore, (3.12) holds.

Suppose by contrary that (3.13) does not hold. Then there exists a sequence

{(∆εj, ∆xj)} with (∆εj, ∆xj) → (0+, 0) such that

lim
j→∞

α(∆εj, x + ∆xj) < xn. (3.18)
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According to (2.16), we have

vi(∆εj , x + ∆xj) =
1

1 + e
α(∆εj ,x+∆xj)−(xi+∆x

j
i
)

∆εj

, for i = 1, . . . , n. (3.19)

By noting that x = (x1, . . . , xn)T is in the order of (3.11), the inequality (3.18) and

the equation(3.19), we have

lim
j→∞

vi(∆εj , x + ∆xj) = 1, for i = 1, . . . , n, (3.20)

which contradicts to

n∑

i=1

vi(∆εj, x + ∆xj) = κ, where κ ∈ {1, 2, . . . , n − 1}. (3.21)

Therefore, (3.13) holds.

Now we are ready to give out the most important result of this chapter:

Theorem 3.5. gκ(ε, x) is p-order (0 < p < ∞) semismooth at (0, x) ∈ R × Rn.

Proof. First we need to prove that for any (∆ε, ∆x) → 0 with ∆ε > 0 we have

gκ(0+∆ε, x+∆x)−gκ(0, x)−∇gκ(0+∆ε, x+∆x)T


 ∆ε

∆x


 = O




∥∥∥∥∥∥


 ∆ε

∆x




∥∥∥∥∥∥

1+p
 .

(3.22)

Suppose by contrary that (3.22) is not true. Then there exists a sequence {(∆εj, ∆xj)}
with (∆εj , ∆xj) → 0 and ∆εj > 0 for each j, such that

lim
(∆εj ,∆xj)→(0+,0)

∥∥∥∥gκ(0 + ∆εj, x + ∆xj) − gκ(0, x) −∇gκ(0 + ∆εj, x + ∆xj)T

(
∆εj

∆xj

)∥∥∥∥

‖(∆εj, (∆xj)T )‖1+p

= +∞.

(3.23)
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By lemma 3.4, we obtain {α(∆εj, x+∆xj)} is bounded from both sides. By taking

a subsequence if necessary, we can assume that there exists ᾱ, such that

lim
j→∞

α(∆εj, x + ∆xj) = ᾱ. (3.24)

Since ∆ε > 0, we have

gκ(0 + ∆εj, x + ∆xj) = fκ(0 + ∆εj , x + ∆xj), (3.25)

and

∇gκ(0+∆εj, x+∆xj) = ∇fκ(0+∆εj, x+∆xj) =


 −r(v(0 + ∆εj , x + ∆xj))

v(0 + ∆εj , x + ∆xj)


 .

(3.26)

By definition of gκ(·, ·) (2.38), we know

gκ(0, x) = fκ(x). (3.27)

By substituting (3.25), (3.26) and (3.27) to the left hand side of (3.22), we obtain

fκ(0 + ∆εj, x + ∆xj) − fκ(x) −∇fκ(0 + ∆εj , x + ∆xj)T


 ∆εj

∆xj




= xT v(∆εj, x + ∆xj) − xT v(0, x), (3.28)

where v(0, x) is in the form of (2.3). By using the equation (2.16) and (2.17), we

have

vi(∆εj, x + ∆xj) =
1

1 + e
α(∆εj ,x+∆xj)−(xi+∆x

j
i
)

∆εj

, i = 1, . . . , n, (3.29)

where
n∑

i=1

vi(∆εj , x + ∆xj) =
n∑

i=1

1

1 + e
α(∆εj ,x+∆xj)−(xi+∆x

j
i
)

∆εj

= κ. (3.30)

For the simplicity of notation, we assume vector x = (x1, . . . , xn)T is in the order

of (3.11).
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• Case 1): t = 1, i.e., the multiplicity of the κth element is 1:

x1 ≥ · · · ≥ xκ−1 > xκ > xκ+1 ≥ xκ+2 ≥ · · · ≥ xn. (3.31)

We shall prove that in this case ᾱ must satisfy:

xκ ≥ ᾱ ≥ xκ+1. (3.32)

If ᾱ > xκ, then ᾱ > xκ > xκ+1 ≥ · · · ≥ xn. From (3.29), we have

lim
j→∞

vi(∆εj , x + ∆xj) = 0, for i = κ, . . . , n.

Since
n∑

i=1

vi(∆εj, x + ∆xj) = κ, we obtain

lim
j→∞

κ−1∑

i=1

vi(∆εj, x + ∆xj) = κ − lim
j→∞

n∑

i=κ

vi(∆εj, x + ∆xj) = κ, (3.33)

which contradicts to

0 < vi(∆εj, x + ∆xj) < 1.

Therefore the left hand side inequality of (3.32) holds.

If ᾱ < xκ+1, then x1 ≥ · · · ≥ xκ−1 > xκ > xκ+1 > α, we have

lim
j→∞

vi(∆εj, x + ∆xj) = 1, for i = 1, . . . , κ + 1.

Therefore

lim
j→∞

κ+1∑

i=1

vi(∆εj, x + ∆xj) = κ + 1. (3.34)

But on the other hand, we know

0 < vi(∆εj, x + ∆xj) < 1,

n∑

i=1

vi(∆εj, x + ∆xj) = κ,

which is contradictory to (3.34). Therefore the right hand side inequality of (3.32)

holds. So the inequality (3.32) holds.
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• Case 1.1): ᾱ = xκ. From (3.29) and (3.31), we have

vi(∆εj, x + ∆xj) = 1 − O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = 1, . . . , κ − 1.

and

vi(∆εj , x + ∆xj) = O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 , for i = κ + 1, . . . , n.

From (3.30), we have

κ−1∑

i=1

vi(∆εj , x + ∆xj) + vκ(∆εj , x + ∆xj) +

n∑

i=κ+1

vi(∆εj, x + ∆xj) = κ.

Hence,

vκ(∆εj, x + ∆xj) = 1 − O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 .

and

n∑

i=1

xivi(∆εj , x + ∆xj) −
n∑

i=1

xivi(0, x)

=

κ∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) +

n∑

i=κ+1

xi(vi(∆εj, x + ∆xj) − 0)

= O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 ,

(3.35)

which contradicts to (3.23).

• Case 1.2): xκ > ᾱ > xκ+1. From (3.29) and (3.31), we have

vi(∆εj, x + ∆xj) = 1 − O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = 1, . . . , κ,

and

vi(∆εj , x + ∆xj) = O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = κ + 1, . . . , n.
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. Thus,

n∑

i=1

xivi(∆εj , x + ∆xj) −
n∑

i=1

xivi(0, x)

=

κ∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) +

n∑

i=κ+1

xi(vi(∆εj, x + ∆xj) − 0)

= O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 ,

(3.36)

which contradicts to (3.23).

• Case 1.3): ᾱ = xκ+1. From (3.29), (3.30) and (3.31), we have

vi(∆εj, x + ∆xj) = 1 − O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = 1, . . . , κ,

and

κ∑

i=1

vi(∆εj , x + ∆xj) +

n∑

i=κ+1

vi(∆εj, x + ∆xj) = κ.

Thus,

n∑

i=κ+1

vi(∆εj, x + ∆xj) = κ −
κ∑

i=1

vi(∆εj, x + ∆xj) = O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 .

Since 0 < vi(∆εj, x + ∆xj) < 1, we have

vi(∆εj , x + ∆xj) = O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = κ + 1, . . . , n.

Therefore,

n∑

i=1

xivi(∆εj , x + ∆xj) −
n∑

i=1

xivi(0, x)

=

κ∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) +

n∑

i=κ+1

xi(vi(∆εj, x + ∆xj) − 0)

= O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 ,

(3.37)
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which contradicts to (3.23).

• Case 2): t > 1, i.e., the multiplicity of the κth element is larger than 1:

x1 ≥ · · · ≥ xr >

xr+1 = · · · = xκ = · · · = xr+t >

xr+t+1 ≥ · · · ≥ xn.

(3.38)

We shall prove that in this case ᾱ must satisfy:

xκ ≥ ᾱ ≥ xr+t+1. (3.39)

If ᾱ > xκ, then ᾱ > xr+1 = · · · = xκ = · · · = xr+t > xr+t+1 ≥ · · · ≥ xn. From

(3.29), we have

lim
j→∞

vi(∆εj, x + ∆xj) = 0, for i = r + 1, . . . , n.

Since
n∑

i=1

vi(∆εj, x + ∆xj) = κ, we obtain

lim
j→∞

r∑

i=1

vi(∆εj, x + ∆xj) = κ − lim
j→∞

n∑

i=r+1

vi(∆εj , x + ∆xj) = κ. (3.40)

From r ≤ κ − 1, we know (3.40) contradicts to

0 < vi(∆εj, x + ∆xj) < 1.

Therefore the left hand side inequality of (3.39) holds.

If xr+t+1 > ᾱ, then x1 ≥ · · · ≥ xr > xr+1 = · · · = xr+t > xr+t+1 > ᾱ. From (3.29),

we have

lim
j→∞

vi(∆εj, x + ∆xj) = 1, for i = 1, . . . , r + t + 1.

Therefore

lim
j→∞

r+t+1∑

i=1

vi(∆εj, x + ∆xj) ≥ κ + 1. (3.41)
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But on the other hand, we know

0 < vi(∆εj, x + ∆xj) < 1,
n∑

i=1

vi(∆εj, x + ∆xj) = κ,

which is contradictory to (3.41). Therefore the right hand side inequality of (3.39)

holds. So the inequality (3.39) holds.

• Case 2.1): κ = r + t, i.e.,

x1 ≥ · · · ≥ xr > xr+1 = · · · = xκ > xκ+1 ≥ · · · ≥ xn. (3.42)

According to (3.39), we have

xκ ≥ ᾱ ≥ xκ+1. (3.43)

• Case 2.1.1): ᾱ = xκ. From (3.29) and (3.43), we have

vi(∆εj , x + ∆xj) = 1 − O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = 1, . . . , r

and

vi(∆εj , x + ∆xj) = O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = κ + 1, . . . , n.

Hence, from

r∑

i=1

vi(∆εj, x + ∆xj) +
κ∑

i=r+1

vi(∆εj, x + ∆xj) +
n∑

i=κ+1

vi(∆εj , x + ∆xj) = κ,

we get

κ∑

i=r+1

vκ(∆εj, x + ∆xj) = (κ − r) − O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 .
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Thus,

n∑

i=1

xivi(∆εj, x + ∆xj) −
n∑

i=1

xivi(0, x)

=

r∑

i=1

xi(vi(∆εj, x + ∆xj) − 1) + xκ(

κ∑

i=r+1

vi(∆εj , x + ∆xj) −
κ∑

r+1

v(0, x))

+
n∑

i=κ+1

xi(vi(∆εj , x + ∆xj) − 0)

= O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 ,

(3.44)

which contradicts to (3.23).

• Case 2.1.2): xκ > ᾱ > xκ+1. From (3.29), we have

vi(∆εj, x + ∆xj) = 1 − O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 , for i = 1, . . . , κ

and

vi(∆εj , x + ∆xj) = O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 , for i = κ + 1, . . . , n.

Thus

n∑

i=1

xivi(∆εj , x + ∆xj) −
n∑

i=1

xivi(0, x)

=

κ∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) +

n∑

i=κ+1

xi(vi(∆εj, x + ∆xj) − 0)

= O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 ,

(3.45)

which contradicts to (3.23).

• Case 2.1.3): ᾱ = xκ+1. From (3.29) and (3.30), we have

vi(∆εj, x + ∆xj) = 1 − O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 , for i = 1, . . . , κ.
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Since
κ∑

i=1

vi(∆εj , x + ∆xj) +
n∑

i=κ+1

vi(∆εj, x + ∆xj) = κ,

we obtain

n∑

i=κ+1

vi(∆εj, x + ∆xj) = κ −
κ∑

i=1

vi(∆εj, x + ∆xj) = O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 .

From 0 < vi(∆εj , x + ∆xj) < 1, we have

vi(∆εj , x + ∆xj) = O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 , for i = κ + 1, . . . , n.

Thus,

n∑

i=1

xivi(∆εj , x + ∆xj) −
n∑

i=1

xivi(0, x)

=

κ∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) +

n∑

i=κ+1

xi(vi(∆εj, x + ∆xj) − 0)

= O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 ,

(3.46)

which contradicts to (3.23).

• Case 2.2): κ < r + t, i.e.,

x1 ≥ · · · ≥ xr >

xr+1 = · · · = xκ = · · · = xr+t >

xr+t+1 ≥ · · · ≥ xn.

(3.47)

We shall prove that in this case

xκ ≥ ᾱ > xr+t+1. (3.48)

According to (3.43), we only need to prove that ᾱ > xr+t+1.

If ᾱ = xr+t+1, then

x1 ≥ · · · ≥ xr > xr+1 = · · · = xκ = · · · = xr+t > ᾱ.
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Hence, from (3.29) we have

lim
j→∞

vi(∆εj, x + ∆xj) = 1, for i = 1, . . . , r + t.

Therefore,

lim
j→∞

n∑

i=1

vi(∆εj , x + ∆xj) ≥ r + t > κ (3.49)

which is contradictory to (3.30).

From (3.29), (3.47) and (3.48), we have

vi(∆εj, x + ∆xj) = 1 − O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 , for i = 1, . . . , r,

and

vi(∆εj , x + ∆xj) = O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 , for i = r + t + 1, . . . , n.

According to (3.30),

r∑

i=1

vi(∆εj, x + ∆xj) +

r+t∑

i=r+1

vi(∆εj, x + ∆xj) +

n∑

i=r+t+1

vi(∆εj , x + ∆xj) = κ.

Hence,

r+t∑

i=r+1

vi(∆εj, x + ∆xj) = (κ − r) − O





∥∥∥∥∥∥



 ∆εj

∆xj





∥∥∥∥∥∥

1+p

 . (3.50)
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Thus, by (3.29), (3.47), (3.48) and (3.50),

n∑

i=1

xivi(∆εj , x + ∆xj) −
n∑

i=1

xivi(0, x)

=
r∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) +
r+t∑

i=r+1

xi(vi(∆εj, x + ∆xj) − vi(0, x))

+
n∑

i=r+t+1

xi(vi(∆εj, x + ∆xj) − 0)

=

r∑

i=1

xi(vi(∆εj , x + ∆xj) − 1) + xκ(

r+t∑

i=r+1

vi(∆εj, x + ∆xj) −
r+t∑

i=r+1

vi(0, x))

+
n∑

i=r+t+1

xi(vi(∆εj, x + ∆xj) − 0)

= O




∥∥∥∥∥∥


 ∆εj

∆xj




∥∥∥∥∥∥

1+p
 ,

(3.51)

which contradicts to (3.23).

We have proved all situations for ∆ε > 0 that (3.22) holds. Then we will show

that in the following two cases, (3.22) still holds.

Next, by (3.22), for any (∆ε, ∆x) → 0 with ∆ε < 0 and the definition of gκ(·, ·),
we have

gκ(0 + ∆ε, x + ∆x) − gκ(0, x) −∇gκ(0 + ∆ε, x + ∆x)T



 ∆ε

∆x



 (3.52)

= gκ(0 + |∆ε|, x + ∆x) − gκ(0, x) −∇gκ(0 + |∆ε|, x + ∆x)T


 −∆ε

∆x


 (3.53)

= gκ(0 + |∆ε|, x + ∆x) − gκ(0, x) −∇gκ(0 + |∆ε|, x + ∆x)T


 |∆ε|

∆x




= O

(∥∥∥∥
(

∆ε

∆x

)∥∥∥∥
p+1)

.

(3.54)

Thus, the equation (3.22) holds for any (∆ε, ∆x) → (0, 0) with ∆ε < 0.
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Finally, we consider the case that (∆ε, ∆x) → (0, 0) with ∆ε = 0.

Suppose that at the point (0, x + ∆x), gκ(·, ·) is differentiable (in the sense

of Fréchet). Denote by y := x + ∆x. Since gκ(·, ·) is differentiable at (0, y),

∀ (∆τ, ∆y) ∈ R × Rn, we have

gκ(∆τ, y + ∆y) − gκ(0, y) −



 ∇τgκ(0, y)

∇ygκ(0, y)




T 

 ∆τ

∆y



 = o





∥∥∥∥∥∥



 ∆τ

∆y





∥∥∥∥∥∥



 .

(3.55)

In particular, we set ∆τ = 0, then the left hand side of (3.55) is

gκ(0, y + ∆y) − gκ(0, y) −


 ∇τgκ(0, y)

∇ygκ(0, y)




T 
 0

∆y




= gκ(0, y + ∆y) − gκ(0, y) −∇ygκ(0, y)T∆y

= fκ(y + ∆y) − fκ(y) −∇ygκ(0, y)T∆y.

(3.56)

Thus, we have

fκ(y + ∆y) − fκ(y) −∇ygκ(0, y)T∆y = o(‖∆y‖), (3.57)

which means fκ(y) is differentiable (in the sense of Fréchet) at y, with ∇fκ(y) =

∇ygκ(0, y), i.e.,

∇fκ(x + ∆x) = ∇xgκ(0, x + ∆x). (3.58)

Thus, for ∆ε = 0, we have

gκ(∆ε, x + ∆x) − gκ(0, x) −


 ∇εgκ(∆ε, x + ∆x)

∇xgκ(∆ε, x + ∆x)




T 
 ∆ε

∆x




= gκ(0, x + ∆x) − gκ(0, x) −∇xgκ(0, x + ∆x)T ∆x

= fκ(x + ∆x) − fκ(x) −∇fκ(x + ∆x)T ∆x.

(3.59)

Since fκ(x) is a piecewise linear function, it is p-order semismooth, i.e.,

fκ(x + ∆x) − fκ(x) −∇fκ(x + ∆x)T ∆x = O(‖∆x‖1+p) = O

(∥∥∥∥
(

0

∆x

)∥∥∥∥
1+p)

.

(3.60)
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We obtain

gκ(0, x+∆x)−gκ(0, x)−∇gκ(0, x+∆x)T


 0

∆x


 = O

(∥∥∥∥
(

0

∆x

)∥∥∥∥
1+p)

. (3.61)

Overall, we have proved that (3.22) holds at (∆ε, ∆x) → 0. Hence by Lemma

3.2, 3.3, equation (3.22) and Theorem 3.1, we obtain gκ(ε, x) is p-order semismooth

at (0, x) ∈ R × Rn.



Chapter 4

Smoothing Approximation to Eigenvalues

4.1 Spectral functions

4.1.1 Introduction

A function F on the space of n−by−n real symmetric matrices is called spectral

if it depends only on the eigenvalues of its argument. Spectral functions are just

symmetric functions of the eigenvalues. In this thesis we are interested in functions

F of a symmetric matrix argument that are invariant under orthogonal similarity

transformations:

F (UT AU) = F (A), for all U ∈ O and A ∈ S,

where O denotes the set of orthogonal matrices and S denotes the set of symmetric

matrices. Every such function can be decomposed as F (A) = (f ◦ λ)(A), where λ

is the map that gives the eigenvalues of the matrix A and f is a symmetric func-

tion. We call such functions F spectral functions (or just functions of eigenvalues)

because they depend only on the spectrum of the operator A. Therefore, we can re-

gard a spectral function as a composition of a symmetric function f : Rn → R and

the eigenvalue function λ(·) : S → Rn; that is, the spectral function (f ◦λ) : S → R

46



4.1 Spectral functions 47

is given by

(f ◦ λ)(X) := f(λ(X)) X ∈ S.

4.1.2 Preliminary results

Let O denote the group of n×n real orthogonal matrices. For each X ∈ Sn, define

the set of orthonormal eigenvectors of X by

OX := {P ∈ O|P T XP = Diag[λ(X)]}.

Clearly OX is nonempty for each X ∈ Sn.

Now we refer to the formula for the gradient of a differential spectral function [16].

Proposition 4.1. Let f be a symmetric function from R
n to R and X ∈ Sn. Then

the following holds:

(a) (f ◦ λ) is differentiable at point X if and only if f is differentiable at point

λ(X). In the case the gradient of (f ◦ λ) at X is given by

∇(f ◦ λ)(X) = UDiag[∇f(λ(X))]UT , ∀U ∈ OX . (4.1)

(b) (f ◦λ) is continuously differentiable at point X if and only if f is continuously

differentiable at point λ(X).

Lewis and Sendov [17] found a formula for calculating the Hessian of the spectral

function (f ◦ λ), when it exists, via calculating the Hessian of f . This facilitates

the numerical methods which need use second-order derivatives. Suppose that f

is twice differentiable at µ ∈ R
n. Define the matrix C(µ) ∈ R

n×n:

(C(µ))ij :=






0 if i = j

(∇2f(µ))ii − (∇2f(µ))ij if i 6= j and µi = µj

(∇f(µ))i − (∇f(µ))j

µi − µj

else.

(4.2)
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It is easy to see that C(µ) is symmetric due to the symmetry of f . The following

result is proved by Lewis and Sendov [17, Theorem 3.3, 4.2].

Proposition 4.2. Let f : Rn → R be symmetric. Then for any X ∈ Sn, it holds

that (f ◦ λ) is twice (continuously) differentiable at X if and only if f is twice

(continuously) differentiable at λ(X). Moreover, in this case the Hessian of the

spectral function at X is

∇2(f ◦ λ)(X)[H ] = U(Diag[∇2f(λ(X))diag[H̃]] + C(λ(X)) ◦ H̃)UT , ∀H ∈ Sn,

(4.3)

where U is any orthogonal matrix in OX and H̃ = UT HU .

Remark. U ∈ OX in formulae (4.1) and (4.3) can be any choice, such that

UT XU = Diag[λ(X)], and doesn’t depend on the particular choice.

4.2 Smoothing approximation

In chapter 2, we give the form

gκ(ε, x) =





fκ(ε, x), ε > 0

fκ(x), ε = 0

fκ(−ε, x), ε < 0.

(4.4)

to smoothing approximate to the sum of the κ largest components of x ∈ Rn, i.e.,

lim
ε→0,y→x

gκ(ε, y) = fκ(x)

= x[1] + · · ·+ x[κ].

We define function gκ(ε, λ(·)) as a composite function of gκ(ε, ·) : R×R
n → R and

the eigenvalue function λ(·) : Sn → Rn, i.e.,

gκ(ε, λ(X)), for any X ∈ Sn. (4.5)
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Since we have (2.34), i.e.,

0 ≤ fκ(x) − gκ(ε, x) ≤ εR,

we can easily get the well defined function gκ(ε, λ(X)) is an approximation to the

sum of the κ largest eigenvalues

0 ≤ (λ[1](X) + λ[2](X) + · · ·+ λ[κ](X)) − gκ(ε, λ(X)) ≤ εR (4.6)

where λ(X) ∈ Rn. We denote by λ[κ](X) the κth largest eigenvalue of X ∈ Sn, i.e.,

λ[1](X) ≥ λ[2](X) ≥ · · · ≥ λ[κ](X) ≥ · · · ≥ λ[n](X)

are the eigenvalues of X sorted in nonincreasing order.

Let

χκ(ε, X) := gκ(ε, λ(X)), (4.7)

we have the following results.

Theorem 4.3. Let ε > 0 be given. The function χκ(ε, ·) : Sn → R is continuously

differentiable, and the gradient of χκ(ε, ·) at X ∈ Sn is given by

∇Xχκ(ε, X) = QDiag[∇ςχκ(ε, ς)]Q
T = QDiag[v(ε, ς)]QT , (4.8)

with ς := λ(X), Q ∈ OX, and v(ε, ς) is the optimal solution to fκ(ε, ς), where

vi(ε, ς) =
1

1 + e
α(ε,ς)−ςi

ε

, for i = 1, . . . , n, (4.9)

and
n∑

i=1

1

1 + e
α(ε,ς)−ςi

ε

= κ. (4.10)

Proof. It follows from Theorem 2.3 that gκ(ε, ·) is continuous differentiable on

R++ ×R
n. Then we use Proposition 4.1, equation (4.1) to get the first equality of

(4.8). According to (2.36), we know

∇xfκ(ε, x) = v(ε, x),

so we get the second equality of (4.8). (4.9) and (4.10) are direct results.
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Theorem 4.4. The function χκ(·, ·) is continuously differentiable around (ε, X)

with ε 6= 0 and strongly semismooth at (0, X).

Proof. From Theorem 4.3, we know χκ(ε, ·) is continuously differentiable around

X when ε > 0 is fixed. According to the symmetric property of χκ(ε, ·), we can

easily get that χκ(ε, ·) is continuously differentiable around X when ε < 0 is fixed.

By Theorem 2.3, we know that χκ(·, X) is continuously differentiable around any

ε 6= 0 for any fixed X. So χκ(ε, X) is continuously differentiable around (ε, X) with

ε 6= 0. From Theorem 3.5, we know gκ(·, ·) is p-order semismooth at (0, x). The

recent result of Sun and Sun [30] shows that the eigenvalue function λ(·) is strongly

semismooth. Since χκ(ε, X) is the composite of gκ(ε, ·) and eigenvalue function

λ(X), and the composite of p-order semismooth functions is p-order semismooth

[12], we obtain that χκ(ε, X) is strongly semismooth at (0, X).

Theorem 4.4 is one of the most important results in this thesis. It shows

gκ(ε, λ(X)) is not only a smooth approximate function to the sum of the κ largest

eigenvalue functions but also strongly semismooth at (0, X). Let

φκ(ε, X) := gκ(ε, λ(X)) − gκ−1(ε, λ(X)) (4.11)

which is a smooth approximate function to the κth largest eigenvalue function.

Here (4.11) is also continuously differentiable around (ε, X) with ε 6= 0 and strongly

semismooth at (0, X).

Let A0, A1, . . . , Am ∈ Sn be given, and define an operator A : Rm → Sn by

Ay :=
m∑

i=1

yiAi, ∀y ∈ R
m, (4.12)

and

A(y) := A0 + Ay. (4.13)
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Definition 3. Define θκ(ε, ·) : R++ × Rm → R by

θκ(ε, y) := fκ(ε, λ(A(y))), ∀y ∈ R
m. (4.14)

According to Theorem 2.7, the following result holds:

Let ε > 0 be given, the function

θκ(ε, y) := fκ(ε, λ(A(y))), ∀y ∈ R
m

is continuously differentiable, and the gradient of θκ(ε, ·) at y ∈ Rm is given by

∇yθκ(ε, y) = A∗(U(Diag[∇ςfκ(ε, ς)])U
T )

= A∗(U(Diag[v(ε, ς)])UT ),
(4.15)

where U ∈ OA(y), A∗D = (〈A1, D〉, . . . , 〈Am, D〉)T , ς := λ(A(y)) and

vi(ε, ς) =
1

1 + e
α(ε,ς)−ςi

ε

, for i = 1, . . . , n (4.16)

n∑

i=1

1

1 + e
α(ε,ς)−ςi

ε

= κ. (4.17)

We will apply above results in the next chapter to solve the inverse eigenvalue

problems.



Chapter 5

Application in Inverse Eigenvalue

Problems

5.1 Introduction

5.1.1 Objective

An inverse eigenvalue problem concerns the reconstruction of a matrix from

prescribed spectral data. The spectral data involved may consist of the complete

or only partial information of eigenvalues or eigenvectors. The objective of an

inverse eigenvalue problem is to construct a matrix that maintains a certain specific

structure as well as that given spectral property.

Associated with any inverse eigenvalue problem are two fundamental questions–

the theoretic issue on solvability and the practical issue on computability. A major

effort in solvability has been to determine a necessary or a sufficient condition

under which an inverse eigenvalue problem has a solution. The main concern in

computability, on the other hand, has been to develop a procedure by which, know-

ing a priori that the given spectral data are feasible, a matrix can be constructed

numerically. Both questions are difficult and challenging.

52
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5.1.2 Application

Inverse eigenvalue problems arise in a remarkable variety of applications. The

list includes but is not limited to control design, system identification, seismic to-

mography, principal component analysis, exploration and remote sensing, antenna

array processing, geophysics, molecular spectroscopy, particle physics, structure

analysis, circuit theory, mechanical system simulation, and so on.

5.1.3 Diversity

Depending on the application, inverse eigenvalue problems may be described in

several different forms. Translated into mathematics, it is often necessary in order

that the inverse eigenvalue problem be meaningful, to restrict the construction to

special classes of matrices, especially to those with specified structures. A problem

without any restriction on the matrix is generally of little interest. The solution to

an inverse eigenvalue problem therefore should satisfy two constraints–the spectral

constraint referring to the prescribed spectral data and the structural constraint

referring to the desirable structure.

5.1.4 Overview

A collection of inverse eigenvalue problems are discussed by Moody T. Chu [9],

who discusses explicitly 37 inverse eigenvalue problems, current developments in

both the theoretic and the algorithmic aspects.
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5.2 Parameterized Inverse Eigenvalue Problem

5.2.1 Generic form

A generic Parameterized Inverse Eigenvalue Problem (PIEP) can be described as

follows:

Given a family of matrices A(c) ∈ M with c = [c1, . . . , cm] ∈ Fm and scalars

{λ1, . . . , λn} ⊂ F, find a parameter c such that λ(A(c)) = {λ1, . . . , λn}, where F

represents the scalar field of either real R or complex C, and M denotes certain

subsets of square matrices.

Note that the number m of parameters in c may be different from n. Depending

upon how the family of matrices A(c) is specifically defined in terms of c, the PIEP

can appear and be solved very differently. Inverse eigenvalue problems in the above

PIEP format arise frequently in discrete modeling [13, 15, 22] and factor analysis

[15]. A common feature of PIEP is that the parameter c is used as a “control”

that modulates to the underlying problem in a certain specific, predestined way.

5.2.2 Special case

The inclusion of PIEP is quite broad. We only discuss a special case. Let S be the

linear space of symmetric matrices of size n. Let A : Rn → S be continuously dif-

ferentiable. Given n real numbers {λ∗
i }n

i=1, which are arranged in the nonincreasing

order

λ∗
1 ≥ λ∗

2 ≥ · · · ≥ λ∗
n.

The Inverse Eigenvalue Problems (IEPs) is to find a vector c∗ ∈ R
n such that

λi(A(c∗)) = λ∗
i , for i = 1, · · · , n. A typical choice for A(c) is
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A(c) = A0 +
n∑

j=1

cjAj , (5.1)

where A0, A1, · · · , An ∈ S. In this case, A(c) is an affine function of c. Define

F : Rn → Rn by

F (c) =




λ1(A(c)) − λ∗
1

...

λn(A(c)) − λ∗
n


 (5.2)

Then the IEP is equivalent to find a c∗ ∈ R
n to be a solution of the following

equation

F (c) = 0.

It is well known that the eigenvalues of a symmetric matrix are strongly semi-

smooth everywhere. Let fκ(λ(A(c))) =
∑κ

i=1 λi(A(c)) be the sum of the κ largest

eigenvalues of symmetric matrix A(c), i.e.,

f1(λ(A(c))) = λ∗
1;

f2(λ(A(c))) = λ∗
1 + λ∗

2;

...

fn(λ(A(c))) = λ∗
1 + λ∗

2 + · · ·+ λ∗
n

(5.3)

We have a smooth function gκ(ε, λ(A(c))) which approaches fκ(λ(A(c))) when

ε → 0, i.e.,

gκ(ε, λ(A(c))) −→ λ∗
1 + · · ·λ∗

κ; when ε → 0 (5.4)

Let
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G(ε, c) =




g1(ε, λ(A(c))) − λ∗
1

g2(ε, λ(A(c))) − (λ∗
1 + λ∗

2)

...

gn−1(ε, λ(A(c))) −
n−1∑

i=1

λ∗
i

fn(λ(A(c))) −
n∑

i=1

λ∗
i




= 0, (5.5)

and define the auxiliary equation

E(ε, λ(A(c))) :=


 ε

G(ε, c)


 . (5.6)

Remark. In the last equation of (5.5), we use fn instead of gn, because fn(λ(A(c)))

is the sum of all eigenvalues of symmetric matrix A(c). It is already a smooth

function.

We can use some numerical method (eg. squared smoothing Newton method [31])

to solve equation (5.6). The following table shows the numerical results of IEPs

by using squared smoothing Newton method with the matrix Aj , for j = 0, . . . , n,

generated randomly. Each entry of Aj is uniformly distributed in the interval

[−1, 1].

n ‖λ − λ∗‖ iteration

4 0.0048 4

8 0.0051 47

10 0.0033 187

16 0.0050 856

30 0.0052 4396

(5.7)

Here n is dimension, λ is our computation result and λ∗ is given.
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