Strong Semismoothness of the Fischer-Burmeister SDC and SOC Complementarity Functions

Defeng Sun ${ }^{1}$
Department of Mathematics
National University of Singapore, Republic of Singapore
Jie Sun ${ }^{2}$
School of Business and Singapore-MIT Alliance
National University of Singapore, Republic of Singapore

December 26, 2002; Revised May 12, 2004

Abstract

We show that the Fischer-Burmeister complementarity functions, associated to the semidefinite cone (SDC) and the second order cone (SOC), respectively, are strongly semismooth everywhere. Interestingly enough, the proof stems in a relationship between the singular value decomposition of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix.

Keywords: Fischer-Burmeister function, SDC, SOC, SVD, strong semismoothness

AMS subject classifications: $90 \mathrm{C} 33,90 \mathrm{C} 22,65 \mathrm{~F} 15,65 \mathrm{~F} 18$

1. The author's research was partially supported by Grant R146-000-035-101 of National University of Singapore, E-mail: matsundf@nus.edu.sg. Fax: 65-6779 5452.
2. The author's research was partially supported by Grant R314-000-042/057-112 of National University of Singapore and a grant from the Singapore-MIT Alliance. E-mail: jsun@nus.edu.sg.

1 Introduction

Let $\mathcal{M}_{p, q}$ be the linear space of $p \times q$ real matrices. We denote the $i j$ th entry of $A \in \mathcal{M}_{p, q}$ by $A_{i j}$. For any two matrices A and B in $\mathcal{M}_{p, q}$, we write

$$
A \bullet B:=\sum_{i=1}^{p} \sum_{j=1}^{q} A_{i j} B_{i j}=\operatorname{tr}\left(A B^{T}\right)
$$

for the Frobenius inner product between A and B, where "tr" denotes the trace of a matrix. The Frobenius norm induced by the above inner product on $\mathcal{M}_{p, q}$ is defined as $\|A\|_{\mathcal{F}}:=\sqrt{A \bullet A}$. The identity matrix in $\mathcal{M}_{p, p}$ is denoted by I.

Let \mathcal{S}^{p} be the linear space of $p \times p$ real symmetric matrices; let \mathcal{S}_{+}^{p} denote the cone of $p \times p$ symmetric positive semidefinite matrices. For any vector $y \in \Re^{p}$, let $\operatorname{diag}\left(y_{1}, \ldots, y_{p}\right)$ denote the $p \times p$ diagonal matrix with its i th diagonal entry being y_{i}. We write $X \succeq 0$ to mean that X is a symmetric positive semidefinite matrix. Throughout this paper, we let X_{+}denote the (Frobenius) projection of $X \in \mathcal{S}^{p}$ onto \mathcal{S}_{+}^{p}. The projection X_{+}has an explicit representation; namely, if

$$
\begin{equation*}
X=P \Lambda(X) P^{T}, \tag{1}
\end{equation*}
$$

where $\Lambda(X):=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is the diagonal matrix of eigenvalues of X and P is the corresponding orthogonal matrix of orthonormal eigenvectors, then $X_{+}=P \Lambda(X)_{+} P^{T}$, where $\Lambda(X)_{+}:=$ $\operatorname{diag}\left(\max \left(\lambda_{1}, 0\right), \ldots, \max \left(\lambda_{p}, 0\right)\right)$. If $X \in \mathcal{S}_{+}^{p}$, then we use $\sqrt{X}:=P \sqrt{\Lambda(X)} P^{T}$ to denote the square root of X, where X has the spectral decomposition (1) and $\sqrt{\Lambda(X)}:=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{p}}\right)$. For $X \in \mathcal{S}^{p}$, we let $|X|:=\sqrt{X^{2}}$.
A function $\Phi^{\text {sdc }}: \mathcal{S}^{p} \times \mathcal{S}^{p} \rightarrow \mathcal{S}^{p}$ is called a semidefinite cone (SDC) complementarity function if

$$
\begin{equation*}
\Phi^{\mathrm{sdc}}(X, Y)=0 \Longleftrightarrow \mathcal{S}_{+}^{p} \ni X \perp Y \in \mathcal{S}_{+}^{p}, \tag{2}
\end{equation*}
$$

where the symbol \perp means "perpendicular under the Frobenius matrix inner product"; i.e., $X \perp$ $Y \Leftrightarrow X \bullet Y=0$ for any two matrices X and Y in \mathcal{S}^{p}. Of particular interest are two SDC complementarity functions

$$
\begin{equation*}
\Phi_{\min }^{\mathrm{sdc}}(X, Y):=X-(X-Y)_{+} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{\mathrm{FB}}^{\mathrm{sdc}}(X, Y):=X+Y-\sqrt{X^{2}+Y^{2}} . \tag{4}
\end{equation*}
$$

The function $\Phi_{\text {min }}^{\text {sdc }}$ is called the matrix-valued min-function. It is known that $\Phi_{\text {min }}^{\text {sdc }}$ is globally Lipschitz continuous, directionally differentiable [1], and strongly semismooth [15] (see [14] for the definition of strong semismoothness). Strong semismoothness plays a fundamental role in the analysis of the quadratic convergence of Newton's method for solving systems of nonsmooth equations [13, 14]. Newton-type methods for solving the semidefinite programming and the semidefinite complementarity problem based on a smoothed form of $\Phi_{\min }^{\text {sdc }}$ are discussed in $[4,5,12,17]$.

The function $\Phi_{\mathrm{FB}}^{\mathrm{sdc}}$ is called the matrix-valued Fischer-Burmeister function. When $p=1, \Phi_{\mathrm{FB}}^{\mathrm{sdc}}$ reduces to the scalar-valued Fischer-Burmeister function $\phi_{\mathrm{FB}}(a, b):=a+b-\sqrt{a^{2}+b^{2}}, a, b \in \Re$, which is introduced by Fischer [8]. In [18], Tseng proves that $\Phi_{\mathrm{FB}}^{\text {sdc }}$ satisfies (2). Borwein and Lewis also suggest a proof in their recent book [2, Exercise 5.2.11]. A desirable property of $\Phi_{\mathrm{FB}}^{\text {sdc }}$ is its continuous differentiability [18]. For other properties of SDC complementarity functions, see [18, 19].

The primary motivation of this paper is to prove that $\Phi_{\mathrm{FB}}^{\text {sdc }}$ is globally Lipschitz continuous, directionally differentiable, and strongly semismooth. This goal is achieved in Section 2 by using a relationship between the singular value decomposition of a nonsymmetric matrix and the spectral decomposition of a symmetric matrix in higher dimension and by using the same properties of the function $|Y|, Y \in \mathcal{S}^{p}$, obtained in [15]. We then proceed to study similar properties of the vector-valued complementarity functions associated with the second order cone (SOC) in Section 3.

2 Strong Semismoothness of $\Phi_{\mathrm{FB}}^{\text {sdc }}$

Let $A \in M_{n, m}$ and assume $n \leq m$. Then there exist orthogonal matrices $U \in \mathcal{M}_{n, n}$ and $V \in \mathcal{M}_{m, m}$ such that A has the following singular value decomposition (SVD)

$$
U^{T} A V=\left[\begin{array}{ll}
\Sigma(A) & 0 \tag{5}
\end{array}\right],
$$

where $\Sigma(A)=\operatorname{diag}\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right)$ and $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \ldots \geq \sigma_{n}(A) \geq 0$ are singular values of A [11, Chapter 2]. Write $V \in \mathcal{M}_{m, m}$ in the form $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$, where $V_{1} \in \mathcal{M}_{m, n}$ and $V_{2} \in \mathcal{M}_{m, m-n}$. We define the orthogonal matrix $Q \in \mathcal{M}_{n+m, n+m}$ by

$$
Q:=\frac{1}{\sqrt{2}}\left[\begin{array}{rrr}
U & U & 0 \tag{6}\\
V_{1} & -V_{1} & \sqrt{2} V_{2}
\end{array}\right] .
$$

Define the following matrix valued function $G^{\text {mat }}: \mathcal{M}_{n, m} \rightarrow \mathcal{S}^{n}$ by

$$
\begin{equation*}
G^{\mathrm{mat}}(A):=\sqrt{A A^{T}}=U \operatorname{diag}\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right) U^{T} \tag{7}
\end{equation*}
$$

where $A \in \mathcal{M}_{n, m}$ has the SVD as in (5). Define two linear operators $\Xi: \mathcal{M}_{n, m} \rightarrow \mathcal{S}^{n+m}$ and $\pi: \mathcal{S}^{n+m} \rightarrow \mathcal{S}^{n}$ by

$$
\Xi(B):=\left[\begin{array}{cc}
0 & B \tag{8}\\
B^{T} & 0
\end{array}\right], \quad B \in \mathcal{M}_{n, m}
$$

and

$$
\begin{equation*}
(\pi(W))_{i j}:=W_{i j}, i, j=1, \ldots, n, W \in \mathcal{S}^{n+m} \tag{9}
\end{equation*}
$$

respectively. Then, by [11, Section 8.6], when $A \in \mathcal{M}_{n, m}$ has an SVD as in (5) and Q is defined in (6), the matrix $\Xi(A)$ has the following spectral decomposition:

$$
\Xi(A)=Q\left[\begin{array}{ccc}
\Sigma(A) & 0 & 0 \tag{10}\\
0 & -\Sigma(A) & 0 \\
0 & 0 & 0
\end{array}\right] Q^{T}
$$

i.e., the eigenvalues of $\Xi(A)$ are $\pm \sigma_{i}(A), i=1, \ldots, n$, and 0 of multiplicity $m-n$. Thus, $\sigma_{i}(A)=$ $\lambda_{i}(\Xi(A)), i=1, \ldots, n$, where $\lambda_{i}(\Xi(A))$ is the i th largest eigenvalue of $\Xi(A)$. This, together with the linearity of $\Xi(\cdot)$ and Theorem 4.7 in [16] on the strong semismoothness of eigenvalue functions of symmetric matrices, shows that $\sigma_{1}(\cdot), \ldots, \sigma_{n}(\cdot)$ are strongly semismooth everywhere in $\mathcal{M}_{n, m}$. In a similar way to [16], the strong semismoothness of the singular value functions can be used to study the quadratic convergence of generalized Newton methods for solving inverse singular value problems. For a survey on inverse eigenvalue and singular value problems, see [7].

Proposition 2.1 Suppose that $A \in \mathcal{M}_{n, m}$ has an $S V D$ as in (5). Then it holds that

$$
\begin{equation*}
G^{\mathrm{mat}}(A)=\pi(|\Xi(A)|) . \tag{11}
\end{equation*}
$$

Proof. By (6) and (10), we have

$$
\begin{aligned}
|\Xi(A)| & =\frac{1}{2}\left[\begin{array}{ccc}
U & U & 0 \\
V_{1} & -V_{1} & \sqrt{2} V_{2}
\end{array}\right]\left[\begin{array}{ccc}
|\Sigma(A)| & 0 & 0 \\
0 & |-\Sigma(A)| & 0 \\
0 & 0 & |0|
\end{array}\right]\left[\begin{array}{cc}
U^{T} & V_{1}^{T} \\
U^{T} & -V_{1}^{T} \\
0 & \sqrt{2} V_{2}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
U \Sigma(A) U^{T} & 0 \\
0 & V_{1} \Sigma(A) V_{1}^{T}
\end{array}\right] .
\end{aligned}
$$

Thus, $\pi(|\Xi(A)|)=U \Sigma(A) U^{T}=G^{\text {mat }}(A)$.
The next theorem is our main result of this section.

Theorem 2.2 The function $G^{\text {mat }}: \mathcal{M}_{n, m} \rightarrow \mathcal{S}^{n}$ defined by (7) is globally Lipschitz continuous, continuously differentiable around any $A \in \mathcal{M}_{n, m}$ of full row rank, and strongly semismooth everywhere in $\mathcal{M}_{n, m}$.

Proof. First, by Proposition 2.1, for any $A, B \in \mathcal{M}_{n, m}$, we have

$$
\left\|G^{\text {mat }}(A)-G^{\text {mat }}(B)\right\|_{\mathcal{F}}=\|\pi(|\Xi(A)|-|\Xi(B)|)\|_{\mathcal{F}} \leq \sqrt{2\|A-B\|_{\mathcal{F}}^{2}},
$$

which proves that $G^{\text {mat }}$ is globally Lipschitz continuous.
Second, the continuous differentiability of $G^{\text {mat }}$ around any $A \in \mathcal{M}_{n, m}$ of full row rank can be obtained easily by using [5, Lemma 4], the definition of $G^{\text {mat }}$, and the fact that $A A^{T}$ is positive definite when A is of full row rank. The details are omitted here.

Finally, it is known that $|Y|, Y \in \mathcal{S}^{n+m}$ is strongly semismooth everywhere [15, Theorem 4.12]. Then Proposition 2.1 and the linearity of $\Xi(\cdot)$ imply that $G^{\text {mat }}$ is strongly semismooth at any $A \in \mathcal{M}_{n, m}$.

Let the matrix valued Fischer-Burmeister function $\Phi_{\mathrm{FB}}^{\mathrm{sdc}}: \mathcal{S}^{p} \times \mathcal{S}^{p} \rightarrow \mathcal{S}^{p}$ be defined as in (4). By noting the fact that for any $(X, Y) \in \mathcal{S}^{p} \times \mathcal{S}^{p}, \Phi_{\mathrm{FB}}^{\mathrm{sdc}}(X, Y)=X+Y-G^{\text {mat }}\left(\left[\begin{array}{ll}X & Y\end{array}\right]\right)$, we obtain from Theorem 2.2 the following corollary.

Corollary 2.3 The matrix valued Fischer-Burmeister function $\Phi_{\mathrm{FB}}^{\mathrm{sdc}}: \mathcal{S}^{p} \times \mathcal{S}^{p} \rightarrow \mathcal{S}^{p}$ is globally Lipschitz continuous, continuously differentiable around any $(X, Y) \in \mathcal{S}^{p} \times \mathcal{S}^{p}$ if $\left[\begin{array}{ll}X & Y\end{array}\right]$ is of full row rank, and strongly semismooth everywhere in $\mathcal{S}^{p} \times \mathcal{S}^{p}$.

3 The FB Function Associated with the SOC

The second order cone (SOC) in $\Re^{n}(n \geq 2)$, also called the Lorentz cone or the ice-cream cone, is defined as $\mathcal{K}^{n}:=\left\{\left(x_{1}, x_{2}^{T}\right)^{T} \mid x_{1} \in \Re, x_{2} \in \Re^{n-1}\right.$ and $\left.x_{1} \geq\left\|x_{2}\right\|\right\}$. Here and below, $\|\cdot\|$ denotes the l_{2}-norm in \Re^{n} and, for convenience, we write $x=\left(x_{1}, x_{2}\right)$ instead of $x=\left(x_{1}, x_{2}^{T}\right)^{T}$. For any $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \Re \times \Re^{n-1}$, we define their Jordan product as

$$
x \cdot y:=\left[\begin{array}{c}
x^{T} y \tag{12}\\
y_{1} x_{2}+x_{1} y_{2}
\end{array}\right] .
$$

Denote $e=(1,0, \ldots, 0)^{T} \in \Re^{n}$. Let x_{+}be the orthogonal projection of $x \in \Re^{n}$ onto \mathcal{K}^{n}. Denote $x^{2}:=x \cdot x$ and $|x|:=\sqrt{x^{2}}$, where for any $y \in \mathcal{K}^{n}, \sqrt{y}$ is the unique vector in \mathcal{K}^{n} such that $y=\sqrt{y} \cdot \sqrt{y}$. Then, by [10], we know that $x_{+}=(x+|x|) / 2$.

A function $\phi^{\text {soc }}: \Re^{n} \times \Re^{n} \rightarrow \Re^{n}$ is called an SOC complementarity function if

$$
\begin{equation*}
\phi^{\mathrm{soc}}(x, y)=0 \Longleftrightarrow \mathcal{K}^{n} \ni x \perp y \in \mathcal{K}^{n}, \tag{13}
\end{equation*}
$$

where $x \perp y \Leftrightarrow x \cdot y=0$. By [10], both the vector-valued min-function

$$
\begin{equation*}
\phi_{\min }^{\mathrm{soc}}(x, y):=x-(x-y)_{+} \tag{14}
\end{equation*}
$$

and the vector valued Fischer-Burmeister function

$$
\begin{equation*}
\phi_{\mathrm{FB}}^{\mathrm{soc}}(x, y):=x+y-\sqrt{x^{2}+y^{2}} \tag{15}
\end{equation*}
$$

are SOC complementarity functions. The strong semismoothness of $\phi_{\min }^{\text {soc }}$ can be checked directly and has been done in $[3,6]$. In this section, we shall prove that $\phi_{\mathrm{FB}}^{\text {soc }}$ is strongly semismooth.

For any $x=\left(x_{1}, x_{2}\right) \in \Re \times \Re^{n-1}$, let $L(x), M(x) \in \mathcal{S}^{n}$ be defined by

$$
L(x):=\left[\begin{array}{cc}
x_{1} & x_{2}^{T} \tag{16}\\
x_{2} & x_{1} I
\end{array}\right] \quad \text { and } \quad M(x):=\left[\begin{array}{cc}
0 & 0^{T} \\
0 & N\left(x_{2}\right)
\end{array}\right],
$$

respectively, where for any $z \in \Re^{n-1}, N(z) \in \mathcal{S}^{n-1}$ denotes

$$
\begin{equation*}
N(z):=\|z\|\left(I-z z^{T} /\|z\|^{2}\right)=\|z\| I-z z^{T} /\|z\| \tag{17}
\end{equation*}
$$

and the convention " $0=0$ " is adopted. A direct calculation shows that

$$
\begin{equation*}
L\left(x^{2}\right)=(L(x))^{2}+(M(x))^{2}, \quad \forall x=\left(x_{1}, x_{2}\right) \in \Re \times \Re^{n-1} . \tag{18}
\end{equation*}
$$

Lemma 3.1 The operator $N(\cdot)$ is globally Lipschitz continuous, twice continuously differentiable around any $0 \neq z \in \Re^{n-1}$, and strongly semismooth everywhere in \Re^{n-1}.

Proof. Suppose that $z^{(1)}, z^{(2)}$ are two arbitrary points in \Re^{n-1}. If the line segment $\left[z^{(1)}, z^{(2)}\right]$ connecting $z^{(1)}$ and $z^{(2)}$ contains the origin 0 , then

$$
\left\|N\left(z^{(1)}\right)-N\left(z^{(2)}\right)\right\|_{\mathcal{F}} \leq \sqrt{n-2}\left\|z^{(1)}\right\|+\sqrt{n-2}\left\|z^{(2)}\right\|=\sqrt{n-2}\left\|z^{(1)}-z^{(2)}\right\|
$$

If the line segment $\left[z^{(1)}, z^{(2)}\right]$ does not contain the origin 0 , then by the mean value theorem we have

$$
\left\|N\left(z^{(1)}\right)-N\left(z^{(2)}\right)\right\|_{\mathcal{F}} \leq \int_{0}^{1}\left\|N^{\prime}\left(z^{(1)}+t\left[z^{(2)}-z^{(1)}\right]\right)\left(z^{(2)}-z^{(1)}\right)\right\|_{\mathcal{F}} d t
$$

which, together with the fact that for any $z \neq 0, N$ is differentiable at z with

$$
\begin{equation*}
N^{\prime}(z)(\Delta z)=\frac{(\Delta z)^{T} z}{\|z\|}\left[I+z z^{T} /\|z\|^{2}\right]-\frac{1}{\|z\|}\left[z(\Delta z)^{T}+(\Delta z) z^{T}\right] \tag{19}
\end{equation*}
$$

and

$$
\left\|N^{\prime}(z)(\Delta z)\right\|_{\mathcal{F}} \leq \sqrt{n-2}\|\Delta z\| \forall \Delta z \in \Re^{n-1}
$$

implies that

$$
\left\|N\left(z^{(1)}\right)-N\left(z^{(2)}\right)\right\|_{\mathcal{F}} \leq \sqrt{n-2}\left\|z^{(1)}-z^{(2)}\right\|
$$

Therefore, N is globally Lipschitz continuous.
By equation (19), we know that N is at least twice continuously differentiable around any $z \neq 0$, and so strongly semismooth at any $0 \neq z \in \Re^{n-1}$. Now it suffices to show that N is strongly semismooth at $z^{*}:=0$.

Note that N is a positive homogeneous mapping, i.e., for any $t \geq 0$ and $z \in \Re^{n-1}, N(t z)=t N(z)$. Hence, N is directionally differentiable at 0 and for any $0 \neq z \in \Re^{n-1}, N^{\prime}(0 ; z)=N(z)$. By (19), for any $0 \neq z \in \Re^{n-1}$,

$$
N\left(z^{*}+z\right)-N\left(z^{*}\right)-N^{\prime}\left(z^{*}+z\right)(z)=N(z)-N(0)-N^{\prime}(z)(z)=0
$$

which, together with [15, Theorem 3.7], the Lipschitz continuity, and the directional differentiability of N, shows that N is strongly semismooth at $z^{*}=0$.

Suppose that the operators L and M are defined by (16). For any $a^{1}, \ldots, a^{p} \in \Re^{n}$, let

$$
\begin{equation*}
\chi\left(a^{1}, \ldots, a^{p}\right):=\sqrt{\sum_{i=1}^{p}\left(a^{i}\right)^{2}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma\left(a^{1}, \ldots, a^{p}\right):=\left[L\left(a^{1}\right) \ldots L\left(a^{p}\right) \quad M\left(a^{1}\right) \ldots M\left(a^{p}\right)\right] . \tag{21}
\end{equation*}
$$

By $\left[3\right.$, Lemma 4.1] ${ }^{1}$, for any $x \in \Re^{n}$ we have $\sqrt{|x|}=(\sqrt{L(|x|)}) e$. This, together with the fact that $v:=\sum_{i=1}^{p}\left(a^{i}\right)^{2} \in \mathcal{K}^{n}$ and (18), implies

$$
\begin{equation*}
\chi\left(a^{1}, \ldots, a^{p}\right)=\sqrt{v}=(\sqrt{L(v)}) e=\left(\sqrt{\Gamma\left(a^{1}, \ldots, a^{p}\right)\left(\Gamma\left(a^{1}, \ldots, a^{p}\right)\right)^{T}}\right) e . \tag{22}
\end{equation*}
$$

Therefore, by (22), for any $a^{1}, \ldots, a^{p} \in \Re^{n}$, we have

$$
\begin{equation*}
\chi\left(a^{1}, \ldots, a^{p}\right)=G^{\mathrm{mat}}\left(\Gamma\left(a^{1}, \ldots, a^{p}\right)\right) e, \tag{23}
\end{equation*}
$$

where $G^{\text {mat }}$ is defined by (7)
Theorem 3.2 For any $a^{1}, \ldots, a^{p} \in \Re^{n}$, let $\chi\left(a^{1}, \ldots, a^{p}\right)$ be defined by (20). Then χ is globally Lipschitz continuous, continuously differentiable around any $\left(a^{1}, \ldots, a^{p}\right)$ if $v_{1} \neq\left\|v_{2}\right\|$, where $v=$ $\left(v_{1}, v_{2}\right) \in \Re \times \Re^{n-1}$ and $v:=\sum_{i=1}^{p}\left(a^{i}\right)^{2}$, and strongly semismooth everywhere.

Proof. First, the global Lipschitz continuity of χ can be obtained directly by Theorem 2.2, Lemma 3.1, and equation (23).

Second, let $a^{i} \in \Re^{n}, i=1, \ldots, p$ be such that $v_{1} \neq\left\|v_{2}\right\|$, where $v=\left(v_{1}, v_{2}\right) \in \Re \times \Re^{n-1}$ and $v=$ $\sum_{i=1}^{p}\left(a^{(i)}\right)^{2}$. Then, from (23), Theorem 2.2, and the fact that $\Gamma\left(a^{(1)}, \ldots, a^{(m)}\right)\left(\Gamma\left(a^{(1)}, \ldots, a^{(m)}\right)\right)^{T}=$ $L(v)$ (cf. (18)) is positive definite when $v_{1} \neq\left\|v_{2}\right\|$, we know that χ is continuously differentiable around $\left(a^{1}, \ldots, a^{p}\right)$.

Finally, we know from [9] that the composite of two strongly semismooth functions is strongly semismooth. Hence, by (23), Theorem 2.2, and the fact that the mapping Γ is strongly semismooth (cf. Lemma 3.1), we can draw the conclusion that χ is strongly semismooth everywhere.

Theorem 3.2 generalizes the results discussed in [6] from the absolute value function $|x|$ to the function χ. By Theorems 2.2 and 3.2, we have the following results, which do not require a proof.

Corollary 3.3 The vector-valued Fischer-Burmeister function $\phi_{\mathrm{FB}}^{\mathrm{soc}}: \Re^{n} \times \Re^{n} \rightarrow \Re^{n}$ is globally Lipschitz continuous, continuously differentiable around any $(x, y) \in \Re^{n} \times \Re^{n}$ if $v_{1} \neq\left\|v_{2}\right\|$, where $v:=x^{2}+y^{2}$, and strongly semismooth.

Corollary 3.4 The smoothed version of $\Phi_{\mathrm{FB}}^{\mathrm{sdc}}$,

$$
\bar{\Phi}_{\mathrm{FB}}^{\mathrm{sdc}}: \mathcal{S}^{p} \times \mathcal{S}^{p} \times \Re \rightarrow \mathcal{S}^{p}, \quad \bar{\Phi}_{\mathrm{FB}}^{\mathrm{sdc}}(X, Y, \varepsilon):=X+Y-\sqrt{X^{2}+Y^{2}+\varepsilon^{2} I}
$$

and the smoothed version of $\phi_{\mathrm{FB}}^{\mathrm{soc}}$,

$$
\bar{\phi}_{\mathrm{FB}}^{\mathrm{soc}}: \Re^{n} \times \Re^{n} \times \Re \rightarrow \mathbb{R}^{n}, \quad \bar{\phi}_{\mathrm{FB}}^{\mathrm{soc}}(x, y, \varepsilon):=x+y-\sqrt{x^{2}+y^{2}+\varepsilon^{2} e}
$$

are strongly semismooth.

[^0]
References

[1] J. F. Bonnans, R. Cominetti and A. Shapiro, "Second order optimality conditions based on parabolic second order tangent sets," SIAM Journal on Optimization, 9 (1999) 466-493.
[2] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer-Verlag, New York, 2000.
[3] J. Chen, X. Chen and P. Tseng, "Analysis of nonsmooth vector-valued functions associated with secondorder cones," Manuscript, Department of Mathematics, University of Washington, USA, November 2002.
[4] X. Chen, H. Qi, and P. Tseng, "Analysis of nonsmooth symmetric-matrix functions with applications to semidefinite complementarity problems," SIAM Journal on Optimization, 13 (2003) 960-985.
[5] X. Chen and P. Tseng, "Non-interior continuation methods for solving semidefinite complementarity problems," Mathematical Programming, 95 (2003) 431-474.
[6] X. D. Chen, D. Sun and J. Sun, "Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems," Computational Optimization and Applications, 25 (2003) 39-56.
[7] M. T. Chu, "Inverse eigenvalue problems," SIAM Review, 40 (1998) 1-39.
[8] A. Fischer, "A special Newton-type optimization method," Optimization, 24 (1992) 269-284.
[9] A. Fischer, "Solution of monotone complementarity problems with locally Lipschitzian functions," Mathematical Programming, 76 (1997) 513-532.
[10] M. Fukushima, Z. Q. Luo and P. Tseng, "Smoothing functions for second-order-cone complementarity problems," SIAM Journal on Optimization, 12 (2002) 436-460.
[11] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, USA, Third Edition, 1996.
[12] C. Kanzow and C. Nagel, "Semidefinite programs: new search directions, smoothing-type methods," SIAM Journal on Optimization, 13 (2002) 1-23.
[13] J. -S. Pang and L. Qi, "Nonsmooth equations: motivation and algorithms," SIAM Journal on Optimization, 3 (1993) 443-465.
[14] L. Qi and J. Sun, "A nonsmooth version of Newton's method," Mathematical Programming, 58 (1993) 353-367.
[15] D. Sun and J. Sun, "Semismooth matrix valued functions," Mathematics of Operations Research, 27 (2002) 150-169.
[16] D. Sun and J. Sun, "Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems," SIAM Journal on Numerical Analysis, 40 (2002) 2352-2367.
[17] J. Sun, D. Sun and L. Qi, "A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems," SIAM Journal on Optimization, 14 (2004) 783-806.
[18] P. Tseng, "Merit functions for semidefinite complementarity problems," Mathematical Programming, 83 (1998) 159-185.
[19] N. Yamashita and M. Fukushima, "A new merit function and a descent method for semidefinite complementarity problems," in M. Fukushima and L. Qi (eds.), Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Boston, Kluwer Academic Publishers, pp. 405-420, 1999.

[^0]: ${ }^{1}$ P. Tseng presented this result in "The Third International Conference on Complementarity Problems", held in Cambridge University, United Kingdom, July 29 -August 1, 2002.

