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An Efficient Linearly Convergent Regularized Proximal Point Algorithm for Fused
Multiple Graphical Lasso Problems\ast 

Ning Zhang\dagger , Yangjing Zhang\ddagger , Defeng Sun\S , and Kim-Chuan Toh\P 

Abstract. Nowadays, analyzing data from different classes or over a temporal grid has attracted a great deal of
interest. As a result, various multiple graphical models for learning a collection of graphical models
simultaneously have been derived by introducing sparsity in graphs and similarity across multiple
graphs. This paper focuses on the fused multiple graphical Lasso model, which encourages not only
shared pattern of sparsity but also shared values of edges across different graphs. For solving this
model, we develop an efficient regularized proximal point algorithm, where the subproblem in each
iteration of the algorithm is solved by a superlinearly convergent semismooth Newton method. To
implement the semismooth Newton method, we derive an explicit expression for the generalized
Jacobian of the proximal mapping of the fused multiple graphical Lasso regularizer. Unlike those
widely used first order methods, our approach has heavily exploited the underlying second order
information through the semismooth Newton method. This not only can accelerate the convergence
of the algorithm but also can improve its robustness. The efficiency and robustness of our proposed
algorithm are demonstrated by comparing it with some state-of-the-art methods on both synthetic
and real data sets.
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1. Introduction. Undirected graphical models have been especially popular for learning
conditional independence structures among a large number of variables where the observations
are drawn independently and identically from the same distribution. The Gaussian graphical
model is one of the most widely used undirected graphical models. In the high-dimensional and
low-sample-size settings, it is always assumed that the conditional independence structure or
the precision matrix is sparse in a certain sense. In other words, its corresponding undirected
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graph is expected to be sparse. To promote sparsity, there has been a great deal of interest in
using the \ell 1 norm penalty in statistical applications [2, 6]. In many conventional applications, a
single Gaussian graphical model is typically enough to capture the conditional independence
structure of the random variables. However, due to the heterogeneity or similarity of the
data involved, it is increasingly appealing to fit a collection of such models jointly, such
as inferring the time-varying networks and finding the change-points [1, 7, 9, 18, 25] and
estimating multiple precision matrices simultaneously for variables from distinct but related
classes [3, 8, 27].

Multiple graphical models refer to the models that can estimate a collection of precision
matrices jointly. Specifically, let \Delta (l) be L random vectors (from different classes or over a tem-
poral grid) drawn independently from different distributions\scrN p(\mu 

(l),\Sigma (l)), l = 1, . . . , L, L \geq 2.

Assume that the multivariate random variable \Delta (l) has Nl observations \delta 
(l)
1 , \delta 

(l)
2 , . . . , \delta 

(l)
Nl

for

each l \in \{ 1, . . . , L\} . Then the sample means are \=\mu (l) = 1
Nl

\sum Nl
i=1 \delta 

(l)
i and the sample covariance

matrices are S(l) = 1
Nl - 1

\sum Nl
i=1(\delta 

(l)
i  - \=\mu (l))(\delta 

(l)
i  - \=\mu (l))T , l = 1, . . . , L. The multiple graphical

model for estimating the precision matrices (\Sigma (l)) - 1, l = 1, . . . , L, jointly is the model with
the variable \Theta = (\Theta (1), . . . ,\Theta (L)) \in \BbbS p \times \cdot \cdot \cdot \times \BbbS p:

(1.1) min
\Theta 

L\sum 
l=1

\Bigl( 
 - log det \Theta (l) + \langle S(l),\Theta (l)\rangle 

\Bigr) 
+ \scrP (\Theta ),

where \scrP is a penalty function, which usually promotes sparsity in each \Theta (l) and similarities
among different \Theta (l)'s. Various penalties have been considered in the literature [1, 3, 7, 8, 18,
27].

In this paper, we focus on the following fused graphical Lasso (FGL) regularizer which
was used by [1] and [27]:

(1.2) \scrP (\Theta ) = \lambda 1

L\sum 
l=1

\sum 
i \not =j

| \Theta (l)
ij | + \lambda 2

L\sum 
l=2

\sum 
i \not =j

| \Theta (l)
ij  - \Theta 

(l - 1)
ij | .

We refer to problem (1.1) with the FGL regularizer \scrP in (1.2) as the FGL problem. The FGL
regularizer is in some sense a generalized fused Lasso regularizer [22]. It applies the \ell 1 penalty
to all the off-diagonal elements of the L precision matrices and the consecutive differences of
the elements of successive precision matrices. Many elements with the same indices in the
estimated matrices \Theta (1), . . . ,\Theta (L) will be similar or even identical when the parameter \lambda 2 is
large enough. Therefore, the FGL regularizer encourages not only a shared pattern of sparsity
but also shared values across different graphs. Throughout this paper, we assume that the
optimal solution set of the FGL problem is nonempty. In fact, it was proved in [27] that the
FGL problem has a unique optimal solution when the diagonal vector of each S(l) is positive,
i.e., diag(S(l)) > 0, l = 1, . . . , L.

Existing algorithms for solving the FGL problem are quite limited in the literature. One
of the most extensively used algorithms for solving this class of problems is the alternating
direction method of multipliers (ADMM) [3, 7, 9]. Another algorithm for this class of problems
is the forward-backward splitting (FBS) method [23]. Additionally, a proximal Newton-typeD
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method [11, 12] was implemented in [27] for solving the FGL problem. As we know, ADMM
and FBS could be practical first order methods for finding approximate solutions of low
or moderate accuracy. However, they hardly utilize any second order information, which
generally must be used in order to obtain highly accurate solutions. Although the proximal
Newton-type method does incorporate some forms of second order information, a complicated
quadratic approximation problem has to be solved in each iteration, and this computation is
usually time-consuming. Additionally, though the proximal Newton-type method is globally
convergent, it is not known whether its local linear convergence can be guaranteed [27, p. 931].
It is worth mentioning that the regularizers are often introduced to promote certain structures
in the estimated precision matrices, and the trade-off between biases and variances in the
resulting estimators is controlled by the regularization parameters [4]. In practice, however,
it is extremely hard to find the optimal regularization parameters. Therefore, a sequence of
regularization parameters is applied in practice, and consequently, a sequence of corresponding
optimization problems must be solved [5]. Under such a circumstance, a highly efficient and
robust algorithm for solving the FGL model becomes particularly important.

In this paper, we will design a semismooth Newton (SSN) based regularized proximal
point algorithm (rPPA) for solving the FGL problem, which is inspired by the work [16],
where they have convincingly demonstrated the superior numerical performance of the SSN
based augmented Lagrangian method (ALM), known as Ssnal, for solving the fused Lasso
problem [22]. Thanks to the fact that the FGL problem has close connections to the fused
Lasso problem, many of the virtues and theoretical insights of the Ssnal for solving the
fused Lasso problem can be observed in our approach. However, we should emphasize that
solving the FGL problem is much more challenging than solving the fused Lasso problem.
Specifically, the difficulties are mainly due to the log-determinant function log det (\cdot ) and the
matrix variables, as described below.

(a) Unlike the simple quadratic functions in the fused Lasso problem, the function log det (\cdot )
is defined on the space of positive definite matrices. Therefore, the FGL model requires
the positive definiteness of their solutions. Besides, the gradient of the log-determinant
function involves the inverse of a matrix. These greatly increase the difficulty and com-
plexity of theoretical analysis and numerical implementation for rPPA as well as first order
methods [3, 7, 9, 23] and proximal Newton-type method [27].

(b) An efficiently computable element in the generalized Jacobian of the proximal mapping of
the fused Lasso regularizer is constructed in [16], which is an essential step for solving the
fused Lasso problem. Based on the constructions, we could obtain an efficiently comput-
able generalized Jacobian of the proximal mapping of the FGL regularizer. However, this
process needs more complicated manipulations of coordinates for a collection of matrix
variables, unlike the vector case of the fused Lasso problem.

The remaining parts of this paper are as follows. Section 2 presents preliminary results of
proximal mappings. In section 3, we present a semismooth Newton based regularized proximal
point algorithm for solving the FGL problem and its convergence properties. The numerical
performance of our proposed algorithm on time-varying stock price data sets and categorical
text data sets are evaluated in section 4. Section 5 gives the conclusion.
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Notation. \BbbS p+ (\BbbS p++) denotes the cone of positive semidefinite (definite) matrices in the
space of p \times p real symmetric matrices \BbbS p. For any A, B \in \BbbS p, we denote A \succeq B (A \succ B) if
A - B \in \BbbS p+ (A - B \in \BbbS p++). In particular, A \succeq 0 (A \succ 0) indicates A \in \BbbS p+ (A \in \BbbS p++). We let
\scrX := \BbbS p+\times \cdot \cdot \cdot \times \BbbS p+ and \scrY := \BbbS p\times \cdot \cdot \cdot \times \BbbS p be the Cartesian product of L positive semidefinite
cones \BbbS p+ and that of L spaces of symmetric matrices \BbbS p, respectively. \BbbR n denotes the n-
dimensional Euclidean space, and \BbbR m\times n denotes the set of all m\times n real matrices. In denotes
the n\times n identity matrix, and I denotes an identity matrix or map when the dimension is clear
from the context. For any x \in \BbbR n, \| x\| 1 :=

\sum n
i=1 | xi| and \| x\| :=

\sqrt{} \sum n
i=1 | xi| 2. We use the

MATLAB notation [A;B] to denote the matrix obtained by appending B below the last row of
A when the number of columns of A and B is identical. For any matrix A \in \BbbR m\times n, Aij denotes

the (i, j)th element of A. For any X := (X(1), . . . , X(L)) \in \scrY , X[ij] := [X
(1)
ij ; . . . ;X

(L)
ij ] \in \BbbR L

denotes the column vector obtained by taking out the (i, j)th elements across all L matrices
X(l), l = 1, . . . , L. Diag(D1, . . . , Dn) denotes the block diagonal matrix whose ith diagonal
block is the matrix Di, i = 1, . . . , n. The function composition is denoted by \circ ; that is, for
any functions f and g, (f \circ g)(\cdot ) := f(g(\cdot )). The Hadamard product is denoted by \odot . For two
sequences of numbers \{ an\} and \{ bn\} , we say an = \scrO (bn) if there exists some positive constant
c such that | an| \leq c| bn| for sufficiently large n.

2. Preliminaries. We will first present the properties related to the proximal mappings
associated with the log-determinant function and the FGL regularizer since they are the
building blocks for the algorithmic design in what follows. Let \scrE be a finite-dimensional real
Hilbert space, and let \Xi : \scrE \rightarrow \BbbR \cup \{ +\infty \} be a proper and closed convex function. The
Moreau--Yosida regularization [19, 28] of \Xi is defined by

(2.1) \Psi \Xi (u) := minu\prime 
\bigl\{ 
\Xi (u\prime ) + 1

2\| u
\prime  - u\| 2

\bigr\} 
\forall u \in \scrE .

The proximal mapping associated with \Xi is the unique minimizer of (2.1) defined by

(2.2) Prox\Xi (u) := argminu\prime 
\bigl\{ 
\Xi (u\prime ) + 1

2\| u
\prime  - u\| 2

\bigr\} 
\forall u \in \scrE .

Moreover, \Psi \Xi (\cdot ) is a continuously differentiable convex function [13, 21] with the gradient

(2.3) \nabla \Psi \Xi (u) = u - Prox\Xi (u) \forall u \in \scrE .

2.1. Properties of log-determinant function. For notational convenience, define \vargamma : \BbbS p \rightarrow 
\BbbR \cup \{ +\infty \} as follows: \vargamma (A) =  - log det A if A \in \BbbS p++; \vargamma (A) = +\infty otherwise. The properties of
Prox\vargamma have been extensively studied [24, 26]; they need the following definitions of two scalar
functions for given \beta > 0: \phi +

\beta (x) := (
\sqrt{} 
x2 + 4\beta + x)/2, \phi  - 

\beta (x) := (
\sqrt{} 
x2 + 4\beta  - x)/2 \forall x \in \BbbR .

In addition, the matrix counterparts of these two scalar functions can be defined by

(2.4) \phi +
\beta (A) := QDiag(\phi +

\beta (d1), . . . , \phi 
+
\beta (dp))Q

T , \phi  - 
\beta (A) := QDiag(\phi  - 

\beta (d1), . . . , \phi 
 - 
\beta (dp))Q

T

for any A \in \BbbS p with its eigenvalue decomposition A = QDiag(d1, d2, . . . , dp)Q
T , where d1 \geq 

d2 \geq \cdot \cdot \cdot \geq dp. It is easy to show that \phi +
\beta and \phi  - 

\beta are well defined. Moreover, \phi +
\beta (A) and \phi  - 

\beta (A)
are positive definite for any A \in \BbbS p. The next proposition gives the formulae of Prox\beta \vargamma (\cdot ),
\Psi \beta \vargamma (\cdot ), and the directional derivative of Prox\beta \vargamma (\cdot ) [24, Lemma 2.1(b)], [26, Proposition 2.3].D
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Proposition 2.1. For any A \in \BbbS p, let \phi +
\beta (A) be defined by (2.4). Then the following hold:

(a) Prox\beta \vargamma (A) = \phi +
\beta (A) and \Psi \beta \vargamma (A) =  - \beta log det (\phi +

\beta (A)) + 1
2\| \phi 

 - 
\beta (A)\| 2.

(b) The function \phi +
\beta : \BbbS p \rightarrow \BbbS p is continuously differentiable, and its directional derivative

(\phi +
\beta )

\prime (A)[B] at A for any B \in \BbbS p is given by (\phi +
\beta )

\prime (A)[B] = Q[\Gamma \odot (QTBQ)]QT , where

A = QDiag(d1, d2, . . . , dp)Q
T , d1 \geq d2 \geq \cdot \cdot \cdot \geq dp, and \Gamma \in \BbbS p is defined by \Gamma ij =

(\phi +
\beta (di) + \phi +

\beta (dj))/(
\sqrt{} 

d2i + 4\beta +
\sqrt{} 

d2j + 4\beta ), i, j = 1, 2, . . . , p.

2.2. Properties of FGL regularizer. In this section, we analyze the proximal mapping of
the regularizer \scrP defined by (1.2). For any \Theta \in \scrY , one might observe that the penalty term
\scrP (\Theta ) merely penalizes the off-diagonal elements, and it is the same fused Lasso regularizer
that acts on each vector \Theta [ij] \in \BbbR L, i \not = j. It holds that

(2.5) \scrP (\Theta ) =
\sum 

i \not =j \varphi (\Theta [ij]) with \varphi (x) = \lambda 1\| x\| 1 + \lambda 2\| Bx\| 1 \forall x \in \BbbR L.

Here, the function \varphi is the fused Lasso regularizer [22], and the matrix B \in \BbbR (L - 1)\times L is
defined by Bx = [x1  - x2; . . . ;xL - 1  - xL] \forall x \in \BbbR L. From (2.5), one can compute Prox\scrP as
follows: for any X \in \scrY , (Prox\scrP (X))[ij] = Prox\varphi (X[ij]) if i \not = j; (Prox\scrP (X))[ij] = X[ij] if i = j.

The formulae for the proximal mapping Prox\varphi and its generalized Jacobian \widehat \partial Prox\varphi have been
derived in [16] and will be summarized in section SM2.

Define a multifunction \widehat \partial Prox\scrP (X) : \scrY \rightrightarrows \scrY , the surrogate generalized Jacobian of Prox\scrP 
at X, as follows:\left\{       

\scrW \in \widehat \partial Prox\scrP (X) if and only if there exist M (ij) \in \widehat \partial Prox\varphi (X[ij]), i < j,

such that (\scrW [Y ])[ij] =

\left\{   
M (ij)Y[ij] if i < j,

Y[ii] if i = j,

M (ji)Y[ij] if j < i.

i, j = 1, . . . , p, \forall Y \in \scrY .
(2.6)

From [16, Theorem 1], one can obtain the following theorem, which justifies why \widehat \partial Prox\scrP (X)
in (2.6) can be used as the surrogate generalized Jacobian of Prox\scrP at X.

Theorem 2.2. The surrogate generalized Jacobian \widehat \partial Prox\scrP (\cdot ) defined in (2.6) is a nonempty,
compact valued, upper semicontinuous multifunction. Given any X \in \scrY , any element in the
set \widehat \partial Prox\scrP (X) is self-adjoint and positive semidefinite. Moreover, there exists a neighborhood
\scrU X of X such that for all Y \in \scrU X , Prox\scrP (Y ) - Prox\scrP (X) - \scrW [Y  - X] = 0 \forall \scrW \in \widehat \partial Prox\scrP (Y ).

3. Regularized proximal point algorithm. In this section, we present a regularized prox-
imal point algorithm (rPPA) for solving the following problem, which is essentially an equiv-
alent form of problem (1.1):

(3.1) min
\Theta ,\Omega 

\Bigl\{ 
f(\Theta ,\Omega ) :=

L\sum 
l=1

\Bigl( 
\vargamma (\Omega (l)) + \langle S(l),\Theta (l)\rangle 

\Bigr) 
+ \scrP (\Theta )

\bigm| \bigm| \Theta  - \Omega = 0
\Bigr\} 
.

Given positive scalars \sigma k \uparrow \sigma \infty \leq \infty , the kth iteration of the proximal point algorithm (PPA)
for solving (3.1) is given by

(3.2) (\Theta k+1,\Omega k+1) \approx argmin
\Theta ,\Omega 

\Bigl\{ 
f(\Theta ,\Omega ) + 1

2\sigma k
(\| \Theta  - \Theta k\| 2 + \| \Omega  - \Omega k\| 2) | \Theta  - \Omega = 0

\Bigr\} 
,
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which only requires an inexact solution. There are many ways to solve (3.2). Inspired by recent
progress in solving large scale convex optimization problems [15, 16, 26, 29], we shall adopt
the approach of solving (3.2) via applying a sparse SSN method to its dual. The Lagrangian
function of problem (3.1) is given by \scrL (\Theta ,\Omega , X) = f(\Theta ,\Omega )  - \langle \Theta  - \Omega , X\rangle \forall (\Theta ,\Omega , X) \in \scrX \times 
\scrX \times \scrY . Then, the Lagrangian dual of (3.2) is given by supX\{ \Phi k(X) := inf\Theta ,\Omega \{ \scrL (\Theta ,\Omega , X) +
1

2\sigma k
(\| \Theta  - \Theta k\| 2 + \| \Omega  - \Omega k\| 2)\} \} . By the definition of the Moreau--Yosida regularization (2.1),

we can write \Phi k(\cdot ) explicitly as follows:

\Phi k(X) = inf
\Theta 

\bigl\{ 
\scrP (\Theta ) + \langle \Theta , S  - X\rangle + 1

2\sigma k
\| \Theta  - \Theta k\| 2

\bigr\} 
+
\sum L

l=1 inf
\Omega (l)

\bigl\{ 
\vargamma (\Omega (l)) + \langle \Omega (l), X(l)\rangle + 1

2\sigma k
\| \Omega (l)  - (\Omega (l))k\| 2

\bigr\} 
= 1

\sigma k
\Psi \sigma k\scrP (\Theta 

k + \sigma k(X  - S)) +
\sum L

l=1
1
\sigma k
\Psi \sigma k\vargamma ((\Omega 

k)(l)  - \sigma kX
(l))

 - 1
2\sigma k

\| \Theta k + \sigma k(X  - S)\| 2 + 1
2\sigma k

\| \Theta k\| 2  - 
\sum L

l=1

\bigl( 
1

2\sigma k
\| (\Omega k)(l)  - \sigma kX

(l)\| 2  - 1
2\sigma k

\| (\Omega (l))k\| 2
\bigr) 
,

where \Psi \sigma k\scrP and \Psi \sigma k\vargamma are the Moreau--Yosida regularizations of \sigma k\scrP and \sigma k\vargamma , respectively.
Therefore, by Proposition 2.1 and the definition of the proximal mapping (2.2), the kth
iteration of PPA (3.2) can be written as\Biggl\{ 

\Theta k+1 = Prox\sigma k\scrP (\Theta 
k + \sigma k(X

k+1  - S)),

(\Omega (l))k+1 = Prox\sigma k\vargamma 

\bigl( 
(\Omega (l))k  - \sigma k(X

(l))k+1
\bigr) 
, l = 1, 2, . . . , L,

where Xk+1 approximately solves the following problem: Xk+1 \approx argmaxX \Phi k(X). Since
\Phi k(\cdot ) is not strongly concave in general, we consider the following rPPA.

Algorithm 3.1. A regularized proximal point algorithm (rPPA) for solving (3.1).

Choose \Theta 0, \Omega 0, X0 \in \scrX . Iterate the following steps for k = 0, 1, 2, . . . :

Step 1. Compute

(3.3) Xk+1 \approx argmax
X

\Bigl\{ \widehat \Phi k(X) := \Phi k(X) - 1
2\sigma k

\| X  - Xk\| 2
\Bigr\} 
.

Step 2. Compute \Theta k+1 = Prox\sigma k\scrP (\Theta 
k + \sigma k(X

k+1  - S)) and for l = 1, . . . , L,

(\Omega (l))k+1 = Prox\sigma k\vargamma 

\bigl( 
(\Omega (l))k  - \sigma k(X

(l))k+1
\bigr) 
= \phi +

\sigma k

\bigl( 
(\Omega (l))k  - \sigma k(X

(l))k+1
\bigr) 
.

Step 3. Update \sigma k+1 \uparrow \sigma \infty \leq \infty .

We will use the following standard stopping criteria [20] for the inner subproblem (3.3):

(A) \| \nabla \widehat \Phi k(X
k+1)\| \leq \varepsilon k/\sigma k, \varepsilon k \geq 0,

\sum \infty 
k=0 \varepsilon k < \infty ;

(B) \| \nabla \widehat \Phi k(X
k+1)\| \leq (\delta k/\sigma k)\| (\Theta k+1,\Omega k+1) - (\Theta k,\Omega k)\| , \delta k \geq 0,

\sum \infty 
k=0 \delta k < \infty .

The reason for using the above stopping criteria is due to the fact that Algorithm 3.1 is
equivalent to the primal-dual PPA in the sense of [20]. Note that the stopping criteria (A)
and (B) are certainly satisfied (with \varepsilon k = \delta k = 0) ifXk+1 is an exact solution of the subproblemD
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(3.3). However, in practice, problem (3.3) can only be solved inexactly. Therefore, we allow for
a certain inexactness controlled by \varepsilon k or \delta k. The choice of \varepsilon k or \delta k should consider the trade-
off between the convergence speed of Algorithm 3.1 and the cost of solving the subproblem
(3.3). A smaller \varepsilon k will require a more accurate solution Xk+1 to the subproblem (3.3), and
a better solution sequence of the subproblems will generally converge faster. Similarly, as one
will see in Theorem 3.3, a smaller \delta k will give rise to a better convergence rate \mu k. However,
the price we have to pay for choosing smaller \varepsilon k and \delta k is the increase in the cost of solving
more difficult subproblems (3.3). To meet the summable condition, we usually take \{ \varepsilon k\} and
\{ \delta k\} to be convergent geometric sequences.

3.1. Semismooth Newton method for solving subproblem (3.3). Note that the key issue
in the implementation of rPPA for solving the FGL model is the computation of the subprob-
lem solution in each rPPA iteration. Therefore, in this section, we design a semismooth New-
ton method (SSN), which is specifically described by Algorithm 3.2, to solve subproblem (3.3).
From (2.3) and Proposition 2.1, we know that \widehat \Phi k is a continuously differentiable, strongly

concave function and \nabla \Phi k(X) =  - Prox\sigma k\scrP 
\bigl( 
Uk(X)

\bigr) 
+

\bigl( 
\phi +
\sigma k
(W

(1)
k (X)), . . . , \phi +

\sigma k
(W

(L)
k (X))

\bigr) 
,

where Uk(X) := \Theta k + \sigma k(X  - S) and W
(l)
k (X) := (\Omega k)(l)  - \sigma kX

(l), l = 1, . . . , L. Therefore,
one can obtain the unique solution to problem (3.3) by solving the nonsmooth system

(3.4) \nabla \widehat \Phi k(X) = \nabla \Phi k(X) - (X  - Xk)/\sigma k = 0.

Recall that \phi +
\sigma k
(\cdot ) is differentiable, and its derivative is given by Proposition 2.1. Thus, the

surrogate generalized Jacobian \widehat \partial (\nabla \Phi k)(X) of \nabla \Phi k at X is defined as follows:\Biggl\{ 
\scrV \in \widehat \partial (\nabla \Phi k)(X) if and only if there exists \scrG \in \widehat \partial Prox\scrP (Uk(X)/\sigma k) such that

\scrV [D] =  - \sigma k\scrG [D] - \sigma k
\bigl( 
(\phi +

\sigma k
)\prime (W (1)

k
(X))[D(1)], . . . , (\phi +

\sigma k
)\prime (W

(L)
k (X))[D(L)]

\bigr) 
\forall D \in \scrY .

With the generalized Jacobian of \nabla \Phi k, we are ready to solve (3.4) by the SSN method, where
the Newton systems are solved inexactly by the conjugate gradient (CG) method. In addition,
we derive the convergence result of the SSN method (Algorithm 3.2).

Theorem 3.1. Let \{ Xj\} be the infinite sequence generated by Algorithm 3.2. Then \{ Xj\} 
converges globally to the unique optimal solution \widehat X of (3.4). Furthermore, the local rate of
convergence is of order 1 + \tau , where the parameter \tau \in (0, 1] is from Algorithm 3.2; i.e., for
all j sufficiently large,

(3.5) \| Xj+1  - \widehat X\| = \scrO (\| Xj  - \widehat X\| 1+\tau ).

In fact, (3.5) for sufficiently large j means that there is a small neighborhood around the
solution point \widehat X that, once the iterates are trapped in it, will converge to the solution point
at least superlinearly (at the rate of order 1+\tau ), and typically only a few additional iterations
are enough to achieve high accuracy. On the other hand, the global convergence stated in
Theorem 3.1 can guarantee that the iterates will always enter into this neighborhood and
enjoy fast convergence.D
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Algorithm 3.2. A semismooth Newton (SSN) method for solving (3.4).

Given \mu \in (0, 1/2), \=\eta \in (0, 1), \tau \in (0, 1], and \rho \in (0, 1). Choose X0 \in \BbbS p++\times \cdot \cdot \cdot \times \BbbS p++. Iterate
the following steps for j = 0, 1, . . . :

Step 1. (Newton direction) Choose one specific map \scrV j \in \widehat \partial (\nabla \Phi k)(X
j). Apply the CG

method to find an approximate solution Dj to

(\scrV j  - \sigma  - 1
k I)[D] =  - \nabla \widehat \Phi k(X

j)

such that \| (\scrV j  - \sigma  - 1
k I)[Dj ] +\nabla \widehat \Phi k(X

j)\| \leq min(\=\eta , \| \nabla \widehat \Phi k(X
j)\| 1+\tau ).

Step 2. (Line search) Set \alpha j = \rho mj , where mj is the smallest nonnegative integer m for
which \widehat \Phi k(X

j + \rho mDj) \geq \widehat \Phi k(X
j) + \mu \rho m\langle \nabla \widehat \Phi k(X

j), Dj\rangle .

Step 3. Set Xj+1 = Xj + \alpha jD
j .

3.2. Convergence analysis of rPPA. The Karush--Kuhn--Tucker (KKT) optimality con-
ditions [10] for (3.1) are given as follows:

\Theta  - Prox\scrP (\Theta +X  - S) = 0, \Omega (l)  - Prox\vargamma (\Omega 
(l)  - X(l)) = 0, l = 1, . . . , L, \Theta  - \Omega = 0.

Define an operator \scrT \scrL by \scrT \scrL (\Theta ,\Omega , X) := \{ (\Theta \prime ,\Omega \prime , X \prime ) | (\Theta \prime ,\Omega \prime , - X \prime ) \in \partial \scrL (\Theta ,\Omega , X)\} . Since
the function \vargamma (\cdot ) is strictly convex, we know that there exists a unique KKT point, denoted
by (\Theta ,\Omega , X), and \scrT  - 1

\scrL (0) = \{ (\Theta ,\Omega , X)\} . In order to ensure the local linear convergence rate
of rPPA, we propose the following proposition.

Proposition 3.2. There exists a nonnegative scalar \kappa such that for some \varrho > 0 it holds that

\| (\Theta ,\Omega , X) - (\Theta ,\Omega , X)\| \leq \kappa \| \Delta \| \forall \Delta \in \scrT \scrL ((\Theta ,\Omega , X)) and \| \Delta \| \leq \varrho .

Based on Proposition 3.2, we can obtain the following convergence theorem.

Theorem 3.3. Let \{ (\Theta k,\Omega k, Xk)\} be an infinite sequence generated by Algorithm 3.1 under
stopping criterion (A). Then the sequence \{ (\Theta k,\Omega k)\} converges globally to the unique solution
(\Theta ,\Omega ) of (3.1), and the sequence \{ Xk\} converges globally to the unique solution X of the
dual problem of (3.1). Furthermore, if criterion (B) is also executed in Algorithm 3.1, there
exists \=k \geq 0 such that for all k \geq \=k, \| (\Theta k+1,\Omega k+1, Xk+1)  - (\Theta ,\Omega , X)\| \leq \mu k\| (\Theta k,\Omega k, Xk)  - 
(\Theta ,\Omega , X)\| , where the convergence rate 1 > \mu k := [\kappa (\kappa 2 + \sigma 2

k)
 - 1/2 + \delta k]/(1  - \delta k) \rightarrow \mu \infty =

\kappa (\kappa 2 + \sigma 2
\infty ) - 1/2 (\mu \infty = 0 if \sigma \infty = \infty ) and the parameter \kappa is from Proposition 3.2.

3.3. Main ideas of rPPA and its extensions. To summarize, it has been proven that
our rPPA for solving the FGL problem not only is globally convergent but also has a linear
convergent guarantee, and the convergence rate can be arbitrarily fast by choosing a sufficiently
large proximal penalty parameter. Moreover, the SSN method for solving each of the rPPA
subproblems has been shown to be superlinearly convergent. Furthermore, the generalized
Jacobian of the proximal mapping of the FGL regularizer \widehat \partial Prox\scrP (\cdot ), a critical part of SSN,
inherits the structured sparsity (referred to as second order sparsity) from that of the fusedD
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Lasso regularizer \widehat \partial Prox\varphi (\cdot ). Due to the structured sparsity, the computation of a matrix-
vector product in the SSN method is reasonably cheap, and thus the SSN method is quite
efficient for solving each subproblem. Thus, based on these excellent convergent properties
and the novel exploitation of the second order sparsity, we can expect the SSN based rPPA
for solving the FGL problem to be highly efficient.

As the rPPA can be highly efficient for solving the FGL problems, a natural question is
whether we can extend the algorithm to models with other forms of penalties. In fact, the key
elements needed for the practical implementation of the rPPA are the efficient computation
of Prox\scrP (\cdot ) and explicit characterization of \widehat \partial Prox\scrP (\cdot ). Therefore, if they can be efficiently
computed and characterized, rPPA can be easily adapted to models with other penalties. For
example, it can be extended to the case of group graphical Lasso and pairwise FGL penalties
proposed in [3]; see, e.g., [17] and [30].

4. Numerical experiments. In this section, we compare the performance of our algo-
rithm rPPA with the alternating direction method of multipliers (ADMM) and the prox-
imal Newton-type method [27] (referred to as MGL) for which the solver is available at
http://senyang.info/. Our MATLAB code is available at https://blog.nus.edu.sg/mattohkc/
softwares/graphical-lasso.

In all of the tables, ``P,"" ``A,"" and ``M"" stand for rPPA, ADMM, and MGL, respectively;
``nnz"" denotes the number of nonzero entries in the solution \Theta obtained by rPPA using the
estimation nnz := min\{ k | 

\sum k
i=1 | \^xi| \geq 0.999\| \^x\| 1\} , where \^x \in \BbbR p2L is the vector obtained

via sorting all elements in \Theta by magnitude in a descending order; and ``density"" denotes the
quantity nnz/(p2L). The time is displayed in the format of ``hours:minutes:seconds,"" and the
fastest method in terms of running time is highlighted in red. The errors presented in the
tables are the residuals \eta P for rPPA and \eta A for ADMM; the error for MGL is \Delta M ; \eta P , \eta A,
and \Delta M will be defined in the subsequent section.

4.1. Implementation details. We first give some key implementation details of Algo-
rithm 3.1 (rPPA) and Algorithm 3.2 (SSN).

4.1.1. Stopping conditions. In this part, we describe the measurement of the accuracy of
an approximate optimal solution and the stopping criteria of the three methods. Since both
rPPA and ADMM can generate primal and dual approximate solutions, we can assess the
accuracy of their solutions by the relative KKT residuals and duality gap. Unlike the primal-
dual method, MGL merely gives the primal solution, and the KKT residual of a solution
generated by MGL is not available. Instead, we measure the relative error of the objective
value obtained by MGL with respect to that computed by rPPA. Based on the KKT optimality
conditions for (3.1), the accuracy of an approximate optimal solution (\Theta ,\Omega , X) generated by
rPPA (Algorithm 3.1) is measured by the following relative residuals:

\eta P := max

\biggl\{ 
\| \Theta  - \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{x}\scrP (\Theta +X - S)\| 

1+\| \Theta \| , \| \Theta  - \Omega \| 
1+\| \Theta \| , max

1\leq l\leq L

\Bigl\{ 
\| \Omega (l)X(l) - I\| 

1+
\surd 
p

\Bigr\} 
, \mathrm{p}\mathrm{o}\mathrm{b}\mathrm{j}P - \mathrm{d}\mathrm{o}\mathrm{b}\mathrm{j}P
1+| \mathrm{p}\mathrm{o}\mathrm{b}\mathrm{j}P | +| \mathrm{d}\mathrm{o}\mathrm{b}\mathrm{j}P | 

\biggr\} 
.

Here, pobjP and dobjP are the primal and dual objective values achieved by rPPA. Likewise,
the accuracy of an approximate optimal solution generated by ADMM is measured by a similar
residual \eta A, defined in section SM3. In our numerical experiments, we terminate rPPA if itD
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satisfies the condition \eta P < \varepsilon for a given accuracy tolerance \varepsilon ; the same is true for ADMM with
the stopping condition \eta A < \varepsilon or the maximum number of iterations 20000 is reached. Note
that the terminating condition for MGL is different. Let ``pobjP "" and ``pobjM"" be the primal
objective function values computed by rPPA and MGL, respectively. MGL will be terminated
when the relative difference of its objective value with respect to that obtained by rPPA is
smaller than the given tolerance \varepsilon , i.e., \Delta M := (pobjM  - pobjP )/(1+ | pobjM | + | pobjP | ) < \varepsilon ,
or the maximum number of iterations 1500 is reached. All methods are terminated within
three hours.

4.1.2. Warm-start strategy of rPPA. We adopt a warm-start strategy to initialize rPPA.
That is, we first run ADMM (with identity matrices as starting points) for a fixed number of
iterations to generate a good initial point to warm-start rPPA. We also stop ADMM as soon
as the residual \eta A of the computed iterate is less than 100\varepsilon . Note that such a warm-start
strategy is sound since in the initial phase of rPPA, where the iterates are not close to the
optimal solution (as measured by \eta P ), it is computationally wasteful to use the more expensive
rPPA iteration when the fast local linear convergence behavior of the algorithm has yet to kick
in. Under such a scenario, naturally one would use cheaper iterations such as those of ADMM
to generate the approximate solutions until the residual \eta P has been sufficiently reduced.

4.1.3. Adjustment of parameters. The appropriate adjustment of the parameters in Al-
gorithm 3.1 and Algorithm 3.2 can accelerate the rPPA greatly in practice. We first describe
the adjustment of \sigma k, \varepsilon k, \delta k in Algorithm 3.1. As revealed by Theorem 3.3, \sigma k will affect the
local convergence rate \mu k(< 1). If \sigma k is increased, then \mu k will become smaller, and thus the
local convergence rate is improved. On the other hand, \sigma k will affect the condition number
of the Newton system in Step 1 of Algorithm 3.2. When \sigma k is very large such that the term
\sigma  - 1
k I is negligible, the condition number of the map \scrV j  - \sigma  - 1

k I will be large. In this case,
one needs extra CG iterations for finding the Newton direction. Therefore, the choice of \sigma k
should consider the trade-off between the rate of convergence of Algorithm 3.1 and the cost of
solving the linear systems for the Newton directions in Algorithm 3.2. Based on our prelimi-
nary experiments, we set the initial parameter \sigma 0 = max \{ 0.01,min\{ 1, \lambda 1, 1/\| S\| \} \} . We adjust
\sigma k according to the experience that a larger \sigma k usually leads to a better dual feasibility. An
empirical characterization of dual feasibility can be given by the residuals \| \Theta  - \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{x}\scrP (\Theta +X - S)\| 

1+\| \Theta \| ,

max1\leq l\leq L\{ \| \Omega (l)X(l) - I\| 
1+

\surd 
p \} , or their maximum, which is denoted as \chi k for the kth iteration. When

the improvement on the dual feasibility after one iteration is too small, we will increase \sigma k.
Specifically, we use the following strategy to update \sigma k: if \chi k/\chi k - 1 > 0.6, set \sigma k+1 = \zeta \sigma k; else,
set \sigma k+1 = \sigma k, where the factor \zeta is set to \zeta = 2 if \sigma k < 107 and \zeta = 1.3 otherwise. On the
other hand, we set the initial parameter in stopping criterion (A) to be \varepsilon 0 = 0.5 and decrease
it by a ratio \varsigma \geq 1, i.e., \varepsilon k+1 = \varepsilon k/\varsigma . We empirically set \varsigma to be 1.06 if the kth subproblem
has been solved efficiently within a reasonable time (the normal situation); otherwise, we set
\varsigma to be 1. Finally, we update \delta k in the same fashion as that for \varepsilon k.

Next we describe the adjustment of the parameters \mu , \=\eta , \tau , \rho in Algorithm 3.2. For com-
puting the Newton direction, we set \=\eta = 1 if k < 2 (main rPPA iteration) and j < 5 (SSN
iteration for solving the subproblem); otherwise, \=\eta = 0.1. The choice of \tau should consider the
trade-off between the rate of convergence of Algorithm 3.2 and the cost of solving the linearD
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systems for the Newton directions. As mentioned in [31], in order to achieve the quadratic
convergence of SSN (i.e., \tau = 1), many more CG iterations will be needed to compute an
accurate approximate Newton direction. Therefore, we usually take \tau \in [0.1, 0.2] in practice.
In the step on line search, we set \mu = 10 - 4 and \rho = 0.5.

4.2. Numerical results. We now show the numerical performance on both synthetic and
real data sets. Here, the real data sets include the stock price of Standard \& Poor's 500

and the University Webpages data set. Moreover, the experiments on a popular text data
set named 20 Newsgroups are given in section SM8.

4.2.1. Nearest-neighbor networks. In this section, we assess the effectiveness of the FGL
model on a simulated network---the nearest-neighbor network. We set p = 500 and L = 3
and consider N = 20p, p, or p/2 observations. The nearest-neighbor network is generated by
modifying the data generation mechanism described in [14]; see section SM5 for details.

There is a pair of tuning parameters \lambda 1 and \lambda 2 which must be specified. In the FGL
model, \lambda 1 drives sparsity and \lambda 2 drives similarity, and we say that \lambda 1 and \lambda 2 are the sparsity
and similarity control parameters, respectively. In order to show the diversity of sparsity in
our experiments, we choose a variety of \lambda 1 with \lambda 2 fixed. Figure 1 shows the relative ability
of the FGL model to recover the network structures and to detect the change-points.

Figure 1(a) displays the number of true positive edges selected (i.e., TP edges) against
the number of false edges selected (i.e., FP edges). We say that an edge (i, j) in the lth

network is selected in the estimate \widehat \Theta (l) if \widehat \Theta (l)
ij \not = 0, and we say that the edge is true in the

precision matrix \Omega (l) if \Omega 
(l)
ij \not = 0 and false if \Omega 

(l)
ij = 0. The figure clearly shows that when

more observations are sampled, the networks are better recovered by the FGL model. When
the sample size N = 10000 is large enough, we can see that the FGL model with \lambda 2 = 0.005
can recover almost all of the true positive edges without false positive edges, and that the
similarity control parameter \lambda 2 = 0.005 is much better than \lambda 2 = 0.05 in terms of the accuracy
of true edge detection. When \lambda 2 = 0.05, N = 10000, the FGL model can merely detect about
3000 true positive edges, while the the number of false positive edges is increased to over 600.
One possible reason is that \lambda 2 = 0.05 is too large compared with the underlying optimal one
in the case of enough samples.

Figure 1(b) illustrates the sum of squared errors between estimated edge values and true

edge values, i.e.,
\sum L

l=1

\sum 
i<j

\bigl( \widehat \Theta (l)
ij  - \Omega 

(l)
ij

\bigr) 2
. For sample size N = 10000, when the number

of the total edges selected is increasing (i.e., the sparsity control parameter is decreasing),
the errors are decreasing and finally reach fairly low values, which are much lower than those
corresponding to sample sizes N = 500 and N = 250.

Figure 1(c) plots the number of true positive differential edges against false positive differ-
ential edges. A differential edge is an edge that differs between classes and thus corresponds
to a change-point. We say that the (i, j) edge is estimated to be differential between the lth

and the (l + 1)th networks if | \widehat \Theta (l)
ij  - \widehat \Theta (l+1)

ij | > 10 - 6, and we say that it is truly differential if

| \Omega (l)
ij  - \Omega 

(l+1)
ij | > 10 - 6. The number of differential edges is computed for all successive pairs of

networks. We find that the best result in Figure 1(c) is the one in the upper left corner which
has approximately 2700 true positive differential edges and almost no false ones. We can also
see that the red dashed curve has no false positive differential edge and small numbers of trueD
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(a) (b) (c) 

(d) (e) (f)

Figure 1. Performances on nearest-neighbor networks with p = 500, L = 3, and various sample sizes
N = 10000, 500, 250. (a) Number of edges correctly identified to be nonzero (true positive edges) versus number
of edges incorrectly identified to be nonzero (false positive edges); (b) sum of squared errors in edge values
versus the total number of edges estimated to be nonzero; (c) number of edges correctly found to have values
differing between successive classes (true positive differential edges) versus number of edges incorrectly found
to have values differing between successive classes (false positive differential edges); (d) KL divergence versus
the total number of edges estimated to be nonzero; (e) running time of three methods when N = 10000 versus
the total number of edges estimated to be nonzero; (f) legend for (a)--(d).

positive differential edges. This might be caused by the larger similarity control parameter
\lambda 2 = 0.05, which forces an excessive number of edges across L networks to be similar. Again,
with more samples, the recovery result would improve.

Figure 1(d) displays the Kullback--Leibler (KL) divergence between the true model and
the estimated model: 1

L

\sum L
l=1( - log det (\widehat \Theta (l)\Sigma (l)) + \langle \widehat \Theta (l),\Sigma (l)\rangle  - p), where \Sigma (l), l = 1, . . . , L,

are the true covariance matrices. It shows that the KL divergence deteriorates greatly with
decreasing sample size. When the sample size is large enough such as N = 10000, the FGL
model with appropriately chosen tuning parameters can attain a nearly zero KL divergence.
When the sample size N = 250 is smaller than the number of features p = 500, we can see that
the KL divergence decreases at first and then increases as the total number of edges selected
increases, and we fail to attain a KL divergence value as low as those with the large sample
size N = 10000.

Figure 1(e) plots the running times (in seconds) of the three methods for the case N =
10000. One can observe that the MGL is computationally more expensive than the ADMMD
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and rPPA, while the latter two methods are comparably fast on these synthetic data instances.
In order to illustrate the performance on a relatively large L, we repeat the above experi-

ments on simulations with p = 500, L = 20, and N = 20p, p, or p/2. The results are presented
in Figure 2. Since the MGL is slow in solving nearest-neighbor network problems according
to the numerical experiments conducted so far, we only report the running time of the rPPA
and ADMM in Figure 2(e). The values in Figure 2 (TP Edges, FP Edges, Sum of Squared
Errors, Total Edges Selected, TP Differential Edges, FP Differential Edges) are divided by
L = 20 to improve readability. When L is increased from 3 to 20, the performances of the
FGL model evaluated in Figure 2(a)--(d) remain similar, while we can see from Figure 2(e)
that the running times of both rPPA and ADMM are about 10 times slower than those with
L = 3. In addition to the results with L = 3, 20, we also repeat the above experiments on
simulations with L = 100. The results are presented in section SM5.

(a) (b) (c) 

(d) (e) (f)

Figure 2. Performances on nearest-neighbor networks with p = 500, L = 20, and various sample sizes
N = 10000, 500, 250. (a)--(f) are as labeled in Figure 1. The values TP Edges, FP Edges, Sum of Squared
Errors, Total Edges Selected, TP Differential Edges, and FP Differential Edges presented are divided by L = 20.

4.2.2. Standard \& Poor's 500 stocks. In this section, we compare rPPA, ADMM, and
MGL on the Standard \& Poor's 500 stock price data sets. The stock price data sets
contain daily returns of 500 stocks over a long period and can be downloaded from the link
http://www.yahoo.com. The dependency structures of different stocks vary over time. But it
appears that the dependency networks change smoothly over time. Therefore, the FGL modelD
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might be able to find the interactions among these stocks and how they evolve over time.
We first consider a relatively short three-year time period from January 2004 to Decem-

ber 2006. During this period, there are in total 755 daily returns of 370 stocks. We call this
data set SPX3a. For each year, it contains approximately 250 daily returns of each stock.
Considering the limited number of observations in each year and the interpretation of the
results, we choose to analyze random smaller subsets of all involved stocks, whose sizes are
chosen to be p = 100 and p = 200, over L = 3 periods.

In addition to the above data set over three years, a relatively long period from Jan-
uary 2004 to December 2014 is also considered in the experiments, which is referred to as
SPX11b. Since this time period is longer than the previous one, the number of stocks be-
comes smaller as some stocks might disappear (the stocks that do not exist over the entire
estimation period have been removed). During the 11-year time period, there are 2769 daily
returns of 272 stocks. We can set a relatively large parameter L = 11 according to years
from January 2004 to December 2014. Again, we choose to analyze two random subsets of all
existing stocks, of which the sizes are selected to be p = 100 and p = 200. To test on a large
L, we can further split one year into two halves and obtain a data set with L = 22, p = 100.
It is referred to as SPX22c.

For the tuning parameters (\lambda 1, \lambda 2), we first select three pairs manually, which results in
various sparsity patterns (1\% \sim 25\%) so that we can see how sensitive the performance of a
method is to the solution sparsity of the FGL problem. In addition, a 3-fold cross validation
(CV) is performed with tuning grids

\lambda 1,\mathrm{g}\mathrm{r}\mathrm{i}\mathrm{d} = \lambda 2,\mathrm{g}\mathrm{r}\mathrm{i}\mathrm{d} = \{ 10 - 3, 10 - 3.5, 10 - 4, 10 - 4.5, 10 - 5, 10 - 5.5, 10 - 6\} 

to select the optimal pair (\^\lambda 1, \^\lambda 2) (bold numbers in each table) that minimizes the CV score;
see section SM4 for details.

Table 1
Performances of rPPA, ADMM, and MGL on stock price data. Tolerance \varepsilon = 1e-6.

\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m} (\lambda 1, \lambda 2) \mathrm{D}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y} \mathrm{I}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{E}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

(p, L) \mathrm{P} \mathrm{A} \mathrm{M} \mathrm{P} \mathrm{A} \mathrm{M} \mathrm{P} \mathrm{A} \mathrm{M}

(10 - 4, 10 - 5) 0.024 24 5879 6 18 54 08 5.9\mathrm{e}-07 1.0\mathrm{e}-06 3.5\mathrm{e}-07

SPX3a (5 \cdot 10 - 5, 5 \cdot 10 - 6) 0.127 24 5895 9 19 58 12 6.9\mathrm{e}-07 1.0\mathrm{e}-06 7.3\mathrm{e}-08

(100,3) (2 \cdot 10 - 5, 2 \cdot 10 - 6) 0.236 24 10407 18 29 01:47 12 7.8\mathrm{e}-07 1.0\mathrm{e}-06 8.1\mathrm{e}-07

(\bfone \bfzero  - \bffive , \bfone \bfzero  - \bfthree ) 0.305 28 13652 25 34 02:18 01:19 7.0\mathrm{e}-07 1.0\mathrm{e}-06 8.1\mathrm{e}-07

(10 - 4, 10 - 5) 0.027 20 1508 6 25 33 25 6.6\mathrm{e}-07 9.9\mathrm{e}-07 5.9\mathrm{e}-07

SPX3a (5 \cdot 10 - 5, 5 \cdot 10 - 6) 0.089 20 1599 23 29 36 03:12 6.5\mathrm{e}-07 1.0\mathrm{e}-06 8.3\mathrm{e}-07

(200,3) (2 \cdot 10 - 5, 2 \cdot 10 - 6) 0.151 22 1958 55 29 46 02:32 9.4\mathrm{e}-07 1.0\mathrm{e}-06 8.5\mathrm{e}-07

(\bfone \bfzero  - \bffour .\bffive , \bfone \bfzero  - \bffour ) 0.131 23 1704 24 32 39 01:51 9.1\mathrm{e}-07 9.9\mathrm{e}-07 5.2\mathrm{e}-07

(5 \cdot 10 - 4, 5 \cdot 10 - 5) 0.028 23 4745 7 46 02:15 02:11 9.0\mathrm{e}-07 1.0\mathrm{e}-06 5.5\mathrm{e}-07

SPX11b (10 - 4, 10 - 5) 0.130 23 4559 136 56 02:34 08:12 8.9\mathrm{e}-07 1.0\mathrm{e}-06 9.9\mathrm{e}-07

(100,11) (5 \cdot 10 - 5, 5 \cdot 10 - 6) 0.214 23 4595 549 01:04 02:37 25:50 8.0\mathrm{e}-07 1.0\mathrm{e}-06 1.0\mathrm{e}-06

(\bfone \bfzero  - \bffour .\bffive , \bfone \bfzero  - \bffour ) 0.340 26 4670 393 01:12 02:37 20:37 7.0\mathrm{e}-07 1.0\mathrm{e}-06 9.9\mathrm{e}-07

(5 \cdot 10 - 4, 5 \cdot 10 - 5) 0.017 20 1201 26 48 01:20 45:40 8.9\mathrm{e}-07 6.4\mathrm{e}-07 8.4\mathrm{e}-07

SPX11b (10 - 4, 10 - 5) 0.082 20 1287 552 01:05 01:46 01:46:52 8.8\mathrm{e}-07 9.9\mathrm{e}-07 9.9\mathrm{e}-07

(200,11) (5 \cdot 10 - 5, 5 \cdot 10 - 6) 0.133 20 1289 840 01:11 01:49 03:00:00 7.9\mathrm{e}-07 1.0\mathrm{e}-06 4.8\mathrm{e}-05

(\bfone \bfzero  - \bffour .\bffive , \bfone \bfzero  - \bffour .\bffive ) 0.210 23 4662 992 03:38 06:48 03:00:00 7.6\mathrm{e}-07 1.0\mathrm{e}-06 5.2\mathrm{e}-05

(5 \cdot 10 - 4, 5 \cdot 10 - 5) 0.021 33 14358 21 38 10:09 13:26 7.6\mathrm{e}-07 1.0\mathrm{e}-06 9.3\mathrm{e}-07

SPX22c (10 - 4, 10 - 5) 0.097 36 14260 543 55 14:18 51:48 7.5\mathrm{e}-07 1.0\mathrm{e}-06 9.9\mathrm{e}-07

(100,22) (5 \cdot 10 - 5, 5 \cdot 10 - 6) 0.176 33 14127 1500 51 14:09 02:22:31 7.3\mathrm{e}-07 1.0\mathrm{e}-06 4.6\mathrm{e}-06

(\bfone \bfzero  - \bffour .\bffive , \bfone \bfzero  - \bffour ) 0.307 33 20000 568 01:44 18:54 01:51:03 7.3\mathrm{e}-07 4.4\mathrm{e}-06 9.8\mathrm{e}-07
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Table 1 shows the comparison of rPPA, ADMM, and MGL on the stock price data sets
SPX3a, SPX11b, and SPX22c with 100 and 200 selected stocks. For each instance, the first
three pairs of (\lambda 1, \lambda 2) are selected manually for the diversity of sparsity, while the last bold
pair is obtained from CV. One immediate observation from the table is that rPPA outperforms
ADMM and MGL for a majority of instances. For the exceptional instances, rPPA is still
faster than ADMM and comparable with MGL. In addition, we find that both rPPA and
ADMM succeeded in solving all instances; while MGL failed to solve three of them within
one hour. This might imply that MGL is not robust for solving the FGL model when applied
to the stock price data sets. On the other hand, the running time of rPPA changes more
smoothly when we vary the parameter values for \lambda 1 and \lambda 2 or the problem dimension. The
numerical results show convincingly that our algorithm rPPA can solve the FGL problems
efficiently and robustly. The superior performance of rPPA can mainly be attributed to our
ability to extract and exploit the sparsity structure (in the surrogate generalized Jacobian of
Prox\scrP ) within the SSN method to solve each rPPA subproblem very efficiently. Additional
numerical results running over a variety of \lambda 2 (resp., \lambda 1) while holding \lambda 1 = \^\lambda 1 (resp., \lambda 2 = \^\lambda 2)
at the CV selected value for the instance SPX11b, p = 100 are presented in Table 2.
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Figure 3. Patterns of the estimated precision matrices over 11 years on the stock price data sets. The red
pattern extracts the common structure of those in the same row. The blue pattern corresponds to individual
edges specific to its own network.

Figure 3 displays the sparse patterns of 11 estimated precision matrices from year 2004 to
2014 on the data set SPX11b with CV selected tuning parameters (\^\lambda 1, \^\lambda 2) = (10 - 4.5, 10 - 4),
p = 100. It should be noted that this period covers the 2008 financial crisis. We manually
split the time points into three stages (one stage corresponds to one row in Figure 3) toD
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Table 2
Performances of rPPA, ADMM, and MGL on stock price data set SPX11b. (p, L) = (100, 11). Tolerance

\varepsilon = 1e-6. The CV selected tuning parameter is (\^\lambda 1, \^\lambda 2) = (10 - 4.5, 10 - 4.0).

\lambda 1 \lambda 2 Density Iteration Time Error

P A M P A M P A M

10 - 3.0 0.286 26 4707 152 01:12 02:28 19:04 7.2e-07 1.0e-06 5.0e-07
10 - 3.2 0.289 23 5355 207 01:08 02:56 20:18 8.4e-07 1.0e-06 9.9e-07
10 - 3.4 0.297 23 4693 273 01:06 02:30 22:39 8.4e-07 1.0e-06 9.9e-07
10 - 3.6 0.308 23 5244 349 01:07 02:51 25:02 8.4e-07 1.0e-06 1.0e-06

\bfone \bfzero  - \bffour .\bffive 10 - 3.8 0.327 23 5245 345 01:07 02:51 23:18 8.3e-07 1.0e-06 1.0e-06
10 - 4.2 0.346 23 4703 420 01:11 02:32 16:27 8.1e-07 1.0e-06 1.0e-06
10 - 4.4 0.343 23 4781 579 01:12 02:34 19:37 8.7e-07 1.0e-06 9.9e-07
10 - 4.6 0.327 26 4898 769 01:17 02:39 24:47 8.4e-07 1.0e-06 1.0e-06
10 - 4.8 0.305 24 5039 971 01:21 02:45 30:13 6.3e-07 1.0e-06 1.0e-06

\bfone \bfzero  - \bffour .\bffive \bfone \bfzero  - \bffour .\bfzero 0.340 26 4670 393 01:12 02:37 20:37 7.0e-07 1.0e-06 9.9e-07

10 - 3.5 0.046 23 4738 13 49 02:16 01:13 9.0e-07 1.0e-06 5.7e-07
10 - 3.7 0.074 23 4726 19 49 02:23 02:23 8.9e-07 1.0e-06 8.7e-07
10 - 3.9 0.124 23 4710 45 52 02:28 09:33 8.9e-07 1.0e-06 9.9e-07
10 - 4.1 0.226 23 4572 84 55 02:27 04:10 8.8e-07 1.0e-06 9.6e-07

10 - 4.3 \bfone \bfzero  - \bffour .\bfzero 0.305 26 4576 195 01:03 02:31 09:01 7.4e-07 1.0e-06 9.9e-07
10 - 4.7 0.356 24 5177 589 01:20 02:47 21:37 7.5e-07 1.0e-06 1.0e-06
10 - 4.9 0.378 22 2481 809 01:03 01:20 29:05 8.6e-07 1.0e-06 1.0e-06
10 - 5.1 0.409 26 2485 1175 57 01:19 44:56 7.0e-07 9.9e-07 1.0e-06
10 - 5.3 0.479 24 2644 1247 53 01:24 44:35 8.3e-07 1.0e-06 1.0e-06

aid the interpretation of the results. Each red pattern in the left panel presents the common
structure across the estimated precision matrices in its stage. And each blue pattern visualizes
the individual edges specific to its own precision matrix. Generally, one can hardly expect
a meaningful common structure across all the 11 time points, and thus we provide here the
common structure across parts of nearby precision matrices. One can clearly see that more
individual edges are detected in the middle stage. The increased number of individual edges
over this period is likely due to the 2008 global financial crisis and its sustained effects. Another
observation is that the number of individual edges had a drastic increase in 2007, remained at a
high level during the 2008 global financial crisis and a certain period after that, and then went
down to a level still higher than that of the precrisis period (the years 2004, 2005, and 2006).
The sudden increase in 2007 might be seen as a prediction of the oncoming financial crisis in
2008. The increased number of interactions among stocks after the financial crisis compared
to that in the precrisis period may indicate some essential changes of the financial landscape.
To a certain degree, the observations agree well with [25]. We further investigate the effect of
financial crisis by analyzing the data in the middle stage (January 2007--December 2010) on
a quarterly basis; see Figure SM2.

4.2.3. University webpages. In this section, we compare rPPA, ADMM, and MGL on
the university webpages data.1 The procedure of processing data and generating sample

1Available at http://ana.cachopo.org/datasets-for-single-label-text-categorization.D
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Figure 4. (a) Common structure for four classes. (b) Dependency structure for class Course. (c) Depen-
dency structure for class Project. The thin black lines are the edges appearing in both classes, and the thick red
lines are the edges only appearing in one class. (\lambda 1, \lambda 2) = (0.005, 0.003).

covariance matrices is similar to the process in [8]. The original pages were collected from
computer science departments of various universities in 1997. We selected the four largest
and meaningful classes in our experiment: Student, Faculty, Staff, and Department. For
each class, the collection contains pages from four universities, Cornell, Texas, Washington,
Wisconsin, and other miscellaneous pages from other universities. Furthermore, the originalD
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text data have been preprocessed by stemming techniques, that is, reducing words to their
morphological roots. The preprocessed data sets downloaded from the link above contain
two files: two thirds of the pages were randomly chosen as a training set (Webtrain) and the
remaining third as a testing set (Webtest). Table 3 presents the distribution of documents per
class. See section SM7 for details on the procedure of data processing.

Table 3
Distribution of documents of classes Student, Faculty, Course, and Project.

Class Student Faculty Course Project Total

\#train docs 1097 750 620 336 2803
\#test docs 544 374 310 168 1396

We first apply the FGL model to the Webtest data set for the purpose of interpreting
the data. We present the results with relatively large controlling parameters \lambda 1 = 0.005 and
\lambda 2 = 0.003 to aid the interpretation of the relationships. Figure 4(a), (b), and (c) illustrate
the common structure across all classes and the differences between the Course and Project
classes. One can see that some course related terms, such as class and assign, are of high
degree in Figure 4(b), whereas they are not even connected in Figure 4(c). Additionally, some
teaching related terms are linked only in the Course category, such as class-assign, assign-
problem, and class-project. Overall, it is likely that the FGL model is capable of identifying
the common and individual structures of the webpages among related classes.

Table 4
Performances of rPPA, ADMM, and MGL on webpages data. Tolerance \varepsilon = 1e-6.

\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m} (\lambda 1, \lambda 2) \mathrm{D}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{y} \mathrm{I}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{E}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

(n,L) \mathrm{P} \mathrm{A} \mathrm{M} \mathrm{P} \mathrm{A} \mathrm{M} \mathrm{P} \mathrm{A} \mathrm{M}

(10 - 2, 10 - 3) 0.015 14 501 4 03 06 06 8.9\mathrm{e}-07 9.9\mathrm{e}-07 1.2\mathrm{e}-07

Webtest (5 \cdot 10 - 3, 5 \cdot 10 - 4) 0.047 14 501 6 03 06 13 8.8\mathrm{e}-07 9.9\mathrm{e}-07 3.1\mathrm{e}-07

(100,4) (10 - 3, 10 - 4) 0.219 14 549 38 03 07 01:00 8.5\mathrm{e}-07 1.0\mathrm{e}-06 9.0\mathrm{e}-07

(\bfone \bfzero  - \bfthree , \bfone \bfzero  - \bftwo .\bffive ) 0.207 16 557 15 05 07 32 5.1\mathrm{e}-07 1.0\mathrm{e}-06 5.2\mathrm{e}-07

(10 - 2, 10 - 3) 0.008 16 835 7 09 26 01:08 9.0\mathrm{e}-07 9.9\mathrm{e}-07 8.6\mathrm{e}-07

Webtest (5 \cdot 10 - 3, 5 \cdot 10 - 4) 0.025 16 744 8 13 22 01:12 8.9\mathrm{e}-07 9.8\mathrm{e}-07 4.7\mathrm{e}-07

(200,4) (10 - 3, 10 - 4) 0.156 16 562 72 08 17 08:24 8.9\mathrm{e}-07 9.9\mathrm{e}-07 9.4\mathrm{e}-07

(\bfone \bfzero  - \bfthree , \bfone \bfzero  - \bffive ) 0.167 16 562 76 08 17 07:32 8.9\mathrm{e}-07 9.9\mathrm{e}-07 9.6\mathrm{e}-07

(5 \cdot 10 - 3, 5 \cdot 10 - 4) 0.016 17 883 9 32 49 04:08 6.6\mathrm{e}-07 1.0\mathrm{e}-06 3.7\mathrm{e}-07

Webtest (10 - 3, 10 - 4) 0.119 17 501 259 43 29 44:01 8.9\mathrm{e}-07 7.9\mathrm{e}-07 1.0\mathrm{e}-06

(300,4) (5 \cdot 10 - 4, 5 \cdot 10 - 5) 0.244 18 701 1394 01:05 41 02:35:17 7.0\mathrm{e}-07 7.8\mathrm{e}-07 1.0\mathrm{e}-06

(\bfone \bfzero  - \bfthree , \bfone \bfzero  - \bffour .\bffive ) 0.127 17 501 291 47 29 48:45 9.7\mathrm{e}-07 9.0\mathrm{e}-07 1.0\mathrm{e}-06

(10 - 2, 10 - 3) 0.011 20 2182 4 10 22 07 9.8\mathrm{e}-07 9.9\mathrm{e}-07 1.6\mathrm{e}-08

Webtrain (5 \cdot 10 - 3, 5 \cdot 10 - 4) 0.030 20 2181 6 11 25 13 9.9\mathrm{e}-07 1.0\mathrm{e}-06 2.2\mathrm{e}-09

(100,4) (10 - 3, 10 - 4) 0.162 20 2175 29 12 26 01:25 9.7\mathrm{e}-07 1.0\mathrm{e}-06 8.7\mathrm{e}-07

(\bfone \bfzero  - \bfthree , \bfone \bfzero  - \bftwo ) 0.181 21 1901 14 17 22 01:55 5.9\mathrm{e}-07 7.1\mathrm{e}-07 3.1\mathrm{e}-07

(5 \cdot 10 - 3, 5 \cdot 10 - 4) 0.015 20 1682 6 24 48 25 5.8\mathrm{e}-07 1.0\mathrm{e}-06 1.1\mathrm{e}-08

Webtrain (10 - 3, 10 - 4) 0.105 20 1799 42 26 56 03:47 5.7\mathrm{e}-07 1.0\mathrm{e}-06 8.8\mathrm{e}-07

(200,4) (5 \cdot 10 - 4, 5 \cdot 10 - 5) 0.210 19 1796 121 27 55 08:33 1.0\mathrm{e}-06 1.0\mathrm{e}-06 9.9\mathrm{e}-07

(\bfone \bfzero  - \bfthree .\bffive , \bfone \bfzero  - \bftwo ) 0.283 22 2318 28 01:04 01:08 05:06 9.6\mathrm{e}-07 9.4\mathrm{e}-07 9.0\mathrm{e}-07

(5 \cdot 10 - 3, 5 \cdot 10 - 4) 0.010 19 1986 7 42 01:58 02:17 7.7\mathrm{e}-07 9.9\mathrm{e}-07 3.4\mathrm{e}-08

Webtrain (10 - 3, 10 - 4) 0.077 19 1550 61 44 01:35 23:43 7.4\mathrm{e}-07 1.0\mathrm{e}-06 9.7\mathrm{e}-07

(300,4) (5 \cdot 10 - 4, 5 \cdot 10 - 5) 0.168 19 1550 182 50 01:33 22:07 7.3\mathrm{e}-07 1.0\mathrm{e}-06 9.8\mathrm{e}-07

(\bfone \bfzero  - \bfthree .\bffive , \bfone \bfzero  - \bftwo ) 0.230 22 3291 49 03:09 03:18 20:04 8.9\mathrm{e}-07 1.0\mathrm{e}-06 9.3\mathrm{e}-07

Table 4 shows the comparison of the three methods rPPA, ADMM, and MGL on theD
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webpages data sets with data dimension p = 100, p = 200, and p = 300. Again, we select
three pairs of (\lambda 1, \lambda 2) which result in various sparsity (1\% \sim 25\%) and one pair (bold numbers
in the table) by a 3-fold CV with tuning grids

\lambda 1,\mathrm{g}\mathrm{r}\mathrm{i}\mathrm{d} = \lambda 2,\mathrm{g}\mathrm{r}\mathrm{i}\mathrm{d} = \{ 10 - 2, 10 - 2.5, 10 - 3, 10 - 3.5, 10 - 4, 10 - 4.5, 10 - 5\} .

As can be seen, rPPA outperforms ADMM and MGL for most of the tested webpages data
sets.

5. Conclusion. We have designed an efficient and globally convergent regularized proximal
point algorithm for solving the primal formulation of the fused graphical Lasso problem. From
a theoretical perspective, we established the Lipschitz continuity of the solution mapping and
consequently obtained that the primal and dual sequences are locally linearly convergent. This
lays the foundation for the efficiency of the proposed algorithm. Moreover, the second order
information was also fully exploited, which further leads to the high efficiency of the proposed
algorithm. Numerically, we demonstrated the superior efficiency and robust performance of
the proposed method by comparing it with the extensively used alternating direction method
of multipliers and the proximal Newton-type method [27] on both synthetic and real data sets.
In summary, the proposed semismooth Newton based regularized proximal point algorithm is
a highly efficient method for solving the fused graphical Lasso problem.
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