Matrix Optimization: Searching between the First and Second Order Methods

Defeng Sun

Department of Mathematics and Risk Management Institute National University of Singapore

$$
\text { May 17, } 2011
$$

The Matrix Optimization Problem

We consider the "standard" matrix optimization problem (MOP) and its dual:

$$
\begin{array}{lll}
& \min & \langle c, x\rangle+f(x) \\
\text { s.t. } & \mathcal{A} x=b
\end{array}
$$

and

$$
\begin{array}{cl}
\max & \langle b, y\rangle-f^{*}(z) \\
\text { s.t. } & \mathcal{A}^{*} y-c=z,
\end{array}
$$

where \mathcal{X} is the Cartesian product of several finite dimensional real matrix spaces, symmetric or non-symmetric,
\mathcal{A}^{*} is the adjoint of the linear operator $\mathcal{A}: \mathcal{X} \rightarrow \Re^{m}, c \in \mathcal{X}, b \in \Re^{m}$, $f: \mathcal{X} \rightarrow(-\infty, \infty]$ is a closed proper convex function with its Fenchel conjugate f^{*}.

The Fenchel conjugate of f is defined by

$$
f^{*}(z):=\sup _{x \in \mathcal{X}}\{\langle z, x\rangle-f(x)\}
$$

In standard linear programming, $f(x)=\delta_{\Re_{+}^{n}}(x)$, the indicator function over \Re_{+}^{n} and $f^{*}(x)=\delta_{\left(-\Re_{+}^{n}\right)}(x)$.

In semidefinite programming (SDP), $f(x)=\delta_{\mathcal{S}_{+}^{n}}$, the indicator function over \mathcal{S}_{+}^{n} and $f^{*}(x)=\delta_{\left(-\mathcal{S}_{+}^{n}\right)}(x)$.

Desirable Properties of f

We need conditions on f. Specifically, we require

- The Moreau-Yosida regularization of f

$$
\psi_{f}(x):=\min _{z \in \mathcal{X}}\left\{f(z)+\frac{1}{2}\|z-x\|^{2}\right\}
$$

has a closed form solution, denoted by $P_{f}(x)$.

- We can easily compute the directional derivative of

$$
\nabla \psi_{f}(x)=x-P_{f}(x)
$$

- The function $\nabla \psi_{f}$ is (strongly) semismooth.

Let us first look at one simple example with nonsymmetric matrices:

$$
\begin{equation*}
\min _{y \in \Re^{k}}\left\|A_{0}-\sum_{i=1}^{k} y_{i} A_{i}\right\|_{2}, \tag{1}
\end{equation*}
$$

where A_{i} are m by n matrices, $\|\cdot\|_{2}$ is the spectral (operator) norm of matrices (the largest singular value).

Use $\|\cdot\|_{*}$ to denote the nuclear norm (the sum of all singular values) and B_{*}^{1} to denote the unit nuclear norm ball.

We can equivalently write (1) in the form of (D):

$$
\begin{array}{ll}
\max & \langle 0, y\rangle-\|Z\|_{2} \\
\text { s.t. } & \mathcal{A} y-A_{0}=Z
\end{array}
$$

and the corresponding form of (P) :

$$
\begin{array}{ll}
\min & \left\langle A_{0}, X\right\rangle+\delta_{B_{*}^{1}}(X) \\
\text { s.t. } & \mathcal{A}^{*} X=0 .
\end{array}
$$

Why bother?

Note that we can write $t \geq\|X\|_{2}$ (here, $X \in \Re^{m \times n}$) equivalently as

$$
\mathcal{S}^{m+n} \ni\left[\begin{array}{cc}
t I_{m} & X \\
X^{T} & t I_{n}
\end{array}\right] \succeq 0 .
$$

Thus, (1) is equivalent to an SDP problem:

$$
\begin{array}{ll}
\min & t \\
\text { s.t. } & X+\sum_{i=1}^{k} y_{i} A_{i}=A_{0}, \tag{2}\\
& {\left[\begin{array}{cc}
t I_{m} & X \\
X^{T} & t I_{n}
\end{array}\right] \succeq 0 .}
\end{array}
$$

NUS

Actually, most of the MOPs we are considering are "SDP representable". However, there are two issues to use the SDP representation (2):

- Can we solve these SDPs when m or n is not small?
- Is it necessary to increase the matrix dimension from $m n$ to $\frac{1}{2}(m+n)^{2}$?
- No one is likely to do so if $m=1$ or $n=1$ because in this case we can solve a second order cone programming (SOC) problem instead of an SDP problem?
- How about $m \ll n$ or $n \ll m$?
- Shall we do so if $m=n$?

An application in finance

Let us consider the widely used optimization model in the finance industry and many others:

$$
\begin{array}{ll}
\min & \left\|D^{-1 / 2}(X-G) D^{-1 / 2}\right\|_{F} \\
\text { s.t. } & \operatorname{diag}(X)=e \tag{3}\\
& X \succeq 0
\end{array}
$$

where G is an estimated matrix which often fails to be positive semi-definite, D is a symmetric and positive definite matrix (weight matrix), and e is the vector of all ones.

This problem is known as the nearest correlation matrix (NCM) problem, a terminology coined by Nick Higham in 2002. It is used in many situations: stress testing, VaR computation, asset pricing ...

SDP cone + SOC reformulation

One may write the NCM as a symmetric cone programming with both SDP cone and SOC cone constraints (assuming $D=I$, the identity matrix for notational convenience):

$$
\begin{array}{ll}
\min & t \\
\text { s.t. } & \operatorname{diag}(X)=e \\
& y+\operatorname{svec}(X)=\operatorname{svec}(G) \\
& X \succeq 0, \quad t \geq\|y\|_{2}
\end{array}
$$

This is a perfect formula for employing modern interior point methods (IPMs).

n	Time (secs)	Iters
30	1.4	15
40	3.2	15
50	6.0	15
60	13.2	16
70	24.4	15
80	44.3	15
90	102.0	19
100	142.6	16

Table 1: Numerical results for SDPT3

For $n=110$, it shows Out of Memory [Dell Laptop: 2.99 GB RAM].
The reason is simple: each step we need to store an m by matrix at least. Here m is the number of equations

$$
m=n+1+n(n+1) / 2
$$

For $n=110$, we have $m=6216$.
One may buy a better Laptop or PC. But even so in each step, the computational cost is

$$
O\left(m^{3}\right)=O\left(n^{6}\right)
$$

For large n, we will just feed wrong problems to IPMs.

First order methods

In optimization, we always look at the dual when we find a problem difficult to solve.
Rewrite the NCM as

$$
\begin{array}{ll}
\min & \frac{1}{2}\|X-G\|_{F}^{2} \\
\text { s.t. } & \operatorname{diag}(X)=e, \tag{4}\\
& X \succeq 0,
\end{array}
$$

Then the dual of the NCM turns to be an unconstrained problem:

$$
\begin{array}{ll}
\max & -\theta(y):=-\left[\frac{1}{2}\left\|\Pi_{\mathcal{S}_{+}^{n}}(G+\operatorname{Diag}(y))\right\|^{2}-\langle e, y\rangle-\frac{1}{2}\|G\|^{2}\right] \\
\text { s.t. } & y \in \Re^{n},
\end{array}
$$

where $\Pi_{\mathcal{S}_{+}^{n}}(X)$ is the unique optimal solution (projection) to

$$
\begin{array}{ll}
\min & \frac{1}{2}\|Y-X\|_{F}^{2} \\
\text { s.t. } & Y \in \mathcal{S}_{+}^{n} .
\end{array}
$$

The convex function θ is continuously differentiable with

$$
\nabla \theta(y)=\operatorname{diag}\left(\Pi_{\mathcal{S}_{+}^{n}}(G+\operatorname{Diag}(y))\right)-e, \quad y \in \Re^{n}
$$

Moreover, $\nabla \theta(\cdot)$ is globally Lispchitz continuous with modulus one, i.e.,

$$
\|\nabla \theta(y)-\nabla \theta(z)\| \leq\|y-z\| \quad \forall y, z \in \Re^{n} .
$$

To compute $\theta(y)$ and $\nabla \theta(y)$, one only needs to know how to compute $\Pi_{\mathcal{S}_{+}^{n}}(X)$.

Let $X \in \mathcal{S}^{n}$ have the following spectral decomposition ${ }^{1}$

$$
X=P \Lambda P^{T}
$$

where Λ is the diagonal matrix of eigenvalues of X and P is a corresponding orthogonal matrix of orthonormal eigenvectors.

Then

$$
X_{+}:=\Pi_{\mathcal{S}_{+}^{n}}(X)=P \Lambda_{+} P^{T} .
$$

[^0]Immediately, one will try the following projected gradient (PG) method:

$$
y^{k+1}:=y^{k}-\nabla \theta\left(y^{k}\right)=y^{k}-\left[\operatorname{diag}\left(\Pi_{\mathcal{S}_{+}^{n}}\left(G+\operatorname{Diag}\left(y^{k}\right)\right)\right)-e\right] .
$$

In 2007, Marc Teboulle suggested to us the accelerated projected gradient (APG) method $\left(x^{0}=z^{0}=y^{0}\right)$:

$$
\left\{\begin{array}{l}
z^{k+1}=z^{k}-\nabla \theta\left(y^{k}\right) \\
x^{k+1}=(1-2 /(k+2)) x^{k}+2 /(k+2) z^{k} \\
y^{k+1}=[1-2 /((k+1)+2)] x^{k+1}+2 /((k+1)+2) z^{k+1}
\end{array}\right.
$$

In 2011, He et al considered the augmented Lagrangian alternating direction method (ADM) by writing the NCM as:

$$
\begin{array}{ll}
\min & \frac{1}{2}\|X-G\|_{F}^{2}+\frac{1}{2}\|Y-G\|_{F}^{2} \\
\text { s.t. } & X-Y=0, \\
& \operatorname{diag}(Y)=e, \\
& X \succeq 0 .
\end{array}
$$

Testing Case 1): Three first order algorithms are tested for a perturbed true correlation matrix: $G_{\text {true }}$ is a 1000 by 1000 true correlation matrix and E is a symmetric random matrix with elements in $[-1,1]$:

$$
E=\operatorname{randn}(1000) ; E=\operatorname{triu}(E)+\operatorname{triu}(E, 1)^{\prime}
$$

and set

$$
G:=90 \% \times G_{\text {true }}+10 \% \times E
$$

with its all diagonal being ones. For PG and APG methods, the residue represents the primal feasibility. So, the residue should be at least below 10^{-4}.

Algorithm	Time (secs)	Iters	Residue
PG	124.0	95	9.5×10^{-5}
APG	125.0	93	9.2×10^{-5}
ADM	51.0	36	9.3×10^{-5}

Table 2: Results for PG, APG, and ADM with $\varepsilon=10^{-4}$

Algorithm	Time (secs)	Iters	Residue
PG	190	145	9.5×10^{-7}
APG	225	168	9.7×10^{-7}
ADM	82	58	9.5×10^{-7}

Table 3: Results for PG, APG, and ADM with $\varepsilon=10^{-6}$

Tables 2 and 3 show that all the tested first order methods work well, in particular ADM [By introducing line searches to PG and APG methods, one can improve the performance of these two algorithms].

Testing Case 2): To see the robustness of the first order methods, set

$$
G:=\operatorname{rand}(1000,1000), \quad G=G+G^{\prime}
$$

with its diagonal matrices to be ones.

Algorithm	Time (secs)	Iters	Residue
PG	1130.0	1000	3.5×10^{-2}
APG	1120.0	1000	3.6×10^{-4}
ADM	305.0	257	1.0×10^{-4}

Table 4: Results for PG, APG, and ADM with $\varepsilon=10^{-4}$

Algorithm	Time (secs)	Iters	Residue
PG	1130.0	1000	3.5×10^{-2}
APG	1120.0	1000	3.6×10^{-4}
ADM	515.0	434	9.7×10^{-7}

Table 5: Results for PG, APG, and ADM with $\varepsilon=10^{-6}$

Tables 4 and 5 show that the performance of PG and APG worsens a lot while ADM does okay.

Testing Case 3): The weighted case: G is the same as in Case 1) but this time we set the weight matrix D to be:

$$
D:=\operatorname{diag}(\operatorname{rand}(1000,1)) .
$$

Algorithm	Time (secs)	Iters	Residue
PG	>1000	1000	$2.9 \times 10^{+0}$
APG	>1000	1000	5.6×10^{-2}
ADM	>1000	1000	1.8×10^{-1}

Table 6: Results for PG, APG, and ADM with $\varepsilon=10^{-4}$

We have seen for the NCM: IPMs can be pretty robust for small n while the first order methods can only deal with easy cases.

Any other possibility other than the IPMs and first order methods?
Note that the dual of the NCM is:

$$
F(y):=\nabla \theta(y)=\operatorname{diag}\left(\Pi_{\mathcal{S}_{+}^{n}}(G+\operatorname{Diag}(y))\right)-e, \quad y \in \Re^{n} .
$$

The functions F is strongly semismooth as $\Pi_{\mathcal{S}_{+}^{n}}$ is [Sun and Sun, 02]. That is, F is directionally diff. at y and

$$
F(y+h)-F(y)-\partial F(y+h) h=O\left(\|h\|^{2}\right) .
$$

Semismooth Newton-CG method

Qi and Sun [06] considered the following Semismooth Newton-CG method:

$$
F\left(y^{k}\right)+W_{k}\left(y^{k+1}-y^{k}\right) \approx 0
$$

where W_{k} is any element from Clarke's generalized Jacobian $\partial F\left(y^{k}\right)$.
To get W_{k} computed would require $O\left(n^{4}\right)$ flops. So the exact semismooth Newton method will not be efficient.

However, Qi and Sun shows that $\partial F\left(y^{*}\right)$ are symmetric and positive definite as the NCM is primal non-degenerate (LICQ holds). That's the reason to apply a number of conjugate gradient (CG) steps to the semismooth Newton system.

Algorithm	Time	Iters	CGs	Residue
ADM (case 1)	82.0	58		9.5×10^{-7}
Newton-CG	11.0	6	$12 / 6$	6.0×10^{-8}
ADM (case 2)	515.0	434		9.7×10^{-7}
Newton-CG	14.0	9	$29 / 9$	6.5×10^{-7}
ADM (case 3)	>1000.0	1000		1.8×10^{-1}
Newton-CG	30.0	21	$94 / 21$	6.7×10^{-8}

Table 7: Results for ADM and semismooth Newton-CG method with $\varepsilon=$ 10^{-6}

As one can see the semismooth Newton-CG method ${ }^{2}$ for solving the NCM is robust and fast and the number of CGs used in each iteration of the semismooth Newton-CG method is really small ranging from 2 to 5 .

Even a rough approximation to Newton's direction can be extremely helpful.

What can we say about general matrix optimization problems?

[^1]NUS

SDPNAL

Let us start with

$$
\begin{aligned}
(\mathrm{P}) \quad \max & \langle C, X\rangle \\
\text { s.t. } & \mathcal{A}(X)=b, \quad X \succeq 0,
\end{aligned}
$$

where $\mathcal{A}: \mathcal{S}^{n} \rightarrow \Re^{m}$ is a linear map.
The dual problem of (P) is

$$
\text { (D) } \quad \min \left\{b^{T} y \mid \mathcal{A}^{*} y-C \succeq 0\right\},
$$

where $\mathcal{A}^{*}: \Re^{m} \rightarrow \mathcal{S}^{n}$ is the adjoint of \mathcal{A}.

Given a penalty parameter $\sigma>0$, the augmented Lagrangian function for problem (D) is defined as

$$
L_{\sigma}(y, X)=b^{T} y+\frac{1}{2 \sigma}\left(\left\|\Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right)\right\|^{2}-\|X\|^{2}\right),
$$

where $(y, X) \in \Re^{m} \times \mathcal{S}^{n}$ and for any $X \in \mathcal{S}^{n}$.
The augmented Lagrangian function is continuously differentiable. For any given $X \in \mathcal{S}_{+}^{n}$, we have

$$
\nabla_{y} L_{\sigma}(y, X)=b-\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(X-\sigma\left(\mathcal{A}^{*} y-C\right)\right) .
$$

For given $X^{0} \in \mathcal{S}^{n}, \sigma_{0}>0$, and $\rho>1$, the augmented Lagrangian method for solving problem (D) and its dual (P) generates sequences $\left\{y^{k}\right\} \subset \Re^{m}$ and $\left\{X^{k}\right\} \subset \mathcal{S}^{n}$ as follows:

$$
\left\{\begin{array}{l}
y^{k+1} \approx \arg \min _{y \in \Re^{m}} L_{\sigma_{k}}\left(y, X^{k}\right) \\
X^{k+1}=\Pi_{\mathcal{S}_{+}^{n}}\left(X^{k}-\sigma_{k}\left(\mathcal{A}^{*} y^{k+1}-C\right)\right), \quad k=0,1,2, \ldots \\
\sigma_{k+1}=\rho \sigma_{k} \text { or } \sigma_{k+1}=\sigma_{k}
\end{array}\right.
$$

The augmented Lagrangian method for convex problems is a gradient ascent method applied to the corresponding augmented Lagrangian dual problems

$$
\max _{X \in \mathcal{S}^{n}} \psi_{\sigma}(X):=\inf _{y \in \Re^{m}} L_{\sigma}(y, X)=L_{\sigma}(y(X), X)
$$

But, recent studies [Sun et al, 07] show that under the constraint nondegenerate conditions for (P) and (D) [LICQs], the augmented Lagrangian method for solving SDPs is actually an approximate semismooth Newton method.

Inner subproblems solving

Use the semismooth Newton-CG method for solving inner subproblem we need to solve

$$
\nabla_{y} L_{\sigma_{k}}\left(y, X^{k}\right)=b-\mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}\left(U^{k}(y)\right)=0 .
$$

where $U^{k}(y):=X^{k}-\sigma_{k}\left(\mathcal{A}^{*} y-C\right)$.
At a current iterate y, we solve a semismooth Newton equation by a CG method:

$$
\mathcal{H}_{y}:=\sigma_{k} \mathcal{A} \Pi_{\mathcal{S}_{+}^{n}}^{\prime}\left(U^{k}(y)\right) \mathcal{A}^{*}, \quad \mathcal{H}_{y} \Delta y=-\nabla_{y} L\left(y, X^{k}\right)
$$

Practical Newton-CG augmented Lagrangian method [SDPNAL]

- Solve $\mathcal{H}_{y} \Delta y=$ rhs by CG with a diagonal preconditioner.

Stop when relative-residual ≤ 0.01.
■ Stop the inner iteration when $\left\|\nabla_{y} L_{\sigma_{k}}\left(y^{k}, X^{k}\right)\right\| \leq 0.2\left\|X^{k+1}-X^{k}\right\|$. [Zhao, Sun, Toh, 10].

Comments on numerical results for SDPNAL:
want: rel-err $=\max \left\{\frac{\left\|R_{p}\right\|}{1+\|b\|}, \frac{\left\|R_{d}\right\|}{1+\|C\|}, \frac{\langle X, Z\rangle}{1+|\langle C, X\rangle|+\left|b^{T} y\right|}\right\} \leq 10^{-6}$.
PC: Intel Xeon 3.2GHz with 4G RAM, Matlab
SDPNAL can be efficient as the theory predicted when the primal and dual non-degeneracies hold at the solutions. For example: for θ : theta162 $(m=127600, n=800)$, SDPNAL needs 17 outer iterations with total computing time of 173 seconds.
Another example: for $1 \mathrm{zc} .2048(m=39425, n=2048)$, SDPNAL needs 13 outer iterations with total computing time of 45 minutes and 16 seconds.

On the other hand, when the primal and dual non-degeneracies fail to hold, SDPNAL can perform poorly. For example, 2dc. 512 ($n=512$), SDPNAL spends 2 hours 25 minutes and 15 seconds to only get a relative error 1.1×10^{-4}.

As a general solver, SDPNAL currently does not give up the search for a direction better than a gradient direction even the primal and dual degeneracies are detected. This can be costly and unnecessary if one knows that Newton's direction is not a good choice or difficult to approximate. Future work on these degenerate problems needs to be done.

SDPNAL can be downloaded from http://www.math.nus.edu.sg/ mattohkc/SDPNAL.html.

Final remarks

- Nonsymmetric matrix problems need to be treated in their own formats.
- To exploit Newton's direction can be beneficial when non-degeneracies hold. $1+\varepsilon$ order methods can perform very well when the first and second order ones do no work efficiently.
- Variational analysis, in particular non-smooth analysis, can guide us in designing efficient algorithms.
- Degenerate programs call for new theory.

[^0]: ${ }^{1}$ Use the divide and conquer algorithm, which is much faster than the shifted QR decomposition based algorithm.

[^1]: ${ }^{2}$ NAG http://www.nag.co.uk/ has both the C and Fortran versions.

