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The Matrix Optimization Problem
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We consider the “standard” matrix optimization problem (MOP) and its
dual:

(P)
min 〈c, x〉 + f(x)

s.t. Ax = b

and

(D)
max 〈b, y〉 − f∗(z)

s.t. A∗y − c = z ,

where X is the Cartesian product of several finite dimensional real matrix
spaces, symmetric or non-symmetric,

A∗ is the adjoint of the linear operator A : X → ℜm, c ∈ X , b ∈ ℜm,

f : X → (−∞,∞] is a closed proper convex function with its Fenchel
conjugate f∗.
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The Fenchel conjugate of f is defined by

f∗(z) := sup
x∈X

{〈z, x〉 − f(x)} .

In standard linear programming, f(x) = δℜn
+
(x), the indicator function

over ℜn
+ and f∗(x) = δ(−ℜn

+
)(x).

In semidefinite programming (SDP), f(x) = δSn
+
, the indicator function

over Sn
+ and f∗(x) = δ(−Sn

+
)(x).



Desirable Properties of f
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We need conditions on f . Specifically, we require

• The Moreau-Yosida regularization of f

ψf (x) := min
z∈X

{

f(z) +
1

2
‖z − x‖2

}

has a closed form solution, denoted by Pf (x).

• We can easily compute the directional derivative of

∇ψf(x) = x− Pf(x).

• The function ∇ψf is (strongly) semismooth.
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Let us first look at one simple example with nonsymmetric matrices:

min
y∈ℜk

‖A0 −
∑k

i=1 yiAi‖2 , (1)

where Ai are m by n matrices, ‖ · ‖2 is the spectral (operator) norm of
matrices (the largest singular value).

Use ‖ · ‖∗ to denote the nuclear norm (the sum of all singular values) and
B1

∗ to denote the unit nuclear norm ball.
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We can equivalently write (1) in the form of (D):

max 〈0, y〉 − ‖Z‖2

s.t. Ay − A0 = Z

and the corresponding form of (P):

min 〈A0, X〉 + δB1
∗

(X)

s.t. A∗X = 0 .



Why bother?
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Note that we can write t ≥ ‖X‖2 (here, X ∈ ℜm×n) equivalently as

Sm+n ∋

[

tIm X
XT tIn

]

� 0 .

Thus, (1) is equivalent to an SDP problem:

min t

s.t. X +
∑k

i=1 yiAi = A0 ,
[

tIm X
XT tIn

]

� 0.

(2)



The SIAM Conference on Optimization 2011, Darmstadt NUS/SUN – 8 / 37

Actually, most of the MOPs we are considering are ”SDP representable”.

However, there are two issues to use the SDP representation (2):

• Can we solve these SDPs when m or n is not small?

• Is it necessary to increase the matrix dimension from mn to 1
2
(m+n)2?

—– No one is likely to do so if m = 1 or n = 1 because in this case
we can solve a second order cone programming (SOC) problem instead
of an SDP problem?

—– How about m≪ n or n≪ m?

—– Shall we do so if m = n?



An application in finance
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Let us consider the widely used optimization model in the finance
industry and many others:

min ‖D−1/2(X −G)D−1/2‖F

s.t. diag(X) = e ,

X � 0 ,

(3)

where G is an estimated matrix which often fails to be positive
semi-definite, D is a symmetric and positive definite matrix (weight
matrix), and e is the vector of all ones.

This problem is known as the nearest correlation matrix (NCM) problem,
a terminology coined by Nick Higham in 2002. It is used in many
situations: stress testing, VaR computation, asset pricing ...



SDP cone + SOC reformulation
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One may write the NCM as a symmetric cone programming with both
SDP cone and SOC cone constraints (assuming D = I, the identity
matrix for notational convenience):

min t

s.t. diag(X) = e ,

y + svec(X) = svec(G) ,

X � 0 , t ≥ ‖y‖2 .

This is a perfect formula for employing modern interior point methods
(IPMs).
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n Time (secs) Iters

30 1.4 15
40 3.2 15
50 6.0 15
60 13.2 16
70 24.4 15
80 44.3 15
90 102.0 19
100 142.6 16

Table 1: Numerical results for SDPT3
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For n = 110, it shows Out of Memory [Dell Laptop: 2.99 GB RAM].

The reason is simple: each step we need to store an m by m matrix at
least. Here m is the number of equations

m = n+ 1 + n(n+ 1)/2.

For n = 110, we have m = 6216.

One may buy a better Laptop or PC. But even so in each step, the
computational cost is

O(m3) = O(n6).

For large n, we will just feed wrong problems to IPMs.



First order methods
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In optimization, we always look at the dual when we find a problem
difficult to solve.
Rewrite the NCM as

min
1

2
‖X −G‖2

F

s.t. diag(X) = e ,

X � 0 ,

(4)

Then the dual of the NCM turns to be an unconstrained problem:

max −θ(y) := −

[

1

2
‖ΠSn

+
(G+ Diag(y))‖2 − 〈e, y〉 −

1

2
‖G‖2

]

s.t. y ∈ ℜn ,
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where ΠSn
+
(X) is the unique optimal solution (projection) to

min
1

2
‖Y −X‖2

F

s.t. Y ∈ Sn
+ .
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The convex function θ is continuously differentiable with

∇θ(y) = diag(ΠSn
+
(G+ Diag(y))) − e, y ∈ ℜn.

Moreover, ∇θ(·) is globally Lispchitz continuous with modulus one, i.e.,

‖∇θ(y) −∇θ(z)‖ ≤ ||y − z‖ ∀ y, z ∈ ℜn .

To compute θ(y) and ∇θ(y), one only needs to know how to compute
ΠSn

+
(X).
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Let X ∈ Sn have the following spectral decomposition1

X = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of X and P is a
corresponding orthogonal matrix of orthonormal eigenvectors.

Then

X+ := ΠSn
+
(X) = PΛ+P

T .

1Use the divide and conquer algorithm, which is much faster than the shifted QR

decomposition based algorithm.
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Immediately, one will try the following projected gradient (PG) method:

yk+1 := yk −∇θ(yk) = yk − [diag(ΠSn
+
(G+ Diag(yk))) − e].

In 2007, Marc Teboulle suggested to us the accelerated projected
gradient (APG) method (x0 = z0 = y0):







zk+1 = zk −∇θ(yk);
xk+1 = (1 − 2/(k + 2))xk + 2/(k + 2)zk;
yk+1 = [1 − 2/((k + 1) + 2)]xk+1 + 2/((k + 1) + 2)zk+1.
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In 2011, He et al considered the augmented Lagrangian alternating
direction method (ADM) by writing the NCM as:

min
1

2
‖X −G‖2

F +
1

2
‖Y −G‖2

F

s.t. X − Y = 0,

diag(Y ) = e ,

X � 0 .
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Testing Case 1): Three first order algorithms are tested for a perturbed
true correlation matrix: Gtrue is a 1000 by 1000 true correlation matrix
and E is a symmetric random matrix with elements in [−1, 1]:

E = randn(1000); E = triu(E) + triu(E,1)’

and set
G := 90% ×Gtrue + 10% × E

with its all diagonal being ones. For PG and APG methods, the residue
represents the primal feasibility. So, the residue should be at least below
10−4.
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Algorithm Time (secs) Iters Residue

PG 124.0 95 9.5 × 10−5

APG 125.0 93 9.2 × 10−5

ADM 51.0 36 9.3 × 10−5

Table 2: Results for PG, APG, and ADM with ε = 10−4
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Algorithm Time (secs) Iters Residue

PG 190 145 9.5 × 10−7

APG 225 168 9.7 × 10−7

ADM 82 58 9.5 × 10−7

Table 3: Results for PG, APG, and ADM with ε = 10−6

Tables 2 and 3 show that all the tested first order methods work well, in
particular ADM [By introducing line searches to PG and APG methods,
one can improve the performance of these two algorithms].



The SIAM Conference on Optimization 2011, Darmstadt NUS/SUN – 22 / 37

Testing Case 2): To see the robustness of the first order methods, set

G := rand(1000,1000), G = G + G’

with its diagonal matrices to be ones.

Algorithm Time (secs) Iters Residue

PG 1130.0 1000 3.5 × 10−2

APG 1120.0 1000 3.6 × 10−4

ADM 305.0 257 1.0 × 10−4

Table 4: Results for PG, APG, and ADM with ε = 10−4
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Algorithm Time (secs) Iters Residue

PG 1130.0 1000 3.5 × 10−2

APG 1120.0 1000 3.6 × 10−4

ADM 515.0 434 9.7 × 10−7

Table 5: Results for PG, APG, and ADM with ε = 10−6

Tables 4 and 5 show that the performance of PG and APG worsens a lot
while ADM does okay.
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Testing Case 3): The weighted case: G is the same as in Case 1) but
this time we set the weight matrix D to be:

D := diag(rand(1000,1)) .

Algorithm Time (secs) Iters Residue

PG >1000 1000 2.9 × 10+0

APG >1000 1000 5.6 × 10−2

ADM >1000 1000 1.8 × 10−1

Table 6: Results for PG, APG, and ADM with ε = 10−4
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We have seen for the NCM: IPMs can be pretty robust for small n while
the first order methods can only deal with easy cases.

Any other possibility other than the IPMs and first order methods?

Note that the dual of the NCM is:

F (y) := ∇θ(y) = diag(ΠSn
+
(G+ Diag(y))) − e, y ∈ ℜn.

The functions F is strongly semismooth as ΠSn
+

is [Sun and Sun, 02].
That is, F is directionally diff. at y and

F (y + h) − F (y) − ∂F (y + h)h = O(‖h‖2) .



Semismooth Newton-CG method
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Qi and Sun [06] considered the following Semismooth Newton-CG
method:

F (yk) +Wk(y
k+1 − yk) ≈ 0,

where Wk is any element from Clarke’s generalized Jacobian ∂F (yk).

To get Wk computed would require O(n4) flops. So the exact
semismooth Newton method will not be efficient.

However, Qi and Sun shows that ∂F (y∗) are symmetric and positive
definite as the NCM is primal non-degenerate (LICQ holds). That’s the
reason to apply a number of conjugate gradient (CG) steps to the
semismooth Newton system.
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Algorithm Time Iters CGs Residue

ADM (case 1) 82.0 58 9.5 × 10−7

Newton-CG 11.0 6 12/6 6.0 × 10−8

ADM (case 2) 515.0 434 9.7 × 10−7

Newton-CG 14.0 9 29/9 6.5 × 10−7

ADM (case 3) >1000.0 1000 1.8 × 10−1

Newton-CG 30.0 21 94/21 6.7 × 10−8

Table 7: Results for ADM and semismooth Newton-CG method with ε =
10−6
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As one can see the semismooth Newton-CG method2 for solving the
NCM is robust and fast and the number of CGs used in each iteration of
the semismooth Newton-CG method is really small ranging from 2 to 5.

Even a rough approximation to Newton’s direction can be extremely
helpful.

What can we say about general matrix optimization problems?

2NAG http://www.nag.co.uk/ has both the C and Fortran versions.



SDPNAL
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Let us start with

(P) max 〈C,X〉

s.t. A(X) = b, X � 0,

where A : Sn → ℜm is a linear map.
The dual problem of (P) is

(D) min
{

bTy | A∗y − C � 0
}

,

where A∗ : ℜm → Sn is the adjoint of A.
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Given a penalty parameter σ > 0, the augmented Lagrangian function
for problem (D) is defined as

Lσ(y,X) = bTy +
1

2σ

(

‖ΠSn
+
(X − σ(A∗y − C))‖2 − ‖X‖2

)

,

where (y,X) ∈ ℜm × Sn and for any X ∈ Sn.

The augmented Lagrangian function is continuously differentiable. For
any given X ∈ Sn

+, we have

∇yLσ(y,X) = b−AΠSn
+
(X − σ(A∗y − C)).
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For given X0 ∈ Sn, σ0 > 0, and ρ > 1, the augmented Lagrangian
method for solving problem (D) and its dual (P) generates sequences
{yk} ⊂ ℜm and {Xk} ⊂ Sn as follows:











yk+1 ≈ arg min
y∈ℜm

Lσk
(y,Xk),

Xk+1 = ΠSn
+
(Xk − σk(A

∗yk+1 − C)),

σk+1 = ρσk or σk+1 = σk,

k = 0, 1, 2, . . .
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The augmented Lagrangian method for convex problems is a gradient
ascent method applied to the corresponding augmented Lagrangian dual
problems

max
X∈Sn

ψσ(X) := inf
y∈ℜm

Lσ(y,X) = Lσ(y(X), X) .

But, recent studies [Sun et al, 07] show that under the constraint
nondegenerate conditions for (P) and (D) [LICQs], the augmented
Lagrangian method for solving SDPs is actually an approximate
semismooth Newton method.



Inner subproblems solving
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Use the semismooth Newton-CG method for solving inner subproblem
we need to solve

∇yLσk
(y,Xk) = b−AΠSn

+
(Uk(y)) = 0 .

where Uk(y) := Xk − σk(A
∗y − C).

At a current iterate y, we solve a semismooth Newton equation by a CG
method:

Hy := σkAΠ′
Sn

+
(Uk(y))A∗, Hy∆y = −∇yL(y,Xk).
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Practical Newton-CG augmented Lagrangian method [SDPNAL]

■ Solve Hy∆y = rhs by CG with a diagonal preconditioner.

Stop when relative-residual ≤ 0.01.

■ Stop the inner iteration when ‖∇yLσk
(yk, Xk)‖ ≤ 0.2‖Xk+1 −Xk‖.

[Zhao, Sun, Toh, 10].
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Comments on numerical results for SDPNAL:

want: rel-err = max
{

‖Rp‖

1+‖b‖
, ‖Rd‖

1+‖C‖
, 〈X,Z〉

1+|〈C,X〉|+|bT y|

}

≤ 10−6.

PC: Intel Xeon 3.2GHz with 4G RAM, Matlab

SDPNAL can be efficient as the theory predicted when the primal and
dual non-degeneracies hold at the solutions. For example: for
θ : theta162 (m = 127600, n = 800), SDPNAL needs 17 outer
iterations with total computing time of 173 seconds.

Another example: for 1zc.2048 (m = 39425, n = 2048), SDPNAL
needs 13 outer iterations with total computing time of 45 minutes and
16 seconds.
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On the other hand, when the primal and dual non-degeneracies fail to
hold, SDPNAL can perform poorly. For example, 2dc.512 (n = 512),
SDPNAL spends 2 hours 25 minutes and 15 seconds to only get a
relative error 1.1 × 10−4.

As a general solver, SDPNAL currently does not give up the search for a
direction better than a gradient direction even the primal and dual
degeneracies are detected. This can be costly and unnecessary if one
knows that Newton’s direction is not a good choice or difficult to
approximate. Future work on these degenerate problems needs to be
done.

SDPNAL can be downloaded from
http://www.math.nus.edu.sg/ mattohkc/SDPNAL.html.



Final remarks
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• Nonsymmetric matrix problems need to be treated in their own
formats.

• To exploit Newton’s direction can be beneficial when
non-degeneracies hold. 1 + ε order methods can perform very well when
the first and second order ones do no work efficiently.

• Variational analysis, in particular non-smooth analysis, can guide
us in designing efficient algorithms.

• Degenerate programs call for new theory.


	  

