SDPNAL+: A MATLAB software package for large-scale SDPs with a user-friendly interface

Defeng Sun

Department of Applied Mathematics, The Hong Kong Polytechnic University

SIAM ALA Conference 2018

Joint work with: Kim-Chuan Toh, National University of Singapore Yancheng Yuan (NUS)
Xinyuan Zhao (Beijing U Tech.)
Past contributor: Liuqin Yang

- SDP and SDP+ (variable is positive semidefinite and bounded)
- Some examples of SDP+
- User-friendly interface
- Phase I: An inexact symmetric Gauss-Seidel (sGS) ADMM for SDP+
- An sGS decomposition theorem for convex composite QP
- Phase II: An augmented Lagrangian method (ALM) for SDP+
- A semismooth Newton-CG (SNCG) method for solving ALM subproblems
- SDPNAL+: practical implementation of the 2 phase method
- Numerical experiments
$\mathbb{S}_{+}^{n}=$ cone of positive semidefinite matrices. Write $X \succeq 0$ if $X \in \mathbb{S}_{+}^{n}$.

$$
(\mathrm{SDP}) \min \left\{\langle C, X\rangle \mid \mathcal{A}(X)=b, X \in \mathbb{S}_{+}^{n}\right\}
$$

where $C \in \mathbb{S}^{n}, b \in \mathbb{R}^{m}$ are given data; $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map.

$$
(\mathrm{SDP}+) \min \left\{\langle C, X\rangle \mid \mathcal{A}(X)=b, X \in \mathbb{S}_{+}^{n}, X \in \mathcal{N}\right\}
$$

where $\mathcal{N}=\left\{X \in \mathbb{S}^{n} \mid L \leq X \leq U\right\}$ and L, U are given bounds (entries allow to take $-\infty, \infty$ respectively).
Important case: $\mathcal{N}=\left\{X \in \mathbb{S}^{n} \mid X \geq 0\right\}$, i.e., DNN (doubly nonnegative) SDP.
(SDP) is solvable by powerful interior-point methods if n and m are not too large, say, $n \leq 2000, m \leq 10,000$.
m large $\Rightarrow m \times m$ dense "Hessian" matrix cannot be stored explicitly. For $m=10^{5}$, needs 100GB RAM memory!

Current research interests focus on $n \leq 5000$ but $m \gg 10,000$.

SDPNAL was developed around 2008/09 for (SDP).
In 2012/13, it was extended to SDPNAL+ for (SDP+) directly without introducing extra equality constraints $X=Y$ to convert $X \in$ $\mathbb{S}_{+}^{n} \cap \mathcal{N}$ to $X \in \mathbb{S}_{+}^{n}$ and $Y \in \mathcal{N}$.

Now our solver SDPNAL+ can solve general SDP problems:
$($ genSDP $) \min \quad \sum_{i=1}^{N}\left\langle C_{i}, X_{i}\right\rangle$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{i=1}^{N} \mathcal{A}_{i}\left(X_{i}\right)=b \quad \text { (equalities) } \\
& l \leq \sum_{i=1}^{N} \mathcal{B}_{i}\left(X_{i}\right) \leq u \quad \text { (inequalities) } \\
& X_{i} \in \mathbb{K}_{i} \text { (cone), } \quad X_{i} \in \mathcal{N}_{i} \text { (bounds), } i=1: N
\end{array}
$$

where \mathbb{K}_{i} is either a PSD cone or nonnegative orthant. Currently extending \mathbb{K}_{i} to other cones such as SOCP.

- Parallel IPM [Benson, Borchers, Fujisawa, ... 03-present]
- First-order gradient methods on NLP formulation (low accuracy) [Burer-Monteiro 03]
- Inexact IPM [Kojima, Toh 04]
- Gen. Lag. method on barrier-penalized dual [Kocvara-Stingl 03]
- ALM on primal SDP from relaxation of lift-and-project scheme [Burer-Vandenbussche 06]
- Boundary-point method: BCD-ALM on dual [Rendl et al. 06] Reg. methods for SDP \equiv ADMM on dual [Malick-Povh-Rendl 09]
- SDPNAL: ADMM+SNCG-ALM on dual [Zhao-Sun-Toh 10]
- SDPAD: ADMM on dual [Wen et al. 10] (used SDPNAL template)
- 2EBD: hybrid proximal extra-gradient method on primal [Monteiro et al. 13] (used SDPNAL template)
- ADMM+: convergent sGS-ADMM on SDP + [Sun-Toh-Yang 15]
- SDPNAL+: SNCG-ALM on SDP+ [Yang-Sun-Toh 15]

In nearest correlation matrix problem, given data matrix $U \in \mathbb{S}^{n}$, we want to solve
(NCM) $\min _{X}\left\{\left.\frac{1}{2}\|H \circ(X-U)\|_{1} \right\rvert\, \operatorname{Diag}(X)=\mathbf{1}, X \succeq 0\right\}$
where $H \in \mathbb{S}^{n}$ has nonnegative entries and " o " is the Hardamard product.

In clustering, given data vectors $\left\{p_{i}\right\}_{i=1}^{n}$, the goal is to cluster them into k clusters. A possible model [Peng-Wei 07] is:

$$
\min \left\{\langle D, X\rangle \mid\langle I, X\rangle=k, X \mathbf{1}=\mathbf{1}, X \in \mathbb{S}_{+}^{n}, X \geq 0\right\}
$$

where $D_{i j}=\left\|p_{i}-p_{j}\right\|^{2}$.
Note: D can also be other affinity matrix.

A stable set S is subset of V such that no vertices in S are adjacent. Maximum stable set problem: find S with maximum cardinality. Let

$$
x_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array} \quad \Rightarrow|S|=\sum_{i=1}^{n} x_{i}\right.
$$

A common formulation of the max-stable-set problem:

$$
\begin{aligned}
\alpha(G):= & \max \left\{\left.|S|=\frac{1}{|S|} \sum_{i j} x_{i} x_{j} \right\rvert\, x_{i} x_{j}=0 \forall(i, j) \in \mathcal{E}, x \in\{0,1\}^{n}\right\} \\
& \Downarrow X:=x x^{T} /|S| \\
& \max \left\{\langle E, X\rangle \mid X_{i j}=0 \forall(i, j) \in \mathcal{E}, \quad\langle I, X\rangle=1\right\}
\end{aligned}
$$

SDP relaxation: $X=x x^{T} /|S| \Rightarrow X \succeq 0$, get

$$
\theta(G):=\max \left\{\langle E, X\rangle: X_{i j}=0 \forall(i, j) \in \mathcal{E},\langle I, X\rangle=1, X \succeq 0\right\}
$$

$\theta_{+}(G):=n(n+1) / 2$ additional constraints $X \geq 0$

Assign n facilities to n locations [Koopmans and Beckmann (1957)]
$A=\left(a_{i j}\right)$ where $a_{i j}=$ flow from facility i to facility j
$B=\left(b_{k l}\right) \quad$ where $b_{k l}=$ distance from location k to location l
cost of assignment $\pi=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{\pi(i) \pi(j)}$
$\min _{P}\left\{\left\langle B \otimes A, \operatorname{vec}(P) \operatorname{vec}(P)^{T}\right\rangle \mid P\right.$ is $n \times n$ permutation matrix $\}$
SDP + relaxation [Povh and Rendl, 09]: relax $\operatorname{vec}(P) \operatorname{vec}(P)^{T}$ to the $n^{2} \times n^{2}$ variable $X \in \mathbb{S}_{+}^{n^{2}}$ and $X \geq 0$

$$
(\mathrm{QAP}) \min \left\{\langle B \otimes A, X\rangle \mid \mathcal{A}(X)-b=0, X \in \mathbb{S}_{+}^{n^{2}}, X \geq 0\right\}
$$

where the linear constraints (with $m=3 n(n+1) / 2$) encode the condition $P^{T} P=I_{n}, P \geq 0$.

Consider the NCM problem.

```
n = 100;
G = randn (n,n);
G = 0.5*(G + G');
model = ccp_model('NCM');
    X = var_sdp (n,n);
    model.add_variable(X);
    model.minimize(l1_norm(X-G));
    model.add_affine_constraint(map_diag(X)==ones(n,1));
model.solve;
```

Consider the $\theta+$ problem of a graph with adjacency matrix G.

```
n = 200;
G = triu(sprand(n,n,0.5),1);
[IE,JE] = find(G);
n = length(G);
```

model = ccp_model('theta');
$X=\operatorname{var}_{-} \operatorname{sdp}(\mathrm{n}, \mathrm{n})$;
model. add_variable(X);
model.maximize(sum (X));
model. add_affine_constraint (trace (X) == 1);
model. add_affine_constraint (X(IE, JE) == 0);
model. add_affine_constraint ($\mathrm{X}>=0$) ;
model.solve;

$$
\begin{array}{ll}
\min & \operatorname{trace}\left(X^{(1)}\right)+\operatorname{trace}\left(X^{(2)}\right)+\operatorname{sum}\left(X^{(3)}\right) \\
\text { s.t. } & -X_{12}^{(1)}+2 X_{33}^{(2)}+2 X_{2}^{(3)}=4 \quad \text { (equalities) } \\
& 2 X_{23}^{(1)}+X_{42}^{(2)}-X_{4}^{(3)}=3 \\
& 2 \leq-X_{12}^{(1)}-2 X_{33}^{(2)}+2 X_{2}^{(3)} \leq 7 \quad \text { (inequalities) } \\
& X^{(1)} \in \mathbb{S}_{+}^{6}, X^{(2)} \in \mathbb{R}^{5 \times 5}, X^{(3)} \in \mathbb{R}_{+}^{7} \quad \text { (cones) } \\
& 0 \leq X^{(1)} \leq 10 E_{6}, \quad 0 \leq X^{(2)} \leq 8 E_{5} \quad \text { (bounds) }
\end{array}
$$

```
n1 = 6; n2 = 5; n3 = 7;
M = ccp_model('Example_simple');
X1=var_sdp(n1,n1); X2=var_nn(n2,n2); X3=var_nn(n3);
M.add_variable(X1,X2,X3);
M.minimize(trace(X1) + trace(X2) + sum(X3));
M.add_affine_constraint (-X1 (1, 2) +2* X2 (3,3) +2* X 3 (2)==4);
M.add_affine_constraint (2*X1 (2,3) + X2(4,2)-X3(4) == 3);
M.add_affine_constraint (2<=-X1 (1, 2) - 2* X2 ( 3, 3) +2* X 3 (2) <= 7);
M.add_affine_constraint(0 <= X1 <= 10);
M.add_affine_constraint(X2 <= 8);
M.solve;
```

For simplicity, consider only $\mathcal{N}=\left\{X \in \mathbb{S}^{n} \mid X \geq 0\right\}$.
Dual of SDP+ and its augmented Lagrangian function are given by:
(D) $\quad \min \left\{-\langle b, y\rangle+\delta_{\mathbb{S}_{+}^{n}}(S)+\delta_{\mathcal{N}}(Z) \mid \mathcal{A}^{*} y+S+Z=C\right\}$
(a linearly constrained convex problem with 3 blocks of variables);

$$
\begin{aligned}
& \mathcal{L}_{\sigma}(y, S, Z ; X)=-\langle b, y\rangle+\delta_{\mathbb{S}_{+}^{n}}(S)+\delta_{\mathcal{N}}(Z) \\
& \quad+\left\langle\mathcal{A}^{*} y+S+Z-C, X\right\rangle+\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S+Z-C\right\|^{2}
\end{aligned}
$$

(quadratic in $(y, S, Z)+$ nonsmooth terms in $S, Z)$
KKT conditions:

$$
\mathcal{R}_{\mathrm{KKT}}(y, S, Z ; X):=\left(\begin{array}{c}
A X-b \\
S-\Pi_{\mathbb{S}_{+}^{n}}(S-X) \\
Z-\Pi_{\mathcal{N}}(Z-X) \\
\mathcal{A}^{*} y+S+Z-C
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

A directly extended ADMM for dual SDP+

Input $\left(y_{0}, S_{0}, Z_{0} ; X_{0}\right)$. For $k=0,1, \ldots$, let $\widehat{C}^{k}=C-\sigma^{-1} X^{k}$
(1a) $y^{k+1}=\operatorname{argmin}_{y \in \mathbb{R}^{m}} \mathcal{L}_{\sigma}\left(y, S^{k}, Z^{k} ; X^{k}\right)$
(1b) $S^{k+1}=\operatorname{argmin}_{S \in \mathbb{S}_{+}^{n}} \mathcal{L}_{\sigma}\left(y^{k+1}, S, Z^{k} ; X^{k}\right)=\Pi_{\mathbb{S}_{+}^{n}}\left(\widehat{C}^{k}-\mathcal{A}^{*} y^{k+1}-Z^{k}\right)$
(2) $Z^{k+1}=\operatorname{argmin}_{Z \in \mathcal{N}} \mathcal{L}_{\sigma}\left(y^{k+1}, S^{k+1}, Z ; X^{k}\right)=\Pi_{\mathcal{N}}\left(\widehat{C}^{k}-\mathcal{A}^{*} y^{k+1}-S^{k+1}\right)$
(3) $X^{k+1}=X^{k}+\tau \sigma\left(\mathcal{A}^{*} y^{k+1}+S^{k+1}+Z^{k+1}-C\right)$, where $\tau \in\left(0, \frac{1+\sqrt{5}}{2}\right)$ is the step-length.

Direct extension of 2-block ADMM is not guaranteed to converge [Chen-He-Ye-Yuan, v155, MP 2016]

A convergent symmetric Gauss-Seidel (sGS) ADMM for dual SDP+

But sGS-ADMM is guaranteed to converge!

$$
\begin{aligned}
& \text { Input }\left(y_{0}, S_{0}, Z_{0} ; X_{0}\right) . \text { For } k=0,1, \ldots, \text { let } \widehat{C}^{k}=C-\sigma^{-1} X^{k} \\
& \text { (1a) } \widehat{\mathbf{y}}^{k+1} \approx \operatorname{argmin}_{y \in \mathbb{R}^{m}} \mathcal{L}_{\sigma}\left(y, S^{k}, Z^{k} ; X^{k}\right) \\
& \text { (1b) } S^{k+1}=\operatorname{argmin}_{S \in \mathbb{S}_{+}^{n^{\mathcal{L}}}} \mathcal{L}_{\sigma}\left(\widehat{\mathbf{y}}^{k+1}, S, Z^{k} ; X^{k}\right)=\Pi_{\mathbb{S}_{+}^{n}}\left(\widehat{C}^{k}-\mathcal{A}^{*} \widehat{\mathbf{y}}^{k+1}-Z^{k}\right) \\
& \text { (1c) } y^{k+1} \approx \operatorname{argmin}_{y \in \mathbb{R}^{m}} \mathcal{L}_{\sigma}\left(y, S^{k+1}, Z^{k} ; X^{k}\right) \\
& \text { (2) } Z^{k+1}=\operatorname{argmin}_{Z \in \mathcal{N}} \mathcal{L}_{\sigma}\left(y^{k+1}, S^{k+1}, Z ; X^{k}\right)=\Pi_{\mathcal{N}}\left(\widehat{C}^{k}-\mathcal{A}^{*} y^{k+1}-S^{k+1}\right) \\
& \text { (3) } X^{k+1}=X^{k}+\tau \sigma\left(\mathcal{A}^{*} y^{k+1}+S^{k+1}+Z^{k+1}-C\right)
\end{aligned}
$$

In Step 1, the AL function \mathcal{L}_{σ} for the block (y, S) has the form:

$$
\begin{gathered}
\mathcal{L}_{\sigma}(y, S) \equiv \delta_{\mathbb{S}_{+}^{n}}(S)+\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S+Z^{k}+\widehat{C}^{k}\right\|^{2}-\langle b, y\rangle \\
(\mathrm{QP} \text { in }(y, S)+\text { nonsmooth term in } S)
\end{gathered}
$$

(1a)-(1c) is equivalent to minimizing $\mathcal{L}_{\sigma}(y, S)+\mathrm{sGS}$ proximal term.
The steps are based on an sGS decomposition theorem.

Theorem Suppose that the KKT conditions of (SDP+) has a solution. Let $\left\{\left(y^{k}, S^{k}, Z^{k}, X^{k}\right)\right\}$ be the sequence generated by the inexact sGS-ADMM. Then $\left\{X^{k}\right\}$ converges to an optimal solution of (SDP+) and $\left\{\left(y^{k}, S^{k}, Z^{k}\right)\right\}$ converges to an optimal solution of its dual.
[1] D.F. Sun, K.C. Toh and L.Q. Yang, A convergent 3-block semi-proximal ADMM for conic programming with 4-type constraints, v25, SIOPT 2015.
[2] X.D. Li, D.F. Sun, K.C. Toh, A Schur complement based semiproximal ADMM for convex ..., v155, MP 2016. Schur-complement-ADMM
[3] X.D. Li, D.F. Sun, K.C. Toh, QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic SDP, MPC 2018. Section 2: sGS decomposition theorem, Schur-complement-ADMM $=$ sGS-ADMM
[4] L. Chen, D.F. Sun, K.C. Toh, An efficient inexact symmetric Gauss-Seidel based majorized ADMM for ..., v161, MP 2017. inexact sGS-ADMM
[5] X.D. Li, D.F. Sun, K.C. Toh, A block sGS decomposition theorem for convex composite quadratic programming and its applications, MP 2018. sGS-ADMM $=$ Schur-complement-ADMM, sSOR-extension

Theorem [Han-Sun-Zhang, MOR 2018: exact version]
Let $\Omega_{\mathrm{KKT}} \neq \emptyset$ be the KKT solution set. Suppose that an error bound condition holds for $\mathcal{R}_{\text {KKT }}$ at an optimal solution $u^{*}=$ $\left(y^{*}, S^{*}, Z^{*}, X^{*}\right)$ that $u^{k}=\left(y^{k}, S^{k}, Z^{k}, X^{k}\right)$ converges to, i.e, \exists $\eta, r>0$ s.t.

$$
\operatorname{dist}\left(u, \Omega_{\mathrm{KKT}}\right) \leq \eta\left\|\mathcal{R}_{\mathrm{KKT}}(u)\right\| \quad \forall u \in B_{r}\left(u^{*}\right)
$$

Then $\exists \mu \in(0,1)$ depending on η s.t.

$$
\operatorname{dist}\left(u^{k+1}, \Omega_{\mathrm{KKT}}\right) \leq \mu \operatorname{dist}\left(u^{k}, \Omega_{\mathrm{KKT}}\right) \quad \forall k \text { sufficiently large. }
$$

Inexact version can be established via the analysis in [Chen-Sun-Toh, MP 2017] and [Han-Sun-Zhang, MOR 2018].

Consider a convex composite QP with 3 blocks:

$$
\min \left\{p\left(x_{1}\right)+h(x) \mid x=\left(x_{1} ; x_{2}, x_{3}\right) \in \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \times \mathbb{R}^{n_{3}}\right\}
$$

Convex quadratic function $h(x):=\frac{1}{2}\langle x, \mathcal{H} x\rangle-\langle b, x\rangle$
Closed proper convex fun. $p: \mathbb{R}^{n_{1}} \rightarrow(-\infty,+\infty]$, e.g. $p\left(x_{1}\right)=$ $\left\|x_{1}\right\|_{\infty}$
Write $\mathcal{H}=\mathcal{U}^{*}+\mathcal{D}+\mathcal{U}, \mathcal{D}$ diagonal blocks, \mathcal{U} strict upper triangular part. Assume \mathcal{D} invertible.

Define $\operatorname{sGS}(\mathcal{H}):=\mathcal{U D}^{-1} \mathcal{U}^{*} \quad$ (symmetric Gauss-Seidel decomp)
Given \bar{x}, define

$$
x^{+}:=\operatorname{argmin}_{x}\left\{p\left(x_{1}\right)+h(x)+\frac{1}{2}\|x-\bar{x}\|_{\mathrm{sGS}(\mathcal{H})}^{2}\right\}
$$

Next theorem: can compute x^{+}using one sGS cycle! If $p\left(x_{1}\right)$ is absent, we get the classical block $\mathbf{s G S}$ iteration.

Detour: block symmetric Gauss-Seidel (sGS) decomposition

Theorem [Li-Sun-Toh 2015]

It holds that $\mathcal{H}+\operatorname{sGS}(\mathcal{H})=(\mathcal{D}+\mathcal{U}) \mathcal{D}^{-1}\left(\mathcal{D}+\mathcal{U}^{*}\right) \succ 0$.
Backward GS: $3 \rightarrow 2$. Compute

$$
\begin{aligned}
& x_{3}^{\prime}=\operatorname{argmin} p\left(\bar{x}_{1}\right)+h\left(\bar{x}_{1}, \bar{x}_{2}, x_{3}\right)=\mathcal{H}_{33}^{-1}\left(b_{3}-\mathcal{H}_{13}^{*} \bar{x}_{1}-\mathcal{H}_{23}^{*} \bar{x}_{2}\right) \\
& x_{2}^{\prime}=\operatorname{argmin} p\left(\bar{x}_{1}\right)+h\left(\bar{x}_{1}, x_{2}, x_{3}^{\prime}\right)=\mathcal{H}_{22}^{-1}\left(b_{2}-\mathcal{H}_{12}^{*} \bar{x}_{1}-\mathcal{H}_{23} \bar{x}_{3}^{\prime}\right)
\end{aligned}
$$

Forward GS: $1 \rightarrow 2 \rightarrow 3$. Compute

$$
\begin{aligned}
& x_{1}^{+}=\operatorname{argmin} p\left(x_{1}\right)+h\left(x_{1}, x_{2}^{\prime}, x_{3}^{\prime}\right) \quad \text { (non-smooth/non-quadratic) } \\
& x_{2}^{+}=\operatorname{argmin} p\left(x_{1}^{+}\right)+h\left(x_{1}^{+}, x_{2}, x_{3}^{\prime}\right)=\mathcal{H}_{22}^{-1}\left(b_{2}-\mathcal{H}_{12}^{*} x_{1}^{+}-\mathcal{H}_{23} x_{3}^{\prime}\right) \\
& x_{3}^{+}=\operatorname{argmin} p\left(x_{1}^{+}\right)+h\left(x_{1}^{+}, x_{2}^{+}, x_{3}\right)=\mathcal{H}_{33}^{-1}\left(b_{3}-\mathcal{H}_{13}^{*} x_{1}^{+}-\mathcal{H}_{23}^{*} x_{2}^{+}\right)
\end{aligned}
$$

Inexact computation is also allowed! So can use PCG to solve large linear systems.

Theorem [Li-Sun-Toh 2015]
Backward GS: For $i=s, \ldots, 2$, compute

$$
x_{i}^{\prime}=\mathcal{H}_{i i}^{-1}\left(b_{i}+e_{i}^{\prime}-\sum_{j=1}^{i-1} \mathcal{H}_{j i}^{*} \bar{x}_{j}-\sum_{j=i+1}^{s} \mathcal{H}_{i j} x_{j}^{\prime}\right) .
$$

Forward GS: For $i=2, \ldots, s$,

$$
\begin{aligned}
x_{1}^{+} & =\operatorname{argmin} p\left(x_{1}\right)+h\left(x_{1}, x_{\geq 2}^{\prime}\right)-\left\langle e_{1}^{+}, x_{1}\right\rangle, \\
x_{i}^{+} & =\mathcal{H}_{i i}^{-1}\left(b_{i}+e_{i}^{+}-\sum_{j=1}^{i-1} \mathcal{H}_{j i}^{*} x_{j}^{+}-\sum_{j=i+1}^{s} \mathcal{H}_{i j} x_{j}^{\prime}\right)
\end{aligned}
$$

e^{+}, e^{\prime} are error vectors. In this case, x^{+}is the exact solution to a slightly perturbed proximal problem:
$x^{+}:=\operatorname{argmin}_{x}\left\{p\left(x_{1}\right)+h(x)+\frac{1}{2}\|x-\bar{x}\|_{\mathrm{sGS}(\mathcal{H})}^{2}-\left\langle x, \Delta\left(e^{\prime}, e^{+}\right)\right\rangle\right\}$
$\Delta\left(e^{\prime}, e^{+}\right)=e^{+}+\mathcal{U} \mathcal{D}^{-1}\left(e^{+}-e^{\prime}\right)$.

Adding a large proximal term slows the convergence of sGS-ADMM!
With no proximal term added, we consider the ALM for solving dual SDP+.
(1) Compute

$$
\begin{aligned}
& \left(y^{k+1}, S^{k+1}, Z^{k+1}\right) \approx \operatorname{argmin}\left\{\mathcal{L}_{k}(y, S, Z):=\mathcal{L}_{\sigma_{k}}\left(y, S, Z ; X^{k}\right)\right\} \\
= & \operatorname{argmin}\left\{-\langle b, y\rangle+\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S+Z+\widehat{C}^{k}\right\|^{2}+\delta_{\mathbb{S}_{+}^{n}}(S)+\delta_{\mathcal{N}}(Z)\right\}
\end{aligned}
$$

(2) Update $X^{k+1}=X^{k}+\sigma_{k}\left(\mathcal{A}^{*} y^{k+1}+S^{k+1}+Z^{k+1}-C\right)$; update $\sigma_{k+1} \uparrow \sigma_{\infty} \leq \infty$.

Define $X^{k+1}=X^{k}+\sigma_{k} R_{D}\left(y^{k+1}, S^{k+1}, Z^{k+1}\right)$,

$$
e^{k+1}=\left[\begin{array}{c}
\mathcal{A} X^{k+1}-b \\
X^{k+1}-\Pi_{\mathbb{S}_{+}^{n}}\left(X^{k+1}-S^{k+1}\right) \\
X^{k+1}-\Pi_{\mathcal{N}^{n}}\left(X^{k+1}-Z^{k+1}\right)
\end{array}\right] .
$$

In Step 1, we use the following easy-to-check stopping conditions:

$$
\begin{aligned}
& \text { (A) }\left\|e^{k+1}\right\| \leq \frac{\epsilon_{k}^{2}}{1+\left\|(X, y, S, Z)^{k+1}\right\|} \min \left\{\frac{1}{\sigma_{k}}, \frac{1}{1+\left\|X^{k+1}-X^{k}\right\|}\right\} \\
& \text { (B) }\left\|e^{k+1}\right\| \leq \frac{\eta_{k}^{2}\left\|X^{k+1}-X^{k}\right\|^{2}}{1+\left\|(X, y, S, Z)^{k+1}\right\|} \min \left\{\frac{1}{\sigma_{k}}, \frac{1}{1+\left\|X^{k+1}-X^{k}\right\|}\right\}
\end{aligned}
$$

where $\left\{\epsilon_{k}\right\}$ and $\left\{\delta_{k}\right\}$ are nonnegative summable sequences.
Theorem [Rockafellar 76] Let $\Omega_{P} \neq \emptyset$ be the primal optimal solution set and Slater's condition holds for primal problem (P). Under stopping condition (A), we have $X^{k} \rightarrow X^{*}$ and $\left(y^{k+1}, S^{k+1}, Z^{k+1}\right)$ converges to a dual optimal solution.

Theorem [Cui-Sun-Toh] If in addition, the blue stopping conditions are added, and the essential primal objective function $P^{\text {obj }}$ satisfies a quadratic growth condition at X^{*}, i.e., \exists a neighborhood \mathcal{U} of X^{*} and $\kappa>0$ s.t.

$$
P^{\mathrm{obj}}(X) \geq P^{\mathrm{obj}}\left(X^{*}\right)+\kappa^{-1} \operatorname{dist}^{2}\left(X, \Omega_{P}\right) \quad \forall X \in \mathcal{U}
$$

Then for k large, we have

$$
\operatorname{dist}\left(X^{k+1}, \Omega_{P}\right) \leq \theta_{k} \operatorname{dist}\left(X^{k}, \Omega_{P}\right)
$$

dual feasibility at $\left(y^{k+1}, S^{k+1}, Z^{k+1}\right) \leq \tau_{k} \operatorname{dist}\left(X^{k}, \Omega_{P}\right)$
dual objective gap at $\left(y^{k+1}, S^{k+1}, Z^{k+1}\right) \leq \tau_{k}^{\prime} \operatorname{dist}\left(X^{k}, \Omega_{P}\right)$
where $\theta_{k} \approx \frac{\kappa}{\sqrt{\kappa^{2}+\sigma_{k}^{2}}}, \quad \tau_{k} \approx \frac{1}{\sigma_{k}}, \quad \tau_{k}^{\prime} \approx \frac{\left\|X^{k}\right\|+\left\|X^{k+1}\right\|}{2 \sigma_{k}}$
Larger σ_{k} gives faster convergence, but the inner problem is harder to solve.

For simplicity, assume $\mathcal{N}=\mathbb{S}^{n}$ and hence the variable Z is absent.
$\operatorname{argmin}_{y, S}\left\{\mathcal{L}_{\sigma}(y, S) \equiv \delta_{\mathbb{S}_{+}^{n}}(S)+\frac{\sigma}{2}\left\|\mathcal{A}^{*} y+S-\widehat{C}^{k}\right\|^{2}-\langle b, y\rangle\right\}$
$\equiv \operatorname{argmin}_{y}\left\{\Phi^{k}(y):=-\langle b, y\rangle+\frac{\sigma}{2}\left\|\Pi_{\mathbb{S}_{+}^{n}}\left(\mathcal{A}^{*} y-\widehat{C}^{k}\right)\right\|^{2}\right\}($ project out $S)$
Optimality condition of unconstrained subproblem in y is:

$$
\nabla \Phi^{k}(y)=-b+\sigma \mathcal{A} \Pi_{\mathbb{S}_{+}^{n}}\left(\mathcal{A}^{*} y-\widehat{C}^{k}\right)=0
$$

Solve for solution y^{k+1} by the semismooth Newton-CG (SNCG) method. Then compute $S^{k+1}=\Pi_{\mathbb{S}_{+}^{n}}\left(\widehat{C}^{k}-\mathcal{A}^{*} y^{k+1}\right)$.
$\nabla \Phi^{k}(y)$ is not differentiable, but is strongly semismooth [Sun-Sun, 2002]. Thus SNCG is expected to have at least superlinear convergence.

A semismooth Newton-CG method (SNCG) for ALM-subproblem

Solve $\nabla \Phi^{k}(y)=-b+\sigma \mathcal{A} \Pi_{\text {sin }_{+}^{n}}(U)=0, U=\mathcal{A}^{*} y-\widehat{C}^{k}$.
At the current iteration, y_{l}, we solve a generalized Newton equation:

$$
\begin{equation*}
\mathcal{H} \Delta y \approx \nabla \Phi^{k}\left(y_{l}\right), \quad \text { where } \mathcal{H} \Delta y=\sigma \mathcal{A} \Pi_{\mathbb{S}_{+}^{n}}^{\prime}(U)\left[\mathcal{A}^{*} \Delta y\right] \tag{1}
\end{equation*}
$$

From eigenvalue decomp: $U=Q D Q^{T}$ with $d_{1} \geq \cdots \geq d_{r} \geq 0>$ $d_{r+1} \geq \cdots \geq d_{n}$, we choose

$$
\begin{equation*}
\Pi_{\mathbb{S}_{+}^{n}}^{\prime}(U)[M]=Q\left(\Omega \circ\left(Q^{T} M Q\right)\right) Q^{T}, \tag{2}
\end{equation*}
$$

$\Omega_{i j}=\left(d_{i}^{+}-d_{j}^{+}\right) /\left(d_{i}-d_{j}\right)$. Let $\gamma=\{1, \ldots, r\}, \bar{\gamma}=\{r+1, \ldots, n\}$,

$$
\Omega=\left[\begin{array}{cc}
E_{\gamma \gamma} & \Omega_{\gamma \bar{\gamma}} \\
\Omega_{\bar{\gamma} \gamma} & 0
\end{array}\right] .
$$

When problem is primal nondegenerate, $\operatorname{cond}(\mathcal{H})$ is bounded:

$$
\operatorname{cond}(\mathcal{H}) \leq \sigma \Theta(1) \operatorname{cond}\left(\left[\mathcal{A} Q_{\gamma} \otimes Q_{\gamma}, \mathcal{A} Q_{\gamma} \otimes Q_{\bar{\gamma}}\right]\right)^{2}
$$

The structure in Ω allows for efficient computation of matrix-vector multiply for CG in solving (1). Direct evaluation of

$$
Y:=\Pi_{\mathbb{S}_{+}^{n}}^{\prime}(U)[M]=Q\left(\Omega \circ\left(Q^{T} M Q\right)\right) Q^{T}
$$

needs 4 matrix-matrix multiplications $=8 n^{3}$ operations. But with the structure of Ω, can compute Y as follows:

$$
Y=H+H^{T}, \quad H=Q_{\gamma}\left[\frac{1}{2}\left(U Q_{\gamma}\right) Q_{\gamma}^{T}+\left(\Omega_{\gamma \bar{\gamma}} \circ\left(U Q_{\bar{\gamma}}\right)\right) Q_{\bar{\gamma}}^{T}\right]
$$

where $U=Q_{\gamma} M$. The cost is at most $6 r n^{2}$.
If $r \approx n$, then use

$$
\begin{aligned}
Y & =Q\left(E \circ\left(Q^{T} M Q\right)\right) Q^{T}-Q\left(\bar{\Omega} \circ\left(Q^{T} M Q\right)\right) Q^{T} \\
& =M-Q\left(\bar{\Omega} \circ\left(Q^{T} M Q\right)\right) Q^{T}
\end{aligned}
$$

where $\bar{\Omega}=E-\Omega$ has a similar structure as Ω but with a large block of 0 . The cost is $6(n-r) n^{2}$.

Let ADMM + denote the sGS-ADMM.

1. Generate a good starting point to warm-start SNCG-ALM:

$$
\left(y^{0}, S^{0}, Z^{0}, X^{0}, \sigma_{0}\right) \leftarrow \mathrm{ADMM}+\left(\bar{y}^{0}, \bar{S}^{0}, \bar{Z}^{0}, \bar{X}^{0}, \bar{\sigma}_{0}\right)
$$

2. For $k=0,1, \ldots$

Generate $\left(y^{k+1}, S^{k+1}, Z^{k+1}\right)$ in ALM-subproblem via SNCG
Compute X^{k+1} based on $\left(y^{k+1}, S^{k+1}, Z^{k+1}\right)$, update σ_{k+1}
If progress of SNCG-ALM is slow,
Rescale data
Let $\left(\bar{y}^{k}, \bar{S}^{k}, \bar{Z}^{k}, \bar{X}^{k}, \bar{\sigma}_{k}\right)$ denote rescaled $\left(y^{k}, S^{k}, Z^{k}, X^{k}, \sigma_{k}\right)$ Rescaling is chosen such that $\left\|\bar{X}^{k}\right\| \approx \max \left\{\left\|\bar{S}^{k}\right\|,\left\|\bar{Z}^{k}\right\|\right\}$
Goto Step 1: Restart with ADMM+($\left.\bar{y}^{k}, \bar{S}^{k}, \bar{Z}^{k}, \bar{X}^{k}, \bar{\sigma}_{k}\right)$

$$
\eta \equiv \frac{\left\|\mathcal{R}_{\mathrm{KKT}}\left(y^{k+1}, S^{k+1}, Z^{k+1}, X^{k+1}\right)\right\|}{1+\left\|\left(y^{k+1}, S^{k+1}, Z^{k+1}, X^{k+1}\right)\right\|} \leq 10^{-6} .
$$

Performance of our SDPNAL+ and ADMM+ versus SDPAD: the directly extended ADMM implemented in [Wen et al.] 2EBD-HPE [Monteiro et al.]

Numbers of problems which are solved to the accuracy $\eta \leq 10^{-6}$

problem set (No.)	SDPNAL+	ADMM +	SDPAD	2EBD
$\theta(58)$	58	56	53	53
$\theta_{+}(58)$	58	58	58	56
FAP (7)	7	7	7	7
QAP (95)	95	39	30	16
BIQ (134)	134	134	134	134
RCP (120)	120	120	114	109
R1TA (55)	55	42	47	18
Total (527)	527	456	443	393

Performance profiles of SDPNAL+, ADMM + , SDPAD and 2EBD

Performance Profile (58 日, $58 \theta_{+}$, 7 FAP, 95 QAP, $134 \mathrm{BIQ}, 120$ RCP, 55 R1TA problems) tol $=1 \mathrm{e}-06$

Numerical results for SDPNAL+

Implemented the algorithms in Matlab.
Runs perform on PC with (12 cores) Intel Xeon CPU E5-2680 @ 2.50 GHz and 128 GB RAM.

Stop SDPAD and 2EBD after 25000 iterations or 20 hours.

| Prob | $m ; n$ | $\begin{array}{c}\eta \\ \text { sDPAD\|2EBD }\end{array}$ SDPNAL+ |
| ---: | ---: | ---: | ---: |$)$

Results show that it is essential to use second-order information and second-order structured sparsity to solve hard problems!

- We have tested SDPNAL+ on about 520 SDPs from θ, θ_{+}, QAP, binary QP, rank-1 tensor approximation, etc
- When the problems are primal-dual nondegenerate, SDPNAL+ can efficiently solve large SDPs to high accuracy. SDPAD and 2EDB also performed well, though SDPNAL+ is often much more efficient.
- Many of the tested SDPs are degenerate, but SDPNAL+ can still solve them accurately with $\eta<10^{-6}$. On the other hand, SDPAD and 2EDB were not able to solve many such problems.

Currently under development:
(1) sparse SDPNAL+ so as to handle larger matrix variable when the data has conducive sparsity structure
(2) a more advanced user-friendly interface

Thank you for your attention!

