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Abstract

In this paper we consider a mathematical program with semidefinite cone comple-
mentarity constraints (SDCMPCC). Such a problem is a matrix analogue of the math-
ematical program with (vector) complementarity constraints (MPCC) and includes M-
PCC as a special case. We first derive explicit formulas for the proximal and limiting
normal cone of the graph of the normal cone to the positive semidefinite cone. Using
these formulas and classical nonsmooth first order necessary optimality conditions we
derive explicit expressions for the strong-, Mordukhovich- and Clarke- (S-, M- and C-)
stationary conditions. Moreover we give constraint qualifications under which a local
solution of SDCMPCC is a S-, M- and C-stationary point.
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necessary optimality conditions, constraint qualifications, S-stationary conditions, M-
stationary conditions, C-stationary conditions.
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1 Introduction

Let Sn be the linear space of all n × n real symmetric matrices equipped with the usual
Frobenius inner product 〈·, ·〉. For the given positive integer n, let Sn+ (Sn−) be the closed
convex cone of all n × n positive (negative) semidefinite matrices in Sn. Let ni, i =
1, . . . ,m be given positive integers. The mathematical program with (semidefinite) cone
complementarity constraints (MPSCCC or SDCMPCC) is defined as follows

(SDCMPCC) min f(z)

s.t. h(z) = 0 ,

g(z) �Q 0 ,

Sni+ 3 Gi(z) ⊥ Hi(z) ∈ Sni− , i = 1, . . . ,m , (1)
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where Z and H are two finite dimensional real Euclidean spaces; f : Z → <, h : Z → <p,
g : Z → H and Gi : Z → Sni , Hi : Z → Sni , i = 1, . . . ,m are continuously differentiable
mappings; Q ∈ H is a closed convex symmetric cone with a nonempty interior (such as
the nonnegative orthant, the second order cone, and the cone of symmetric and positive
semidefinite real matrices); for each i ∈ {1, . . . ,m}, “Gi(z) ⊥ Hi(z)” means that the matri-
ces Gi(z) and Hi(z) are perpendicular to each other, i.e., 〈Gi(z), Hi(z)〉 = 0; “g(z) �Q 0”
means that −g(z) ∈ Q. In particular, for a given symmetric matrix Z ∈ Sn, we use Z � 0
and Z � 0 to denote Z ∈ Sn− and Z ∈ Sn+, respectively.

SDCMPCC is a broad framework, which includes the mathematical program with (vec-
tor) complementarity constraints (MPCC) as a special case. In fact, if Q ≡ <q+, the
nonnegative orthant in H ≡ <q and ni ≡ 1, i = 1, . . . ,m, the SDCMPCC becomes the
following MPCC problem

(MPCC) min f(z)

s.t. h(z) = 0 ,

g(z) ≤ 0 ,

<+ 3 Gi(z) ⊥ Hi(z) ∈ <−, i = 1, . . . ,m . (2)

Denote G(z) = (G1(z), . . . , Gm(z))T : Z → <m and H(z) = (H1(z), . . . ,Hm(z))T : Z →
<m. Then the constraints (2) can be replaced by the following standard vector complemen-
tarity constraint

<m+ 3 G(z) ⊥ H(z) ∈ <m− .
MPCC is a class of very important problems since they arise frequently in applications where
the constraints come from equilibrium systems and hence is also known as the mathematical
program with equilibrium constraints (MPEC); see [26, 34] for references. One of the
main sources of MPCCs comes from bilevel programming problems which have numerous
applications; see [12].

Our research on SDCMPCC is motivated by a number of important applications in
diverse areas. Below we describe some of them.

The rank constrained nearest correlation matrix problem. A matrix is said to be
a correlation matrix if it is real symmetric positive semidefinite and its diagonal entries are
all ones. Let C be a given matrix in Sn. Let 1 ≤ r ≤ n be a given integer. The rank
constrained nearest correlation matrix problem takes the following form

min f(X)

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn+ ,
rank(X) ≤ r ,

(3)

where f : Sn → < is a given cost function that measures the closeness of X to a targeted
matrix. This problem (3) has many important applications in quantitative finance and
engineering, e.g., [58, 66, 7, 24, 8, 28, 49] and the references therein. We may easily cast
(3) in an SDCMPCC form

min
X,U

f(X)

s.t. Xii = 1, i = 1, . . . , n ,

〈I, U〉 = r, U ∈ Sn+ ,
Sn+ 3 X ⊥ (U − I) ∈ Sn− .
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This equivalence is a direct consequence of the well known fact that the sum of the first r
largest eigenvalues of X equals the optimal value of the following semidefinite programming
problem (see, e.g., [35, 36, 27]):

max
U

〈X,U〉
s.t. 〈I, U〉 = r ,

U ∈ Sn+, I − U ∈ Sn+ ,
(4)

where I is the n by n identity matrix. One may refer to [23] for details. More SDCMPCC
examples concerning the matrix rank minimization problems can be found in [67, 5].

Bilinear Matrix Inequality (BMI) problem. Bilinear Matrix Inequalities arise fre-
quently from pooling and blending problems [55], system analysis and robust design [47,
18, 54]. In particular, many problems including robustness analysis [38, 11] and robust
process design problems [46, 55, 56] can be stated as the following optimization problem
with the BMI constraint

min bTu+ dT v

s.t. D +
∑m

i=1 uiA
(i) +

∑n
j=1 vjB

(j) +
∑m

i=1

∑n
j=1 uivjC

(ij) � 0 ,
(5)

where u ∈ <m and v ∈ <n are decision variables, b ∈ <m and d ∈ <n are given, and
D, A(i), B(j), and C(ij), i = 1, . . . ,m, j = 1, . . . , n are given p by p symmetric matrices.
Denote x := (u, v) ∈ <m+n, c := (b, d) ∈ <m+n. Then, the optimization problem (5) can be
rewritten as the following optimization problem [15]

min cTx

s.t. D +
∑m+n

i=1 xiA
(i)

+
∑m+n

i,j=1WijC
(ij) � 0 ,

W = xxT ,

(6)

where A
(i)

= (A(1), . . . , A(m), B(1), . . . , B(n)) and for each i, j ∈ {1, . . . ,m} × {1, . . . , n},
C

(ij)
= C(ij) if i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} and C

(ij)
= 0 otherwise. It is easy to see

that the second constraint in the problem (6) can be replaced by the following constraints
[15]

Z =

[
W x
xT 1

]
� 0 and rank(Z) ≤ 1 .

Therefore, similarly as the previous example, we know that the problem (6) can be cast in
the following SDCMPCC form

min cTx

s.t. D +
∑m+n

i=1 xiA
(i)

+
∑m+n

i,j=1WijC
(ij) � 0 ,

〈I, U〉 = 1, U ∈ Sn+ ,

Sn+ 3
[
W x
xT 1

]
⊥ (U − I) ∈ Sn− .

Single-firm model in electric power market with uncertain data. Electric power
market is an oligopolistic market, which means that there are several dominant firms in
this market. Each dominant firm has some number of generators, which submit the hourly
bids to an independent system operator (ISO). The firm can be thought of as a leader of a
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Stackelberg game, which calculates its bids based on what it anticipates the followers would
do, which is the ISO in this case. Without the uncertain data, it is well-known that this
single-firm problem in the electric power market can be modeled as a bilevel programming
problem [21]. In this bilevel programming model, the upper-level problem is the single
firm’s profit maximization problem and the lower-level problem is the ISO’s single spatial
price equilibrium problem. For simplicity we assume that there are no rival firms. Let
{Si}pi=1 and {Dj}qj=1 represent the nodes with generators under the control of the firm and
the demand nodes respectively. Suppose the firm (as the leader of the game) decides the
bids (α1, . . . , αp). Given the bids (α1, . . . , αp), the ISO (as the follower of the game) decides
the quantities of the power generated at Si, denoted by si, i = 1, . . . , p, the quantities of
the power demanded at Dj , denoted by dj , j = 1, . . . , q, and the quantities of the power
transmitted from Si to Dj , denoted by Tij , i = 1, . . . , p and j = 1, . . . , q so as to maximize
the social welfare. Let ηj − ξ2

j dj(j = 1, . . . , q) and αi + β2
i si(i = 1, . . . , p) be the marginal

demand and supply functions respectively. Then the social welfare is the consumer surplus
minus costs which can be expressed as

∑q
j=1(ηjdj− 1

2ξ
2
j d

2
j )−

∑p
i=1(αisi+

1
2β

2
i s

2
i ). Note that

in applications, the marginal demand functions, which are decided by the information of
consumers, usually contain uncertainty. For instance, we may assume that the coefficients
η := (η1, . . . , ηq)

T ∈ <q and ξ := (ξ1, . . . , ξq)
T ∈ <q of the marginal demand functions are

in the given ellipsoidal uncertainty set, i.e.,
{

(η, ξ) = (η0, ξ0) +
∑L

l=1 ul(η
l, ξl) | uTu ≤ 1

}
,

where (η0, ξ0) ∈ <q×<q and (ηl, ξl) ∈ <q×<q, l = 1, . . . , L are given. Define x := (d, s, t) ∈
<q ×<p ×<. Denote A0 = diag(ξ0, β, 0) ∈ Sq+p+1, b0 = ((η0)T ,−αT , 1)T ∈ <q+p+1 and

Al = diag(ξl, 0, 0) ∈ Sq+p+1, bl = ((ηl)T , 0, 0)T ∈ <q+p+1, l = 1, . . . , L .

By considering the robust counterpart of the lower-level problem, we obtain the following
robust lower-level problem

min t

s.t. xTATAx− 2bTx ≤ 0 ∀ (A, b) ∈ U ,[
Teq − s
T T ep − d

]
= 0, 0 ≤ (d, s, T ) ≤ w̄ ,

where w̄ = (d̄, s̄, T ) and U ⊆ Sq+p+1 ×<q+p+1 is given by

U :=
{

(A, b) | (A, b) = (A0, b0) +
L∑
l=1

ul(A
l, bl), uTu ≤ 1

}
.

From [2, Theorem 3.2], we know that xTATAx − 2bTx ≤ 0, for any (A, b) ∈ U if and only
if y = (x, λ, T ) ∈ <q+p+1 ×<× <p×q satisfies the following SDP constraint

Aαy :=



2xT b0 − λ xT b1 · · · xT bL (A0x)T

xT b1 λ · · · 0 (A1x)T

...
...

. . .
...

...

xT bL 0 · · · λ (ALx)T

A0x A1x · · · ALx Iq+p+1


� 0 .

Let M : <p × <q × <p → < be the given continuous differentiable revenue function of the
firm and cij > 0 be the unit transmission cost from Si to Di. Then the profit of the firm
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is M(s, d, α)−
∑p

i=1

∑q
j=1 cijTij . Therefore, the corresponding robust bilevel programming

problem can be written as

min
∑p

i=1

∑q
j=1 cijTij −M(s, d, α)

s.t. 0 ≤ α ≤ ᾱ ,
min τT y

s.t. Aαy � 0 ,

B1y =

[
Teq − s
T T ep − d

]
= 0, 0 ≤ B2y = (d, s, T ) ≤ w̄ ,

(7)

where τ := (0, 0, 1, 0, 0) ∈ <q+p+1 ×<×<p×q. Thus, for each given α ∈ <p, by considering
the KKT conditions of the lower-level problem of (7), we obtain the following SDCMPCC
problem

min
∑p

i=1

∑q
j=1 cijTij −M(s, d, α)

s.t. 0 ≤ α ≤ ᾱ ,
τ + B∗1ξ + B∗2(ζ − η) +A∗αΓ = 0, B1y = 0 ,

0 ≤ η ⊥ −B2y ≤ 0, 0 ≤ ζ ⊥ B2y − w̄ ≤ 0 ,

0 � Aαy ⊥ Γ � 0 ,

where for each given α, A∗α, B∗1 and B∗2 are the corresponding adjoints of the linear operators
Aα, B1 and B2.

In this paper, we study first order necessary optimality conditions for the SDCMPCC.
For simplicity, we consider the SDCMPCC problem which has only one semidefinite cone
complementarity constraint. However all results can be generalized to the case of more than
one semidefinite cone complementarity constraints in a straightforward manner.

MPCC is notoriously known as a difficult class of optimization problems since if one
treats an MPCC as a standard nonlinear programming problem, then Mangasarian Fro-
movitz constraint qualification (MFCQ) fails to hold at each feasible point of the feasible
region; see [65, Proposition 1.1]. One of the implications of the failure of MFCQ is that the
classical KKT condition may not hold at a local optimizer. The classical KKT condition for
MPCC is known to be equivalent to Strong (S-) stationary condition. Consequently weaker
stationary conditions such as Mordukhovich stationary condition (M-stationary condition)
and Clarke stationary condition (C-stationary condition) have been proposed and the con-
straint qualifications under which a local minimizer is a M-(C-)stationary point have been
studied; see e.g., [48, 63] for a detailed discussion.

The same difficulties exist for SDCMPCC. The cone complementarity constraint (1)
amounts to the following convex cone constraints:

〈G(z), H(z)〉 = 0, G(z) ∈ Sn+, H(z) ∈ Sn−.

For an optimization problem with convex cone constraints, the usual constraint qualification
is Robinson’s CQ. In this paper we show that if we consider SDCMPCC as an optimization
problem with cone constraints, Robinson’s CQ fails to hold at each feasible point of the
SDCMPCC. Hence SDCMPCC is also a difficult class of optimization problems. One of
the implications of the failure of Robinson’s CQ is that the classical KKT condition may
not hold at a local optimizer. It is obvious that the complementarity constraint (1) can be
reformulated as a nonconvex cone constraint:

(G(z), H(z)) ∈ gphNSn+ ,
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where gphNSn+ is the graph of the limiting normal cone to the positive semidefinite cone. We
first derive the exact expressions for the proximal and limiting normal cone of gphNSn+ . As
in the vector case, the first order necessary optimality condition based on the proximal and
limiting normal cones are called S- and M-stationary condition respectively. To derive the
C-stationary condition, we reformulate the complementarity constraint (1) as a nonsmooth
equation constraint:

G(z)−ΠSn+(G(z) +H(z)) = 0

where ΠSn+ denotes the metric projection to the positive semidefinite cone. As in the vector
case, based on this reformulation and the classical nonsmooth necessary optimality condition
we derive the necessary optimality condition in terms of the C-stationary condition. We
also show that the classical KKT condition implies the S-stationary condition but not vice
versa.

To the best of our knowledge, this is the first time explicit expressions for S-, M- and C-
stationary conditions for SDCMPCC are given. In [60], a smoothing algorithm is given for
mathematical program with symmetric cone complementarity constraints and the conver-
gence to C-stationary points is shown. Although the problem studied in [60] may include
our problem as a special case, there is no explicit expression for C-stationary condition
given. It is also the first time precise formulas for the proximal and limiting normal cone
of gphNSn+ are given. In particular the precise expression for the limiting normal cone of
gphNSn+ is not only important for deriving the M-stationary condition but also useful in the
so-called Mordukhovich criterion for Aubin continuity [45, Theorem 9.40] of a perturbed
generalized equation such as:

S(x) := {z : x ∈ H(z) +NSn+(z)}.

We organize our paper as following. In §2 we introduce the preliminaries and prelimi-
nary results on the background in variational analysis, first order conditions for a general
problem and background in variational analysis in matrix spaces. In §3, we give the precise
expressions for the proximal and limiting normal cones of the graph of the normal cone
NSn+ . In §4, we show that if SDCMPCC is considered as an optimization problem with
convex cone constraints then the Robinson’s CQ fails at every feasible solution of SDCM-
PCC and derive the classical KKT condition under the Clarke calmness condition. Explicit
expressions for S-stationary conditions are given in §5 where it is also shown that the clas-
sical KKT condition implies the S-stationary condition. Explicit expressions for M- and
C-stationary conditions are given in §6 and §7 respectively.

2 Preliminaries and Preliminary Results

We first give the following notations that will be used throughout the paper. Let X,Y be
finite dimensional spaces. We denote by ‖ · ‖ the Euclidean norm in X. We denote by
B(x, δ) := {y ∈ X | ‖y − x‖ < δ} the open ball centered at x with radius δ > 0 and B the
open unit ball centered at 0. Given a set S ⊆ X and a point x ∈ X, the distance from x to
S is denoted by

dist(x, S) := inf{‖y − x‖ | y ∈ S}.

Given a linear operator A : X → Y , A∗ denotes the adjoint of the linear operator A. Given
a matrix A, we denote by AT the transpose of the matrix A. For a mapping F : X → Y
and x ∈ X, F ′(x) stands for the classical derivative or the Jacobian of F at x and ∇F (x)
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the adjoint of the Jacobian. We denote by F ′(x; d) the directional derivative of F at x
in direction d. For a set-valued mapping Φ : X ⇒ Y , we denote by gphΦ the graph of
Φ, i.e., gph Φ := {(z, v) ∈ X × Y | v ∈ Φ(z)}. For a set C, we denote by intC, clC,
coC its interior, closure and convex hull respectively. For a function g : X → <, we denote
g+(x) := max{0, g(x)} and if it is vector-valued then the maximum is taken componentwise.

• Let On be the set of all n× n orthogonal matrices.

• For any Z ∈ <m×n, we denote by Zij the (i, j)-th entry of Z.

• For any Z ∈ <m×n, we use zj to represent the jth column of Z, j = 1, . . . , n. Let
J ⊆ {1, . . . , n} be an index set. We use ZJ to denote the sub-matrix of Z obtained
by removing all the columns of Z not in J . So for each j, we have Zj = zj .

• Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be two index sets. For any Z ∈ <m×n, we use
ZIJ to denote the |I| × |J | sub-matrix of Z obtained by removing all the rows of Z
not in I and all the columns of Z not in J .

• We use “ ◦ ” to denote the Hardamard product between matrices, i.e., for any two
matrices A and B in <m×n the (i, j)-th entry of Z := A ◦B ∈ <m×n is Zij = AijBij .

2.1 Background in variational analysis

In this subsection we summarize some background materials on variational analysis which
will be used throughout the paper. Detailed discussions on these subjects can be found in
[9, 10, 31, 32, 45]. In this subsection X is a finite dimensional space.

Definition 2.1 (see e.g., [10, Proposition 1.5(a)] or [45, page 213]) Let Ω be a nonempty
subset of X. Given x̄ ∈ cl Ω, the following convex cone

Nπ
Ω(x̄) := {ζ ∈ X : ∃M > 0, such that 〈ζ, x− x̄〉 ≤M‖x− x̄‖2 ∀x ∈ Ω} (8)

is called the proximal normal cone to set Ω at point x̄.

Definition 2.2 (see e.g., [10, page 62 and Theorem 6.1(b)]) Let Ω be a nonempty subset
of X. Given x̄ ∈ cl Ω, the following closed cone

NΩ(x̄) := { lim
i→∞

ζi : ζi ∈ Nπ
Ω(xi), xi → x̄, xi ∈ Ω} (9)

is called the limiting normal cone (also known as Mordukhovich normal cone or basic normal
cone) to set Ω at point x̄ and the closed convex hull of the limiting normal cone

N c
Ω(x̄) := clcoNΩ(x̄).

where is the Clarke normal cone ([9]) to set Ω at point x̄.

Alternatively in a finite dimensional space, the limiting normal cone can be also defined by
the Fréchet (also called regular) normal cone instead of the proximal normal cone, see [31,
Definition 1.1 (ii)]. In the case when Ω is convex, the proximal normal cone, the limiting
normal cone and the Clarke normal cone coincide with the normal cone in the sense of the
convex analysis [44], i.e., NΩ(x̄) := {ζ ∈ X : 〈ζ, x− x̄〉 ≤ 0 ∀x ∈ Ω} .
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Definition 2.3 Let f : X → < ∪ {+∞} be a lower semicontinuous function and finite at
x̄ ∈ X. The proximal subdifferential ([45, Definition 8.45]) of f at x̄ is defined as

∂πf(x̄) := {ζ ∈ X : ∃σ > 0, δ > 0 such that f(x) ≥ f(x̄) + 〈ζ, x− x̄〉 − σ‖x− x̄‖2

∀x ∈ B(x̄, δ)}

and the limiting (Mordukhovich or basic [31]) subdifferential of f at x̄ is defined as

∂f(x̄) := { lim
k→∞

ζk : ξk ∈ ∂πf(xk), xk → x̄, f(xk)→ f(x̄)} .

When f is Lipschitz continuous near x̄,

∂cf(x̄) := co ∂f(x̄)

is the Clarke subdifferential [9] of f at x̄.

Note that in a finite dimensional space, alternatively the limiting subgradient can be also
constructed via Fréchet subgradients (also known as regular subgradients), see [31, Theo-
rem 1.89]. The equivalence of the two definitions is well-known, see the commentary by
Rockafellar and Wets [45, page 345]. In the case when f is convex and locally Lipschitz,
the proximal subdifferential, the limiting subdifferential and the Clarke subdifferential co-
incide with the subdifferential in the sense of convex analysis [44]. In the case when f is
strictly differentiable, the limiting subdifferenial and the Clarke subdifferential reduce to
the classical derivative f ′(x̄), i.e., ∂cf(x̄) = ∂f(x̄) = {f ′(x̄)}.

2.2 First order optimality conditions for a general problem

In this subsection we discuss constraint qualifications and first order necessary optimality
conditions for the following general optimization problem:

(GP ) min f(z)

s.t. h(z) = 0 ,

g(z) ≤ 0 ,

G(z) ∈ K ,

where Y, Z are finite dimensional spaces, K is a closed subset of Y , f : Z → <, h : Z → <p,
g : Z → <q and G : Z → Y are locally Lipschitz mappings.

We denote the set of feasible solutions for (GP) by F and the perturbed feasible region
by

F(r, s, P ) := {z ∈ Z : h(z) + r = 0, g(z) + s ≤ 0, G(z) + P ∈ K} . (10)

Then F(0, 0, 0) = F . The following definition is the Clarke calmness [9] adapted to our
setting.

Definition 2.4 (Clarke calmness) We say that problem (GP) is (Clarke) calm at a local
optimal solution z̄ if there exist positive ε and µ such that, for all (r, s, P ) in εB, for all
z ∈ (z̄ + εB) ∩ F(r, s, P ), one has

f(z)− f(z̄) + µ‖(r, s, P )‖ ≥ 0 .
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The following equivalence is obvious.

Proposition 2.1 Problem (GP) is Clarke calm at a local optimal solution z̄ if and only if
(z̄, G(z̄)) is a local optimal solution to the penalized problem for some µ > 0:

(GP)µ min
z,X

f(z) + µ(‖h(z)‖+ ‖max{g(z), 0}‖+ ‖G(z)−X‖)

s.t. X ∈ K .

Theorem 2.1 Let z̄ be a local optimal solution of (GP). Suppose that (GP) is Clarke calm
at z̄. Then there exist λh ∈ <p, λg ∈ <q and ΩG ∈ Sn such that

0 ∈ ∂f(z̄) + ∂〈h, λh〉(z̄) + ∂〈g, λg〉(z̄) + ∂〈G,ΩG〉(z̄) ,

λg ≥ 0, 〈g(z̄), λg〉 = 0 ΩG ∈ NK(G(z̄)).

Proof. The results follow from applying the limiting subdifferential version of the gen-
eralized Lagarange multiplier rule (see e.g., Mordukhovich [32, Proposition 5.3]), calculus
rules for limiting subdifferentials in particular the chain rule in Mordukhovich and Shao
[33, Proposition 2.5 and Corollary 6.3]).

The calmness condition involves both the constraint functions and the objective func-
tion. It is therefore not a constraint qualification in classical sense. Indeed it is a sufficient
condition under which KKT type necessary optimality conditions hold. The calmness con-
dition may hold even when the weakest constraint qualification does not hold. In practice
one often uses some verifiable constraint qualifications sufficient to the calmness condition.

Definition 2.5 (Calmness of a set-valued map) A set-valued map Φ : Z ⇒ Y is said to be
calm at a point (z̄, v̄) ∈ gph Φ if there exist a constant M > 0 and a neighborhood U of z̄,
a neighborhood V of v̄ such that

Φ(z) ∩ V ⊆ Φ(z̄) +M‖z − z̄‖clB ∀ z ∈ U.

Although the term “calmness” was coined in Rockafellar and Wets [45], the concept of
calmness of a set-valued map was first introduced by Ye and Ye in [64] under the term
“pseudo upper-Lipschitz continuity” which comes from the fact that it is a combination of
Aubin’s pseudo Lipschitz continuity [1] and Robinson’s upper-Lipschitz continuity [40, 41].
For recent discussion on the properties and the criterion of calmness of a set-valued mapping,
see Henrion and Outrata ([19, 20]). In what follows, we consider the calmness of the
perturbed feasible region F(r, s, P ) at (r, s, P ) = (0, 0, 0) to establish the Clarke calmness
of the problem.

The proposition below is an easy consequence of Clarke’s exact penalty principle [9,
Proposition 2.4.3] and the calmness of the perturbed feasible region of the problem. See
[62, Proposition 4.2] for a proof.

Proposition 2.2 If the objective function of (GP) is Lipschitz near z̄ ∈ F and the perturbed
feasible region of the constraint system F(r, s, P ) defined as in (10) is calm at (0, 0, 0, z̄),
then the problem (GP) is Clarke calm at z̄.
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From the definition it is easy to verify that the set-valued mapping F(r, s, P ) is calm at
(0, 0, 0, z̄) if and only if there exist a constant M > 0 and U , a neighborhood of z̄, such that

dist (z,F) ≤M‖(r, s, P )‖ ∀ z ∈ U ∩ F(r, s, P ) .

The above property is also referred to the existence of a local error bound for the feasible
region F . Hence any results on the existence of a local error bound of the constraint system
may be used as a sufficient condition for calmness of the perturbed feasible region (see e.g.,
Wu and Ye [59] for such sufficient conditions).

By virtue of Proposition 2.2, the following four constraint qualifications are stronger
than the Clarke calmness of (GP) at a local minimizer when the objective function of the
problem (GP) is Lipschitz continuous.

Proposition 2.3 Let F(r, s, P ) be defined as in (10) and z̄ ∈ F . Then the set-valued map
F(r, s, P ) is calm at (0, 0, 0, z̄) under one of the following constraint qualifications:

(i) There is no singular Lagrange multiplier for problem (GP) at z̄:{
0 ∈ ∂〈h, λh〉(z̄) + ∂〈g, λg〉(z̄) + ∂〈G,ΩG〉(z̄),
ΩG ∈ NK(G(z̄)), λg ≥ 0, 〈g(z̄), λg〉 = 0

=⇒ (λh, λg,ΩG) = 0.

(ii) Robinson’s CQ ([42]) holds at z̄: h, g and G are continuously differentiable at z̄. K
is a closed convex cone with a nonempty interior. The gradients h′i(z̄)

∗(i = 1, . . . , p)
are linearly independent and there exists a vector d ∈ Z such that

hi(z̄)
′d = 0, i = 1, . . . , p ,

gi(z̄)
′d < 0, i ∈ Ig(z̄) ,

G(z̄) +G′(z̄)d ∈ intK ,

where Ig(z̄) := {i : gi(z̄) = 0} is the index of active inequality constraints.

(iii) Linear Independence Constraint Qualification (LICQ) holds at z̄:

0 ∈ ∂〈h, λh〉(z̄)+∂〈g, λg〉(z̄)+∂〈G,ΩG〉(z̄),ΩG ∈ NK(G(z̄)) =⇒ (λh, λg,ΩG) = 0.

(iv) h, g and G are affine mappings and the set K is a union of finitely many polyhedral
convex sets.

(v) The perturbed feasible region of problem (GP) is calm at (0, 0, 0, z̄).

Proof. It is obvious that (iii) implies (i). By [6, Propositions 3.16 (ii) and 3.19 (iii)],
Robinson’s CQ (ii) is equivalent to (i) when all functions h, g,G are continuously differen-
tiable and K is a closed convex cone with a nonempty interior. By Mordukhovich’s criteria
for pseudo-Lipschitz continuity, (i) implies that the set-valued map F(r, s, P ) is pseudo-
Lipschitz continuous around (r, s, P ) = (0, 0, 0) (see e.g., [33, Theorem 6.1]) and hence
calm. By Robinson [43], (iv) implies the upper-Lipschitz continuity and hence the calmness
of the set-valued map F(r, s, P ) at (0, 0, 0, z̄).

Combining Theorem 2.1 and Propositions 2.2 and 2.3, we have the following KKT
conditions.

Theorem 2.2 Let z̄ be a local optimal solution of (GP). Suppose the problem is Clarke
calm at z̄; in particular one of the constraint qualifications in Proposition 2.3 holds. Then
the KKT condition in Theorem 2.1 holds at z̄.

10



2.3 Background in variational analysis in matrix spaces

Let A ∈ Sn be given. Denote λ(A) := (λ1(A), λ2(A), . . . , λn(A))T ∈ <n and Λ(A) :=
diag(λ(A)), where for any x ∈ <n, diag(x) denotes the diagonal matrix whose i-th diagonal
entry is xi, i = 1, . . . , n. Let P ∈ On be such that

A = PΛ(A)P
T
. (11)

We denote the set of all such matrices P in the eigenvalue decomposition (11) by On(A).
Define the three index sets of positive, zero, and negative eigenvalues of A, respectively, by

α := {i : λi(A) > 0}, β := {i : λi(A) = 0} and γ := {i : λi(A) < 0} . (12)

For any matrix P ∈ On(A), we use pj to represent the jth column of P , j = 1, . . . , n. Let
J ⊆ {1, . . . , n} be an index set. We use PJ to denote the sub-matrix of P obtained by
removing all columns of P not in J . So for each j, we have P{j} = pj . Let X ∈ Sn and
I,J ⊆ {1, . . . , n} be index sets. We use XIJ to denote the sub-matrix of X obtained by
removing all the rows of X not in I and all columns of X not in J . For any Z ∈ Sn, we
use Z � 0 and Z � 0 to denote Z ∈ Sn+ and Z ∈ Sn−, respectively.

Proposition 2.4 (see e.g., [16, Theorem 2.1]) For any X ∈ Sn+ and Y ∈ Sn−,

NSn+(X) = {X∗ ∈ Sn− : 〈X,X∗〉 = 0} = {X∗ ∈ Sn− : XX∗ = 0} ,

NSn−(Y ) = {Y ∗ ∈ Sn+ : 〈Y, Y ∗〉 = 0} = {Y ∗ ∈ Sn+ : Y Y ∗ = 0} .

We say that X,Y ∈ Sn have a simultaneous ordered eigenvalue decomposition provided
that there exists P ∈ On such that X = PΛ(X)P T and Y = PΛ(Y )P T . The following
theorem is well-known and can be found in e.g., [22].

Theorem 2.3 [von Neumann-Theobald] Any matrices X and Y in Sn satisfy the inequality

〈X,Y 〉 ≤ λ(X)>λ(Y ) ;

the equality holds if and only if X and Y admit a simultaneous ordered eigenvalue decom-
position.

Proposition 2.5 The graph of the set-valued map NSn+ can be written as

gphNSn+ = {(X,Y ) ∈ Sn+ × Sn− : ΠSn+(X + Y ) = X} (13)

= {(X,Y ) ∈ Sn+ × Sn− : ΠSn−(X + Y ) = Y } (14)

= {(X,Y ) ∈ Sn+ × Sn− : XY = Y X = 0, 〈X,Y 〉 = 0}. (15)

Proof. Equations (13) and (14) are well-known (see [13]). Let X ∈ Sn+. Since NSn+(X) =
∂δSn+(X), where δC is the indicate function of a set C, by [22, Theorem 3], since the function
δSn+(X) is an eigenvalue function, for any Y ∈ NSn+(X), X and Y commute. Equation (15)
then follows from the expression for the normal cone in Proposition 2.4.

From [51, Theorem 4.7] we know that the metric projection operator ΠSn+(·) is direc-
tionally differentiable at any A ∈ Sn and the directional derivative of ΠSn+(·) at A along
direction H ∈ Sn is given by

Π′Sn+(A;H) = P

 H̃αα H̃αβ Σαγ ◦ H̃αγ

H̃T
αβ ΠS|β|+

(H̃ββ) 0

ΣT
αγ ◦ H̃T

αγ 0 0

P T , (16)
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where H̃ := P
T
HP , ◦ is the Hadamard product and

Σij :=
max{λi(A), 0} −max{λj(A), 0}

λi(A)− λj(A)
, i, j = 1, . . . , n , (17)

where 0/0 is defined to be 1. Since ΠSn+(·) is global Lipschitz continuous on Sn, it is well-
known that ΠSn+(·) is B(ouligand)-differentiable (c.f. [14, Definition 3.1.2]) on Sn. In the
following proposition, we will show that ΠSn+(·) is also calmly B(ouligand)-differentiable on
Sn. This result is not only of its own interest, but also is crucial for the study of the
proximal and limiting normal cone of the normal cone mapping NSn+ in the next section.

Proposition 2.6 The metric projection operator ΠSn+(·) is calmly B-differentiable for any
given A ∈ Sn, i.e., for Sn 3 H → 0,

ΠSn+(A+H)−ΠSn+(A)−Π′Sn+(A;H) = O(‖H‖2) . (18)

Proof. See the Appendix.

3 Expression of the proximal and limiting normal cones

In order to characterize the S-stationary and M-stationary conditions, we need to give the
precise expressions for the proximal and limiting normal cones of the graph of the normal
cone mapping NSn+

at any given point (X,Y ) ∈ gphNSn+ . The purpose of this section is to
provide such formulas. The result is also of independent interest.

3.1 Expression of the proximal normal cone

By using the directional derivative formula (16), Qi and Fusek [39] characterized the Fréchet
normal cone of gphNSn+

. In this subsection, we will establish the representation of the
desired proximal normal cone by using the same formula and the just proved calmly B-
differentiability of the metric projection operator. The proximal normal cone is in general
smaller than the Fréchet normal cone. For the set gphN<n+ , however, it is well-known that
the Fréchet normal cone coincides with the proximal normal cone. The natural question to
ask is that whether this statement remains true for the set gphNSn+

. Our computations in
this section give an affirmative answer, that is, the expression for the proximal normal cone
coincides with the one for the Fréchet normal cone derived by Qi and Fusek in [39].

From Proposition 2.6, we know that for any given X∗ ∈ Sn and any fixed X ∈ Sn there
exist M1,M2 > 0 (depending on X and X∗ only) such that for any X ′ ∈ Sn sufficiently
close to X,

〈X∗,ΠSn+(X ′)−ΠSn+(X)〉 ≤ 〈X∗,Π′Sn+(X;X ′ −X)〉+M1‖X ′ −X‖2 , (19)

〈X∗,ΠSn−(X ′)−ΠSn−(X)〉 ≤ 〈X∗,Π′Sn−(X;X ′ −X)〉+M2‖X ′ −X‖2 . (20)

Proposition 3.1 For any given (X,Y ) ∈ gphNSn+, (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ) if and only

if (X∗, Y ∗) ∈ Sn × Sn satisfies

〈X∗,Π′Sn+(X + Y ;H)〉+ 〈Y ∗,Π′Sn−(X + Y ;H)〉 ≤ 0 ∀H ∈ Sn. (21)
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Proof. “⇐= ” Suppose that (X∗, Y ∗) ∈ Sn × Sn is given and satisfies the condition (21).
By Proposition 2.5, (19) and (20), we know that there exist a constant δ > 0 and a constant

M̃ > 0 such that for any (X ′, Y ′) ∈ gphNSn+ and ‖(X ′, Y ′)− (X,Y )‖ ≤ δ,

〈(X∗, Y ∗), (X ′, Y ′)− (X,Y )〉

= 〈(X∗, Y ∗), (ΠSn+(X ′ + Y ′),ΠSn−(X ′ + Y ′))− (ΠSn+(X + Y ),ΠSn−(X + Y ))〉

≤ M̃‖(X ′, Y ′)− (X,Y )‖2 .

By taking M = max
{
M̃, ‖(X∗, Y ∗)‖/δ

}
, we know that for any (X ′, Y ′) ∈ gphNSn+ ,

〈(X∗, Y ∗), (X ′, Y ′)− (X,Y )〉 ≤M‖(X ′, Y ′)− (X,Y )‖2 ,

which implies, by the definition of the proximal normal cone, that (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ).

“ =⇒ ” Let (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ) be given. Then there exists M > 0 such that

for any (X ′, Y ′) ∈ gphNSn+ ,

〈(X∗, Y ∗), (X ′, Y ′)− (X,Y )〉 ≤M‖(X ′, Y ′)− (X,Y )‖2 . (22)

Let H ∈ Sn be arbitrary but fixed. For any t ↓ 0, let

X ′t = ΠSn+(X + Y + tH) and Y ′t = ΠSn−(X + Y + tH) .

By noting that (X ′t, Y
′
t ) ∈ gphNSn+ (c.f., (13)-(14) in Proposition 2.5) and ΠSn+(·) and ΠSn−(·)

are globally Lipschitz continuous with modulus 1, we obtain from (22) that

〈X∗,Π′Sn+(X + Y ;H)〉+ 〈Y ∗,Π′Sn−(X + Y ;H)〉

≤ M lim
t↓0

1

t
(‖X ′t −X‖2 + ‖Y ′t − Y ‖2) ≤M lim

t↓0

1

t
(2t2‖H‖2) = 0 .

Therefore, we know that (X∗, Y ∗) ∈ Sn × Sn satisfies the condition (21). The proof is
completed.

For any given (X,Y ) ∈ gphNSn+ , let A = X + Y have the eigenvalue decomposition
(11). From (13)-(14), we know that X = ΠSn+(A) and Y = ΠSn−(A). It follows from the
directional derivative formula (16) that for any H ∈ Sn,

Π′Sn−(A;H) = P

 0 0 (Eαγ − Σαγ) ◦ H̃αγ

0 ΠS|β|−
(H̃ββ) H̃βγ

(Eαγ − Σαγ)T ◦ H̃T
αγ H̃βγ H̃γγ

P T , (23)

where E is a n× n matrix whose entries are all ones. Denote

Θ1 :=

 Eαα Eαβ Σαγ

ETαβ 0 0

ΣT
αγ 0 0

 and Θ2 :=

 0 0 Eαγ − Σαγ

0 0 Eβγ
(Eαγ − Σαγ)T ETβγ Eγγ

 . (24)

We are now in a position to derive the precise expression of the proximal normal cone to
gphNSn+ .
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Proposition 3.2 For any (X,Y ) ∈ gphNSn+ , let A = X +Y have the eigenvalue decompo-
sition (11). Then

Nπ
gphNSn+

(X,Y ) =
{

(X∗, Y ∗) ∈ Sn × Sn : Θ1 ◦ X̃∗ + Θ2 ◦ Ỹ ∗ = 0, X̃∗ββ � 0 and Ỹ∗ββ � 0
}
,

where X̃∗ := P
T
X∗P and Ỹ ∗ := P

T
Y ∗P .

Proof. By Proposition 3.1, (X∗, Y ∗) ∈ Nπ
gphNSn+

(X,Y ) if and only if

〈X∗,Π′Sn+(A;H)〉+ 〈Y ∗,Π′Sn−(A;H)〉 ≤ 0 ∀ H ∈ Sn ,

which, together with the directional derivative formulas (16) and (23) implies that (X∗, Y ∗) ∈
Nπ

gphNSn+
(X,Y ) if and only if

〈Θ1 ◦ X̃∗, H̃〉+ 〈Θ2 ◦ Ỹ ∗, H̃〉+ 〈X̃∗ββ ,ΠS|β|+

(H̃ββ)〉+ 〈Ỹ ∗ββ ,ΠS|β|−
(H̃ββ)〉 ≤ 0 ∀H ∈ Sn.

The conclusion of the proposition holds.

3.2 Expression of the limiting normal cone

In this subsection, we will use the formula of the proximal normal cone Nπ
gphNSn+

(X,Y )

obtained in Proposition 3.2 to characterize the limiting normal cone NgphNSn+
(X,Y ).

For any given (X,Y ) ∈ gphNSn+ , let A = X + Y have the eigenvalue decomposition
(11) and β be the index set of zero eigenvalues of A defined as in (12). Denote the set of

all partitions of the index set β by P(β). Let <|β|& be the set of all vectors in <|β| whose
components being arranged in non-increasing order, i.e.,

<|β|& :=
{
z ∈ <|β| : z1 ≥ · · · ≥ z|β|

}
.

For any z ∈ <|β|& , let D(z) represent the generalized first divided difference matrix for

f(t) = max{t, 0} at z, i.e.,

(D(z))ij =


max{zi, 0} −max{zj , 0}

zi − zj
∈ [0, 1] if zi 6= zj ,

1 if zi = zj > 0 ,
0 if zi = zj ≤ 0 ,

i, j = 1, . . . , |β| . (25)

Denote
U|β| := {Ω ∈ S |β| : Ω = lim

k→∞
D(zk), zk → 0, zk ∈ <|β|& } . (26)

Let Ξ1 ∈ U|β|. Then, from (25), it is easy to see that there exists a partition π(β) :=
(β+, β0, β−) ∈P(β) such that

Ξ1 =

 Eβ+β+ Eβ+β0 (Ξ1)β+β−

ETβ+β0
0 0

(Ξ1)Tβ+β−
0 0

 , (27)

14



where each element of (Ξ1)β+β− belongs to [0, 1]. Let

Ξ2 :=

 0 0 Eβ+β− − (Ξ1)β+β−

0 0 Eβ0β−

(Eβ+β− − (Ξ1)β+β−)T ETβ0β−
Eβ−β−

 . (28)

We first characterize the limiting normal cone NgphNSn+
(X,Y ) for the special case when

(X,Y ) = (0, 0) and β = {1, 2, . . . , n}.

Proposition 3.3 The limiting normal cone to the graph of the limiting normal cone map-
ping NSn+ at (0, 0) is given by

NgphNSn+
(0, 0) =

⋃
Q ∈ On
Ξ1 ∈ Un

{
(U∗, V ∗) : Ξ1 ◦QTU∗Q+ Ξ2 ◦QTV ∗Q = 0,

QTβ0
U∗Qβ0 � 0, QTβ0

V ∗Qβ0 � 0

}
. (29)

Proof. See the Appendix.

We now characterize the limiting normal cone NgphNSn+
(X,Y ) for any (X,Y ) ∈ gphNSn+

for the general case in the following theorem.

Theorem 3.1 For any (X,Y ) ∈ gphNSn+, let A = X+Y have the eigenvalue decomposition
(11) and α, β, γ be the index sets of positive, zero and negative eigenvalues respectively as
defined in (12). Then, (X∗, Y ∗) ∈ NgphNSn+

(X,Y ) if and only if

X∗ = P

 0 0 X̃∗αγ
0 X̃∗ββ X̃∗βγ

X̃∗γα X̃∗γβ X̃∗γγ

P T and Y ∗ = P

 Ỹ ∗αα Ỹ ∗αβ Ỹ ∗αγ
Ỹ ∗βα Ỹ ∗ββ 0

Ỹ ∗γα 0 0

P T (30)

with
(X̃∗ββ , Ỹ

∗
ββ) ∈ NgphN

S|β|+

(0, 0) and Σαγ ◦ X̃∗αγ + (Eαγ − Σαγ) ◦ Ỹ ∗αγ = 0 , (31)

where Σ is given by (17), X̃∗ = P
T
X∗P , Ỹ ∗ = P

T
Y ∗P and

NgphN
S|β|+

(0, 0) =
⋃
Q ∈ O|β|

Ξ1 ∈ U|β|

{
(U∗, V ∗) : Ξ1 ◦QTU∗Q+ Ξ2 ◦QTV ∗Q = 0,

QTβ0
U∗Qβ0 � 0, QTβ0

V ∗Qβ0 � 0

}
.

Proof. See the Appendix.

Remark 3.1 For any given (X,Y ) ∈ gphNSn+, the (Mordukhovich) coderivative D∗NSn+(X,Y )
of the normal cone to the set Sn+ can be calculated by using Theorem 3.1 and the definition
of coderivative, i.e., for given Y ∗ ∈ Sn,

X∗ ∈ D∗NSn+(X,Y )(Y ∗) ⇐⇒ (X∗,−Y ∗) ∈ NgphNSn+
(X,Y ) .

Furthermore, by (13) in Proposition 2.5, we know that

gphNSn+ = {(X,Y ) ∈ Sn × Sn : L(X,Y ) ∈ gph ΠSn+
} ,
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where L : Sn × Sn → Sn × Sn is a linear function defined by

L(X,Y ) := (X + Y,X), (X,Y ) ∈ Sn × Sn .

By noting that the derivative of L is nonsingular and self-adjoint, we know from [30, The-
orem 6.10] that for any given (X,Y ) ∈ gphNSn+ and Y ∗ ∈ Sn,

D∗NSn+(X,Y )(−Y ∗) = {X∗ ∈ Sn : (X∗, Y ∗) ∈ L′(X,Y )Ngph ΠSn+
(X + Y,X)} .

Thus, for any given U∗ ∈ Sn, V ∗ ∈ D∗ΠSn+(X+Y )(U∗) if and only if there exists (X∗, Y ∗) ∈
NgphNSn+

(X,Y ) such that (X∗, Y ∗) = L(V ∗,−U∗), that is,

X∗ = V ∗ − U∗ and Y ∗ = V ∗ .

Note that for any given Z ∈ Sn, there exists a unique element (X,Y ) ∈ gphNSn+ such that
Z = X + Y . Hence, the coderivative of the metric projector operator ΠSn+(·) at any Z ∈ Sn
can also be computed by Theorem 3.1.

4 Failure of Robinson’s CQ

Since for any (G(z), H(z)) ∈ Sn+ × Sn−, by the von Neumann-Theobald theorem (Theorem
2.3), one always has

〈G(z), H(z)〉 ≤ λ(G(z))Tλ(H(z)) ≤ 0 .

Consequently one can rewrite the problem SDCMPCC in the following form:

(CP − SDCMPCC) min f(z)

s.t. h(z) = 0 ,

g(z) �Q 0 ,

〈G(z), H(z)〉 ≥ 0 ,

(G(z), H(z)) ∈ Sn+ × Sn− .

Rewriting the constraints g(z) �Q 0 and (G(z), H(z)) ∈ Sn+ × Sn− as the cone constraint

(g(z), G(z), H(z)) ∈ −Q× Sn+ × Sn−,

we know that the above problem belongs to the class of general optimization problems with
a cone constraint (GP) as discussed in §2.2. Hence, the necessary optimality condition
stated in §2.2 can be applied to obtain the following classical KKT condition.

Definition 4.1 Let z̄ be a feasible solution of SDCMPCC. We call z̄ a classical KKT point
if there exists (λh, λg, λe,ΩG,ΩH) ∈ <p ×H × < × Sn × Sn with λg ∈ Q, λe ≤ 0, ΩG � 0
and ΩH � 0 such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

〈g(z̄), λg〉 = 0, G(z̄)ΩG = 0, H(z̄)ΩH = 0 .
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Theorem 4.1 Let z̄ be a local optimal solution of SDCMPCC. Suppose that the problem
CP-SDCMPCC is Clarke calm at z̄; in particular the set-valued map

F(r, s, t, P ) :=

{z : h(z) + r = 0, g(z) + s �Q 0,−〈G(z), H(z)〉+ t ≤ 0, (G(z), H(z)) + P ∈ Sn+ × Sn−}

(32)

is calm at (0, 0, 0, 0, z̄). Then z̄ is a classical KKT point.

Proof. By Theorem 2.2, there exists a Lagrange multiplier (λh, λe, λg,ΓG,ΓH) ∈ <p×<q×
<×H× Sn × Sn with λe ≤ 0 such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΓG +H ′(z̄)∗ΓH ,

(λg,ΓG,ΓH) ∈ N−Q×Sn+×Sn−(g(z̄), G(z̄), H(z̄)).

Since Q is a symmetric cone it follows that λg ∈ Q and 〈g(z̄), λg〉 = 0. The desired result
follows from the normal cone expressions in Proposition 2.4.

Definition 4.2 We say that (λh, λg, λe,ΩG,ΩH) ∈ <p×H×<×Sn×Sn with λg ∈ Q, λe ≤
0,ΩG � 0,ΩH � 0 is a singular Lagrange multiplier for CP-SDCMPCC if it is not equal to
zero and

0 = h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

〈g(z̄), λg〉 = 0, G(z̄)ΩG = 0, H(z̄)ΩH = 0 .

For a general optimization problem with a cone constraint such as CP-SDCMPCC, the
following Robinson’s CQ is considered to be a usual constraint qualification:

h′(z̄) is onto ( equivalently h′i(z̄)(i = 1, . . . , p) are linearly independent) ,

∃ d such that



h′i(z̄)d = 0, i = 1, . . . , p ,

−g(z̄)− g′(z̄)d ∈ int Q
(H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄))d > 0 ,

G(z̄) +G′(z̄)d ∈ int Sn+ ,
H(z̄) +H ′(z̄)d ∈ int Sn− .

It is well-known that the MFCQ never holds for MPCCs. We now show that Robinson’s
CQ will never hold for CP-SDCMPCC.

Proposition 4.1 For CP-SDCMPCC, Robinson’s constraint qualification fails to hold at
every feasible solution of SDCMPCC.

Proof. By the von Neumann-Theobald theorem, G(z) � 0 and H(z) � 0 implies that
〈G(z), H(z)〉 ≤ 0. Hence any feasible solution z̄ of SDCMPCC must be a solution to the
following nonlinear semidefinite program:

min −〈G(z), H(z)〉

s.t. G(z) � 0, H(z) � 0 .
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Since for this problem, f(z) = −〈G(z), H(z)〉, we have ∇f(z) = −H ′(z)∗G(z) −
G′(z)∗H(z). By the first order necessary optimality condition, there exist λe = 1,ΩG �
0,ΩH � 0 such that

0 = −λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

G(z̄)ΩG = 0, H(z̄)ΩH = 0 .

Since (−λe,ΩG,ΩH) 6= 0, it is clear that (0, 0, 0,−λe,ΩG,ΩH) is a singular Lagrange mul-
tiplier of CP-SDCMPCC. By [6, Propositions 3.16 (ii) and 3.19(iii)]), a singular Lagrange
multiplier exists if and only if Robinson’s CQ does not hold. Therefore we conclude that
the Robinson’s CQ does not hold at z̄ for CP-SDCMPCC.

5 S-stationary conditions

In MPCC literture [26, 61], using the so-called “piecewise programming approach” to rewrite
the feasible region as a union of branches which consist of only ordinary equality and inequal-
ity constraints, one derives the S-stationary condition as a necessary optimality condition
for a local optimal solution under the condition that each branch has a common multiplier.
Moreover it is well-known that S-stationary condition is equivalent to the classical KKT
condition; see e.g., [17]. In this section we introduce the concept of S-stationary condition
and show that the classical KKT condition implies the S-stationary condition. Unfortunate-
ly for SDCMPCC, “piecewise programming approach” is not applicable any more. Hence
the converse implication may not be true in general.

For MPCC, the S-stationary condition is shown to be equivalent to the necessary op-
timality condition of a reformulated problem involving the proximal normal cone to the
graph of the normal cone operator (see [61, Theorem 3.2]). Motivated by this fact and the
precise expression for the proximal normal cone formula in Proposition 3.2, we introduce
the concept of a S-stationary point for SDCMPCC.

Definition 5.1 Let z̄ be a feasible solution of SDCMPCC. Let A := G(z̄) +H(z̄) have the
eigenvalue decomposition (11). We say that z̄ is a S-stationary point of SDCMPCC if there
exists (λh, λg,ΓG,ΓH) ∈ <p ×H× Sn × Sn such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg +G′(z̄)∗ΓG +H ′(z̄)∗ΓH , (33)

λg ∈ Q, 〈λg, g(z̄)〉 = 0 , (34)

Γ̃Gαα = 0, Γ̃Gαβ = 0, Γ̃Gβα = 0 , (35)

Γ̃Hγγ = 0, Γ̃Hβγ = 0, Γ̃Hγβ = 0 , (36)

Σαγ ◦ Γ̃Gαγ + (Eαγ − Σαγ) ◦ Γ̃Hαγ = 0 , (37)

Γ̃Gββ � 0, Γ̃Hββ � 0 , (38)

where E is a n × n matrix whose entries are all ones and Σ ∈ Sn is defined by (17), and

Γ̃G = P
T

ΓGP and Γ̃H = P
T

ΓHP .

To see that the S-stationary condition for SDCMPCC coincides with the S-stationary con-
dition in the MPCC case we consider the case when n = 1. In this case, λ(A) = A, P = 1
and Γ̃G = ΓG, Γ̃H = ΓH . In this case SDCMPCC is a MPCC where there is only one

18



complementarity constraint. If G(z̄) > 0, H(z̄) = 0. Then β = γ = ∅. So from (35), we
know that ΓG = 0 and ΓH free. Similarly if G(z̄) = 0, H(z̄) < 0 we have ΓH = 0 and ΓG

free. If G(z̄) = H(z̄) = 0. Then we have α = γ = ∅. Consequently from (38), we know that
ΓG ≤ 0 and ΓH ≥ 0.

We now show that the classical KKT condition implies the S-stationary condition.

Proposition 5.1 Let z̄ be a feasible solution of SDCMPCC. If z̄ is a classical KKT point,
i.e., there exists a classical Lagrange multiplier (λh, λg, λe,ΩG,ΩH) ∈ <p×H×<×Sn×Sn
with λg ∈ Q, λe ≤ 0, ΩG � 0 and ΩH � 0 such that

0 = ∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg + λe[H ′(z̄)∗G(z̄) +G′(z̄)∗H(z̄)] +G′(z̄)∗ΩG +H ′(z̄)∗ΩH ,

〈λg, g(z̄)〉 = 0, G(z̄)ΩG = 0, H(z̄)ΩH = 0 ,

then it is also a S-stationary point.

Proof. Denote Λ := Λ(A). Define ΓG := ΩG+λeH(z̄) and ΓH := ΩH +λeG(z̄). Then (33)
and (34) hold. It remains to show (35)-(38). By the assumption we have

Sn+ 3 G(z̄) ⊥ ΩG ∈ Sn− and Sn− 3 H(z̄) ⊥ ΩH ∈ Sn+ .

By Theorem 2.3, we know that G(z̄) and ΩG (H(z̄) and ΩH) admit a simultaneous ordered
eigenvalue decomposition, i.e., there exist two orthogonal matrices P̃ , P̂ ∈ On such that

ΩG = P̃

[
0 0
0 Λ(ΩG)γ′γ′

]
P̃ T , G(z̄) = P̃

 Λαα 0 0
0 0 0
0 0 0

 P̃ T
and

ΩH = P̂

[
Λ(ΩH)α′α′ 0

0 0

]
P̂ T , H(z̄) = P̂

 0 0 0
0 0 0

0 0 Λγγ

 P̂ T ,
where α′ := {i |λi(ΩH) > 0} and γ′ := {i |λi(ΩG) < 0}. Moreover, we have

γ′ ⊆ ᾱ and α′ ⊆ γ̄, (39)

where ᾱ := β ∪ γ, γ̄ := α ∪ β. On the other hand, we know that

G(z̄) = ΠSn+(A) = P

 Λαα 0 0
0 0 0
0 0 0

P T and H(z̄) = ΠSn−(A) = P

 0 0 0
0 0 0

0 0 Λγγ

P T .
Therefore, it is easy to check that there exist two orthogonal matrices S, T ∈ On such that

P = P̃S and P = P̂ T ,

with

S =

[
Sαα 0

0 Sᾱᾱ

]
and T =

[
Tγ̄γ̄ 0
0 Tγγ

]
,

where Sαα ∈ O|α|, Sᾱᾱ ∈ O|ᾱ| and Tγ̄γ̄ ∈ O|γ̄|, Tγγ ∈ O|γ|. Denote

Sᾱᾱ = [S1 S2] and Tγ̄γ̄ = [T1 T2]
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with S1 ∈ <|ᾱ|×|β|, S2 ∈ <|ᾱ|×|γ| and T1 ∈ <|γ̄|×|α| and T2 ∈ <|γ̄|×|β|. Then, we have

Γ̃G = P
T

(ΩG + λeH(z̄))P = ST P̃ TΩGP̃S + λe

 0 0 0
0 0 0

0 0 Λγγ


=

[
STαα 0

0 STᾱᾱ

] [
0 0
0 Λ(ΩG)ᾱᾱ

] [
Sαα 0

0 Sᾱᾱ

]
+ λe

 0 0 0
0 0 0

0 0 Λγγ


=

 0 0 0
0 ST1 Λ(ΩG)ᾱᾱS1 ST1 Λ(ΩG)ᾱᾱS2

0 ST2 Λ(ΩG)ᾱᾱS1 ST2 Λ(ΩG)ᾱᾱS2 + λeΛγγ


and

Γ̃H = P
T

(ΩH + λeG(z̄))P = T T P̃ TΩH P̃ T + λe

 Λαα 0 0
0 0 0
0 0 0


=

[
T Tγ̄γ̄ 0

0 T Tγγ

] [
Λ(ΩH)γ̄γ̄ 0

0 0

] [
Tγ̄γ̄ 0
0 Tγγ

]
+ λe

 Λαα 0 0
0 0 0
0 0 0


=

 T T1 Λ(ΩH)γ̄γ̄T1 + λeΛαα T T1 Λ(ΩH)γ̄γ̄T2 0
T T2 Λ(ΩH)γ̄γ̄T1 T T2 Λ(ΩH)γ̄γ̄T2 0

0 0 0

 .
Therefore it is easy to see that (35)-(37) hold. Since Λ(ΩG)ᾱᾱ � 0, Λ(ΩH)γ̄γ̄ � 0 and Sᾱᾱ,
Tγ̄γ̄ are orthogonal, we know that

STᾱᾱΛ(ΩG)ᾱᾱSᾱᾱ � 0 and T Tγ̄γ̄Λ(ΩH)γ̄γ̄Tγ̄γ̄ � 0 .

Hence, we have

Γ̃Gββ = ST1 Λ(ΩG)ᾱᾱS1 � 0 and Γ̃Hββ = T T2 Λ(ΩH)γ̄γ̄T2 � 0 ,

which implies (38). Therefore z̄ is also a S-stationary point.

Combining Theorem 4.1 and Proposition 5.1 we have the following necessary optimality
condition in terms of S-stationary conditions.

Corollary 5.1 Let z̄ be an optimal solution of SDCMPCC. Suppose the problem CP-
SDCMPCC is Clarke calm at z̄; in particular the set-valued map defined by (32) is calm at
(0, 0, 0, 0, z̄). Then z̄ is a S-stationary point.

6 M-stationary conditions

In this section we study the M-stationary conditon for SDCMPCC. For this purpose rewrite
the SDCMPCC as an optimization problem with a cone constraint:

(GP-SDCMPCC) min f(z)

s.t. h(z) = 0 ,

g(z) �Q 0 ,

(G(z), H(z)) ∈ gphNSn+ .
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Definition 6.1 Let z̄ be a feasible solution of SDCMPCC. Let A = G(z̄) +H(z̄) have the
eigenvalue decomposition (11). We say that z̄ is a M-stationary point of SDCMPCC if there
exists (λh, λg,ΓG,ΓH) ∈ <p×H×Sn×Sn such that (33)-(37) hold and there exist Q ∈ O|β|
and Ξ1 ∈ U|β| (with a partition π(β) = (β+, β0, β−) of β and the form (27)) such that

Ξ1 ◦QT Γ̃GββQ+ Ξ2 ◦QT Γ̃HββQ = 0 , (40)

QTβ0
Γ̃GββQβ0 � 0, QTβ0

Γ̃HββQβ0 � 0 , (41)

where Γ̃G = P
T

ΓGP , Γ̃H = P
T

ΓHP and

Ξ2 =

 0 0 Eβ+β− − (Ξ1)β+β−

0 0 Eβ0β−

(Eβ+β− − (Ξ1)β+β−)T ETβ0β−
Eβ−β−

 .
We say that (λh, λg,ΓG,ΓH) ∈ <p×H×Sn×Sn is a singular M-multiplier for SDCMPCC
if it is not equal to zero and all conditions above hold except the term ∇f(z̄) vanishes in
(33).

To see that the M-stationary condition for SDCMPCC coincides with the M-stationary
condition in the MPCC case we consider the case when n = 1. In this case λ(A) = A,
P = 1 and Γ̃G = ΓG, Γ̃H = ΓH . We only need to consider the case G(z̄) = H(z̄) = 0 since
the other cases are the same as the S-stationary condition. Then we have α = γ = ∅. Let
π(β) = (β+, β0, β−) be a partition of β. We know that there are only three cases:

• Case 1: β = β+ 6= ∅. From (40), we know that ΓG = 0.

• Case 2: β = β− 6= ∅. From (40), we know that ΓH = 0.

• Case 3: β = β0 6= ∅. From (41), we know that ΓG ≤ 0 and ΓH ≥ 0 .

Therefore, we may conclude that if G(z̄) = H(z̄) = 0, either ΓG < 0, ΓH > 0 or ΓGΓH = 0.

Theorem 6.1 Let z̄ be a local optimal solution of SDCMPCC. Suppose that the problem
GP-SDCMPCC is Clarke calm at z̄; in particular one of the following constraint qualifica-
tions holds. Then z̄ is a M-stationary point of SDCMPCC.

(i) There is no singular M-multiplier for problem SDCMPCC at z̄.

(ii) SDCMPCC LICQ holds at z̄: there is no nonzero (λh, λg,ΓG,ΓH) ∈ <p×H×Sn×Sn
such that

h′(z̄)∗λh + g′(z̄)∗λg +G′(z̄)∗ΓG +H ′(z̄)∗ΓH = 0 , (42)

Γ̃Gαα = 0, Γ̃Gαβ = 0, Γ̃Gβα = 0 ,

Γ̃Hγγ = 0, Γ̃Hβγ = 0, Γ̃Hγβ = 0 ,

Σαγ ◦ Γ̃Gαγ + (Eαγ − Σαγ) ◦ Γ̃Hαγ = 0 .

(iii) Assume that there is no inequality constraint g(z) �Q 0. Assume also that Z = X×Sn
where X is a finite dimensional space and G(x, u) = u. The following generalized
equation is strongly regular in the sense of Robinson:

0 ∈ −F (x, u) +N<q×Sn+(x, u) ,

where F (x, u) = (h(x, u), H(x, u)).
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(iv) Assume that there is no inequality constraint g(z) �Q 0. Assume also that Z = X×Sn,
G(z) = u and F (x, u) = (h(x, u), H(x, u)). −F is locally strongly monotone in u
uniformly in x with modulus δ > 0, i.e., there exist neighborhood U1 of x̄ and U2 of ū
such that

〈−F (x, u) + F (x, v), u− v〉 ≥ δ‖u− v‖2 ∀u ∈ U2 ∩ Sn+, v ∈ Sn+, x ∈ U1 .

Proof. Condition (ii) is obviously stronger than Part (i). Condition (i) is a necessary and
sufficient condition for the perturbed feasible region of the constraint system to be pseudo
Lipschitz continuous; see e.g., [33, Theorem 6.1]. See [62, Theorem 4.7] for the proof of
the implication of (iii) to (i). (iv) is a sufficient condition for (iii) and the direct proof can
be found in [64, Theorem 3.2(b)]. The desired result follows from Theorem 2.2 and the
expression of the limiting normal cone in Theorem 3.1.

Next, let us consider the following simple SDCMPCC example. Note that for this
example, the optimal solution is a M-stationary point but not a S-stationary point.

Example 6.1 Consider the following SDCMPCC problem

min −〈I,X〉+ 〈I, Y 〉
s.t. X + Y = 0 ,

Sn+ 3 X ⊥ Y ∈ Sn− .
(43)

Since the unique feasible point of (43) is (0, 0), we know that (X∗, Y ∗) = (0, 0) is the optimal
solution of (43). Note that A = X∗ + Y ∗ = 0, which implies that

α = ∅, β = {1, . . . , n} and γ = ∅ .

Without loss of generality, we may choose P = I. Therefore, by considering the equation
(33), we know that [

−I
I

]
+

[
Γe

Γe

]
+

[
ΓG

0

]
+

[
0

ΓH

]
=

[
0
0

]
,

which implies that
ΓG = I − Γe and ΓH = −I − Γe , (44)

where Γe ∈ Sn. Let Γe = I. Then, it is clear that the equation (40) holds for ΓG = 0 and
ΓH = −2I with β+ = β = {1, . . . , n}, β0 = β− = ∅, and Q = I ∈ On. By noting that
β0 = ∅, we know that the optimal solution (X∗, Y ∗) = (0, 0) is a M-stationary point with
the multiplier (I, 0,−2I) ∈ Sn × Sn × Sn. However, the optimal solution (X∗, Y ∗) = (0, 0)
is not a S-stationary point. In fact, we know from (44) that if there exists some Γe ∈ Sn
such that (38) holds, then

Γe � I and Γe � −I ,
which is a contradiction.

Remark 6.1 SDCMPCC LICQ is the analogue of the well-known MPCC LICQ (also called
MPEC LICQ). To see this we consider the case of SDCMPCC with n = 1. Suppose that
G(z̄) = H(z̄) = 0. Then we have α = γ = ∅ and SDCMPCC LICQ means that (42) implies
that λh = 0, λg = 0, ΓG = 0, ΓH = 0. The other two cases G(z̄) > 0, H(z̄) = 0 and
G(z̄) = 0, H(z̄) < 0 are also easy to see. We would like to remark that unlike in MPCC
case, we can only show that SDCMPCC LICQ is a constraint qualification for M-stationary
condition instead of S-stationary condition.
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7 C-stationary conditions

In this section, we consider the C-stationary condition by reformulating SDCMPCC as a
nonsmooth problem:

(NS− SDCMPCC) min f(z)

s.t. h(z) = 0,

g(z) �Q 0,

G(z)−ΠSn+(G(z) +H(z)) = 0 .

From (13), we know that the reformulation NS-SDCMPCC is equivalent to SDCMPCC.
As in the MPCC case, C-stationary condition introduced below is the nonsmooth KKT
condition of NS-SDCMPCC by using the Clarke subdifferential.

Definition 7.1 Let z̄ be a feasible solution of SDCMPCC. Let A = G(z̄) +H(z̄) have the
eigenvalue decomposition (11). We say that z̄ is a C-stationary point of SDCMPCC if there
exists (λh, λg,ΓG,ΓH) ∈ <p ×<q × Sn × Sn such that (33)-(37) hold and

〈Γ̃Gββ , Γ̃Hββ〉 ≤ 0 , (45)

where Γ̃G = P
T

ΓGP and Γ̃H = P
T

ΓHP . We say that (λh, λg,ΓG,ΓH) ∈ <p×H×Sn×Sn
is a singular C-multiplier for SDCMPCC if it is not equal to zero and all conditions above
hold except the term ∇f(z̄) vanishes in (33).

Remark 7.1 It is easy to see that as in MPCC case,

S-stationary condition =⇒ M-stationary condition =⇒ C-stationary condition.

Indeed, since the proximal normal cone is included in the limiting normal cone, it is obvious
that the S-stationary condition implies the M-stationary condition. We now show that the
M-stationary condition implies the C-stationary condition. In fact, suppose that z̄ is a M-
stationary point of SDCMPCC. Then, there exists (λh, λg,ΓG,ΓH) ∈ <p × <q × Sn × Sn
such that (33)-(37) hold and there exist Q ∈ O|β| and Ξ1 ∈ U|β| (with a partition π(β) =
(β+, β0, β−) of β and the form (27)) such that (40) and (41) hold. Let A = G(z̄) + H(z̄)
have the eigenvalue decomposition (11). Therefore, we know that

QTβ+
Γ̃GββQβ+ = 0, QTβ+

Γ̃GββQβ− = 0, QTβ−Γ̃GββQβ+ = 0 ,

QTβ−Γ̃HββQβ− = 0, QTβ0
Γ̃HββQβ− = 0, QTβ−Γ̃HββQβ0 = 0 ,

which implies that

〈Γ̃Gββ , Γ̃Hββ〉 = 〈QT Γ̃GββQ ,Q
T Γ̃HββQ〉

= 2〈QTβ+
Γ̃GββQβ− , Q

T
β+

Γ̃HββQβ−〉+ 2〈QTβ0
Γ̃GββQβ0 , Q

T
β0

Γ̃HββQβ0〉 .

Note that for each (i, j) ∈ β+ × β−, (Ξ1)ij ∈ [0, 1] and (Ξ2)ij = 1 − (Ξ1)ij. Therefore, we
know from (40) that

〈QTβ+
Γ̃GββQβ− , Q

T
β+

Γ̃HββQβ−〉 ≤ 0 .

Finally, together with (41), we know that

〈Γ̃Gββ , Γ̃Hββ〉 ≤ 0 ,

which implies that z̄ is also a C-stationary point of SDCMPCC.
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Also, we know that the C-stationary condition coincides with the C-stationary condition
in the MPCC case. To show this we consider the case n = 1. We only need to consider
the case G(z̄) = H(z̄) = 0 since the other cases are the same as the S- and M-stationary
conditions. In this case we know from (45) that ΓGΓH ≤ 0.

Theorem 7.1 Let z̄ be a local optimal solution of SDCMPCC. Suppose that the problem
NC-SDCMPCC is Clarke calm at z̄; in particular suppose that there is no singular C-
multiplier for problem SDCMPCC at z̄. Then z̄ is a C-stationary point of SDCMPCC.

Proof. By Theorem 2.2 with K = {0}, we know that there exist λh ∈ <p, λg ∈ <q and
Γ ∈ Sn such that

0 ∈ ∂ cz L(z̄, λh, λg,Γ), λg ≥ 0 and 〈λg, g(z̄)〉 = 0 , (46)

where L(z, λh, λg,Γ) := f(z) + 〈λh, h(z)〉+ 〈λg, g(z)〉+ 〈Γ, G(z)−ΠSn+(G(z) +H(z))〉.
Consider the Clarke subdifferential of the nonsmooth part S(z) := 〈Γ,ΠSn+(G(z)+H(z))〉

of L. By the chain rule [9, Corollary pp.75], for any v ∈ Z, we have

∂ cS(z̄)v ⊆ 〈Γ, ∂ cΠSn+(A)(G′(z̄)v +H ′(z̄)v)〉 .

Therefore, since any element of the Clarke subdifferential of the metric projection operator
to a close convex set is self-adjoint (see e.g., [29, Proposition 1(a)]), we know from (46) that
there exists V ∈ ∂ cΠSn+(A) such that

∇f(z̄) + h′(z̄)∗λh + g′(z̄)∗λg +G′(z̄)∗Γ− (G′(z̄)∗ +H ′(z̄)∗)V (Γ) = 0 . (47)

Define ΓG := Γ − V (Γ) and ΓH := −V (Γ). Then (33)-(34) follow from (46) and (47)
immediately. By [50, Proposition 2.2], we know that there exists W ∈ ∂ cΠS|β|+

(0) such that

V (Γ) = P

 Γ̃αα Γ̃αβ Σαγ ◦ Γ̃αγ
Γ̃Tαβ W (Γ̃ββ) 0

Γ̃Tαγ ◦ ΣT
αγ 0 0

P T ,
where Σ ∈ Sn is defined by (17). Therefore, it is easy to see that (35)-(37) hold. Moreover,
from [29, Proposition 1(c)], we know that

〈W (Γ̃ββ) , Γ̃ββ −W (Γ̃ββ)〉 ≥ 0 ,

which implies 〈Γ̃Gββ , Γ̃Hββ〉 ≤ 0. Hence, we know z̄ is a C-stationary point of SDCMPCC.

Next, we give an example whose optimal solution is a C-stationary point but not a
M-stationary point.

Example 7.1 Consider the following SDCMPCC problem

min 1
2z1 − 1

2z2 − z3 − 1
2z4

s.t. −2z1 + z3 + z4 ≤ 0 ,

2z2 + z3 ≤ 0 ,

z2
4 ≤ 0 ,

S3
+ 3 G(z) ⊥ H(z) ∈ S3

− ,

(48)
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where G : <4 → S3 and H : <4 → S3 are the linear operators defined as follows for any
z = (z1, z2, z3, z4)T ∈ <4,

G(z) :=

 1 + z1
6 −1 + z1

6 − z1
3

−1 + z1
6 1 + z1

6 − z1
3

− z1
3 − z1

3
2
3z1

 and H(z) :=

 z2
6 − 1 z2

6 − 1 − z2
3 − 1

z2
6 − 1 z2

6 − 1 − z2
3 − 1

− z2
3 − 1 − z2

3 − 1 2
3z2 − 1

 .
Since 〈G(z), H(z)〉 = z1z2, one can verify that z̄ = (0, 0, 0, 0) is the unique optimal solution
of the problem (48). Thus, we have

A = G(z̄) +H(z̄) = P

 2 0 0
0 0 0
0 0 −3

P T ,
where P is the 3 by 3 orthogonal matrix given by

P =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −2√
6

1√
3

 ,
and the index sets of positive, zero and negative eigenvalues are α = {1}, β = {2} and
γ = {3}. In the following we denote by ∂G

∂z1
the derivative of the mapping G with respective

to variable z1. Since G(z) only depends on z1 and H(z) only depends on z2, (33) can be
written as

0
0
0
0

 =


1
2
−1

2
−1
−1

2

+


−2
0
1
1

λg1 +


0
2
1
0

λg2 +


0
0
0
0

λg3 +


〈 ∂G∂z1 ,Γ

G〉
0
0
0

+


0

〈 ∂H∂z2 ,Γ
H〉

0
0

 ,
for some (λg,ΓG,ΓH) ∈ <3 × S3 × S3. From the above equation and (34), we obtain that

λg1 = λg2 = 1
2 > 0, λg3 ≥ 0. Let Γ̃G = P

T
ΓGP and Γ̃H = P

T
ΓHP . Let (ΓG,ΓH) be such that

all entries are zero except the entries (Γ̃G22, Γ̃
H
22) left to be determined. Then (35)-37) hold

and

〈 ∂G
∂z1

,ΓG〉 = 〈 ∂G
∂z1

, P Γ̃GP
T 〉 = 〈P T ∂G

∂z1
P , Γ̃G〉 = Γ̃G22.

Similarly we have 〈 ∂H∂z2 ,Γ
H〉 = Γ̃H22. Therefore we obtain Γ̃G22 = 1

2 > 0, Γ̃H22 = −1
2 < 0. Since

Γ̃G22Γ̃H22 < 0, we know that there exists a multiplier (λg,ΓG,ΓH) ∈ <3 × S3 × S3 such that
(33)-(37) and (45) hold. Thus, the optimal solution z̄ = (0, 0, 0, 0) is a C-stationary point.
We now verify that the conditions (40) and (41) do not hold. Since |β| = 1, O|β| = {1,−1}.
Let Ξ1 ∈ U1 and Q ∈ {1,−1}. If β0 6= ∅, then it is obvious that (41) does not hold. On
the other hand if β0 = ∅ then β = β+ or β = β−. If β = β+, then Ξ1 = [1] and Ξ2 = [0]
and hence it is clear that the condition (40) does not hold. Alternatively if β = β−, then
Ξ1 = [0] and Ξ2 = [1] and hence the condition (40) does not hold. Therefore, we know that
the optimal solution z̄ = (0, 0, 0, 0) is not a M-stationary point.
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Appendix

Proof of Proposition 2.6: Firstly, we will show that (18) holds for the case thatA = Λ(A).
For any H ∈ Sn, denote Y := A+H. Let P ∈ On (depending on H) be such that

Λ(A) +H = PΛ(Y )P T . (49)

Let δ > 0 be any fixed number such that 0 < δ <
λ|α|

2 if α 6= ∅ and be any fixed positive
number otherwise. Then, define the following continuous scalar function

f(t) :=


t if t > δ ,

2t− δ if δ
2 < t < δ ,

0 if t < δ
2 .

Therefore, we have

{λ1(A), . . . , λ|α|(A)} ∈ (δ,+∞) and {λ|α|+1(A), . . . , λn(A)} ∈ (−∞, δ
2

) .

For the scalar function f , let F : Sn → Sn be the corresponding Löwner’s operator [25],
i.e., for any Z ∈ Sn,

F (Z) :=

n∑
i=1

f(λi(Z))uiu
T
i , (50)

where U ∈ On satisfies that Z = UΛ(Z)UT . Since f is real analytic on the open set
(−∞, δ2) ∪ (δ,+∞), we know from [53, Theorem 3.1] that F is analytic at A. Therefore,
since A = Λ(A), it is well-known (see e.g., [4, Theorem V.3.3]) that for H sufficiently close
to zero,

F (A+H)− F (A)− F ′(A)H = O(‖H‖2) (51)

and

F ′(A)H =

 Hαα Hαβ Σαγ ◦Hαγ

HT
αβ 0 0

ΣT
αγ ◦HT

αγ 0 0

 ,
where Σ ∈ Sn is given by (17) . Let R(·) := ΠSn+(·)−F (·). By the definition of f , we know
that F (A) = A+ := ΠSn+(A), which implies that R(A) = 0. Meanwhile, it is clear that the
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matrix valued function R is directionally differentiable at A, and from (16), the directional
derivative of R for any given direction H ∈ Sn, is given by

R′(A;H) = Π′Sn+(A;H)− F ′(A)H =

 0 0 0
0 ΠS|β|+

(Hββ) 0

0 0 0

 . (52)

By the Lipschitz continuity of λ(·), we know that for H sufficiently close to zero,

{λ1(Y ), . . . , λ|α|(Y )} ∈ (δ,+∞), {λ|α|+1(Y ), . . . , λ|β|(Y )} ∈ (−∞, δ
2

)

and
{λ|β|+1(Y ), . . . , λn(Y )} ∈ (−∞, 0) .

Therefore, by the definition of F , we know that for H sufficiently close to zero,

R(A+H) = ΠSn+(A+H)− F (A+H) = P

 0 0 0
0 (Λ(Y )ββ)+ 0
0 0 0

P T . (53)

Since P satisfies (49), we know that for any Sn 3 H → 0, there exists an orthogonal matrix
Q ∈ O|β| such that

Pβ =

 O(‖H‖)
Pββ

O(‖H‖)

 and Pββ = Q+O(‖H‖2) , (54)

which was stated in [52] and was essentially proved in the derivation of Lemma 4.12 in [51].
Therefore, by noting that (Λ(Y )ββ)+ = O(‖H‖), we obtain from (52), (53) and (54) that

R(A+H)−R(A)−R′(A;H) =

 O(‖H‖3) O(‖H‖2) O(‖H‖3)
O(‖H‖2) Pββ(Λ(Y )ββ)+P

T
ββ −ΠS|β|+

(Hββ) O(‖H‖2)

O(‖H‖3) O(‖H‖2) O(‖H‖3)



=

 0 0 0
0 Q(Λ(Y )ββ)+Q

T −ΠS|β|+

(Hββ) 0

0 0 0

+O(‖H‖2) .

By (49) and (54), we know that

Λ(Y )ββ = P Tβ Λ(A)Pβ + P Tβ HPβ = P TββHββPββ +O(‖H‖2) = QTHββQ+O(‖H‖2) .

Since Q ∈ O|β|, we have
Hββ = QΛ(Y )ββQ

T +O(‖H‖2) .

By noting that ΠS|β|+

(·) is globally Lipschitz continuous and ΠS|β|+

(QΛ(Y )ββQ
T ) = Q(Λ(Y )ββ)+Q

T ,

we obtain that

Q(Λ(Y )ββ)+Q
T−ΠS|β|+

(Hββ) = Q(Λ(Y )ββ)+Q
T−ΠS|β|+

(QΛ(Y )ββQ
T )+O(‖H‖2) = O(‖H‖2) .

Therefore,
R(A+H)−R(A)−R′(A;H) = O(‖H‖2) . (55)
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By combining (51) and (55), we know that for any Sn 3 H → 0,

ΠSn+(Λ(A) +H)−ΠSn+(Λ(A))−Π′Sn+(Λ(A);H) = O(‖H‖2) . (56)

Next, consider the case that A = P
T

Λ(A)P . Re-write (49) as

Λ(A) + P
T
HP = P

T
PΛ(Y )P TP .

Let H̃ := P
T
HP . Then, we have

ΠSn+(A+H) = P ΠSn+(Λ(A) + H̃)P
T
.

Therefore, since P ∈ On, we know from (56) and (16) that for any Sn 3 H → 0, (18) holds.

Proof of Proposition 3.3: Denote the set in the righthand side of (29) byN . We first show
that NgphNSn+

(0, 0) ⊆ N . By the definition of the limiting normal cone in (9), we know that

(U∗, V ∗) ∈ NgphN
S|β|+

(0, 0) if and only if there exist two sequences {(Uk∗, V k∗)} converging

to (U∗, V ∗) and {(Uk, V k)} converging to (0, 0) with (Uk
∗
, V k∗) ∈ Nπ

gphNSn+
(Uk, V k) and

(Uk, V k) ∈ gphNSn+ for each k.

For each k, denote Ak := Uk + V k ∈ Sn and let Ak = P kΛ(Ak)(P k)T with P k ∈ On be
the eigenvalue decomposition of Ak. Then for any i ∈ {1, · · · , n}, we have

lim
k→∞

λi(A
k) = 0.

Since {P k}∞k=1 is uniformly bounded, by taking a subsequence if necessary, we may assume
that {P k}∞k=1 converges to an orthogonal matrix Q := lim

k→∞
P k ∈ On. For each k, we know

that the vector λ(Ak) is an element of <n&. By taking a subsequence if necessary, we may

assume that for each k, Λ(Ak) has the same form, i.e.,

Λ(Ak) =

 Λ(Ak)β+β+ 0 0
0 Λ(Ak)β0β0 0
0 0 Λ(Ak)β−β−

 ,
where β+, β0 and β− are the three index sets defined by

β+ := {i : λi(A
k) > 0}, β0 := {i : λi(A

k) = 0} and β− := {i : λi(A
k) < 0} .

Since (Uk
∗
, V k∗) ∈ Nπ

gphNSn+
(Uk, V k), we know from Proposition 3.2 that for each k, there

exist

Θk
1 =

 Eβ+β+ Eβ+β0 Σk
β+β−

ETβ+β0
0 0

(Σk
β+β−

)T 0 0


and

Θk
2 =

 0 0 Eβ+β− − Σk
β+β−

0 0 Eβ0β−

(Eβ+β− − Σk
β+β−

)T (Eβ0β−)T Eβ−β−
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such that
Θk

1 ◦ Ũ∗
k

+ Θk
2 ◦ Ṽ k

∗
= 0, Ũk

∗
β0β0
� 0 and Ṽ k

∗
β0β0
� 0 , (57)

where Ũk
∗

= (P k)TUk
∗
P k, Ṽ k

∗
= (P k)TV k∗P k and

(Σk)i,j =
max{λi(Ak), 0} −max{λj(Ak), 0}

λi(Ak)− λj(Ak)
∀ (i, j) ∈ β+ × β− . (58)

Since for each k, each element of Σk
β+β−

belongs to the interval [0, 1], by further taking a

subsequence if necessary, we may assume that the limit of {Σk
β+β−

}∞k=1 exists. Therefore,
by the definition of Un in (26), we know that

lim
k→∞

Θk
1 = Ξ1 ∈ Un and lim

k→∞
Θk

2 = Ξ2 ,

where Ξ1 and Ξ2 are given by (28). Therefore, we obtain from (57) that (U∗, V ∗) ∈ N .
The other direction, i.e., NgphNSn+

(0, 0) ⊇ N can be proved in a similar but simpler way

to that of the second part of Theorem 3.1. We omit it here.

Proof of Theorem 3.1: “ =⇒ ” Suppose that (X∗, Y ∗) ∈ NgphNSn+
(X,Y ). By the

definition of the limiting normal cone in (9), we know that (X∗, Y ∗) = lim
k→∞

(Xk∗, Y k∗) with

(Xk∗, Y k∗) ∈ Nπ
gphNSn+

(Xk, Y k) k = 1, 2, . . . ,

where (Xk, Y k)→ (X,Y ) and (Xk, Y k) ∈ gphNSn+ . For each k, denote Ak := Xk +Y k and

let Ak = P kΛ(Ak)(P k)T be the eigenvalue decomposition of Ak. Since Λ(A) = lim
k→∞

Λ(Ak),

we know that Λ(Ak)αα � 0, Λ(Ak)γγ ≺ 0 for k sufficiently large and lim
k→∞

Λ(Ak)ββ = 0. Since

{P k}∞k=1 is uniformly bounded, by taking a subsequence if necessary, we may assume that

{P k}∞k=1 converges to an orthogonal matrix P̂ ∈ On(A). We can write P̂ =
[
Pα P βQ P γ

]
,

where Q ∈ O|β| can be any |β| × |β| orthogonal matrix. By further taking a subsequence if
necessary, we may also assume that there exists a partition π(β) = (β+, β0, β−) of β such
that for each k,

λi(A
k) > 0 ∀ i ∈ β+, λi(A

k) = 0 ∀ i ∈ β0 and λi(A
k) < 0 ∀ i ∈ β− .

This implies that for each k,

{i : λi(A
k) > 0} = α ∪ β+, {i : λi(A

k) = 0} = β0 and {i : λi(A
k) < 0} = β− ∪ γ .

Then, for each k, since (Xk∗, Y k∗) ∈ Nπ
gphNSn+

(Xk, Y k), we know from Proposition 3.2 that

there exist

Θk
1 =


Eαα Eαβ+ Eαβ0 Σk

αβ−
Σk
αγ

ETαβ+
Eβ+β+ Eβ+β0 Σk

β+β−
Σk
β+γ

ETαβ0
ETβ+β0

0 0 0

Σk
αβ−

T
Σk
β+β−

T
0 0 0

Σk
αγ
T

Σk
β+γ

T
0 0 0
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and

Θk
2 =


0 0 0 Eαβ− − Σk

αβ−
Eαγ − Σk

αγ

0 0 0 Eβ+β− − Σk
β+β−

Eβ+γ − Σk
β+γ

0 0 0 Eβ0β− Eβ0γ

(Eαβ− − Σk
αβ−

)T (Eβ+β− − Σk
β+β−

)T ETβ0β−
Eβ−β− Eβ−γ

(Eαγ − Σk
αγ)T (Eβ+γ − Σk

β+γ
)T ETβ0γ

ETβ−γ Eγγ


such that

Θk
1 ◦ X̃k

∗
+ Θk

2 ◦ Ỹ k
∗

= 0, X̃k
∗
β0β0
� 0 and Ỹ k

∗
β0β0
� 0 , (59)

where X̃k
∗

= (P k)TXk∗P k, Ỹ k
∗

= (P k)TY k∗P k and

(Σk)i,j =
max{λi(Ak), 0} −max{λj(Ak), 0}

λi(Ak)− λj(Ak)
∀ (i, j) ∈ (α ∪ β+)× (β− ∪ γ) . (60)

By taking limits as k →∞, we obtain that

X̃k
∗
→ P̂ TX∗P̂ =

 X̃∗αα X̃∗αβQ X̃∗αγ
(X̃∗αβQ)T QT X̃∗ββQ QT X̃∗βγ
(X̃∗αγ)T (QT X̃∗βγ)T X̃γγ


and

Ỹ k
∗
→ P̂ TY ∗P̂ =

 Ỹ ∗αα Ỹ ∗αβQ Ỹ ∗αγ
(Ỹ ∗αβQ)T QT Ỹ ∗ββQ QT Ỹ ∗βγ
(Ỹ ∗αγ)T (QT Ỹ ∗βγ)T Ỹγγ

 .
By simple calculations, we obtain from (60) that

lim
k→∞

Σk
αβ− = Eαβ− , lim

k→∞
Σk
β+γ = 0 and lim

k→∞
Σk
αγ = Σαγ .

This, together with the definition of U|β|, shows that there exist Ξ1 ∈ U|β| and the corre-
sponding Ξ2 such that

lim
k→∞

Θk
1 =

 Eαα Eαβ Σαγ

Eβα Ξ1 0
ΣT
αγ 0 0

 = Θ1 +

 0 0 0
0 Ξ1 0
0 0 0


and

lim
k→∞

Θk
2 =

 0 0 Eαγ − Σαγ

0 Ξ2 Eβγ
(Eαγ − Σαγ)T Eγβ Eγγ

 = Θ2 +

 0 0 0
0 Ξ2 0
0 0 0

 ,
where Θ1 and Θ2 are given by (24). Meanwhile, since Q ∈ O|β|, by taking limits in (59) as
k →∞, we obtain that

Θ1 ◦ X̃∗ + Θ2 ◦ Ỹ ∗ = 0, Ξ1 ◦QT X̃∗ββQ+ Ξ2 ◦QT Ỹ ∗ββQ = 0 (61)

and
QTβ0

X̃∗ββQβ0 � 0 and QTβ0
Ỹ ∗ββQβ0 � 0 .
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Hence, by Proposition 3.3, we conclude that (X̃∗ββ , Ỹ
∗
ββ) ∈ NgphN

S|β|+

(0, 0). From (61), it is

easy to check that (X∗, Y ∗) satisfies the conditions (30) and (31).
“⇐= ” Let (X∗, Y ∗) satisfies (30) and (31). We shall show that there exist two sequences

{(Xk, Y k)} converging to (X,Y ) and {(Xk∗, Y k∗)} converging to (X∗, Y ∗) with (Xk, Y k) ∈
gphNSn+ and (Xk∗, Y k∗) ∈ Nπ

gphNSn+
(Xk, Y k) for each k.

Since (X̃∗ββ , Ỹ
∗
ββ) ∈ NgphN

S|β|+

(0, 0), by Proposition 3.3, we know that there exist an

orthogonal matrix Q ∈ O|β| and Ξ1 ∈ U|β| such that

Ξ1 ◦QT X̃∗ββQ+ Ξ2 ◦QT Ỹ ∗ββQ = 0, QTβ0
X̃∗ββQβ0 � 0 and QTβ0

Ỹ ∗ββQβ0 � 0 . (62)

Since Ξ1 ∈ U|β|, we know that there exists a sequence {zk} ∈ <|β|& converging to 0 such that

Ξ1 = lim
k→∞

D(zk). Without loss of generality, we can assume that there exists a partition

π(β) = (β+, β0, β−) ∈P(β) such that for all k,

zki > 0 ∀ i ∈ β+, zki = 0 ∀ i ∈ β0 and zki < 0 ∀ i ∈ β− .

For each k, let

Xk = P̂


Λ(A)αα 0 0 0 0

0 (zk)+ 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 P̂ T and Y k = P̂


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 (zk)− 0
0 0 0 0 Λ(A)γγ

 P̂ T ,
where P̂ =

[
Pα P βQ P γ

]
∈ On(A). Then, it is clear that {(Xk, Y k)} ∈ gphNSn+ converg-

ing to (X,Y ). For each k, denote

Ak = Xk + Y k, Θk
1 =


Eαα Eαβ+ Eαβ0 Σk

αβ−
Σαγ

ETαβ+
Eβ+β+ Eβ+β0 Σk

β+β−
Σk
β+γ

ETαβ0
ETβ+β0

0 0 0

(Σk
αβ−

)T (Σk
β+β−

)T 0 0 0

(Σαγ)T (Σk
β+γ)T 0 0 0


and

Θk
2 =


0 0 0 Eαβ− − Σk

αβ−
Eαγ − Σαγ

0 0 0 Eβ+β− − Σk
β+β−

Eβ+γ − Σk
β+γ

0 0 0 Eβ0β− Eβ0γ

(Eαβ− − Σk
αβ−

)T (Eβ+β− − Σk
β+β−

)T ETβ0β−
Eβ−β− Eβ−γ

(Eαγ − Σαγ)T (Eβ+γ − Σk
β+γ

)T ETβ0γ
ETβ−γ Eγγ

 ,
where

(Σk)i,j =
max{λi(Ak)), 0} −max{λj(Ak)), 0}

λi(Ak)− λj(Ak)
∀ (i, j) ∈ (α ∪ β+)× (β− ∪ γ) .

Next, for each k, we define two matrices X̂k
∗
, Ŷ k

∗
∈ Sn. Let i, j ∈ {1, . . . , n}. If (i, j)

and (j, i) /∈ (α× β−) ∪ (β+ × γ) ∪ (β × β). We define

X̂k
∗
i,j ≡ X̃∗i,j , Ŷ k

∗
i,j ≡ Ỹ ∗i,j , k = 1, 2, . . . . (63)
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Otherwise, denote ck := (Σk)i,j , k = 1, 2, . . .. We consider the following four cases.

Case 1: (i, j) or (j, i) ∈ α × β−. In this case, we know from (30) that X̃∗i,j = 0. Since

ck 6= 0 for all k and ck → 1 as k →∞, we define

Ŷ k
∗
i,j ≡ Ỹ ∗i,j and X̂k

∗
i,j =

ck − 1

ck
Ŷ k
∗
i,j , k = 1, 2, . . . . (64)

Then, we have

ckX̂k
∗
i,j + (1− ck)Ŷ k

∗
i,j = 0 ∀ k and (X̂k

∗
i,j , Ŷ

k
∗
i,j)→ (X̃∗i,j , Ỹ

∗
i,j) as k →∞ .

Case 2: (i, j) or (j, i) ∈ β+ × γ. In this case, we know from (30) that Ỹ ∗i,j = 0. Since

ck 6= 1 for all k and ck → 0 as k →∞, we define

X̂k
∗
i,j ≡ X̃∗i,j and Ŷ k

∗
i,j =

ck

ck − 1
X̂k
∗
i,j , k = 1, 2, . . . . (65)

Then, we know that

ckX̂k
∗
i,j + (1− ck)Ŷ k

∗
i,j = 0 ∀ k and (X̂k

∗
i,j , Ŷ

k
∗
i,j)→ (X̃∗i,j , Ỹ

∗
i,j) as k →∞ .

Case 3: (i, j) or (j, i) ∈ (β × β) \ (β+ × β−). In this case, we define

X̂k
∗
i,j ≡ qTi X̃∗ββqj , Ŷ k

∗
i,j ≡ qTi Ỹ ∗ββqj , k = 1, 2, . . . . (66)

Case 4: (i, j) or (j, i) ∈ β+ × β−. Since c ∈ [0, 1], we consider the following two
sub-cases:

Case 4.1: c 6= 1. Since ck 6= 1 for all k large enough, we define

X̂k
∗
i,j ≡ qTi X̃∗ββqj and Ŷ k

∗
i,j =

ck

ck − 1
X̂k
∗
i,j , k = 1, 2, . . . . (67)

Then, from (62), we know that

Ŷ k
∗
i,j →

c

c− 1
qTi X̃

∗
ββqj = qTi Ỹ

∗
ββqj as k →∞ .

Case 4.2: c = 1. Since ck 6= 0 for all k large enough, we define

Ŷ k
∗
i,j ≡ qTi Ỹ ∗ββqj and X̂k

∗
i,j =

ck − 1

ck
Ŷ k
∗
i,j , k = 1, 2, . . . . (68)

Then, again from (62), we know that

X̂k
∗
i,j →

c− 1

c
qTi Ỹ

∗
ββqj = qTi X̃

∗
ββqj as k →∞ .

For each k, define Xk∗ = P̂ X̂k
∗
P̂ T and Y k∗ = P̂ Ŷ k

∗
P̂ T . Then, from (63)-(68) we

obtain that
Θk

1 ◦ P̂ TXk∗P̂ + Θk
2 ◦ P̂ TY k∗P̂ = 0, k = 1, 2, . . . .

and
(P̂ TXk∗P̂ , P̂ TY k∗P̂ )→ (P̂ TX∗P̂ , P̂ TY ∗P̂ ) as k →∞ . (69)

Moreover, from (66) and (62), we have

QTβ0
X̃k
∗
ββQβ0 ≡ QTβ0

X̃∗ββQβ0 � 0 and QTβ0
Ỹ k
∗
ββQβ0 ≡ QTβ0

Ỹ ∗ββQβ0 � 0, k = 1, 2, . . . .

From Proposition 3.2 and (69), we know that

(Xk∗, Y k∗) ∈ Nπ
gphNSn+

(Xk, Y k) and (X∗, Y ∗) = lim
k→∞

(Xk∗, Y k∗) .

Hence, the assertion of the theorem follows.
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