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Abstract This paper is devoted to the design of an efficient and convergent semi-
proximal alternating direction method of multipliers (ADMM) for finding a solution
of low to medium accuracy to convex quadratic conic programming and related prob-
lems. For this class of problems, the convergent two block semi-proximal ADMM
can be employed to solve their primal form in a straightforward way. However, it
is known that it is more efficient to apply the directly extended multi-block semi-
proximal ADMM, though its convergence is not guaranteed, to the dual form of these
problems. Naturally, one may ask the following question: can one construct a con-
vergent multi-block semi-proximal ADMM that is more efficient than the directly
extended semi-proximal ADMM? Indeed, for linear conic programming with 4-block
constraints this has been shown to be achievable in a recent paper by Sun et al.
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(2014, arXiv:1404.5378). Inspired by the aforementioned work and with the con-
vex quadratic conic programming in mind, we propose a Schur complement based
convergent semi-proximal ADMM for solving convex programming problems, with
a coupling linear equality constraint, whose objective function is the sum of two
proper closed convex functions plus an arbitrary number of convex quadratic or linear
functions. Our convergent semi-proximal ADMM is particularly suitable for solving
convex quadratic semidefinite programming (QSDP) with constraints consisting of
linear equalities, a positive semidefinite cone and a simple convex polyhedral set. The
efficiency of our proposed algorithm is demonstrated by numerical experiments on
various examples including QSDP.

Keywords Convex quadratic conic programming · Multiple-block ADMM ·
Semi-proximal ADMM · Convergence · QSDP

Mathematics Subject Classification 90C06 · 90C20 · 90C22 · 90C25 · 65F10

1 Introduction

In this paper, we aim to design an efficient yet simple first order convergent method
for solving convex quadratic conic programming. An important special case is the
following convex quadratic semidefinite programming (QSDP)

min
1

2
〈X, QX〉 + 〈C, X〉

s.t. AE X = bE , AI X ≥ bI , X ∈ Sn+ ∩ K, (1)

where Sn+ is the cone of n × n symmetric and positive semi-definite matrices in the
space of n × n symmetric matrices Sn endowed with the standard trace inner product
〈·, ·〉 and the Frobenius norm ‖ · ‖, Q is a self-adjoint positive semidefinite linear
operator from Sn to Sn , AE : Sn → 	mE and AI : Sn → 	mI are two linear maps,
C ∈ Sn , bE ∈ 	mE and bI ∈ 	mI are given data, K is a nonempty simple closed
convex set, e.g.,K = {W ∈ Sn : L ≤ W ≤ U }with L ,U ∈ Sn being givenmatrices.
By introducing a slack variable W ∈ Sn , we can equivalently recast (1) as

min
1

2
〈X, QX〉 + 〈C, X〉 + δK(W )

s.t. AE X = bE , AI X ≥ bI , X = W, X ∈ Sn+, (2)

where δK(·) is the indicator function ofK, i.e., δK(X) = 0 if X ∈ K and δK(X) = ∞
if X /∈ K. The dual of problem (2) is given by

max−δ∗
K(−Z) + 〈bI , yI 〉 − 1

2
〈X, QX〉 + 〈bE , yE 〉

s.t. Z + A∗
I yI − QX + S + A∗

E yE = C, yI ≥ 0, S ∈ Sn+, (3)
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A Schur complement based semi-proximal ADMM 335

where for any Z ∈ Sn , δ∗
K(−Z) is given by

δ∗
K(−Z) = − inf

W∈K
〈Z , W 〉 = sup

W∈K
〈−Z , W 〉. (4)

Due to its wide applications and mathematical elegance, QSDP has been extensively
studied in the literature, see, for examples [1–6], and references therein.

It is evident that the dual problem (3) is in the form of the following convex opti-
mization model:

min f (u) +
p∑

i=1

θi (yi ) + g(v) +
q∑

j=1

ϕ j (z j )

s.t. F∗u +
p∑

i=1

A∗
i yi + G∗v +

q∑

j=1

B∗
j z j = c, (5)

where p and q are given nonnegative integers, f : U → (−∞,+∞], g : V → (−∞,

+∞], θi : Yi → (−∞,+∞], i = 1, . . . , p, and ϕ j : Z j → (−∞,+∞], j = 1,
. . . , q are closed proper convex functions, F : X → U , G : X → V , Ai : X → Yi ,

i = 1, . . . , p and B j : X → Z j , j = 1, . . . , q are linear maps, U ,V,Y1, . . . ,Yp,

Z1, . . . ,Zq andX are all real finite dimensional Euclidean spaces each equipped with
an inner product 〈·, ·〉 and its induced norm ‖ · ‖.

In this paper, we make the following blanket assumption.

Assumption 1 For i = 1, . . . , p and j = 1, . . . , q, each θi (·) and ϕ j (·) are convex
quadratic functions.

Note that, in general, problem (3) does not satisfy Assumption 1 unless yI is vac-
uous from the model or K ≡ Sn . However, one can always reformulate problem (3)
equivalently as

min (δ∗
K(−Z) + δ	mI+

(u)) − 〈bI , yI 〉 + 1

2
〈X, QX〉 + δSn+(S) − 〈bE , yE 〉

s.t. Z + A∗
I yI − QX + S + A∗

E yE = C, (6)

D∗u − D∗yI = 0,

where D : 	mI → 	mI is any given nonsingular linear operator and δ	mI+
(·) is the

indicator function over 	mI+ . Now, one can see that problem (7) satisfies Assumption
1.

There are many other important cases that take the form of model (5) satisfying
Assumption 1. One prominent example comes from the matrix completion with fixed
basis coefficients [7–9]. Indeed the nuclear semi-norm penalized least squares model
in [8] can be written as

min
X∈	m×n

1

2
‖AF X − d‖2 + ρ(‖X‖∗ − 〈C, X〉)

s.t. AE X = bE , X ∈ K := {X | ‖RΩ X‖∞ ≤ α}, (7)
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where ‖X‖∗ is the nuclear norm of X defined as the sum of all its singular values, ‖·‖∞
is the element-wise l∞ norm defined by ‖X‖∞ := maxi=1,...,m max j=1,...,n |Xi j |,
AF : 	m×n → 	nF and AE : 	m×n → 	nE are two linear maps, ρ and α are two
given positive parameters, d ∈ 	nF , C ∈ 	m×n and bE ∈ 	nE are given data, Ω ⊆
{1, . . . ,m}×{1, . . . , n} is the set of the indices relative to which the basis coefficients
are not fixed, RΩ : 	m×n → 	|Ω| is the linear map such that RΩ X := (Xi j )i j∈Ω.

Note that when there are no fixed basis coefficients (i.e.,Ω = {1, . . . ,m}×{1, . . . , n}
andAE are vacuous), the above problem reduces to themodel considered byNegahban
and Wainwright in [10] and Klopp in [11]. By introducing slack variables η, R and
W , we can reformulate problem (7) as

min
1

2
‖η‖2 + ρ

(‖R‖∗ − 〈C, X〉)+ δK(W )

s.t.AF X − d = η, AE x = bE , X = R, X = W. (8)

The dual of problem (8) takes the form of

max −δ∗
K(−Z) − 1

2
‖ξ‖2 + 〈d, ξ 〉 + 〈bE , yE 〉

s.t. Z + A∗
Fξ + S + A∗

E yE = −ρC, ‖S‖2 ≤ ρ, (9)

where ‖S‖2 is the operator norm of S, which is defined to be its largest singular value.
Another compelling example is the so called robust PCA (principle component

analysis) considered in [12]:

min ‖A‖∗ + λ1‖E‖1 + λ2

2
‖Z‖2F

s.t. A + E + Z = W, A, E, Z ∈ 	m×n, (10)

where W ∈ 	m×n is the observed data matrix, ‖ · ‖1 is the elementwise l1 norm
given by ‖E‖1 :=∑m

i=1
∑n

j=1 |Ei j |, ‖ · ‖F is the Frobenius norm, λ1 and λ2 are two
positive parameters. There are many different variants to the robust PCA model. For
example, one may consider the following model where the observed data matrixW is
incomplete:

min ‖A‖∗ + λ1‖E‖1 + λ2

2
‖PΩ(Z)‖2F

s.t. PΩ(A + E + Z) = PΩ(W ), A, E, Z ∈ 	m×n, (11)

i.e. one assumes that only a subset Ω ⊆ {1, . . . ,m} × {1, . . . , n} of the entries of W
can be observed. Here PΩ : 	m×n → 	m×n is the orthogonal projection operator
defined by

PΩ(X) =
{
Xi j if (i, j) ∈ Ω,

0 otherwise.
(12)
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A Schur complement based semi-proximal ADMM 337

Again, problem (11) satisfies Assumption 1. In [13], Tao and Yuan tested one of
the equivalent forms of problem (11). In the numerical section, we will see other
interesting examples.

For notational convenience, letY := Y1×Y2×, . . . ,Yp,Z := Z1×Z2×, . . . ,Zq .
We write y ≡ (y1, y2, . . . , yp) ∈ Y and z ≡ (z1, z2, . . . , zq) ∈ Z . Define the linear
map A : X → Y such that its adjoint is given by

A∗y =
p∑

i=1

A∗
i yi ∀y ∈ Y .

Similarly, we define the linear map B : X → Z such that its adjoint is given by

B∗z =
q∑

j=1

B∗
j z j ∀z ∈ Z.

Additionally, let θ(y) :=∑p
i=1 θi (yi ), y ∈ Y and ϕ(z) :=∑q

j=1 ϕ j (z j ), z ∈ Z . Now
we can rewrite (5) in the following compact form:

min f (u) + θ(y) + g(v) + ϕ(z)

s.t. F∗u + A∗y + G∗v + B∗z = c. (13)

Problem (5) can be view as a special case of the following block-separable convex
optimization problem:

min

{
n∑

i=1

φi (wi ) |
n∑

i=1

H∗
i wi = c

}
, (14)

where for each i ∈ {1, . . . , n},Wi is a finite dimensional real Euclidean space equipped
with an inner product 〈·, ·〉 and its induced norm ‖ · ‖, φi : Wi → (−∞,+∞] is a
closed proper convex function, Hi : X → Wi is a linear map and c ∈ X is given.
Note that when we rewrite problem (5) in terms of (14), the quadratic structure in
(5) is hidden in the sense that each φi will be treated equally. However, this special
quadratic structurewill be thoroughly exploited in our search for an efficient yet simple
ADMM-type method with guaranteed convergence.

Let σ > 0 be a given parameter. The augmented Lagrangian function for (14) is
defined by

Lσ (w1, . . . , wn; x) :=
n∑

i=1

φi (wi ) +
〈
x

n∑

i=1

H∗
i wi − c

〉
+ σ

2

∥∥∥∥∥

n∑

i=1

H∗
i wi − c

∥∥∥∥∥

2

for wi ∈ Wi , i = 1, . . . , n and x ∈ X . Choose any initial points w0
i ∈ dom(φi ),

i = 1, . . . , q and x0 ∈ X . The classical augmented Lagrangian method consists of
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the following iterations:

(wk+1
1 , . . . , wk+1

n ) = argmin Lσ (w1, . . . , wn; xk), (15)

xk+1 = xk + τσ

(
n∑

i=1

H∗
i w

k+1
i − c

)
, (16)

where τ ∈ (0, 2) guarantees the convergence. Due to the non-separability of the
quadratic penalty term in Lσ , it is generally a challenging task to solve the joint
minimization problem (15) exactly or approximately with high accuracy. To overcome
this difficulty, one may consider the following n-block alternating direction methods
of multipliers (ADMM):

wk+1
1 = argmin Lσ (w1, w

k
2 . . . , wk

n; xk),
...

wk+1
i = argmin Lσ (wk+1

1 , . . . , wk+1
i−1 , wi , w

k
i+1, . . . , w

k
n; xk),

...

wk+1
n = argmin Lσ (wk+1

1 , . . . , wk+1
n−1, wn; xk),

xk+1 = xk + τσ

(
n∑

i=1

H∗
i w

k+1
i − c

)
.

(17)

The above n-block ADMM is an direct extension of the ADMM for solving the
following 2-block convex optimization problem

min
{
φ1(w1) + φ2(w2) | H∗

1w1 + H∗
2w2 = c

}
. (18)

The convergence of 2-block ADMM has already been extensively studied in [14–
19] and references therein. However, the convergence of the n-block ADMM has
been ambiguous for a long time. Fortunately this ambiguity has been addressed very
recently in [20] where Chen, He, Ye, and Yuan showed that the direct extension of
the ADMM to the case of a 3-block convex optimization problem is not necessarily
convergent. On the other hand, the n-block ADMMwith τ ≥ 1 often works very well
in practice and this fact poses a big challenge if one attempts to develop new ADMM-
type algorithms which have convergence guarantee but with competitive numerical
efficiency and iteration simplicity as the n-block ADMM.

Recently, there is exciting progress in this active research area. Sun et al. [21]
proposed a convergent semi-proximal ADMM (PADMM3c) for convex programming
problems of three separable blocks in the objective function with the third part being
linear. One distinctive feature of algorithm PADMM3c is that it requires only an inex-
pensive extra step, compared to the 3-block ADMM, but yields a convergent and faster
algorithm. Extensive numerical tests on the doubly non-negative SDP problems with
equality and/or inequality constraints demonstrate that PADMM3c can have superior
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A Schur complement based semi-proximal ADMM 339

numerical efficiency over the directly extended ADMM. This opens up the possibility
of designing an efficient and convergent ADMM type method for solving multi-block
convex optimization problems. Inspired by the aforementioned work, in this paper we
shall propose a Schur complement based semi-proximal ADMM (SCB-SPADMM) to
efficiently solve the convex quadratic conic programming problems to medium accu-
racy. The development of our algorithm is based on the simple yet elegant idea of
the Schur complement and the convenient convergence results of the semi-proximal
ADMM given in the appendix of [22]. Our primary motivation for designing the pro-
posed SCB-SPADMM is to generate a good initial point quickly to warm-start locally
fast convergent method such as the semismooth Newton-CG method used in [23,24]
for solving linear SDP though themethod proposed here is definitely of its own interest.

The remaining parts of this paper are organized as follows. In the next section,
we present a Schur complement based semi-proximal augmented Lagrangian method
(SCB-SPALM) to solve a 2-block convex optimization problem where the second
function g is quadratic and then show the relation between our SCB-SPALM and the
generic 2-block semi-proximal ADMM (SPADMM). In Sect. 3, we propose our main
algorithm SCB-SPADMM for solving the general convexmodel (5). Ourmain conver-
gence results are presented in this section. Section 4 is devoted to the implementation
and numerical experiments of using our SCB-SPADMM to solve convex quadratic
conic programming problems and the various extensions. We conclude our paper in
the final section.

Notation Define the spectral (or operator) norm of a given linear operator T by
‖T ‖ := sup‖w‖=1 ‖T w‖. For any w ∈ U , we let

Prox f (w) := argminu f (u) + 1

2
‖u − w‖2.

2 A Schur complement based semi-proximal augmented Lagrangian method

Before we introduce our approach for the multi-block case, we need to consider the
convex optimization problem with the following 2-block separable structure

min f (u) + g(v)

s.t. F∗u + G∗v = c, (19)

where f : U → (−∞,+∞] and g : V → (−∞,+∞] are closed proper convex
functions, F : X → U and G : X → V are given linear maps. The dual of problem
(19) is given by

min
{〈c, x〉 + f ∗(s) + g∗(t) | Fx + s = 0, Gx + t = 0

}
. (20)

Let σ > 0 be given. The augmented Lagrangian function associated with (19) is given
as follows:

Lσ (u, v; x) = f (u) + g(v) + 〈x, F∗u + G∗v − c〉 + σ

2
‖F∗u + G∗v − c‖2.
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The semi-proximal ADMM proposed in [22], when applied to (19), has the follow-
ing template. Since the proximal terms added here are allowed to be positive semi-
definite, the corresponding method is referred to as semi-proximal ADMM instead of
proximal ADMM as in [22].

AlgorithmSPADMM:Ageneric 2-block semi-proximalADMMfor solving (19).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Let T f and Tg be given self-adjoint
positive semidefinite, not necessarily positive definite, linear operators defined on
U and V , respectively. Choose (u0, v0, x0) ∈ dom( f ) × dom(g) × X . For k =
0, 1, 2, ..., perform the kth iteration as follows:

Step 1. Compute

uk+1 = argminu Lσ (u, vk; xk) + σ

2
‖u − uk‖2T f

. (21)

Step 2. Compute

vk+1 = argminv Lσ (uk+1, v; xk) + σ

2
‖v − vk‖2Tg

. (22)

Step 3. Compute

xk+1 = xk + τσ (F∗uk+1 + G∗vk+1 − c). (23)

In the above 2-block semi-proximal ADMM for solving (19), the presence of T f

and Tg can help to guarantee the existence of solutions for the subproblems (21)
and (22). In addition, they play important roles in ensuring the boundedness of the
two generated sequences {uk+1} and {vk+1}. Hence, these two proximal terms are
preferred. The choices of T f and Tg are very much problem dependent. The general
principle is that both T f and Tg should be as small as possible while uk+1 and vk+1

are still relatively easy to compute.
Let ∂ f and ∂g be the subdifferential mappings of f and g, respectively. Since

both ∂ f and ∂g are maximally monotone, there exist two self-adjoint and positive
semidefinite operators Σ f and Σg such that for all u, ũ ∈ dom( f ), ξ ∈ ∂ f (u), and
ξ̃ ∈ ∂ f (ũ),

〈ξ − ξ̃ , u − ũ〉 ≥ ‖u − ũ‖2Σ f
(24)

and for all v, ṽ ∈ dom(g), ζ ∈ ∂g(v), and ζ̃ ∈ ∂g(ṽ),

〈ζ − ζ̃ , v − ṽ〉 ≥ ‖v − ṽ‖2Σg
. (25)

For the convergence of the 2-block semi-proximal ADMM, we need the following
assumption.

Assumption 2 There exists (û, v̂) ∈ ri(dom f × dom g) such that F∗û + G∗v̂ = c.
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A Schur complement based semi-proximal ADMM 341

Theorem 1 Let Σ f and Σg be the self-adjoint and positive semidefinite operators
defined by (24) and (25), respectively. Suppose that the solution set of problem (19)
is nonempty and that Assumption 2 holds. Assume that T f and Tg are chosen such
that the sequence {(uk, vk, xk)} generated by Algorithm SPADMM is well defined.
Then, under the condition either (a) τ ∈ (0, (1 + √

5 )/2) or (b) τ ≥ (1 + √
5 )/2

but
∑∞

k=0(‖G∗(vk+1 − vk)‖2 + τ−1‖F∗uk+1 + G∗vk+1 − c‖2) < ∞, the following
results hold:

(i) If (u∞, v∞, x∞) is anaccumulationpoint of {(uk , vk, xk)}, then (u∞, v∞) solves
problem (19) and x∞ solves (20), respectively.

(ii) If both σ−1Σ f + T f +FF∗ and σ−1Σg + Tg + GG∗ are positive definite, then
the sequence {(uk, vk, xk)}, which is automatically well defined, converges to a
unique limit, say, (u∞, v∞, x∞) with (u∞, v∞) solving problem (19) and x∞
solving (20), respectively.

(iii) When the u-part disappears, the corresponding results in parts (i)–(ii) hold under
the condition either τ ∈ (0, 2) or τ ≥ 2 but

∑∞
k=0 ‖G∗vk+1 − c‖2 < ∞.

Remark 1 The conclusions of Theorem 1 follow essentially from the results given in
[22, Theorem B.1]. See [21] for more detailed discussions.

Next, we shall pay particular attention to the case when g is a quadratic function:

g(v) = 1

2
〈v, Σgv〉 − 〈b, v〉, v ∈ V, (26)

whereΣg is a self-adjoint positive semidefinite linear operator defined onV and b ∈ V
is a given vector. Problem (19) now takes the form of

min f (u) + 1

2
〈v, Σgv〉 − 〈b, v〉

s.t. F∗u + G∗v = c. (27)

The dual of problem (27) is given by

min
{〈c, x〉 + f ∗(s) + g∗(t) | Fx + s = 0, Gx + t = 0

}
. (28)

In order to solve subproblem (22) in Algorithm SPADMM, we need to solve a linear
systemwith the linear operator given byσ−1Σg+GG∗. Hence, an appropriate proximal
term should be chosen such that (22) can be solved efficiently. Here, we choose Tg as
follows. Let Eg : V → V be a self-adjoint positive definite linear operator such that it
is a majorization of σ−1Σg + GG∗, i.e.,

Eg � σ−1Σg + GG∗.

We choose Eg such that its inverse can be computed at a moderate cost. Define

Tg := Eg − σ−1Σg − GG∗ � 0. (29)
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342 X. Li et al.

Note that for numerical efficiency, we need the self-adjoint positive semidefinite linear
operator Tg to be as small as possible. In order to fully exploit the structure of the
quadratic function g, we add, instead of a naive proximal term, a proximal term based
on the Schur complement as follows. For a given T f � 0, we define the self-adjoint
positive semidefinite linear operator

T̂ f := T f + FG∗E−1
g GF∗. (30)

For later developments, here we state a proposition which uses the Schur comple-
ment condition for establishing the positive definiteness of a linear operator.

Proposition 1 It holds that

W :=
(
F
G

)(
F
G

)∗
+ σ−1

(
Σ f

Σg

)
+
(
T̂ f

Tg

)
� 0

if and only if FF∗ + σ−1Σ f + T f � 0.

Proof We have that

W =
(
FF∗ + σ−1Σ f + T̂ f FG∗

GF∗ GG∗ + σ−1Σg + Tg

)
.

Since Eg = GG∗ +σ−1Σg +Tg � 0, by the Schur complement condition for ensuring
the positive definiteness of linear operators, we have W � 0 if and only if

FF∗ + σ−1Σ f + T̂ f − FG∗E−1
g GF∗ � 0.

By (30), we know that the conclusion of this proposition holds. ��
Now, we can propose our Schur complement based semi-proximal augmented

Lagrangian method (SCB-SPALM) to solve (27) with a specially chosen proximal
term involving T̂ f and Tg .

AlgorithmSCB-SPALM:ASchur complementbased semi-proximal augmented
Lagrangian method for solving (27).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Choose (u0, v0, x0) ∈ dom( f ) ×
V × X . For k = 0, 1, 2, ..., perform the kth iteration as follows:

Step 1. Compute

(uk+1, vk+1) = argminu,v Lσ (u, v; xk) + σ

2
‖u − uk‖2T̂ f

+ σ

2
‖v − vk‖2Tg

.

(31)

Step 2. Compute

xk+1 = xk + τσ (F∗uk+1 + G∗vk+1 − c). (32)
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A Schur complement based semi-proximal ADMM 343

Note that problem (31) in Step 1 is well defined if the the linear operatorW defined
in Proposition 1 is positive definite, or equivalently, if FF∗ + σ−1Σ f + T f � 0.
Also, note that in the context of the convex optimization problem (27), Assumption 2
is reduced to the following:

Assumption 3 There exists (û, v̂) ∈ ri(dom f ) × V such that F∗û + G∗v̂ = c.

Now, we are ready to establish our convergence results for Algorithm SCB-SPALM
for solving (27).

Theorem 2 Let Σ f , Σg and Tg be three self-adjoint and positive semidefinite oper-
ators defined by (24), (26) and (29), respectively. Suppose that the solution set of
problem (27) is nonempty and that Assumption 3 holds. Assume that T f is cho-
sen such that the sequence {(uk, vk, xk)} generated by Algorithm SCB-SPALM is
well defined. Then, under the condition either (a) τ ∈ (0, 2) or (b) τ ≥ 2 but∑∞

k=0 ‖F∗uk+1 + G∗vk+1 − c‖2 < ∞, the following results hold:

(i) If (u∞, v∞, x∞) is an accumulation point of {(uk, vk, xk)}, then (u∞, v∞) solves
problem (27) and x∞ solves (28), respectively.

(ii) If σ−1Σ f + T f + FF∗ is positive definite, then the sequence {(uk, vk, xk)} is
well defined and it converges to a unique limit, say, (u∞, v∞, x∞)with (u∞, v∞)

solving problem (27) and x∞ solving (28), respectively.

Proof By combining Theorem 1 and Proposition 1, one can prove the results of this
theorem directly. ��

The relationship between Algorithm SCB-SPALM and Algorithm SPADMM for
solving (27) will be revealed in the next proposition.

Let δg : U × V × X → U be an auxiliary linear function associated with (27)
defined by

δg(u, v, x) := FG∗E−1
g (b − Gx − Σgv + σG(c − F∗u − G∗v)). (33)

Let ū ∈ U , v̄ ∈ V , x̄ ∈ X and c ∈ X be given. Denote

c̄ := c − F∗ū − G∗v̄ and δ̄g := δg(ū, v̄, x̄)=FG∗E−1
g (b − G x̄ − Σg v̄ + σGc̄).

Let (u+, v+) ∈ U × V be defined by

(u+, v+) = argminu,v Lσ (u, v; x̄) + σ

2
‖u − ū‖2T̂ f

+ σ

2
‖v − v̄‖2Tg

. (34)

Proposition 2 Let ᾱ := σ−1b + Tg v̄ + G(c − σ−1 x̄). Define v′ ∈ V by

v′ = argminv Lσ (ū, v; x̄) + σ

2
‖v − v̄‖2Tg

= E−1
g (ᾱ − GF∗ū). (35)
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The optimal solution (u+, v+) to problem (34) is generated exactly by the following
procedure

{
u+ = argminu Lσ (u, v̄; x̄) + 〈δ̄g, u〉 + σ

2 ‖u − ū‖2T f
,

v+ = argminv Lσ (u+, v; x̄) + σ
2 ‖v − v̄‖2Tg

= E−1
g (ᾱ − GF∗u+).

(36)

Furthermore, (u+, v+) can also be obtained by the following equivalent procedure

{
u+ = argminu Lσ (u, v′; x̄) + σ

2 ‖u − ū‖2T f
,

v+ = argminv Lσ (u+, v; x̄) + σ
2 ‖v − v̄‖2Tg

= E−1
g (ᾱ − GF∗u+).

(37)

Proof First we show that the equivalence between (34) and (36). Define

L̃σ (u, v; x̄) := Lσ (u, v; x̄) + σ

2
‖u − ū‖2T̂ f

+ σ

2
‖v − v̄‖2Tg

, (u, v) ∈ U × V.

By simple algebraic manipulations, we have that

L̃σ (u, v; x̄) = f (u) + σ

2
‖u − ū‖2T̂ f

+ φ(u, v) − 1

2σ
‖x̄‖2, (38)

where

φ(u, v) = g(v) + σ

2
‖F∗u + G∗v + σ−1 x̄ − c‖2 + σ

2
‖v − v̄‖2Tg

= σ

2

(
〈v, Egv〉 + 2〈v, GF∗u − ᾱ〉 + ‖F∗u + σ−1 x̄ − c‖2 + ‖v̄‖2Tg

)

with ᾱ as defined in the proposition. For any given u ∈ U , let

v(u) := argminv∈V φ(u, v) = E−1
g (ᾱ − GF∗u).

Then by using the fact that minv
1
2 〈v, Egv〉 + 〈q, v〉 = − 1

2 〈q, E−1
g q〉 for any q ∈ V ,

we have that

φ(u, v(u)) = σ

2

(
− 〈GF∗u−ᾱ, E−1

g (GF∗u−ᾱ)〉+‖F∗u + σ−1 x̄ − c‖2 + ‖v̄‖2Tg

)

= σ

2

(
〈u, (FF∗ − FG∗E−1

g GF∗)u〉 + 2〈u, F(G∗E−1
g ᾱ + σ−1 x̄ − c)〉

)
+ κ0,

where κ0 = σ
2 (‖σ−1 x̄ − c‖2 + ‖v̄‖2Tg

− ‖ᾱ‖2E−1
g

). Let

κ1 := κ0 + σ

2
‖GF∗ū‖2E−1

g
− 1

2σ
‖x̄‖2

= −〈c, x̄〉 + σ

2
(‖c‖2 + ‖GF∗ū‖2E−1

g
+ ‖v̄‖2Tg

− ‖ᾱ‖2E−1
g

).
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From (38), we have that for any given u ∈ U ,

L̃σ (u, v(u); x̄) = f (u) + σ

2
‖u − ū‖2T f

+ σ

2
‖GF∗(u − ū)‖2E−1

g

+φ(u, v(u)) − 1

2σ
‖x̄‖2

= f (u) + σ

2
‖u − ū‖2T f

+ σ 〈u, F(G∗E−1
g ᾱ + σ−1 x̄ − c) − FG∗E−1

g GF∗ū〉
+σ

2
〈u, FF∗u〉 + κ1

= f (u)+ σ

2
‖u − ū‖2T f

+〈u, δ̄g〉+〈u, F(x̄ + σ(G∗v̄ − c))〉 + σ

2
〈u, FF∗u〉 + κ1

= Lσ (u, v̄; x̄) + 〈u, δ̄g〉 + σ

2
‖u − ū‖2T f

+ κ2, (39)

where κ2 = κ1 − g(v̄) − σ
2 ‖G∗v̄ − c‖2 − 〈x̄, G∗v̄ − c〉. Note that with some manipu-

lations, we can show that the constant term

κ2 = σ

2
‖GF∗ū‖2E−1

g
− σ

2
‖Eg v̄ − ᾱ‖2E−1

g
.

Now, we have that

min
u∈U ,v∈V

L̃σ (u, v; x̄) = min
u∈U

(
min
v∈V

L̃σ (u, v; x̄)
)

= min
u∈U

L̃σ (u, v(u); x̄),

where L̃σ (u, v(u); x̄) satisfies (39). From here, the equivalence between (34) and (36)
follows.

Next, we prove the equivalence between (36) and (37). Note that, the first mini-
mization problem in (37) can be equivalently recast as

0 ∈ ∂ f (u+) + F x̄ + σF(F∗u+ + G∗v′ − c) + σT f (u
+ − ū),

which, together with the definition of v′ given in (35), is equivalent to

0 ∈ ∂ f (u+) +F x̄ + σF(F∗u+ − c+ G∗E−1
g (ᾱ − GF∗ū)) + σT f (u

+ − ū). (40)

The condition (40) can be reformulated as

0 ∈ ∂ f (u+) + F x̄ + σF(F∗u+ + G∗v̄ − c)

+ σFG∗E−1
g (ᾱ − GF∗ū − Eg v̄) + σT f (u

+ − ū).

Thus, we have

0 ∈ ∂ f (u+) + F x̄ + σF(F∗u+ + G∗v̄ − c) + δ̄g + σT f (u
+ − ū), (41)
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which can equivalently be rewritten as

u+ = argminu Lσ (u, v̄; x̄) + 〈δ̄g, u〉 + σ

2
‖u − ū‖2T f

.

The equivalence between (36) and (37) then follows. This completes the proof of this
proposition. ��
Proposition 3 Let δkg := δg(uk, vk, xk) for k = 0, 1, 2, .... We have that uk+1 and

vk+1 obtained by Algorithm SCB-SPALM for solving (27) can be generated exactly
according to the following procedure:

⎧
⎪⎨

⎪⎩

uk+1 = argminu Lσ (u, vk; xk) + 〈δkg, u〉 + σ
2 ‖u − uk‖2T f

,

vk+1 = argminv Lσ (uk+1, v; xk) + σ
2 ‖v − vk‖2Tg

,

xk+1 = xk + τσ (F∗uk+1 + G∗vk+1 − c).

(42)

Equivalently, (uk+1, vk+1) can also be obtained exactly via:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̄k = argminv Lσ (uk, v; xk) + σ
2 ‖v − vk‖2Tg

,

uk+1 = argminu Lσ (u, v̄k; xk) + σ
2 ‖u − uk‖2T f

,

vk+1 = argminv Lσ (uk+1, v; xk) + σ
2 ‖v − vk‖2Tg

,

xk+1 = xk + τσ (F∗uk+1 + G∗vk+1 − c).

Proof The results follow directly from (36) and (37) in Proposition 2. ��
Remark 2 (i) Note that comparing to (21) in Algorithm SPADMM, the first subprob-

lem of (42) has an extra linear term 〈δkg, ·〉. It is this linear term that allows us
to design a convergent SPADMM for solving multi-block convex optimization
problems.

(ii) The linear term 〈δkg, ·〉 will vanish if Σg = 0, Eg = GG∗ � 0 and a proper
starting point (u0, v0, x0) is chosen. Specifically, if we choose x0 ∈ X such that
Gx0 = b and (u0, v0) ∈ dom( f ) × V such that v0 = E−1

g G(c − F∗u0), then it
holds that Gxk = b and vk = E−1

g G(c − F∗uk), which imply that δkg = 0.
(iii) Observe that when T f and Tg are chosen to be 0 in (42), apart from the range

of τ , our Algorithm SCB-SPALM differs from the classical 2-block ADMM for
solving problem (27) only in the linear term 〈δkg, ·〉. This shows that the classical
2-block ADMM for solving problem (27) has an unremovable deviation from
the augmented Lagrangian method. This may explain why even when ADMM
type methods suffer from slow local convergence, the latter can still enjoy fast
local convergence.

In the following, we compare our Schur complement based proximal term σ
2 ‖u −

uk‖2T̂ f
+ σ

2 ‖v−vk‖2Tg
used to derive the scheme (42) for solving (27)with the following

proximal term which allows one to update u and v simultaneously:
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σ

2
(‖(u, v) − (uk, vk)‖2M + ‖u − uk‖2T f

+ ‖v − vk‖2Tg
) with (43)

M =
(

D1 −FG∗
−GF∗ D2

)
� 0,

where D1 : U → U and D2 : V → V are two self-adjoint positive semidefinite linear
operators satisfying

D1 � √(FG∗)(FG∗)∗ and D2 � √(GF∗)(GF∗)∗.

A common naive choice will be D1 = λmaxI1 and D2 = λmaxI2 where λmax =
‖FG∗‖2, I1 : U → U and I2 : V → V are identity maps. Simple calcula-
tions show that the resulting semi-proximal augmented Lagrangian method generates
(uk+1, vk+1, xk+1) as follows:

⎧
⎪⎨

⎪⎩

uk+1 = argminu Lσ (u, vk; xk) + σ
2 ‖u − uk‖2D1+T f

,

vk+1 = argminv Lσ (uk, v; xk) + σ
2 ‖v − vk‖2D2+Tg

,

xk+1 = xk + τσ (F∗uk+1 + G∗vk+1 − c).

(44)

To ensure that the subproblems in (44) are well defined, we may require the following
sufficient conditions to hold:

σ−1Σ f + T f + FF∗ + D1 � 0 and σ−1Σg + Tg + GG∗ + D2 � 0.

Comparing the proximal terms used in (31) and (43), we can easily see that the dif-
ference is:

‖u − uk‖2FG∗E−1
g GF∗ vs. ‖(u, v) − (uk, vk)‖2M.

To simplify the comparison, we assume that

D1 = √(FG∗)(FG∗)∗ and D2 = √(GF∗)(GF∗)∗.

By rescaling the equality constraint in (27) if necessary, we may also assume that
‖F‖ = 1. Now, we have that

FG∗E−1
g GF∗ � FF∗

and

‖u − uk‖2FG∗E−1
g GF∗ ≤ ‖u − uk‖2FF∗ ≤ ‖u − uk‖2.
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In contrast, we have

‖(u, v) − (uk, vk)‖2M ≤ 2
(
‖u − uk‖2D1

+ ‖v − vk‖2D2

)

≤ 2‖FG∗‖
(
‖u − uk‖2 + ‖v − vk‖2

)

≤ 2‖G‖
(
‖u − uk‖2 + ‖v − vk‖2

)
,

which is larger than the former upper bound ‖u − uk‖2 if ‖G‖ ≥ 1/2. Thus we
can conclude safely that the proximal term ‖u − uk‖2FG∗E−1

g GF∗ can be potentially

much smaller than ‖(u, v)− (uk, vk)‖2M unless ‖G‖ is very small. In fact, as a simple
extension to (43), for the general multi-block case, one can always design a similar
proximal term M to obtain an algorithm with a Jacobian type decomposition.

The above mentioned upper bounds difference is of course due to the fact that the
SCB semi-proximal augmented Lagrangian method takes advantage of the fact that
g is assumed to be a convex quadratic function. However, the key difference lies in
the fact that (44) is a splitting version of the semi-proximal augmented Lagrangian
method with a Jacobi type decomposition, whereas Algorithm SCB-SPALM is a split-
ting version of semi-proximal augmented Lagrangian method with a Gauss-Seidel
type decomposition. It is this fact that provides us with the key idea to design Schur
complement based proximal terms for multi-block convex optimization problems in
the next section.

3 A Schur complement based semi-proximal ADMM

In this section, we focus on the problem

min f (u) +
p∑

i=1

θi (yi ) + g(v) +
q∑

j=1

ϕ j (z j )

s.t. F∗u +
p∑

i=1

A∗
i yi + G∗v +

q∑

j=1

B∗
j z j = c

(45)

with all θi and ϕ j being assumed to be convex quadratic functions:

θi (yi ) = 1

2
〈yi , Pi yi 〉 − 〈bi , yi 〉, ϕ j (z j ) = 1

2
〈z j , Q j z j 〉 − 〈d j , z j 〉,

for i = 1, . . . , p and j = 1, . . . , q, where Pi and Q j are given self-adjoint positive
semidefinite linear operators. The dual of (45) is given by

max

⎧
⎨

⎩−〈c, x〉 − f ∗(−Fx) −
p∑

i=1

θ∗
i (−Ai x) − g∗(−Gx) −

q∑

j=1

ϕ∗
j (−B j x)

⎫
⎬

⎭ ,

(46)
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which can equivalently be written as

min 〈c, x〉 + f ∗(s) +
p∑

i=1

θ∗
i (ri ) + g∗(t) +

q∑

j=1

ϕ∗
j (w j )

s.t. Fx + s = 0, Ai x + ri = 0, i = 1, . . . , p, (47)

Gx + t = 0, B j x + w j = 0, j = 1, . . . , q.

For i = 1, . . . , p, let Eθi be a self-adjoint positive definite linear operator on Yi

such that it is a majorization of σ−1Pi + AiA∗
i , i.e.,

Eθi � σ−1Pi + AiA∗
i .

We choose Eθi in a way that its inverse can be computed at a moderate cost. Define

Tθi := Eθi − σ−1Pi − AiA∗
i � 0, i = 1, . . . , p. (48)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite linear
operator Tθi to be as small as possible for each i . Similarly, for j = 1, . . . , q, let Eϕ j

be a self-adjoint positive definite linear operator onZ j that majorizes σ−1Q j +B jB∗
j

in a way that E−1
ϕ j

can be computed relatively easily. Denote

Tϕ j := Eϕ j − σ−1Q j − B jB∗
j � 0, j = 1, . . . , q. (49)

Again, we need the self-adjoint positive semidefinite linear operator Tϕ j to be as small
as possible for each j .

For notational convenience, we define

y≤i := (y1, y2, . . . , yi ), y≥i := (yi , yi+1, . . . , yp), i = 0, . . . , p + 1

with the convention that y0 = yp+1 = y≤0 = y≥p+1 = ∅. For i = 1, . . . , p, define
the linear operator A≤i : X → Y by

⎛

⎜⎜⎜⎝

A1x
A2x

...

Ai x

⎞

⎟⎟⎟⎠ ≡ A≤i x := A1x × A2x . . . × Ai x ∀x ∈ X .

In a similar manner, we can define z≤ j , z≥ j for j = 0, . . . , q +1 and define the linear
operator B≤ j for j = 1, . . . , q. Note that by definition, we have y = y≤p, z = z≤q ,
A = A≤p and B = B≤q .

Define the affine function Γ : U × Y × V × Z → X by

Γ (u, y, v, z) := F∗u + A∗y + G∗v + B∗z − c ∀ (u, y, v, z) ∈ U × Y × V × Z.

Let σ > 0 be given. The augmented Lagrangian function associated with (45) is given
as follows:
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Lσ (u, y, v, z; x) = f (u) + θ(y) + g(v) + ϕ(z) + 〈x, Γ (u, y, v, z)〉
+σ

2
‖Γ (u, y, v, z)‖2

where θ(y) =∑p
i=1 θi (yi ) and ϕ(z) =∑q

j=1 ϕ j (z j ).
Now we are ready to present our SCB-SPADMM (Schur complement based semi-

proximal alternating direction method of multipliers) algorithm for solving (45).

Algorithm SCB-SPADMM: A Schur complement based SPADMM for solving
(45).
Let σ > 0 and τ ∈ (0,∞) be given parameters. Let T f and Tg be given self-
adjoint positive semidefinite operators defined on U and V respectively. Choose
(u0, y0, v0, z0, x0) ∈ dom( f )×Y ×dom(g)×Z ×X . For k = 0, 1, 2, ..., generate
(uk+1, yk+1, vk+1, zk+1) and xk+1 according to the following iteration.

Step 1. Compute for i = p, . . . , 1,

yki = argminyi Lσ (uk, (yk≤i−1, yi , y
k
≥i+1), v

k, zk; xk) + σ

2
‖yi − yki ‖2Tθi

,

where Tθi is defined as in (48). Then compute

uk+1 = argminu Lσ (u, yk, vk, zk; xk) + σ

2
‖u − uk‖2T f

.

Step 2. Compute for i = 1, . . . , p,

yk+1
i = argminyi Lσ (uk+1, (yk+1

≤i−1, yi , y
k
≥i+1), v

k, zk; xk) + σ

2
‖yi − yki ‖2Tθi

.

Step 3. Compute for j = q, . . . , 1,

zkj = argminz j Lσ (uk+1, yk+1, vk, (zk≤ j−1, z j , z
k
≥ j+1); xk) + σ

2
‖z j − zkj‖2Tϕ j

,

where Tϕ j is defined as in (49). Then compute

vk+1 = argminv Lσ (uk+1, yk+1, v, zk; xk) + σ

2
‖v − vk‖2Tg

.

Step 4. Compute for j = 1, . . . , q,

zk+1
j = argminz j

{
Lσ (uk+1, yk+1, vk+1, (zk+1

≤ j−1, z j , z
k
≥ j+1); xk)

+σ
2 ‖z j − zkj‖2Tϕ j

}
.

Step 5. Compute

xk+1 = xk + τσ (F∗uk+1 + A∗yk+1 + G∗vk+1 + B∗zk+1 − c).
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In order to prove the convergence of Algorithm SCB-SPADMM for solving (45),
we need first to study the relationship between SCB-SPADMM and the generic
2-block semi-proximal ADMM for solving a two-block convex optimization prob-
lem discussed in the previous section.

Define for l = 1, . . . , p,

f1(u) := f (u), fl+1(u, y≤l) := f (u) +
l∑

i=1
θi (yi ) ∀ (u, y≤l) ∈ U × Y≤l ,

where Y≤l = Y1 × Y2 × . . . × Yl . Similarly, for l = 1, . . . , q, define Z≤l = Z1 ×
Z2 × . . . × Zl , and

g1(v) := g(v), gl+1(v, z≤l) := g(v) +
l∑

j=1
ϕ j (z j ) ∀ (v, z≤l) ∈ V × Z≤l .

Denote A∗
0 ≡ F∗

1 ≡ F∗ and B∗
0 ≡ G∗

1 ≡ G∗. Let

F∗
i+1 =

(
F∗,A∗

1, . . . ,A∗
i

)
, G∗

j+1 =
(
G∗,B∗

1, . . . ,B∗
j

)
,

for i = 1, . . . , p and j = 1, . . . , q. Define the following self-adjoint linear operators:
T̂ f1 := T f + F1A∗

1E
−1
θ1

A1F∗
1 ,

T̂ fi :=
(
T̂ fi−1

Tθi−1

)
+ FiA∗

i E−1
θi

AiF∗
i , i = 2, . . . , p (50)

and T̂g1 := Tg + G1B∗
1E−1

ϕ1
B1G∗

1 ,

T̂g j :=
(
T̂g j−1

Tϕ j−1

)
+ G jB∗

jE−1
ϕ j

B jG∗
j , j = 2, . . . , q. (51)

Let (v̄, z̄, x̄, c) ∈ V × Z × X × X be given. Denote

c̄ := c − G∗v̄ − B∗ z̄ and γ̄ := −Γ (ū, ȳ, v̄, z̄).

Define

βp, j := A j−1A∗
pE−1

θp
(bp − Ap x̄ − Pp ȳp + σApγ̄ ), j = 1, . . . , p (52)

and for i = p − 1, . . . , 1,

βi, j := A j−1A∗
i E−1

θi

(
bi −

p∑

k=i+1

βk,i+1 − Ai x̄ − Pi ȳi + σAi γ̄

)
, j = 1, . . . , i.
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Let

δ̄θ :=
p∑

i=1

βi,1. (53)

We will show later in Proposition 4 that δ̄θ is the auxiliary linear term associated with
problem (45). Recall that

Lσ (u, y, v̄, z̄; x̄)= f (u)+θ(y)+g(v̄)+ϕ(z̄)+〈x̄, Γ (u, y, v̄, z̄)〉+σ

2
‖Γ (u, y, v̄, z̄)‖2.

For i = p, . . . , 1, let y′
i ∈ Yi be defined by

y′
i := argminyi Lσ (ū, (ȳ≤i−1, yi , y

′≥i+1), v̄, z̄; x̄) + σ

2
‖yi − ȳi‖2Tθi

= E−1
θi

(
σ−1bi − σ−1Ai x̄ + Tθi ȳi + AiA∗

i ȳi − AiΓ (ū, (ȳ≤i−1, ȳi , y
′≥i+1), v̄, z̄)

)

(54)

with the convention y′
p+1 = ∅. Define (u+, y+) ∈ U × Y by

(u+, y+) := argminu,y

{Lσ (u, y, v̄, z̄; x̄) + σ
2 ‖(u, y≤p−1) − (ū, ȳ≤p−1)‖2T̂ f p

+ σ
2 ‖yp − ȳp‖2Tθp

}
.

(55)
The following proposition about two other equivalent procedures for computing
(u+, y+) is the key ingredient for our algorithmic developments. The idea of proving
this proposition is very simple: use Proposition 2 repeatedly though the proof itself
is rather lengthy due to the multi-layered nature of the problems involved. For (55),
we first express yp as a function of (u, y≤p−1) to obtain a problem involving only
(u, y≤p−1), and from the resulting problem, express yp−1 as a function of (u, y≤p−2)

to get another problem involving only (u, y≤p−2). We continue this way until we get
a problem involving only (u, y1).

Proposition 4 The optimal solution (u+, y+) defined by (55) can be obtained exactly
by

{
u+ = argminu Lσ (u, ȳ, v̄, z̄; x̄) + 〈δ̄θ , u〉 + σ

2 ‖u − ū‖2T f
,

y+
i = argminyi Lσ (u+, (y+

≤i−1, yi , y
′≥i+1), v̄, z̄; x̄)+ σ

2 ‖yi − ȳi‖2Tθi
, i=1, . . . , p

(56)
where the auxiliary linear term δ̄θ is defined by (53). Furthermore, (u+, y+) can also
be generated by the following equivalent procedure

{
u+ = argminu Lσ (u, y′, v̄, z̄; x̄) + σ

2 ‖u − ū‖2T f
,

y+
i = argminyi Lσ (u+, (y+

≤i−1, yi , y
′≥i+1), v̄, z̄; x̄) + σ

2 ‖yi − ȳi‖2Tθi
, i=1,…,p.

(57)
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Proof We will separate our proof into two parts and for each part we prove our con-
clusions by induction.

Part one. In this part we show that (u+, y+) defined by (55) can be obtained exactly
by (56). For the case p = 1, this follows directly from Proposition 2.

Assume that the equivalence between (55) and (56) holds for all p ≤ l. We need
to show that for p = l + 1, this equivalence also holds. For this purpose, we consider
the following optimization problem with respect to (u, y≤l) and yl+1:

min fl+1(u, y≤l) + θl+1(yl+1) + g(v̄) + ϕ(z̄)

s.t. F∗
l+1(u, y≤l) + A∗

l+1yl+1 = c̄. (58)

The augmented Lagrangian function associated with problem (58) is given by

Ll+1
σ ((u, y≤l), yl+1; v̄, z̄, x) = fl+1(u, y≤l) + θl+1(yl+1) + g(v̄) + ϕ(z̄)

+〈x, Γ (u, y, v̄, z̄)〉 + σ

2
‖Γ (u, y, v̄, z̄)‖2. (59)

We denote the vector δθl+1 as the auxiliary linear term associated with problem (58)
by

δθl+1 := Fl+1A∗
l+1E−1

θl+1
(bl+1 − Al+1 x̄ − Pl+1 ȳl+1 + σAl+1γ̄ ). (60)

Note that by the definition of Fl+1 and p = l + 1, we have

〈δθp , (u, y≤l)〉 = 〈βp,1, u〉 +
l∑

j=1

〈βp, j+1, y j 〉

with βp, j , j = 1, . . . , l + 1, defined as in (52).
By noting that Ll+1

σ ((u, y≤l), yl+1; v̄, z̄, x̄) = Lσ (u, y≤l , yl+1, v̄, z̄; x̄), we can
rewrite problem (55) for p = l + 1 equivalently as

((u+, y+
≤l), y

+
l+1)

= argmin

{Ll+1
σ ((u, y≤l), yl+1; v̄, z̄, x̄) + σ

2 ‖(u, y≤l) − (ū, ȳ≤l)‖2T̂ fl+1+ σ
2 ‖yl+1 − ȳl+1‖2Tθl+1

}
. (61)

Then, from Proposition 2, we know that problem (61) is equivalent to

(u+, y+
≤l) = argmin(u,y≤l )

⎧
⎪⎪⎨

⎪⎪⎩

Ll+1
σ ((u, y≤l), ȳl+1; v̄, z̄, x̄) + 〈δθl+1 , (u, y≤l)〉

+ σ
2 ‖(u, y≤l−1) − (ū, ȳ≤l−1)‖2T̂ fl+σ
2 ‖yl − ȳl‖2Tθl

⎫
⎪⎪⎬

⎪⎪⎭
,

(62)

y+
l+1 = argminyl+1

Ll+1
σ ((u+, y+

≤l), yl+1; v̄, z̄, x̄) + σ

2
‖yl+1 − ȳl+1‖2Tθl+1

. (63)
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By observing that Ll+1
σ ((u+, y+

≤l), yl+1; v̄, z̄, x̄) = Lσ (u+, y+
≤l , yl+1, v̄, z̄; x̄), we

know that problem (63) can equivalently be rewritten as

y+
l+1 = argminyl+1

Lσ (u+, y+
≤l , yl+1, v̄, z̄; x̄) + σ

2
‖yl+1 − ȳl+1‖2Tθl+1

. (64)

In order to apply our induction assumption to problem (62), we need to construct a
corresponding optimization problem. Define for i = 1, . . . , l, b̃i := bi − βp,i+1,

θ̃i (yi ) := θi (yi ) + 〈βp,i+1, yi 〉 = 1
2 〈yi , Pi yi 〉 − 〈̃bi , yi 〉 ∀ yi ∈ Yi ,

f̃1(u) := f (u) + 〈βp,1, u〉, and

f̃i+1(u, y≤i ) := f̃1(u) +
i∑

j=1

θ̃ j (y j ) ∀ (u, y≤i ) ∈ U × Y≤i .

We shall now consider the following optimization problem with respect to (u, y≤l):

min f̃1(u) +
l∑

i=1

θ̃i (yi ) + θl+1(ȳl+1) + g(v̄) + ϕ(z̄)

s.t. F∗u + A∗≤l y≤l = c̄ − A∗
l+1 ȳl+1. (65)

The augmented Lagrangian function for the problem (65) is defined by

L̃σ (u, y≤l ; ȳl+1, v̄, z̄, x) = f̃1(u) +
l∑

i=1

θ̃i (yi ) + θl+1(ȳl+1) + g(v̄) + ϕ(z̄)

+ 〈x, Γ (u, (y≤l , ȳl+1), v̄, z̄)〉 + σ

2
‖Γ (u, (y≤l , ȳl+1), v̄, z̄)‖2.

Define

Tθ̃i
≡ Tθi and T f̃i ≡ T fi , i = 1, . . . , l.

By using the definitions of θ̃i and f̃i , i = 1, . . . , l, we have

Eθ̃i
≡ Eθi and T̂ f̃i ≡ T̂ fi , i = 1, . . . , l. (66)

Therefore, problem (62) can equivalently be rewritten as

(u+, y+
≤l) = argmin(u,y≤l )

{
L̃σ (u, y≤l; ȳl+1, v̄, z̄, x̄)
+ σ

2 ‖(u, y≤l−1) − (ū, ȳ≤l−1)‖2T̂ f̃l

+ σ
2 ‖yl − ȳl‖2Tθ̃l

}
.

(67)
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Define

β̃l, j := A j−1A∗
l E−1

θ̃l
(̃bl − Al x̄ − Pl ȳl + σAl γ̄ ), j = 1, . . . , l

and for i = l − 1, . . . , 1, and j = 1, . . . , i ,

β̃i, j := A j−1A∗
i E

−1
θ̃i

(
b̃i −

l∑
k=i+1

β̃k,i+1 − Ai x̄ − Pi ȳi + σAi γ̄

)
.

The auxiliary linear term δθ̃ associated with problem (67) is given by

δθ̃ :=
l∑

i=1

β̃i,1. (68)

We will show that for i = l, . . . , 1,

β̃i, j = βi, j ∀ j = 1, . . . , i. (69)

First, by using (66), we have for j = 1, . . . , l that

β̃l, j = A j−1A∗
l E−1

θ̃l
(̃bl − Al x̄ − Pl ȳl + σAl γ̄ )

= A j−1A∗
l E−1

θl
(bl − βl+1,l+1 − Al x̄ − Pl ȳl + σAl γ̄ ) = βl, j .

That is, (69) holds for i = l and j = 1, . . . , l. Now assume that we have proven
β̃i, j = βi, j for all i ≥ k + 1 with k + 1 ≤ l and j = 1, . . . , i . We shall next prove that
(69) holds for i = k and j = 1, . . . , k. Again, by using (66), we have for j = 1, . . . , k
that

β̃k, j = A j−1A∗
kE−1

θ̃k

(
b̃k −

l∑

s=k+1

β̃s,k+1 − Ak x̄ − Pk ȳk + σAk γ̄

)

= A j−1A∗
kE−1

θk

(
bk − βp,k+1 −

l∑

s=k+1

βs,k+1 − Ak x̄ − Pk ȳk + σAk γ̄

)

= A j−1A∗
kE−1

θk

(
bk −

l+1∑

s=k+1

βs,k+1 − Ak x̄ − Pk ȳk + σAk γ̄

)
= βk, j ,

which, shows that (69) holds for i = k and j = 1, . . . , k. Thus, (69) is proven.
For i = l, . . . , 1, define ỹ′

i ∈ Yi by

ỹ′
i := argminyi L̃σ (ū, (ȳ≤i−1, yi , ỹ

′≥i+1); ȳl+1, v̄, z̄, x̄) + σ

2
‖yi − ȳi‖2Tθ̃i

,

= E−1
θ̃i

(
σ−1b̃i − σ−1Ai x̄ + Tθ̃i

ȳi + AiA∗
i ȳi

−AiΓ (ū, (ȳ≤i−1, ȳi , ỹ
′≥i+1, ȳl+1), v̄, z̄)

)
,
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where we use the convention ỹ′
l+1 = ∅. We will prove that

ỹ′
i = y′

i ∀ i = l, . . . , 1. (70)

We first calculate

y′
l+1 − ȳl+1 = E−1

θl+1
(σ−1bl+1 − σ−1Al+1 x̄ + Tθl+1 ȳl+1 + Al+1A∗

l+1 ȳl+1

+Al+1γ̄ − Eθl+1 ȳl+1)

= E−1
θl+1

(σ−1bl+1 − σ−1Al+1 x̄ − σ−1Pl+1 ȳl+1 + Al+1γ̄ ),

which, together with the definitions of βp,i in (52), implies

AiA∗
l+1(y

′
l+1 − ȳl+1) = σ−1βp,i+1 ∀ i = 0, . . . , l. (71)

Now, by using (66), (71) and the definitions of ỹ′
l and y′

l , we have

y′
l − ỹ′

l = E−1
θl

(
σ−1βp,l+1 + AlA∗

l+1(ȳl+1 − y′
l+1)

)

= E−1
θl

(σ−1βp,l+1 − σ−1βp,l+1) = 0.

That is, (70) holds for i = l. Now assume that we have proven ỹ′
i = y′

i for all i ≥ k+1
with k + 1 ≤ l. We shall next prove that (70) holds for i = k. Again, by using the
definitions of ỹ′

k and y′
k and noting

Γ (ū, (ȳ≤k, ỹ
′≥k+1, ȳl+1), v̄, z̄) − Γ (ū, (ȳ≤k, y

′≥k+1), v̄, z̄) = A∗
l+1(ȳl+1 − y′

l+1),

we obtain that

y′
k − ỹ′

k = E−1
θk

(
σ−1(bk − b̃k) + AkA∗

l+1(ȳl+1 − y′
l+1)

)

= E−1
θk

(
σ−1βp,k+1 + AkA∗

l+1(ȳl+1 − y′
l+1)

)

= E−1
θl

(σ−1βp,k+1 − σ−1βp,k+1) = 0,

which, shows that (70) holds for i = k. Thus, (70) holds.
By applying our induction assumption to problem (67), we obtain equivalently that

u+ = argminu L̃σ (u, ȳ≤l; ȳl+1, v̄, z̄, x̄) + 〈δθ̃ , u〉 + σ

2
‖u − ū‖2T f

, (72)

y+
i = argminyi L̃σ (u+, (y+

≤i−1, yi , ỹ
′≥i+1); ȳl+1, v̄, z̄, x̄) + σ

2
‖yi − ȳi‖2Tθi

(73)

for i = 1, . . . , l, where we use the facts that T f̃1 = T f and Tθ̃i
= Tθi for i =

1, . . . , l. By combining (69) and the definitions of δ̄θ and δθ̃ defined in (53) and (68),
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respectively, we derive that

δ̄θ =
l∑

i=1
βi,1 + βl+1,1 =

l∑
i=1

β̃i,1 + βl+1,1 = δθ̃ + βl+1,1. (74)

By direct calculations,

L̃σ (u, ȳ≤l; ȳl+1, v̄, z̄, x̄) = Lσ (u, ȳ, v̄, z̄; x̄) + 〈βl+1,1, u〉 +
l∑

i=1

〈βl+1,i+1, ȳi 〉.

(75)

Using (70), (71) and the definition of L̃σ , we have for i = 1, . . . , l that

L̃σ (u+, (y+
≤i−1, yi , ỹ

′≥i+1); ȳl+1, v̄, z̄, x̄) − Lσ (u+, (y+
≤i−1, yi , y

′≥i+1), v̄, z̄; x̄)
= L̃σ (u+, (y+

≤i−1, yi , y
′
i+1, . . . , y

′
l ); ȳl+1, v̄, z̄, x̄)

−Lσ (u+, (y+
≤i−1, yi , y

′≥i+1), v̄, z̄; x̄)
= 〈βp,i+1, yi 〉 + 〈σAiA∗

l+1(ȳl+1 − y′
l+1), yi 〉 + ci

= ci , (76)

where ci is a constant term given by

ci = 〈βl+1,1, u
+〉 +

i−1∑

j=1

〈βl+1, j+1, y+
j 〉 +

l∑

j=i+1

〈βl+1, j+1, y′
j 〉

+ θl+1(ȳl+1) − θl+1(y
′
l+1) + 〈x̄, A∗

l+1(ȳl+1 − y′
l+1)〉

+ σ

2
〈A∗

l+1(ȳl+1 − y′
l+1), 2(F∗u+ + A∗≤i−1y

+
≤i−1

+
l∑

j=i+1

A∗
j y

′
j − c̄) + A∗

l+1(ȳl+1 + y′
l+1)〉.

Thus, by using (74), (75) and (76) we know that (72) and (73) can be rewritten as

{
u+ = argminu Lσ (u, ȳ, v̄, z̄; x̄) + 〈δ̄θ , u〉 + σ

2 ‖u − ū‖2T f
,

y+
i =argminyi Lσ (u+, (y+

≤i−1, yi , y
′≥i+1), v̄, z̄; x̄)+ σ

2 ‖yi − ȳi‖2Tθi
, i = 1, . . . , l,

which, together with (64), shows that the equivalence between (55) and (56) holds for
p = l + 1. The proof of this part is completed.

Part two. In this part, we prove the equivalence between (56) and (57). Again, for the
case p = 1, it follows directly from Proposition 2.

Assume that the equivalence between (56) and (57) holds for all p ≤ l. We
shall prove that this equivalence also holds for p = l + 1. Write f0(·) ≡ f (·) +
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∑l
i=1〈βi,1, ·〉. Since f0 differs from f only with an extra linear term, we define

T f0 ≡ T f . In order to use Proposition 2, we consider the following optimization
problem with respect to u and yl+1:

min f0(u) + θl+1(yl+1) +
l∑

i=1

θi (ȳi ) + g(v̄) + ϕ(z̄)

s.t. F∗u + A∗
l+1yl+1 = c̄ − A∗≤l ȳ≤l . (77)

The augmented Lagrangian function associated with problem (77) is given as follows:

L0
σ (u, yl+1; ȳ≤l , v̄, z̄, x) = f0(u) + θl+1(yl+1) +

l∑

i=1

θi (ȳi ) + g(v̄) + ϕ(z̄)

+ 〈x, Γ (u, (ȳ≤l , yl+1), v̄, z̄)〉 + σ

2
‖Γ (u, (ȳ≤l , yl+1), v̄, z̄)‖2.

By observing that

L0
σ (u, ȳl+1; ȳ≤l , v̄, z̄, x̄) = Lσ (u, ȳ, v̄, z̄; x̄) +

l∑

i=1

〈βi,1, u〉 and T f0 ≡ T f ,

we can rewrite the first subproblem in (56) as

u+ = argminu L0
σ (u, ȳl+1; ȳ≤l , v̄, z̄, x̄) + 〈βl+1,1, u〉 + σ

2
‖u − ū‖2T f0

. (78)

By using the definition of y′
l+1 given in (54), we have

y′
l+1 = E−1

θl+1

(
σ−1(bl+1 − Al+1 x̄) + Tθl+1 ȳl+1 + Al+1A∗

l+1 ȳl+1 + Al+1γ̄
)
. (79)

Since

L0
σ (ū, yl+1; ȳ≤l , v̄, z̄, x̄) = Lσ (ū, (ȳ≤l , yl+1), v̄, z̄; x̄) +

l∑

i=1

〈βi,1, ū〉,

the point y′
l+1 can be rewritten equivalently as

y′
l+1 = argminyl+1

L0
σ (ū, yl+1; ȳ≤l , v̄, z̄, x̄) + σ

2
‖yl+1 − ȳl+1‖2Tθl+1

. (80)

Then, by applying Proposition 2 to problem (77) with respect to u and yl+1, we know
that problem (78) is equivalent to

u+ = argminu L0
σ (u, y′

l+1; ȳ≤l , v̄, z̄, x̄) + σ

2
‖u − ū‖2T f0

. (81)
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In order to apply our induction assumption to problem (81), we need to consider
the following optimization problem with respect to (u, y≤l):

min f (u) +
l∑

i=1

θi (yi ) + θl+1(y
′
l+1) + g(v̄) + ϕ(z̄)

s.t. F∗(u) + A∗≤l y≤l = c̄ − A∗
l+1y

′
l+1. (82)

The augmented Lagrangian function associated with problem (82) is given by

L̂σ (u, y≤l ; y′
l+1, v̄, z̄, x) = f (u) +

l∑

i=1

θi (yi ) + θl+1(y
′
l+1) + g(v̄) + ϕ(z̄)

+ 〈x, Γ (u, (y≤l , y
′
l+1), v̄, z̄)〉 + σ

2
‖Γ (u, (y≤l , y

′
l+1), v̄, z̄)‖2.

Define

γ̂ := −Γ (ū, (ȳ≤l , y
′
l+1), v̄, z̄) and hi := bi − Ai x̄ − Pi ȳi , i = 1, . . . , l.

For problem (82), we define the following associated terms

β̂l, j := A j−1A∗
l E−1

θl
(hl + σAl γ̂ ), j = 1, . . . , l

and for i = l − 1, . . . , 1,

β̂i, j := A j−1A∗
i E−1

θi

(
hi −

l∑

k=i+1

β̂k,i+1 + σAi γ̂

)
, j = 1, . . . , i.

The auxiliary linear term δ̂ associated with problem (82) is given by

δ̂ =
l∑

i=1
β̂i,1. (83)

We will show that, for i = l, . . . , 1,

β̂i, j = βi, j ∀ j = 1, . . . , i. (84)

Similar to what we have done in part one, we shall first prove that β̂l, j = βl, j for
j = 1, . . . , l. In fact, for j = 1, . . . , l, we have

βl, j = A j−1A∗
l E−1

θl
(hl − βl+1,l+1 + σAl γ̄ )

= A j−1A∗
l E−1

θl
(hl − AlA∗

l+1E−1
θl+1

(hl+1 + σAl+1γ̄ ) + σAl γ̄ )

= A j−1A∗
l E−1

θl
(hl − σAlΓ (ū, (ȳ≤l , y

′
l+1), v̄, z̄))

= A j−1A∗
l E−1

θl
(hl + σAl γ̂ ) = β̂l, j ,
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where the third equation follows from (79) and simple calculations. This shows that
(84) holds for i = l and j = 1, . . . , l. Nowwe assume that β̂i, j = βi, j for all i ≥ k+1
with k + 1 ≤ l and j = 1, . . . , i . Next, we shall prove that (84) holds for i = k and
j = 1, . . . , k. By direct calculations, we know for j = 1, . . . , k that

βk, j = A j−1A∗
kE−1

θk

(
hk −

l+1∑

s=k+1

βs,k + σAk γ̄

)

= A j−1A∗
kE−1

θk

(
hk −

l∑

s=k+1

β̂s,k − βl+1,k + σAk γ̄

)

= A j−1A∗
kE−1

θk

(
hk −

l∑

s=k+1

β̂s,k − AkA∗
l+1E−1

θl+1
(hl+1 + σAl+1γ̄ ) + σAk γ̄

)

= A j−1A∗
kE−1

θk

(
hk −

l∑

s=k+1

δ̂θs ,k − σAkΓ (ū, (ȳ≤l , y
′
l+1), v̄, z̄)

)

= A j−1A∗
kE−1

θk

(
hk −

l∑

s=k+1

δ̂θs ,k + σAk γ̂

)
= β̂k, j ,

which, shows that (84) holds for i = k and j = 1, . . . , k. Therefore, we have shown
that (84) holds.

For i = l, . . . , 1, define ŷ′
i ∈ Yi as

ŷ′
i = argminyi L̂σ (ū, (ȳ≤i−1, yi , ŷ

′≥i+1); y′
l+1, v̄, z̄, x̄) + σ

2
‖yi − ȳi‖2Tθi

= E−1
θi

(
σ−1bi − σ−1Ai x̄ + Tθi ȳi + AiA∗

i ȳi

−Ai�(ū, (ȳ≤i−1, ȳi , ŷ
′≥i+1, y

′
l+1), v̄, z̄)

)
,

where we use the convention ŷ′
l+1 = ∅. We will prove that

ŷ′
i = y′

i ∀ i = 1, . . . , l. (85)

From (85), we know that

ŷ′
l = E−1

θl

(
σ−1bl − σ−1Al x̄ + Tθl ȳl + AlA∗

l ȳl − AlΓ (ū, (ȳ≤i−1, ȳl , y
′
l+1), v̄, z̄)

)
,

which is exactly the same as y′
l defined in (54). This shows that (85) holds for i = l.

Now we assume that ŷ′
i = y′

i for all i ≥ k + 1 with k + 1 ≤ l. Next, we shall prove
that (85) holds for i = k.Again, by using the definition of ŷ′

k in (85) and the definition
of y′

k in (54), we see that
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ŷ′
k = E−1

θk

(
σ−1bk − σ−1Ak x̄ + Tθk ȳk + AkA∗

k ȳk−AkΓ (ū, (ȳ≤k−1, ȳk, ŷ′≥k+1, y
′
l+1), v̄, z̄)

)

= E−1
θk

(
σ−1bk − σ−1Ak x̄+Tθk ȳk+AkA∗

k ȳk−AkΓ (ū, (ȳ≤k−1, ȳk, y
′≥k+1), v̄, z̄)

)

= y′
k .

Thus, (85) is proven to be true.
By direct calculations, we obtain from (83) and (84) that

L0
σ (u, y′

l+1; ȳ≤l , v̄, z̄, x̄) − L̂σ (u, ȳ≤l; y′
l+1, v̄, z̄, x̄) =

l∑

i=1

〈βi,1, u〉 = 〈̂δ, u〉.

(86)

By using (86) and T f0 ≡ T f , we can reformulate problem (81) equivalently as

u+ = argminu L̂σ (u, ȳ≤l; y′
l+1, v̄, z̄, x̄) + 〈̂δ, u〉 + σ

2
‖u − ū‖2T f

. (87)

Then, from our induction assumption we know that problem (87) can be equivalently
recast as,

{
ŷ′
i = argminyi L̂σ (ū, (ȳ≤i−1, yi , ŷ′≥i+1); y′

l+1, v̄, z̄, x̄) + σ
2 ‖yi − ȳi‖2Tθi

, i = l, . . . , 1

u+ = argminu L̂σ (u, ŷ′≤l ; y′
l+1, v̄, z̄, x̄) + σ

2 ‖u − ū‖2T f
.

(88)
By using (85) and observing

L̂σ (u, y≤l; y′
l+1, v̄, z̄, x̄) = Lσ (u, y≤l , y

′
l+1, v̄, z̄; x̄),

we know that (88) is equivalent to

{
y′
i = argminyi Lσ (ū, (ȳ≤i−1, yi , y′≥i+1), v̄, z̄; x̄) + σ

2 ‖yi − ȳi‖2Tθi
, i = l, . . . , 1,

u+ = argminu Lσ (u, (y′≤l , y
′
l+1), v̄, z̄; x̄) + σ

2 ‖u − ū‖2T f
,

which, together with (80), shows that the equivalence between (56) and (57) holds for
p = l + 1. This completes the proof to the second part of this proposition. ��

Proposition 5 For any k ≥ 0, the point (xk+1, yk+1, vk+1, zk+1) obtained by Algo-
rithm SCB-SPADMM for solving problem (45) can be generated exactly according to
the following iteration:

123



362 X. Li et al.

(uk+1, yk+1) = argminu,y

⎧
⎨

⎩
Lσ (u, y, vk , zk; xk)
+ σ

2 ‖(u, y≤p−1) − (uk, yk≤p−1)‖2T̂ f p
+ σ

2 ‖yp − ykp‖2Tθp

⎫
⎬

⎭ ,

(vk+1, zk+1) = argminv,z

⎧
⎨

⎩
Lσ (uk+1, yk+1, v, z; xk)
+ σ

2 ‖(v, z≤q−1) − (vk , zk≤q−1)‖2T̂gq
+ σ

2 ‖zq − zkq‖2Tϕq

⎫
⎬

⎭ ,

xk+1 = xk + τσ (F∗uk+1 + A∗yk+1 + G∗vk+1 + B∗zk+1 − c).

Proof The (uk+1, yk+1) part directly follows from Proposition 4. The conclusion
for the (vk+1, zk+1) part can be obtained in similar arguments to the part about
(uk+1, yk+1). Hence, the required result follows. ��

Write Σ f1 ≡ Σ f and Σg1 ≡ Σg . Define

Σ fi :=
(

Σ fi−1

Pi−1

)
, i = 2, . . . , p + 1

and

Σg j :=
(

Σg j−1

Q j−1

)
, j = 2, . . . , q + 1.

In order to prove the convergence of our algorithmSCB-SPADMMfor solvingproblem
(45), we need the following proposition.

Proposition 6 It holds that

Fp+1F∗
p+1 + σ−1Σ f p+1 +

(
T̂ f p

Tθp

)
� 0 ⇔ FF∗ + σ−1Σ f + T f � 0, (89)

Gq+1G∗
q+1 + σ−1Σgq+1 +

(
T̂gq

Tϕq

)
� 0 ⇔ GG∗ + σ−1Σg + Tg � 0. (90)

Proof We only need to prove (89) as (90) can be obtained in the similar manner. For
i = 3, . . . , p + 1, we have

FiF∗
i + σ−1Σ fi +

(
T̂ fi−1

Tθi−1

)

=
(
Fi−1F∗

i−1 + σ−1Σ fi−1 + T̂ fi−1 Fi−1A∗
i−1

Ai−1F∗
i−1 Ai−1A∗

i−1 + σ−1Pi−1 + Tθi−1

)
.

Since Eθi−1 = Ai−1A∗
i−1 + σ−1Pi−1 + Tθi−1 � 0 for all i ≥ 3, by the Schur comple-

ment condition for ensuring the positive definiteness of linear operators, we have
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(
Fi−1F∗

i−1 + σ−1Σ fi−1 + T̂ fi−1 Fi−1A∗
i−1

Ai−1F∗
i−1 Eθi−1

)
� 0

�
Fi−1F∗

i−1 + σ−1Σ fi−1 + T̂ fi−1 − Fi−1A∗
i−1E

−1
θi−1

Ai−1F∗
i−1 � 0

�
Fi−1F∗

i−1 + σ−1Σ fi−1 +
(
T̂ fi−2

Tθi−2

)
� 0.

Therefore, by taking i = 3, we obtain that

Fp+1F∗
p+1+σ−1Σ f p+1 +

(
T̂ f p

Tθp

)
� 0 ⇔ F2F∗

2 + σ−1Σ f2 +
(
T̂ f1

Tθ1

)
� 0.

Note that

F2F∗
2 +σ−1Σ f2 +

(
T̂ f1

Tθ1

)
=
(
F1F∗

1 + σ−1Σ f1 + T̂ f1 F1A∗
1

A1F∗
1 A1A∗

1 + σ−1P1 + Tθ1

)
.

Since Eθ1 = A1A∗
1 + σ−1P1 + Tθ1 � 0, again by the Schur complement condition

for ensuring the positive definiteness of linear operators, we have

(
F1F∗

1 + σ−1Σ f1 + T̂ f1 F1A∗
1

A1F∗
1 Eθ1

)
� 0

�
F1F∗

1 + σ−1Σ f1 + T̂ f1 − F1A∗
1E

−1
θ1

A1F∗
1 � 0

�
FF∗ + σ−1Σ f + T f � 0.

Thus, we have

Fp+1F∗
p+1 + σ−1Σ f p+1 +

(
T f p

Tθp

)
� 0 ⇔ FF∗ + σ−1Σ f + T f � 0.

The proof of this proposition is completed. ��
Note that in the context of the multi-block convex optimization problem (45),

Assumption 2 takes the following form:

Assumption 4 There exists (û, ŷ, v̂, ẑ) ∈ ri(dom f ) ×Y × ri(dom g) ×Z such that
F∗û + A∗ ŷ + G∗v̂ + B∗ ẑ = c.

After all these preparations, we can finally state our main convergence theorem.

Theorem 3 LetΣ f andΣg be the two self-adjoint and positive semidefinite operators
defined by (24) and (25), respectively. Suppose that the solution set of problem (45)
is nonempty and that Assumption 4 holds. Assume that T f and Tg are chosen such
that the sequence {(uk, yk, vk, zk, xk)} generated by Algorithm SCB-SPADMM is well
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defined. Recall that Tθi is defined in (48) for 1 ≤ i ≤ p and Tϕ j is defined in (49)

for 1 ≤ j ≤ q. Then, under the condition either (a) τ ∈ (0, (1 + √
5 )/2) or (b)

τ ≥ (1 + √
5 )/2 but

∑∞
k=0(‖G∗(vk+1 − vk) + B∗(zk+1 − zk)‖2 + τ−1‖F∗uk+1 +

A∗yk+1 + G∗vk+1 + B∗zk+1 − c‖2) < ∞, the following results hold:

(i) If (u∞, y∞, v∞, z∞, x∞) is an accumulation point of {(uk, yk, vk, zk, xk)}, then
(u∞, y∞, v∞, z∞) solves problem (45) and x∞ solves (48), respectively.

(ii) If both σ−1Σ f +T f +FF∗ and σ−1Σg+Tg+GG∗ are positive definite, then the
sequence {(uk, yk, vk, zk, xk)}, which is automatically well defined, converges
to a unique limit, say, (u∞, y∞, v∞, z∞, x∞) with (u∞, y∞, v∞, z∞) solving
problem (45) and x∞ solving (48), respectively.

(iii) When the u, y-part disappears, the corresponding results in parts (i)–(ii) hold
under the condition either τ ∈ (0, 2) or τ ≥ 2 but

∑∞
k=0 ‖G∗vk+1 + B∗zk+1 −

c‖2 < ∞.

Proof By combining Theorem 1 with Propositions 5 and 6, we can readily obtain the
conclusions of this theorem. ��

Remark 3 Our SCB-SPADMM algorithm actually provides a potentially efficient
approach to handle large-scale and dense linear constraints. When dealing with such
difficult linear systems, instead of being trapped with the possible convergence issues
brought about by inexact solvers such as conjugate gradient methods, one can always
first decompose the large systems into several smaller pieces, and then apply our SCB-
SPADMM algorithm to the decomposed problems. As a result, these smaller systems
can always be handled by adding suitable proximal terms or by solving them exactly.

4 Numerical experiments

We first examine the optimality condition for the general problem (45) and its dual
(46). Suppose that the solution set of problem (45) is nonempty and that Assumption
4 holds. Then in order that (u∗, y∗, v∗, z∗) be an optimal solution for (45) and x∗ be
an optimal solution for (46), it is necessary and sufficient that (u∗, y∗, v∗, z∗) and x∗
satisfy

⎧
⎪⎨

⎪⎩

F∗u +∑p
i=1A∗

i yi + G∗v +∑q
j=1 B∗

j z j = c,

f (u) + f ∗(−Fx) = 〈−Fx, u〉, θi (yi ) + θ∗
i (−Ai x) = 〈−Ai x, yi 〉,

g(v) + g∗(−Gx) = 〈−Gx, v〉, ϕi (zi ) + ϕ∗
i (−Bi x) = 〈−Bi x, zi 〉,

(91)

for i = 1, . . . , p, and j = 1, . . . , q. We will measure the accuracy of an approximate
solution based on the above optimality condition. If the given problem is properly
scaled, the following relative residual is a natural choice to be used in our stopping
criterion:

η = max{ηP , η f , ηg, ηθ , ηϕ}, (92)
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where

ηP = ‖F∗u + A∗y + G∗v + B∗z − c‖
1 + ‖c‖ , η f = ‖u − Prox f (u − Fx)‖

1 + ‖u‖ + ‖Fx‖ ,

ηg = ‖v − Proxg(v − Gx)‖
1 + ‖v‖ + ‖Gx‖ , ηθ = max

i=1,...,p

‖yi − Proxθi (yi − Ai x)‖
1 + ‖yi‖ + ‖Ai x‖ ,

ηϕ = max
j=1,...,q

‖z j − Proxϕ j (z j − B j x)‖
1 + ‖z j‖ + ‖B j x‖ .

Additionally, we compute the relative gap by

ηgap = objP − objD
1 + | objP | + | objD| ,

where objP := f (u) +∑p
i=1 θi (yi ) + g(v) +∑q

j=1 ϕ j (z j ) and objD := −〈c, x〉 −
f ∗(s) −∑p

i=1 θ∗
i (ri ) − g∗(t) −∑q

j=1 ϕ∗
j (w j ). We test the following problem sets.

4.1 Numerical results for convex quadratic SDP

Consider the following QSDP problem

min
1

2
〈X, QX〉 + 〈C, X〉

s.t. AE X = bE , AI X ≥ bI , X ∈ Sn+ ∩ K (93)

and its dual problem

max −δ∗
K(−Z) + 〈bI , yI 〉 − 1

2
〈X ′, QX ′〉 + 〈bE , yE 〉

s.t. Z + A∗
I yI − QX ′ + S + A∗

E yE = C, yI ≥ 0, S ∈ Sn+ . (94)

We use X ′ here to indicate the fact that X ′ can be different from the primal variable
X . Despite this fact, we have that at the optimal point, QX = QX ′. Since Q is
only assumed to be a self-adjoint positive semidefinite linear operator, the augmented
Lagrangian function associated with (94) may not be strongly convex with respect
to X ′. Without further adding a proximal term, we propose the following strategy
to rectify this difficulty. Since Q is positive semidefinite, Q can be decomposed as
Q = B∗B for some linear map B. By introducing a new variable Ξ = −BX ′, the
problem (94) can be rewritten as follows:

max −δ∗
K(−Z) + 〈bI , yI 〉 − 1

2
‖Ξ‖2F + 〈bE , yE 〉

s.t. Z + A∗
I yI + B∗Ξ + S + A∗

E yE = C, yI ≥ 0, S ∈ Sn+. (95)
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Note that now the augmented Lagrangian function associated with (95) is strongly
convex with respect to Ξ . Surprisingly, much to our delight, we can update the itera-
tions in our SCB-SPADMMwithout explicitly computingB orB∗. Given Z , ȳI , S, ȳE
and X , denote

Ξ+ := argminΞ

1

2
‖Ξ‖2 + σ

2
‖Z + A∗

I ȳI + B∗Ξ + S + A∗
E ȳE − C + σ−1X‖2

= −(I + σBB∗)−1BR,

where R = X + σ(Z + A∗
I ȳI + S + A∗

E ȳE − C). In updating the SCB-SPADMM
iterations, we actually do not needΞ+ explicitly, but only needΥ + := −B∗Ξ+. From
the condition that (I+σBB∗)(−Ξ+) = BR, we get (I+σB∗B)(−B∗Ξ+) = B∗BR,
hence we can compute Υ + via Q:

Υ + = (I + σQ)−1(QR).

In fact,Υ := −B∗Ξ can be viewed as the shadow ofQX ′.Meanwhile, for the function
δ∗
K(−Z), we have the following useful observation that for any λ > 0,

Z+ = argmin δ∗
K(−Z) + λ

2
‖Z − Z‖2 = Z + 1

λ
ΠK(−λZ), (96)

where (96) follows from the following Moreau decomposition:

x = Proxτ f ∗(x) + τProx f/τ (x/τ), ∀ τ > 0.

In our numerical experiments, we test QSDP problems without inequality con-
straints (i.e., AI and bI are vacuous). We consider first the linear operator Q given
by Q(X) = 1

2 (BX + XB) for a given matrix B ∈ Sn+. Suppose that we have the
eigenvalue decomposition B = PΛPT , where Λ = diag(λ) and λ = (λ1, . . . , λn)

T

is the vector of eigenvalues of B. Then

〈X, QX〉 = 1

2
〈X̂ , ΛX̂ + X̂Λ〉 = 1

2

n∑

i=1

n∑

j=1

X̂2
i j (λi + λ j )

=
n∑

i=1

n∑

j=1

X̂2
i j H

2
i j = 〈X, B∗BX〉,

where X̂ = PT X P , Hi j =
√

λi+λ j
2 , BX = H ◦ (PT X P) and B∗Ξ = P(H ◦Ξ)PT .

In our numerical experiments, the matrix B is a low rank random symmetric positive
semidefinite matrix. Note that when rank(B) = 0 andK is a polyhedral cone, problem
(93) reduces to the SDP problem considered in [21]. In our experiments, we test both
the caseswhere rank(B) = 5 and rank(B) = 10.All the linear constraints are extracted
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from the numerical test examples in [21] (Sect. 4.1). For instance, we construct QSDP-
BIQ problem sets based on the formulation in [21] as follows:

min
1

2
〈X, QX〉 + 1

2
〈Q, X0〉 + 〈c, x〉

s.t. diag(X0) − x = 0, α = 1,

X =
(
X0 x
xT α

)
∈ Sn+, X ∈ K := {X ∈ Sn : X ≥ 0}.

In our numerical experiments, the test data for Q and c are taken fromBiqMac Library
maintained by Wiegele, which is available at http://biqmac.uni-klu.ac.at/biqmaclib.
html. In the same sprit, we construct test problemsQSDP-BIQ,QSDP-θ+, QSDP-QAP
and QSDP-RCP.

Here we compare our algorithm Scb- spadmm with the directly extended Admm
(with step length τ = 1) and the convergent alternating direction method with a
Gaussian back substitution proposed in [25] (we call themethodAdmmgb here and use
the parameter α = 0.99 in the Gaussian back substitution step). We have implemented
all the algorithms Scb- spadmm, Admm and Admmgb inMatlab version 7.13. The
numerical results reported later are obtained from a PC with 24 GB memory and
2.80GHz dual-core CPU running on 64-bit Windows Operating System.

We measure the accuracy of an approximate optimal solution (X, Z , Ξ, S, yE ) for
QSDP (93) and its dual (95) by using the following relative residual obtained from
the general optimality condition (91):

ηqsdp = max{ηP , ηD, ηZ , ηS1 , ηS2}, (97)

where

ηP = ‖AE X − bE‖
1 + ‖bE‖ , ηD = ‖Z + B∗Ξ + S + A∗

E yE − C‖
1 + ‖C‖ ,

ηZ = ‖X − ΠK(X − Z)‖
1 + ‖X‖ + ‖Z‖ , ηS1 = |〈S, X〉|

1 + ‖S‖ + ‖X‖ , ηS2 = ‖X − ΠSn+(X)‖
1 + ‖X‖ .

We terminate the solvers Scb- spadmm, Admm and Admmgb when ηqsdp < 10−6

with the maximum number of iterations set at 25,000.
The table in the supplementarymaterial (OnlineResource 1) reports detailed numer-

ical results for Scb- spadmm,Admm andAdmmgb in solving some large scale QSDP
problems. Here, we only list the results for the case of rank(B) = 10, since we obtain
similar results for the case of rank(B) = 5. Our numerical experience also indicates
that the order of solving the subproblemsgenerally has no influence on the performance
of Scb- spadmm . From the numerical results, one can observe that Scb- spadmm is
generally the fastest in terms of the computing time, especially when the problem size
is large. In addition, we can see that Scb- spadmm and Admm solved all instances to
the required accuracy, while Admmgb failed in certain cases.

Figure 1 shows the performance profiles in terms of the number of iterations and
computing time for Scb- spadmm, Admm and Admmgb, for all the tested large scale
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Fig. 1 Performance profiles of Scb- spadmm, Admm and Admmgb for the tested large scale QSDP

QSDP problems. We recall that a point (x, y) is in the performance profiles curve
of a method if and only if it can solve (100y)% of all the tested problems no slower
than x times of any other methods. We may observe that for the majority of the
tested problems, Scb- spadmm takes the least number of iterations. Besides, in terms
of computing time, it can be seen that both Scb- spadmm and Admm outperform
Admmgb by a significant margin, even though Admm has no convergence guarantee.

4.2 Numerical results for nearest correlation matrix (NCM) approximations

In this subsection, we first consider the problem of finding the nearest correlation
matrix (NCM) to a given matrix G ∈ Sn :

min
1

2
‖H ◦ (X − G)‖2F + 〈C, X〉

s.t. AE X = bE , X ∈ Sn+ ∩ K, (98)

where H ∈ Sn is a nonnegative weight matrix, AE : Sn → 	mE is a linear map,
G ∈ Sn ,C ∈ Sn and bE ∈ 	mE are given data,K is a nonempty simple closed convex
set, e.g., K = {W ∈ Sn : L ≤ W ≤ U } with L ,U ∈ Sn being given matrices. In
fact, this is also an instance of the general model of problem (93) with no inequality
constraints, QX = H ◦ H ◦ X and BX = H ◦ X . We place this special example of
QSDP here since an extension will be considered next.

Now, let’s consider an interesting variant of the above NCM problem:

min ‖H ◦ (X − G)‖2 + 〈C, X〉
s.t. AE X = bE , X ∈ Sn+ ∩ K. (99)

Note, in (99), instead of the Frobenius norm, we use the spectral norm. By introducing
a slack variable Y , we can reformulate problem (99) as

min ‖Y‖2 + 〈C, X〉
s.t. H ◦ (X − G) = Y, AE X = bE , X ∈ Sn+ ∩ K. (100)
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The dual of problem (100) is given by

max −δ∗
K(−Z) + 〈H ◦ G, Ξ 〉 + 〈bE , yE 〉

s.t. Z + H ◦ Ξ + S + A∗
E yE = C, ‖Ξ‖∗ ≤ 1, S ∈ Sn+, (101)

which is obviously equivalent to the following problem

max −δ∗
K(−Z) + 〈H ◦ G, Ξ 〉 + 〈bE , yE 〉

s.t. Z + H ◦ Ξ + S + A∗
E yE = C, ‖Γ ‖∗ ≤ 1, S ∈ Sn+,

D∗Γ − D∗Ξ = 0, (102)

where D : Sn → Sn is a nonsingular linear operator. Note that Scb- spadmm can
not be directly applied to solve the problem (101) while the equivalent reformulation
(102) fits our model nicely.

In our numerical test, matrix Ĝ is the gene correlation matrix from [26]. For testing
purpose we perturb Ĝ to

G := (1 − α)Ĝ + αE,

where α ∈ (0, 1) and E is a randomly generated symmetric matrix with entries in
[−1, 1]. We also set Gii = 1, i = 1, . . . , n. The weight matrix H is generated from
a weight matrix H0 used by a hedge fund company. The matrix H0 is a 93 × 93
symmetric matrix with all positive entries. It has about 24% of the entries equal to
10−5 and the rest are distributed in the interval [2, 1.28 × 103]. It has 28 eigenvalues
in the interval [−520,−0.04], 11 eigenvalues in the interval [−5×10−13, 2×10−13],
and the rest of 54 eigenvalues in the interval [10−4, 2 × 104]. The Matlab code for
generating the matrix H is given by

tmp = kron(ones(25,25),H0); H = tmp(1:n,1:n); H = (H’+H)/2.

The reason for using such a weight matrix is because the resulting problems gener-
ated are more challenging to solve as opposed to a randomly generated weight matrix.
Note that thematricesG and H are generated in the sameway as in [27]. For simplicity,
we further set C = 0 and K = {X ∈ Sn : X ≥ −0.5}.

Generally speaking, there is nowidely accepted stopping criterion for spectral norm
H-weighted NCM problem (100). Here, with reference to the general relative residue
(92), we measure the accuracy of an approximate optimal solution (X, Z , Ξ, S, yE )

for spectral normH-weighted NCMproblem problem (99) [equivalently (100)] and its
dual (101) [equivalently (102)] by using the following relative residual derived from
the general optimality condition (91):

ηsncm = max{ηP , ηD, ηZ , ηS1 , ηS2 , ηΞ }, (103)
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Table 1 The performance of Scb- spadmm, Admm, Admmgb on Frobenius norm H-weighted NCM
problems [dual of (98)] (accuracy = 10−6)

Problem ns α Iteration ηqsdp ηgap Time
scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb

Lymph 587 0.10 263|522|696 9.9-7|9.9-7|9.9-7 -4.4-7|-4.5-7|-4.0-7 30|53|1:23
587 0.05 264|356|592 9.9-7|9.9-7|9.9-7 -3.9-7|-3.4-7|-3.0-7 29|35|1:08

ER 692 0.10 268|355|711 9.9-7|9.9-7|9.9-7 -5.1-7|-4.7-7|-4.2-7 43|51|1:58
692 0.05 226|293|603 9.9-7|9.9-7|9.9-7 -4.2-7|-3.8-7|-3.3-7 37|43|1:54

Arabid. 834 0.10 510|528|725 9.9-7|9.9-7|9.9-7 -5.9-7|-5.3-7|-3.9-7 2:11|2:02|3:03
834 0.05 444|470|650 9.9-7|9.9-7|9.9-7 -5.8-7|-5.2-7|-4.8-7 1:51|1:43|2:44

Leukemia 1,255 0.10 292|420|826 9.9-7|9.9-7|9.9-7 -5.4-7|-5.3-7|-4.4-7 3:13|4:11|9:13
1,255 0.05 251|408|670 9.9-7|9.7-7|9.6-7 -5.4-7|-4.9-7|-4.0-7 2:48|4:03|7:35

Heredit. 1,869 0.10 555|634|871 9.9-7|9.9-7|9.9-7 -9.1-7|-9.1-7|-7.0-7 17:39|18:38|28:01
1,869 0.05 530|626|839 9.9-7|9.9-7|9.9-7 -8.7-7|-8.7-7|-5.2-7 16:50|18:15|26:34

In the table, “scb” stands for Scb- spadmm and “gb” stands for Admmgb, respectively. The computation
time is in the format of “hours:minutes:seconds”

where

ηP = ‖AE X − bE‖
1 + ‖bE‖ , ηD = ‖Z + H ◦ Ξ + S + A∗

E yE‖
1 + ‖Z‖ + ‖S‖ ,

ηZ = ‖X − ΠK(X − Z)‖
1 + ‖X‖ + ‖Z‖ , ηS1 = |〈S, X〉|

1 + ‖S‖ + ‖X‖ , ηS2 = ‖X − ΠSn+(X)‖
1 + ‖X‖ ,

ηΞ = ‖Ξ − Π{X∈	n×n :‖X‖∗≤1}(Ξ − H ◦ (X − G)‖
1 + ‖Ξ‖ + ‖H ◦ (X − G)‖ .

Firstly, numerical results for solving F-norm H-weighted NCM problems (99) are
reported. We compare all three algorithms, namely Scb- spadmm, Admm, Admmgb
using the relative residue (97). We terminate the solvers when ηqsdp < 10−6 with the
maximum number of iterations set at 25,000.

In Table 1, we report detailed numerical results for Scb- spadmm, Admm and
Admmgb in solving various instances of F-norm H-weighted NCM problem. As we
can see from Table 1, our Scb- spadmm is certainly more efficient than the other two
algorithms on most of the problems tested.

The rest of this subsection is devoted to the numerical results of the spectral norm
H-weighted NCM problem (99). As mentioned before, Scb- spadmm is applied to
solve the problem (102) rather than (101). We implemented all the algorithms for
solving problem (102) using the relative residue (103). We terminate the solvers
when ηsncm < 10−5 with the maximum number of iterations set at 25,000. In Table
2, we report detailed numerical results for Scb- spadmm, Admm and Admmgb in
solving various instances of spectral norm H-weighted NCM problem. As we can
see from Table 2, our Scb- spadmm is much more efficient than the other two
algorithms.
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Table 2 The performance of Scb- spadmm,Admm,Admmgb on spectral normH-weightedNCMproblem
(102) (accuracy = 10−5)

Problem ns α Iteration ηsncm ηgap Time
scb|admm|gb scb|admm|gb scb|admm|gb scb|admm|gb

Lymph 587 0.10 4110|6048|7131 9.9-6|9.9-6|1.0-5 -3.4-5|-2.8-5|-2.7-5 13:21|17:10|21:43
587 0.05 5001|7401|8101 9.8-6|9.9-6|9.9-6 -2.0-5|-2.3-5|-8.1-6 19:41|21:25|25:13

ER 692 0.10 3251|4844|6478 9.9-6|9.9-6|1.0-5 -3.1-5|-2.6-5|-6.0-6 15:06|19:30|28:03
692 0.05 4201|5851|7548 9.3-6|9.8-6|1.0-5 -3.5-5|-2.9-5|-3.4-5 18:44|23:46|32:57

Arabid. 834 0.10 3344|6251|7965 9.9-6|9.7-6|1.0-5 -3.8-5|-2.0-5|-3.7-5 23:20|40:12|54:31
834 0.05 2496|3101|3231 9.9-6|9.9-6|1.0-5 -9.1-5|-4.3-5|-5.3-5 17:03|19:53|21:56

Leukemia 1,255 0.10 4351|6102|7301 9.9-6|9.9-6|1.0-5 -3.7-5|-3.3-5|-3.0-5 1:22:42|1:49:02|2:16:52
1,255 0.05 3957|5851|10151 9.9-6|9.7-6|9.5-6 -7.2-5|-5.7-5|-1.1-5 1:18:19|1:44:47|3:26:08

In the table, “scb” stands for Scb- spadmm and “gb” stands for Admmgb, respectively. The computation
time is in the format of “hours:minutes:seconds”

Table 3 The performance of Ladmm, Ladmmgb on spectral normH-weighted NCM problem(101) (accu-
racy = 10−5)

Problem ns α Iteration ηsncm ηgap Time
ladmm|lgb ladmm|lgb ladmm|lgb ladmm|lgb

Lymph 587 0.10 8,401 | 25,000 9.9-6 | 1.4-5 -1.6-5 | -2.1-5 23:59 | 1:22:58
Lymph 587 0.05 13,609 | 25,000 9.9-6 | 2.3-5 -1.6-5 | -4.2-5 39:29 | 1:18:50
In the table, “lgb” stands for Ladmmgb. The computation time is in the format of “hours:minutes:seconds”

Observe that although there is no convergence guarantee, one may still apply the
directly extended Admm with 4 blocks to the original dual problem (101) by adding
a proximal term for the Ξ part. We call this method Ladmm. Moreover, by using the
same proximal strategy for Ξ , a convergent linearized alternating direction method
with a Gausssian back substitution proposed in [28] (we call the method Ladmmgb
here and use the parameter α = 0.99 in the Gasussian back substitution step) can
also be applied to the original problem (101). We have also implemented Ladmm and
Ladmmgb inMatlab. Our experiments show that solving the problem (101) directly
is much slower than solving the equivalent problem (102). Thus, the reformulation of
(101)–(102) is in fact advantageous for both Admm and Admmgb. In Table 3, for the
purpose of illustrationwe list a couple of detailed numerical results on the performance
of Ladmm and Ladmmgb.

5 Conclusions

In this paper, we have proposed a Schur complement based convergent yet efficient
semi-proximal ADMM for solving convex programming problems, with a coupling
linear equality constraint, whose objective function is the sum of two proper closed
convex functions plus an arbitrary number of convex quadratic or linear functions. The
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ability of dealing with an arbitrary number of convex quadratic or linear functions in
the objective function makes the proposed algorithm very flexible in solving various
multi-block convex optimization problems. By conducting numerical experiments on
QSDP and its extensions, we have presented convincing numerical results to demon-
strate the superior performance of our proposed SCB-SPADMM. As mentioned in the
introduction, our primary motivation of introducing this SCB-SPADMM is to quickly
generate a good initial point so as to warm-start methods which have fast local con-
vergence properties. For standard linear SDP and linear SDP with doubly nonnegative
constraints, this has already been done by Zhao et al. [23] and Yang, Sun and Toh in
[24], respectively. Naturally, our next target is to extend the approach of [23,24] to
solve QSDP with an initial point generated by SCB-SPADMM. We will report our
corresponding findings in subsequent works.
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