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Abstract

Extending the characterization of the directional derivatives of a strongly regular solution to a
variational inequality under parameter perturbations, this paper derives a first-order sensitivity result
for a monotone-plus affine variational inequality (AVI) having non-isolated solutions. The result
employs a “directional AVI” whose solutions provide the directional derivatives, if they exist, of some
invariant constants of the original AVI when its data are perturbed. Solvability of the directional
AVI is characterized in terms of the direction of data perturbation. An application of this result to
the support-vector machine quadratic program is discussed. An extension to a linearly constrained
variational inequality defined by a strongly monotone composite mapping is also addressed.

1 Introduction

Starting with the seminal work of S.M. Robinson on differentiable inequality systems [21] in the early
1970’s, modern sensitivity analysis of nonlinear programs (NLPs) and variational inequalities (VIs) under
parameter perturbations is a well researched topic in continuous optimization. The reference [2] provides
an excellent comprehensive account of this subject, including the treatment of infinite-dimensional prob-
lems. Offering a different approach, Chapter 5 of [10] treats the finite-dimensional variational inequality
and complementarity problems in detail. These analyses are generally of 2 kinds: local analysis of an
isolated solution, and global continuity properties of the solution sets. Under the strong regularity prop-
erty introduced in [22], the former local analysis includes the directional differentiability of the solution
and the characterization of such a derivative. In contrast, relying on an upper Lipschitzian property of
polyhedral multifunctions discovered by Robinson [23], the sensitivity analysis of the solution set of a VI
is restricted mainly to affine problems.

The present paper is motivated by several sources. Foremost is a question raised by the above
background; namely, is it possible to derive a “first-order” sensitivity result for certain constants of
an affine variational inequality (AVI) with non-unique solutions, and more generally, to a nonlinear
variational inequality (VI)? To give an example to explain this question, consider a convex quadratic
program (QP). It is known, by a basic result due to Mangasarian [18], that the gradient of the objective
function is a constant on the set of optimal solutions. Thus by a result due originally to M.S. Gowda
[10, Exercise 5.6.14], it follows that the said gradient is a single-valued, piecewise linear, thus Lipschitz
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continuous, function of the right-hand side of the constraints of the program. Such Lipschitz continuity
is a zeroth-order sensitivity property. A first-order sensitivity property would be the differentiability of
the optimal gradient as a function of the data. By known theory of piecewise linear functions, cf. the
habilitation thesis of Scholtes [25] and [10, Lemma 4.6.1], it follows that the directional derivatives of the
optimal gradient exist. Nevertheless, the characterization and computation of such derivatives remain
open. In particular, it is not known whether a directional derivative can be derived from the optimal
solutions of a related quadratic program. Part of the objective of this paper is to provide an affirmative
answer to the latter question in the broader context of a “monotone-plus” AVI and its generalization to
a linearly constrained “strongly monotone composite” VI. A recent paper [24] has established that the
solution set of such an AVI is a Lipschitz multifunction of the right-hand side of the constraints defining
the polyhedron of the VI whose defining function is not perturbed. A related paper [15] establishes a
local sensitivity property of an isolated solution of a linearly constrained VI under a coherent orientation
assumption on the solution but without the co-coercivity assumption, which is a global property on the
defining function.

Another important motivation for the present work occurs in the context of a specific convex quadratic
program that provides the optimization formulation for a support vector machine (SVM). Such a QP
depends on 2 crucial parameters whose choice has a significant effect on the solution of the problem, and
more importantly, on the generalization power of the SVM. Several recent works in the machine learning
community [6, 7, 8] have suggested the choice of these parameters via the minimization of an “out-of-
sample” error by a gradient descent method; in general, one has to be careful with the application of such a
gradient-based method because the out-of-sample error is only a directionally differentiable function of the
model parameters. Most recently, this idea of out-of-sample error minimization is significantly expanded
in several papers [1, 13, 14], in which a bilevel programming approach to cross-validated support-vector
regression and classification is proposed. The sensitivity results obtained in this paper provide a rigorous
exposition of the directional differentiability of the SVM solution as a function of the model parameters.

2 Monotone-Plus AVIs

For a given n-vector q, an n× n matrix M (not necessarily symmetric), and a polyhedron

K , {x ∈ Rn : Ax ≤ b },

where A is an m × n matrix and b is an m-vector, consider the affine variational inequality, which we
denote AVI (q, b;M, A), of finding a vector x ∈ K such that

( y − x )T ( q + Mx ) ≥ 0, ∀ y ∈ K.

Throughout this section, the pair of matrices (M, A) is fixed but the pair of vectors (q, b) is subject to
perturbations; moreover, we make the blanket assumption that the set K is nonempty and the matrix M
is positive semidefinite-plus; the latter means that M is positive semidefinite and satisfies the implication:

xT Mx = 0 ⇒ Mx = 0.

Such a monotone-plus AVI includes the case of the convex quadratic program:

minimize
x∈Rn

qT x + 1
2 xT Mx

subject to Ax ≤ b,
(1)

where M is symmetric positive semidefinite. By a basic result of Luo and Tseng [17], it is known that M
is positive semidefinite-plus if and only if M = EGET for some n× ` matrix E and some `× ` positive
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definite (not necessarily symmetric) matrix G; see also [10, Exercise 2.9.4]. This characterization of a
positive semidefinite-plus matrix serves as the basis for a subsequent generalization to a certain class
of linearly constrained variational inequalities defined by a (nonlinear) “strongly monotone composite”
map; see Section 4.

A special case of the monotone-plus AVI is worth-mentioning, namely when M = EGET with G
positive definite and q = ET r for some vector r. In this case, the monotone AVI (q, b;M, A) in the variable
x is equivalent to the strongly monotone AVI of finding a vector y ∈ K̂ , {y = ET x for some x ∈ K}
such that (y ′ − y)T (r + Gy) ≥ 0 for all y ′ ∈ K̂. In this case, the first-order sensitivity analysis of the
unique solution y to the latter AVI as a function of r for fixed (b;E, G,A) is well understood. This analysis
pertains to the perturbation of q in the range of ET with b fixed. While the simultaneous perturbation
of (r, b) can be similarly analyzed using the positive definiteness of G, the general case where q does not
belong to the range of ET is not covered by existing results; the treatment of this case, which is not
trivial, is the goal of this section.

Let R(M, A) denotes the set of pairs (q, b) for which the AVI (q, b;M, A) has a solution. It is well
known that R(M, A) consists of all pairs (q, b) for which there exists (x, λ) ∈ Rn+m such that

0 = q + Mx + AT λ

0 ≤ λ, b−Ax ≥ 0.

Thus R(M, A) =
[ −M −AT

A 0

]
(Rn × Rm

+ ) +
( { 0 } × Rm

+

)
, showing that R(M, A) is a convex poly-

hedral cone. For each (q, b) ∈ R(M, A), let SOL(q, b;M, A) denote the nonempty set of solutions to
the AVI (q, b;M, A). While SOL(q, b;M, A) is in general a convex polyhedron with multiple elements,
it follows from the positive semidefinite-plus property of M that MSOL(q, b;M, A) is a singleton [10,
Corollary 2.3.10]. (In the context of the QP (1), this property follows from a result of Mangasarian [18]
which asserts that the gradient of the objective function of a convex program is a constant on the set
of optimal solutions of the program.) Moreover, since SOL(•, •;M, A) : Rn+m → Rn is a polyhedral
multifunction with a convex domain (equal to R(M, A)), it follows that q + MSOL(q, b;M, A), which
we denote w(q, b) for simplicity, is a piecewise linear, thus Lipschitz continuous, function of (q, b) on
R(M, A). (In the case of the QP (1), w(q, b) = ∇xθ(SOL(q, b;M, A); q).)

Let (q, b) be a given pair in R(M, A) and (q ′, b ′) be a pair such that (q(τ), b(τ)) , (q, b) + τ(q ′, b ′)
remains in R(M, A) for all τ > 0 sufficiently small. We wish to show that the limit

lim
τ↓0

w(q(τ), b(τ))− w(q, b)
τ

(2)

exists and is equal to q ′ + Mx̂, where x̂ is any solution to a certain AVI that is determined by the
tuple (q, b, q ′, b ′). In principle, the existence of the limit (2) is known from the theory of piecewise linear
functions [25]. Nevertheless the proof of this result in the latter thesis is rather involved and sheds no light
on what the “directional AVI” should be. The general sensitivity theory in [10, Section 5.4] provides
some insight but is not applicable because of the non-isolatedness of the elements in SOL(q, b;M, A).
Besides identifying what the directional AVI should be in this case of non-unique solutions, our analysis
gives a direct existence proof of the limit (2) that is specific to the AVI (q, b;M, A).

There are two complications in the analysis: one is due to the multiplicity of vectors in the solution set
SOL(q, b;M, A); and two is the non-uniqueness of the associated multipliers λ that satisfy the following
Karush-Kuhn-Tucker (KKT) conditions of (1):

0 = q + Mx + AT λ

0 ≤ b−Ax ⊥ λ ≥ 0.
(3)
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For each x ∈ SOL(q, b;M, A), we let Λ(q, b;x) be the (polyhedral) set of multipliers λ for which (x, λ)
satisfies the KKT system (3); Λ(q, b;x) has the following algebraic representation:

Λ(q, b;x) ,
{

λ ≥ 0 : 0 = w(q, b) + AT λ

0 = λi ∀ i 6∈ A(x)

}
,

where A(x) , {i : ( b − Ax )i = 0} is the index set of active constraints at x. It turns out that, due to
positive semidefinitess of M , the sets Λ(q, b;x) are all equal to a common set that can be defined in terms
of one single index set:

α(q, b) , { i : ∃ a pair (x, λ) satisfying (3) such that λi > 0 },
which depends only on the tuple (q, b;M, A) and not on the solutions of the AVI. Indices in α(q, b)
correspond to the maximally complementary solutions of the KKT system (3) as a mixed monotone linear
complementarity problem [11, 12]; this index set can be determined by an interior-point method together
with a strongly polynomial rounding procedure as described in the latter reference. Supplementing [10,
Proposition 2.3.12], the following lemma shows that Λ(q, b;x) is equal to the set

Λ(q, b) ,
{

λ ≥ 0 : 0 = w(q, b) + AT λ

0 = λi ∀ i 6∈ α(q, b)

}

for all solutions x of the AVI (q, b;M, A).

Lemma 1. For every x ∈ SOL(q, b;M, A), Λ(q, b;x) = Λ(q, b). Moreover, Λ(q, b) is further equal to the
optimal solution set of the linear program:

minimize
λ≥0

bT λ

subject to w(q, b) + AT λ = 0.

Proof. The inclusion Λ(q, b;x) ⊆ Λ(q, b) is immediate by the definition of the index set α(q, b). Con-
versely, if λ ∈ Λ(q, b), then for every x ∈ SOL(q, b;M, A), it suffices to verify that (x, λ) satisfies the
complementary slackness condition: for every index i, either λi = 0 or (b − Ax)i = 0. This is clear if
i 6∈ α(q, b) by the definition of λ as an element of Λ(q, b). If i ∈ α(q, b), then there exists (x ′, λ ′) satisfying
(3) such that λ ′i > 0. By the cross complementarity property of the KKT system (3), it follows that
(b−Ax)i = 0, as desired. The second assertion of the lemma is proved in [10, Proposition 2.3.12]. ¤

For an arbitrary vector b ′ and a given solution x ∈ SOL(q, b;M, A), consider the linear program (LP):

minimum
x ′∈Rn

( x ′ )T w(q, b)

subject to ( b ′ −Ax ′ )i ≥ 0, ∀ i ∈ A(x),
(4)

whose dual is (with Ai• denoting the i-th row of A):

minimize
λi : i∈A(x)

∑

i∈A(x)

b ′iλi

subject to w(q, b) +
∑

i∈A(x)

( Ai• )T λi = 0

and λi ≥ 0, ∀ i ∈ A(x).

(5)

By Lemma 4, (5) is equivalent to

θmin(q, b; b ′) , minimum
λ∈Λ(q,b)

( b ′ )T λ, (6)
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where the dependence on the solution x disappears. By the algebraic representation of the set Λ(q, b),
(6) is equivalent to

minimize
λi : i∈α(q,b)

∑

i∈α(q,b)

b ′iλi

subject to w(q, b) +
∑

i∈α(q,b)

( Ai• )T λi = 0

and λi ≥ 0, ∀ i ∈ α(q, b),

whose dual is
minimize

x ′∈Rn
( x ′ )T w(q, b)

subject to ( b ′ −Ax ′ )i ≥ 0, ∀ i ∈ α(q, b).
(7)

It is important to point out that while (5) and (6) are equivalent, (4) and (7), which are defined in the
same (primal) space of the variable x, are not. This is illustrated by the following simple example.

Example 2. Consider the trivial univariate quadratic program:

minimize 1
2 x2

subject to x ≥ 0,

which has a unique optimal solution x = 0 and a unique pair (x, λ) = (0, 0) satisfying the KKT conditions:

0 = x− λ

0 ≤ x ⊥ λ ≥ 0.

We have w(q, b) = 0. The index set α(q, b) is empty in this case; thus (7) is the unconstrained LP:
minimize 0 · x whose optimal solution is the entire real line. On the other hand, (4) is the constrained
LP: minimize 0 · x subject to b ′ − x ≥ 0 whose optimal solution set is the interval (−∞, b ′ ]. ¤

The non-equivalence of (4) and (7) is in terms of their optimal solution sets. It is clear, however, that
if either one of these two LPs are solvable, then so is the other; moreover, their optimal objective values
are equal. In turn, this happens if and only if (6) has an optimal solution. Since Λ(q, b) is nonempty for
(q, b) ∈ R(M, A), it follows that (6) has an optimal solution if and only if it is feasible, or equivalently, if
and only if ( b ′ )T λ is bounded below on Λ(q, b). In this case, (4), (5), and (7) all have optimal solutions
with the same optimal objective value, denoted θmin(q, b; b ′), as (6). For such a b ′, we let D(q, b; b ′;x)
denote the set of optimal solutions of the LP (4). Thus, for any x ∈ SOL(q, b;M, A), D(q, b; b ′;x) is
nonempty if and only if ( b ′ )T λ is bounded below on Λ(q, b). A noteworthy point is that the latter
condition is independent of the solution x.

An element x ′ ∈ D(q, b; b ′;x) is characterized by the existence of a multiplier λ ∈ Λ(q, b) such that

0 = w(q, b) +
∑

i∈A(x)

( Ai• )T λi

0 ≤ ( b ′ −Ax ′ )i ⊥ λi ≥ 0, ∀ i ∈ A(x);

or alternatively, as a vector x ′ satisfying

( x ′ )T w(q, b) ≤ θmin(q, b; b ′)

( b ′ −Ax ′ )i ≥ 0, ∀ i ∈ A(x).
(8)

For a given b ′ such that (6) has a finite optimal solution, for an arbitrary q ′, and for any x in
SOL(q, b;M, A), consider the AVI of finding a vector x ′ ∈ D(q, b; b ′;x) such that

( y ′ − x ′ )T ( q ′ + Mx ′ ) ≥ 0, ∀ y ′ ∈ D(q, b; b ′;x). (9)
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A vector x ′ is a solution of the latter AVI, which we call a directional AVI and denote by AVI ′(q, b; q ′, b ′;x),
if and only if scalars η and µi for i ∈ A(x) exist such that

0 = q ′ + Mx ′ + η w(q, b) +
∑

i∈A(x)

( Ai• )T µi

0 ≤ ( b ′ −Ax ′ )i ⊥ µi ≥ 0, i ∈ A(x)

0 ≤ η ⊥ θmin(q, b; b ′)− ( x ′ )T w(q, b) ≥ 0.

(10)

We let SOL ′(q, b; q ′, b ′;x) denote the (possibly empty) solution set of the directional AVI defined by
the tuple (q, b; q ′, b ′;x). Note that any solution x ′ of this directional AVI must satisfy (x ′ )T w(q, b) =
θmin(q, b; b ′) as an equation. Moreover, q ′+Mx ′ is a constant on SOL ′(q, b; q ′, b ′;x). By Lemma 1 applied
to this AVI, it follows that while SOL ′(q, b; q ′, b ′;x) may contain multiple elements, there must exist a
scalar ρx > 0 and multipliers µi for i ∈ A(x) and ηx of (10), all dependent on the tuple (q, b; q ′, b ′;x)
only, and not on the solution x ′, such that

ηx ≤ ρx

[ ‖ q ′ + MSOL ′(q, b; q ′, b ′;x) ‖+ ‖ b ′ ‖ ]

The following result shows that the vector q ′ + MSOL ′(q, b; q ′, b ′;x) depends on the tuple (q, b; q ′, b ′)
only and is independent of the solution x ∈ SOL(q, b;M, A).

Lemma 3. Suppose that SOL ′(q, b; q ′, b ′;x) is nonempty for some x ∈ SOL(q, b;M, A). Then a scalar
τx > 0 exists such that

q ′ + MSOL ′(q, b; q ′, b ′;x) = τ−1 ( w(q(τ), b(τ))− w(q, b) )

for all τ ∈ (0, τx). Consequently, if x̂ ∈ SOL(q, b;M, A) is such that SOL ′(q, b; q ′, b ′; x̂ ) is nonempty, then

q ′ + MSOL ′(q, b; q ′, b ′;x) = q ′ + MSOL ′(q, b; q ′, b ′; x̂ ).

Proof. To prove the first assertion of the lemma, fix an arbitrary solution x ′ ∈ SOL ′(q, b; q ′, b ′;x). Let
τx be a positive scalar such that

τx <
1

ρx [ ‖ q ′ + MSOL ′(q, b; q ′, b ′;x) ‖+ ‖ b ′ ‖ ]

and b + τb ′ −A(x + τx ′) ≥ 0 for all τ ∈ (0, τx ). Let τ ∈ (0, τx ) be arbitrary; let

τ0 , τ

1− τ ηx
> 0, which yields τ =

τ0

1 + τ0 ηx
.

Let λ ∈ Λ(q, b) be an optimal solution of (5). By complementary slackness, we have

0 ≤ λi ⊥ ( b ′ −Ax ′ )i ≥ 0, ∀ i ∈ A(x).

Multiplying
0 = q ′ + Mx ′ + ηx w(q, b) +

∑

i∈A(x)

( Ai• )T µi

by τ0, adding to
0 = q + Mx +

∑

i∈A(x)

( Ai• )T λi,
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and dividing by (1 + τ0ηx), we obtain:

0 = q + Mx +
τ0

1 + τ0 ηx
( q ′ + Mx ′ ) +

∑

i∈A(x)

( Ai• )T λ̂i, where λ̂i , λi + τ0 µi

1 + τ0 ηx

= ( q + τ q ′ ) + M( x + τ x ′ ) +
∑

i∈A(x)

( Ai• )T λ̂i,

Since
0 ≤ λ̂i ⊥ [ b + τb ′ −A(x + τx ′) ]i ≥ 0, ∀ i ∈ A(x)

and [ b + τb ′ −A(x + τx ′) ]i ≥ 0, ∀ i 6∈ A(x),

it follows that x + τx ′ ∈ SOL(q(τ), b(τ);M, A); thus q(τ) + M(x + τx ′) = w(q(τ), b(τ)), which yields

q ′ + MSOL ′(q, b; q ′, b ′;x) = q ′ + Mx ′ = τ−1 ( w(q(τ), b(τ))− w(q, b) ).

This completes the proof of the first assertion of the lemma. The second assertion follows readily from
the first by taking a common scalar τ < min( τx, τx̂ ). ¤

Based on the above lemma, we have the following main result for the limit (2).

Theorem 4. Let M be positive semidefinite-plus. Let (q, b, q ′, b ′) be such that (q, b) + τ(q ′, b ′) remains
in R(M, A) for all τ ≥ 0 sufficiently small. The following three statements are valid.

(a) A solution x ∈ SOL(q, b;M, A) exists such that SOL ′(q, b; q ′, b ′;x) is nonempty.

(b) The limit (2), which we denote w ′(q, b; q ′, b ′), exists and is equal to q ′+MSOL ′(q, b; q ′, b ′, x̂ ) for all
x̂ ∈ SOL(q, b;M, A) such that SOL ′(q, b; q ′, b ′, x̂ ) is nonempty.

(c) For all (q̂, b̂ ) ∈ R(M, A) sufficiently close to (q, b), we have

w(q̂, b̂ ) = w(q, b) + w ′(q, b; q̂ − q, b̂− b). (11)

Proof. For each τ > 0 sufficiently small, let (xτ , λτ ) satisfy the KKT conditions:

0 = q + τ q ′ + Mxτ + AT λτ

0 ≤ b + τ b ′ −Axτ ⊥ λτ ≥ 0.

Let {τk} be an arbitrary sequence of positive scalars converging to zero. Without loss of generality,
by working with a subsequence of these scalars if necessary, we may assume that an index subset γ of
{1, · · · ,m} exists such that for all k,

0 = q + τk q ′ + Mxk + AT λk

[
b + τk b ′ −Axk

]
γ

= 0 ≤ λk
γ[

b + τk b ′ −Axk
]
γ̄
≥ 0 = λk

γ̄ ,

where xk , x
τk and λk , λ

τk . Consequently, there exists a pair (x̄, λ̄) such that

0 = q + Mx̄ + AT λ̄

[ b−Ax̄ ]γ = 0 ≤ λ̄γ

[ b−Ax̄ ]γ̄ ≥ 0 = λ̄γ̄ .
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Thus x̄ ∈ SOL(q, b;M, A) and λ̄ ∈ Λ(x̄; q, b) = Λ(q, b). Note that we did not claim that (x̄, λ̄) is the
limit of the sequence {(xk, λk)}; indeed the latter sequence is not necessarily bounded. We clearly have
γ ⊆ A(x̄) and [

b ′ −A

(
xk − x̄

τk

)]

γ

= 0;

furthermore, [
b ′ −A

(
xk − x̄

τk

)]

i

≥ 0, ∀ i ∈ A(x̄) \ γ.

Consequently,
0 = q + Mx̄ +

∑

i∈A(x̄)

( Ai• )T λ̄i

[
b ′ −A

(
xk − x̄

τk

)]

i

= 0 ≤ λ̄i, ∀ i ∈ γ

[
b ′ −A

(
xk − x̄

τk

)]

i

≥ 0 = λ̄i, ∀ i ∈ A(x̄) \ γ,

which implies that τ−1
k (xk − x̄) ∈ D(q, b; b ′; x̄) for all k. We have

0 = q ′ + M

(
xk − x̄

τk

)
+

∑

i∈γ

( Ai• )T

(
λk

i − λ̄i

τk

)

= q ′ + M

(
xk − x̄

τk

)
+

∑

i∈γ

( Ai• )T

(
λk

i − λ̄i

τk

)
+ τ−1

k

[
q + Mx̄ + AT λ̄

]

= q ′ + M

(
xk − x̄

τk

)
+ τ−1

k w(q, b) +
∑

i∈γ

( Ai• )T

(
λk

i

τk

)
.

Let x ′ ∈ D(q, b; b ′; x̄) be arbitrary. Then

( x ′ )T w(q, b) =
[

xk − x̄

τk

]T

w(q, b) and ( b ′ −Ax ′ )γ ≥ 0 =
[

b ′ −A

(
xk − x̄

τk

)]

γ

.

Hence, [
x ′ − xk − x̄

τk

]T [
q ′ + M

(
xk − x̄

τk

)]
≥ 0,

establishing that τ−1
k (xk − x̄) ∈ SOL ′(q, b; q ′, b ′; x̄). Thus part (a) of the theorem holds.

With (qk, bk) , (q, b) + τk(q ′, b ′), we have, for all k,

w(qk, bk) = qk + Mxk = q + Mx̄ + τk [ q ′ + τ−1
k M( xk − x̄ ) ]

= w(q, b) + τk [ q ′ + MSOL ′(q, b; q ′, b ′; x̄) ].

This establishes part (b) with x̂ = x̄. For another x̂, part (b) follows from Lemma 3. To show that
(11) holds for all ( q̂, b̂ ) ∈ R(M, A) sufficiently close to (q, b), we assume by way of contradiction that a
sequence {( q̂ k, b̂ k )} ⊂ R(M, A) converging to (q, b) exists such that for each k,

w(q̂ k, b̂ k) 6= w(q, b) + w ′(q, b; q̂ k − q, b̂ k − b).
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Proceeding as in the above proof using the pair (q̂ k, b̂ k ) instead of the pair (q + τkq
′, b + τkb

′), we may
deduce the existence of xk ∈ SOL(q̂ k, b̂ k;M, A) for each k and a vector x̄ ∈ SOL(q, b;M, A) such that
xk − x̄ belongs to D(q, b; b̂k − b; x̄) for each k; moreover there exists a multiplier λk ∈ Λ(xk; qk, bk) and
an index set γ ⊆ A(x̄) such that for all k,

q̂ k − q + M( xk − x̄ ) + w(q, b) +
∑

i∈ γ

( Ai• )T λk
i = 0

( b̂k − b−Ax ′ )γ ≥ 0 =
[
b̂k − b−A( xk − x̄ )

]
γ
, ∀x ′ ∈ D(q, b; b̂k − b; x̄).

This shows that xk − x̄ ∈ SOL ′(q, b; q̂ k − q, b̂ k − b; x̄); hence w(q̂ k, b̂ k) = w(q, b) + w ′(q, b; q̂ k − q, b̂ k − b),
which is a contradiction. ¤

We remark that if M is written as M = EGET for some positive definite matrix G, then ET SOL(q, b)
is also a single-valued piecewise linear function onR(M, A); moreover, for all (q̂, b̂ ) ∈ R(M, A) sufficiently
close to (q, b),

ET SOL(q̂, b̂;M, A ) = ET SOL(q, b;M, A) + ET SOL ′(q, b; q̂ − q, b̂− b).

This equality follows from the last part of the proof of Theorem 4 and provides the basis for a subsequent
generalization to a class of nonlinear VIs.

2.1 Choice of solutions

As it stands, Theorem 4 establishes the well-definedness and characterization of the directional derivative
w ′(q, b; q ′, b ′) under the reasonable condition that (q, b) + τ(q ′, b ′) remains in R(M, A) for all τ ≥ 0
sufficiently small. The theorem does not provide a constructive way to calculate such a derivative. Ideally,
one would want to be able to deduce that SOL ′(q, b; q ′, b ′, x) is nonempty for all x ∈ SOL(q, b;M, A),
which would imply that one could use any solution of the original AVI (q, b;M, A) for the calculation of
w ′(q, b; q ′, b ′). In what follows, we establish a necessary and sufficient condition on the pair (q ′, b ′) in
order for this to be true. For this purpose, we define the index set:

γ(q, b) , { i : ( b−Ax )i = 0 for all x ∈ SOL(q, b;M, A) }.

Note that α(q, b) ⊆ γ(q, b) ⊆ A(x) for all x ∈ SOL(q, b;M, A). Unlike α(q, b), the index set γ(q, b) is
defined by the (primal) variable x only. An important property of the set γ(q, b) is that there must exist
x̄ ∈ SOL(q, b;M, A) such that (b − Ax̄)i > 0 for all i 6∈ γ(q, b), i.e., such that γ(q, b) = A(x̄). This is
because for each i 6∈ γ(q, b), a solution xi ∈ SOL(q, b;M, A) exists such that (b−Axi)i > 0; we can simply
let x̄ be the average of these solutions xi.

Theorem 5. Let M be positive semidefinite-plus and (q, b) ∈ R(M, A). A necessary and sufficient
condition for SOL ′(q, b; q ′, b ′, x) to be nonempty for all x ∈ SOL(q, b;M, A) is that (b ′)T λ is bounded
below on Λ(q, b) and the following implication holds:

My = 0

qT y ≤ 0

Ai•y ≤ 0, ∀ i ∈ γ(q, b)





⇒ ( q ′ )T y ≥ 0. (12)

Moreover, if this condition holds, then w ′(q, b; q ′, b ′) is well-defined and equal to SOL ′(q, b; q ′, b ′, x) for
all x ∈ SOL(q, b;M, A).
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Proof. Sufficiency. Suppose that (b ′)T λ is bounded below on Λ(q, b) and (12) holds. The set D(q, b; b ′)
is then not empty. Let x ∈ SOL(q, b;M, A) be arbitrary. Since the KKT system of AVI (q, b; q ′, b ′, x) is
a monotone mixed linear complementarity problem, this AVI is solvable if and only if its KKT system is
feasible, i.e., if and only if there exists a tuple (x ′, η, µi) such that

0 = q ′ + Mx ′ + η w(q, b) +
∑

i∈A(x)

( Ai• )T µi

0 ≤ ( b ′ −Ax ′ )i, µi ≥ 0, i ∈ A(x)

0 ≤ η, θmin(q, b; b ′)− ( x ′ )T w(q, b) ≥ 0.

In turn, the latter is true if and only if the implication below holds:

MT y −
∑

i∈A(x)

( Ai• )T ξi − σ w(q, b) = 0

yT w(q, b) ≤ 0, σ ≥ 0

Ai•y ≤ 0, ξi ≥ 0, ∀ i ∈ A(x)





⇒ ( q ′ )T y +
∑

i∈A(x)

b ′iξi + σ θmin(q, b; b ′) ≥ 0. (13)

Let (y, ξi, σ) satisfy the left-hand conditions. Multiplying the first equation by yT , we deduce yT MT y = 0,
which implies, by the positive semidefinite-plus property of M , My = MT y = 0. Thus yT w(q, b) = yT q.
Since γ(q, b) ⊆ A(x), it follows that y satisfies the left-hand conditions in the implication (12). Thus,
(q ′)T y ≥ 0. Moreover, we have

∑

i∈A(x)

( Ai• )T ξi + σ w(q, b) = 0

ξi ≥ 0, ∀ i ∈ A(x), and σ ≥ 0.

Since the set D(q, b; b ′) is nonempty, by the inequality representation (8) of elements of this set, it follows
that ∑

i∈A(x)

b ′iξi + σ θmin(q, b; b ′) ≥ 0.

Thus the implication (13) holds, completing the sufficiency proof of the theorem.
Necessity. Conversely, suppose that SOL ′(q, b; q ′, b ′, x) is not empty for all x ∈ SOL(q, b;M, A). It

suffices to prove the implication (12). The set SOL ′(q, b; q ′, b ′, x̄) 6= ∅ for the solution x̄ ∈ SOL(q, b;M, A)
such that A(x̄) = γ(q, b). Let y be a vector satisfying the left-hand conditions in (12). Then, with x , x̄,
ξi = σ = 0, the left-hand conditions in (13) are satisfied. Hence by the latter implication, which is
equivalent to the nonemptiness of SOL ′(q, b; q ′, b ′, x̄), we deduce (q ′)T y ≥ 0 as desired.

To complete the proof of the theorem, it remains to show that for all τ > 0 sufficiently small,
(q+τq ′, b+τb ′) ∈ R(M, A). Once this is shown, the last assertion of the theorem follows from Theorem 4.
By the above proof, the AVI ′(q, b; q ′, b ′; x̄) has a solution for some x̄ ∈ SOL(q, b;M, A). By Lemma 3, it
follows that the AVI (q + τq ′, b + τb ′;M, A) has a solution for all τ > 0 as desired. ¤

Theorem 5 gives a necessary and sufficient condition for the AVI ′(q, b; q ′, b ′, x) to be solvable for
all x ∈ SOL(q, b;M, A). For completeness, we present a necessary and sufficient condition for the
AVI ′(q, b; q ′, b ′, x) to be solvable for some x ∈ SOL(q, b;M, A). This result is simply a combination
of Lemma 3 and Theorem 4; we omit its proof.

Theorem 6. Let M be positive semidefinite-plus and (q, b) ∈ R(M, A). A necessary and sufficient
condition for SOL ′(q, b; q ′, b ′, x) 6= ∅ for some x ∈ SOL(q, b;M, A) is that (q + τq ′, b + τb ′) ∈ R(M, A)
for all τ > 0 sufficiently small. ¤
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Theorem 6 still does not provide a constructive way to identify a desired x ∈ SOL(q, b;M, A) such
that SOL ′(q, b; q ′, b ′, x) 6= ∅. In what follows, we briefly describe one situation where such an x can be
identified by parametric principal pivoting [9, Section 4.5] and the directional derivative w ′(q, b; q ′, b ′)
readily computed. We begin with the parametric KKT system with τ ≥ 0 as the parameter:

0 = q + τ q ′ + Mx + AT λ

0 ≤ λ ⊥ b + τ b ′ −Ax ≥ 0,

which is a parametric mixed LCP. Apply the subspace-removal technique described in [10, Exercise 1.8.10],
which involves only linear algebraic operations, to reduce the above mixed LCP to an equivalent para-
metric LCP:

0 ≤ x̂ ⊥ q̂ + τ q̂ ′ + M̂ x̂ + ÂT λ̂ ≥ 0

0 ≤ λ̂ ⊥ b̂ + τ b̂ ′ − Â x̂ ≥ 0,
(14)

where the matrix M̂ remains positive semidefinite-plus. [The cited exercise does not assert the plus-
property of the reduced system; but this is not difficult to show based on the description of M̂ contained
therein.] Originally due to [4, 5] and justified under the assumption that M is nonsingular on the null
space of A, this process removes the equation 0 = q + τq ′ + Mx + AT λ, solving out the free variable x,
and pivots the complementarity condition 0 ≤ λ ⊥ b + τb ′ − Ax ≥ 0 into the above form (14). From a
solution of (14), we can recover the variable x by a simple backward substitution.

For simplicity, write (14) as
0 ≤ u ⊥ r + τ s + Ru ≥ 0,

where R is a positive semidefinite matrix. Apply parametric principal pivoting, which in principle requires
a nondegeneracy assumption, to the latter parametric LCP, obtaining a scalar τ̄ > 0 and an index set γ
with complement γ̄ such that for all τ ∈ [0, τ̄ ]

uγ ≥ 0 = [ r + τ s + Ru ]γ

uγ̄ = 0 ≤ [ r + τ s + Ru ]γ̄ .

From the latter system, we may recover a solution x(τ) to the AVI (q(τ), b(τ);M, A) for all τ ∈ [0, τ̄ ].
By the proof of Theorem 4, SOL ′(q, b; q ′, b ′, x(0)) 6= ∅; moreover, the desired directional derivative
w ′(q, b; q ′, b ′) is given by q ′ + τ−1M(x(τ)− x(0)).

3 An Application: Support Vector Machine

Consider the following convex piecewise quadratic minimization problem derived from the support vector
machine (SVM) model in data mining: given data

{(
xi, yi

)m

i=1

} ⊂ Rn+1 and parameters C > 0 and ε ≥ 0,

minimize
(w,b)∈Rn+1

C

m∑

i=1

max
{ ∣∣ wT xi + b− yi

∣∣− ε, 0
}

+ 1
2 wT w. (15)

In what follows, we call w the support vector and b the bias. By introducing the auxiliary variable:
ei , max

{ ∣∣ wT xi + b− yi

∣∣− ε, 0
}
, it is easily seen that (15) is equivalent to a convex (but not strictly

convex) quadratic program in the variables (w, e, b) ∈ Rn+m+1:

θopt(C, ε) , minimize
(w,e,b)∈Rn+m+1

C
m∑

i=1

ei + 1
2 wT w

subject to





ei ≥ wT xi + b− yi − ε

ei ≥ −wT xi − b + yi − ε

ei ≥ 0





i = 1, · · · ,m.

(16)
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For every pair (C, ε), the above QP has a unique optimal w-solution, which we denote w(C, ε); neverthe-
less, no assertion is made about the uniqueness of the optimal bias b.

For a given pair (C, ε), the KKT conditions of (15) are:

w =
m∑

i=1

( λ−i − λ+
i ) xi

0 =
m∑

i=1

( λ−i − λ+
i )





0 ≤ λ+
i ⊥ ei − wT xi − b + yi + ε ≥ 0

0 ≤ λ−i ⊥ ei + wT xi + b− yi + ε ≥ 0

0 ≤ ei ⊥ C − λ+
i − λ−i ≥ 0





i = 1, · · · ,m.

Upon eliminating w using the first equation, we obtain a mixed LCP in the variables
(
b,

{
λ±i , ei

}m

i=1

)
(where the bias b is the only free variable) with parameters (C, ε):





0 =
m∑

i=1

( λ+
i − λ−i )

0 ≤ λ+
i ⊥ ei +

m∑

j=1

[
( xj )T xi

]
( λ+

j − λ−j )− b + yi + ε ≥ 0

0 ≤ λ−i ⊥ ei −
m∑

j=1

[
( xj )T xi

]
( λ+

j − λ−j ) + b− yi + ε ≥ 0

0 ≤ ei ⊥ C − λ+
i − λ−i ≥ 0





i = 1, · · · ,m. (17)

The optimal solution w(C, ε) is a piecewise linear function of (C, ε) ≥ 0. In what follows, we use the
general AVI theory developed in the last section to characterize the directional derivative

w ′(C, ε;C ′, ε ′ ) = lim
τ↓0

w(C + τC ′, ε + τε ′ )− w(C, ε)
τ

,

at a pair (C, ε) > 0 and along a direction (C ′, ε ′). Since ε > 0, any solution to the above KKT conditions
must satisfy min(λ+

i , λ−i ) = 0. Unlike the nominal pair (C, ε), which is positive, the direction pair (C ′, ε ′ )
is not necessarily so.

Following the general theory, we define several index sets in terms of the multipliers:

α+(C, ε) ,
{

i : ∃ (
b,

(
λ±i , ei

)m

i=1

)
satisfying (17) such that λ+

i > 0
}

α−(C, ε) ,
{

i : ∃ (
b,

(
λ±i , ei

)m

i=1

)
satisfying (17) such that λ−i > 0

}

αe(C, ε) ,
{

i : ∃ (
b,

(
λ±i , ei

)m

i=1

)
satisfying (17) such that C − λ+

i − λ−i > 0
}

.

Note that αe(C, ε)∪α+(C, ε)∪α−(C, ε) = {1, · · · ,m} because if i 6∈ αe(C, ε), then C = λ+
i + λ−i > 0 for

all solutions
(
b,

(
λ±i , ei

)m

i=1

)
of (17); so either λ+

i or λ−i must be positive because C > 0. In terms of the
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above defined index sets, the set of optimal multipliers of (17) is

Λ(C, ε) ,





λ± ≥ 0 : w(C, ε) =
m∑

i=1

( λ−i − λ+
i ) xi

0 =
m∑

i=1

( λ−i − λ+
i )

0 = λ+
i , i 6∈ α+(C, ε)

0 = λ−i , i 6∈ α−(C, ε)

C ≥ λ+
i + λ−i , i ∈ αe(C, ε)

C = λ+
i + λ−i , i 6∈ αe(C, ε)





,

which is a bounded polyhedron. We can similarly define several primal index sets:

γ+(C, ε) ,
{

i : w(C, ε)T xi + b− yi ≥ ε for all optimal bias b
}

γ−(C, ε) ,
{

i : w(C, ε)T xi + b− yi ≤ −ε for all optimal bias b
}

γe(C, ε) ,
{

i : |w(C, ε)T xi + b− yi | ≤ ε for all optimal bias b
}

,

and the following bias-dependent index sets: for an optimal b,

α+(C, ε; b) ,
{

i : w(C, ε)T xi + b− yi ≥ ε
}

α−(C, ε; b) ,
{

i : w(C, ε)T xi + b− yi ≤ −ε
}

αe(C, ε; b) ,
{

i : |w(C, ε)T xi + b− yi | ≤ ε
}

.

In terms of the latter index sets, we can define the optimal bias dependent multiplier sets:

Λ(C, ε; b) ,





λ± ≥ 0 : w(C, ε) =
m∑

i=1

( λ−i − λ+
i ) xi

0 =
m∑

i=1

( λ−i − λ+
i )

0 = λ+
i , i 6∈ α+(C, ε; b)

0 = λ−i , i 6∈ α−(C, ε; b)

C ≥ λ+
i + λ−i , i ∈ αe(C, ε; b)

C = λ+
i + λ−i , i 6∈ αe(C, ε; b)





.

Note that αe(C, ε; b) ∪ α+(C, ε; b) ∪ α−(C, ε; b) = {1, · · · ,m}. The linear program (4) in this context is

minimize
(w ′,e ′,b ′)∈Rn+m+1

C
m∑

i=1

e ′i + ( w ′ )T w(C, ε)

subject to e ′i ≥ ( w ′ )T xi + b ′ − ε ′, i ∈ α+(C, ε; b)

e ′i ≥ −( w ′ )T xi − b ′ − ε ′, i ∈ α−(C, ε; b)

e ′i ≥ 0, i ∈ αe(C, ε; b),

(18)
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which is clearly feasible, and whose dual is

minimize
λ∈Λ(C,ε;b)

ε ′


 ∑

i∈α+(C,ε;b)

λ+
i +

∑

i∈α−(C,ε;b)

λ−i




=





ε ′minimize
λ∈Λ(C,ε;b)


 ∑

i∈α+(C,ε;b)

λ+
i +

∑

i∈α−(C,ε;b)

λ−i


 if ε ′ ≥ 0

ε ′maximize
λ∈Λ(C,ε;b)


 ∑

i∈α+(C,ε;b)

λ+
i +

∑

i∈α−(C,ε;b)

λ−i


 if ε ′ ≤ 0.

Let D(C, ε; ε ′; b) denote the optimal solution set of (18), which must be nonempty because Λ(C, ε; b) =
Λ(C; ε) is bounded. For any nonzero ε ′, this set is equal to the optimal solution set of a constant LP
scaled by ε ′; specifically, for any ε ′ 6= 0, D(C, ε; ε ′; b) = | ε ′ |D±(C, ε; b), where the ± sign is determined
by the sign of ε ′ and

D+(C, ε; b) , argmin
(w ′,e ′,b ′)∈Rn+m+1

C
m∑

i=1

e ′i + ( w ′ )T w(C, ε)

subject to e ′i ≥ ( w ′ )T xi + b ′ − 1, i ∈ α+(C, ε; b)

e ′i ≥ −( w ′ )T xi − b ′ − 1, i ∈ α−(C, ε; b)

e ′i ≥ 0, i ∈ αe(C, ε; b),

and

D−(C, ε; b) , argmin
(w ′,e ′,b ′)∈Rn+m+1

C
m∑

i=1

e ′i + ( w ′ )T w(C, ε)

subject to e ′i ≥ ( w ′ )T xi + b ′ + 1, i ∈ α+(C, ε; b)

e ′i ≥ −( w ′ )T xi − b ′ + 1, i ∈ α−(C, ε; b)

e ′i ≥ 0, i ∈ αe(C, ε; b).

By Theorem 4, for all (Ĉ, ε̂ ) sufficiently close to (C, ε), we have

w(Ĉ, ε̂ ) = w(C, ε) + w ′(C, ε; Ĉ − C, ε̂− ε),

where w ′(C, ε; Ĉ − C, ε̂− ε) is the unique w′ in the optimal solution of the quadratic program:

minimize
(w ′,e ′,b ′)∈D(C,ε;ε̂−ε;b)

( Ĉ − C )
m∑

i=1

e ′i + 1
2 ( w ′ )T w ′,

for any optimal bias b for which the above quadratic program is solvable. In turn, the latter directional
quadratic program is equivalent to, for ε̂ 6= ε,

minimize
w ′,e ′,b ′

Ĉ − C

| ε̂− ε |
m∑

i=1

e ′i + 1
2 ( w ′ )T w ′

subject to ( w ′, e ′, b ′ ) ∈ D±(C, ε; b).
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Consequently, by solving 2 parametric QPs:

minimize
w ′,e ′,b ′

τ
m∑

i=1

e ′i + 1
2 ( w ′ )T w ′

subject to ( w ′, e ′, b ′ ) ∈ D±(C, ε; b)

for all nonzero values of τ , we can determine the directional derivatives w ′(C, ε; Ĉ−C, ε̂− ε) for all pairs
( Ĉ, ε̂ ) with ε̂ 6= ε.

We close this section by pointing out that the uniqueness of the optimal bias b has been studied in [3]
wherein necessary and sufficient conditions are derived for such uniqueness to hold. Specifically, define
the four index sets corresponding to an optimal bias b:

N1 , { i : yi − w(C, ε)T xi − b > ε }, N3 , { i : yi − w(C, ε)T xi − b = −ε }
N2 , { i : yi − w(C, ε)T xi − b = ε }, N4 , { i : yi − w(C, ε)T xi − b < −ε }.

The cited references shows that the optimal b in (15) is unique if and only if |N1 ∪ N2| 6= |N4| and
|N3 ∪N4| 6= |N1|.

4 Nonlinear Extensions

We consider a nonlinear extension of the AVI (q, b;M, A) by replacing the monotone-plus affine map
x 7→ q + Mx by a strongly monotone composite map x 7→ q + EG(ET x) [10, Definition 2.3.9(d)], where
E is an arbitrary n× ` matrix and G : Ω ⊆ R` → R` is a continuously differentiable, strongly monotone,
and Lipschitz continuous function defined on an open convex set Ω containing the range of ET . Given
the tuple (q, b;E, G,A), we formally define the variational inequality, denoted VI (q, b;E, G,A), as the
problem of finding a vector x ∈ K , {x : Ax ≤ b} such that

( y − x )T [ q + EG(ET x) ] ≥ 0, ∀ y ∈ K.

To ensure that the solution set of this VI, which we denote SOL(q, b;E, G,A), is nonempty, we assume
throughout this section that K∞ ∩ ker(ET ) = {0}, where K∞ is the recession cone of K and ker(ET )
denotes the kernel of the matrix ET . Under this assumption, it follows that SOL(q, b;E, G,A) is a
nonempty compact polyhedron for every q ∈ Rn and every b for which the set K is nonempty—the non-
emptiness of SOL(q, b;E, G,A) is by [19, Proposition 6.3], the boundedness is by [10, Theorem 2.3.16], and
the polyhedrality is by [10, Corollary 2.3.13]; indeed, the last corollary implies that ET SOL(q, b;E, G,A)
is a singleton, which we denote v(q, b), and

SOL(q, b;E, G,A) = ( ET )−1(v(q, b)) ∩ argmin
{

xT [ q + EG(v(q, b) ] : x ∈ K
}

.

Our goal in this section is to derive a first-order sensitivity property of the function v(q, b). It is known
[10, Corollary 6.2.11] that for fixed (q, b), there exist positive constants c and δ such that

‖ q − q ′ ‖ ≤ δ ⇒ ‖ v(q, b)− v(q ′, b) ‖ ≤ c ‖ q − q ′ ‖.
This result pertains to small perturbations of q with b unchanged. Unlike the affine case, even the
joint continuity of v(q, b) in its arguments is not known in the literature. The analysis herein aims at
establishing the locally Lipschitz continuity and the directional differentiability of this solution function in
(q, b) jointly and at characterizing the directional derivatives. Our first step is to derive some bounds for
the solutions and multipliers of the VI (q, b;E, G, A). For this purpose, let ς > 0 be a strong monotonicity
modulus of G on Ω, i.e.,

( y − y ′ )T ( G(y)−G(y ′ ) ) ≥ ς ‖ y − y ′ ‖2, ∀ y, y ′ ∈ Ω;
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also let LG > 0 be a Lipschitz modulus of G on Ω, i.e.,

‖G(y)−G(y ′) ‖ ≤ LG ‖ y − y ′ ‖, ∀ y, y ′ ∈ Ω.

The KKT conditions of the VI (q, b;E, G,A) is:

0 = q + EG(ET x) + AT λ

0 ≤ λ ⊥ b−Ax ≥ 0.
(19)

As before, define the index set

α(q, b) , { i : ∃ a solution (x, λ) of (19) such that λi > 0 }.

The set of KKT multipliers is equal to the polyhedron

Λ(q, b) =

{
λ ≥ 0 : 0 = q + EG(v(q, b)) + AT λ

0 = λi, i 6∈ α(q, b)

}
.

Consequently, there exists a constant ρ > 0, dependent on A only, such that for all (q, b) for which
Λ(q, b) 6= ∅, a λ ∈ Λ(q, b) exists such that

‖λ ‖ ≤ ρ ‖ q + EG(v(q, b)) ‖ ≤ ρ [ ‖ q ‖+ L ( ‖EG(0) ‖+ ‖E ‖ ‖x ‖ ) ]

for any x ∈ SOL(q, b;E, G,A). The next result derives a bound on the solutions in SOL(q, b;E, G,A); its
proof is similar to that of [19, Proposition 6.3]. We let P(A) denote the set of all vectors b for which the
polyhedron {x : Ax ≤ b} is nonempty.

Proposition 7. Suppose K∞ ∩ ker(ET ) = {0}. Let G be strongly monotone and Lipschitz continuous
on an open convex set containing the range of ET . A constant ξ > 0 exists such that for all (q, b) with
b ∈ P(A),

sup{ ‖x ‖ : x ∈ SOL(q, b;E, G,A) } ≤ ξ ( ‖ q ‖+ ‖ b ‖ ).

Proof. From the KKT conditions (19), it follows that for all x ∈ SOL(q, b;E, G, A),

0 = xT q + ( ET x )T G(ET x) + λT b

≥ xT q + ( ET x )T G(0) + ς ‖ET x ‖2 + λT b.

Hence,
ς ‖ET x ‖2 ≤ ‖x ‖ ‖EG(0) ‖+ ‖ b ‖ ρ [ ‖ q ‖+ LG ( ‖EG(0) ‖+ ‖E ‖ ‖x ‖ ) ] .

Suppose no such constant κ > 0 exists. Sequences {(qk, bk)} and {xk} with xk ∈ SOL(qk, bk;E, G,A) for
every k exist such that

‖xk ‖ > k ( ‖ qk ‖+ ‖ bk ‖ ).

Hence, the sequences {qk/‖xk‖} and {bk/‖xk‖} both converge to zero. Without loss of generality, we
may assume that the normalized sequence {xk/‖xk‖} converge to a vector x∞ of unit length, which must
necessarily belong to K∞. Dividing by ‖xk‖2 in the inequality,

ς ‖ET xk ‖2 ≤ ‖xk ‖ ‖EG(0) ‖+ ‖ bk ‖ ρ
[
‖ qk ‖+ LG ( ‖EG(0) ‖+ ‖E ‖ ‖xk ‖ )

]
,

we deduce that ET x∞ = 0. This contradicts the assumption that K∞ ∩ ker(ET ) = {0}. ¤

The next result establishes the Lipschitz continuity of v(q, b) at all pairs (q, b) with b ∈ P(A). We
write JG(y) for the Jacobian matrix of G at the vector y provided that G is differentiable at y.
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Theorem 8. Suppose K∞ ∩ ker(ET ) = {0}. Let G be continuously differentiable, strongly monotone,
and Lipschitz continuous on an open convex set containing the range of ET . Let (q, b) with b ∈ P(A)
be arbitrary. A neighborhood N of (q, b) and a scalar Lv > 0 exist such that for all (qi, bi) ∈ N with
bi ∈ P(A) for i = 1, 2,

‖ v(q1, b1)− v(q2, b2) ‖ ≤ Lv [ ‖ q1 − q2 ‖+ ‖ b1 − b2 ‖ ].

Proof. We first show that if {(qk, bk)} is a sequence converging to (q, b) such that SOL(qk, bk;E, G,A) 6= ∅
for all k, then the sequence {v(qk, bk)} converges to v(q, b). For each k, let xk ∈ SOL(qk, bk;E, G, A) be
such that ET xk = v(qk, bk) , yk and let λk be a KKT multiplier of the VI (qk, bk;E, G,A); thus we have

0 = qk + EG(yk) + AT λk

0 ≤ λk ⊥ bk −Axk ≥ 0

0 = yk − ET xk.

Since the sequence {yk} is bounded, let {yk : k ∈ κ} be any subsequence converging to some vector y∞.
It follows that (x∞, λ∞) exists satisfying

0 = q + EG(y∞) + AT λ∞

0 ≤ λ∞ ⊥ b−Ax∞ ≥ 0

0 = y∞ − ET x∞.

Hence x∞ ∈ SOL(q, b;E, G,A) and y∞ = v(q, b). Consequently, there is a unique accumulation point of
the sequence {yk}, which is v(q, b). Thus, {v(qk, bk)} converges to v(q, b) as desired.

Suppose that no such constant Lv exists. Two sequences {(q1,k, b1,k)} and {(q2,k, b2,k)}, both con-
verging to (q, b), exist such that for every k, bk ∈ P(A) and

‖ v(q1,k, b1,k)− v(q2,k, b2,k) ‖ > k [ ‖ q1,k − q2,k ‖+ ‖ b1,k − b2,k ‖ ].

Both sequences {v(q1,k, b1,k)} and {v(q2,k, b2,k)} converge to v(q, b). Since

EG(v(qi,k, bi,k)) = EJG(v(q, b))v(qi,k, bi,k) + ei,k, i = 1, 2

= EJG(v(q, b))ET xi,k + ei,k

for any solution xi,k ∈ SOL(qi,k, bi,k;E, G,A), where ei,k , EG(v(qi,k, bi,k))−EJG(v(q, b))v(qi,k, bi,k), it
follows that any such solution xi,k is a solution of the AVI (qi,k + ei,k, bi,k;EJG(v(q, b))ET , A). Since the
matrix JG(v(q, b)) is positive definite, by the strong monotonicity of G, a constant η > 0, dependent on
the pair (EJG(v(q, b))ET , A) only, exists such that

‖ v(q1,k, b1,k)− v(q2,k, b2,k) ‖
= ‖ET x1,k − ET x2,k ‖
≤ η

[ ‖ q1,k − q2,k ‖+ ‖ e1,k − e2,k ‖+ ‖ b1,k − b2,k ‖ ]

≤ η ‖E ‖ [ ‖G(v(q1,k, b1,k))−G(v(q2,k, b2,k))− JG(v(q, b))( v(q1,k, b1,k)− v(q2,k, b2,k) ) ‖ ]

+ η
[ ‖ q1,k − q2,k ‖+ ‖ b1,k − b2,k ‖ ]

.

By the continuous differentiability of G near v(q, b), it follows that for every ε > 0, a positive integer k̄
exists such that for all k > k̄,

‖G(v(q1,k, b1,k))−G(v(q2,k, b2,k))− JG(v(q, b))( v(q1,k, b1,k)− v(q2,k, b2,k) ) ‖
≤ ε ‖ v(q1,k, b1,k))− v(q2,k, b2,k) ‖.
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Hence, for ε > 0 sufficiently small,

‖ v(q1,k, b1,k)− v(q2,k, b2,k) ‖ ≤ η

1− η ‖E ‖ ε

[
‖ q1,k − q2,k ‖+ ‖ b1,k − b2,k ‖

]
,

which is a contradiction. ¤

We now use the equation (11) to establish the directional differentiability of the function v(q, b).
For any pair (q̂, b̂ ) and any solution x̂ ∈ SOL(q̂, b̂;E, G,A), the above proof shows that x̂ is a solution
of the AVI (ĥ, b̂;M, A), where M , EJG(v(q, b))ET and ĥ , q̂ + EG(v(q̂, b̂ )) − EJG(v(q, b))v(q̂, b̂ ).
Consider the nominal AVI (h, b;M, A), where h , q + EG(v(q, b)) − EJG(v(q, b))v(q, b). It is not
difficult to see that SOL(h, b;M, A) = SOL(q, b;E, G,A). Indeed, since both h and M are independent
of the solutions in SOL(q, b;E, G,A), we have SOL(q, b;E, G,A) ⊆ SOL(h, b;M, A). Conversely, if xi

for i = 1, 2 are any two solutions of the AVI (h, b;M, A), then Mx1 = Mx2; hence ET xi = v(q, b) and
w(h, b) , h+Mxi = q+EG(ET xi) for i = 1, 2. This establishes that SOL(h, b;M, A) = SOL(q, b;E, G,A)
and w(h, b) = q + EG(ET SOL(q, b;E, G, A)). Moreover, the AVI (h, b;M, A) and the VI (q, b;E, G,A)
have the same set of multipliers Λ(q, b). Note that if (q̂, b̂ ) is sufficiently close to (q, b), then so is ĥ to
h, by the continuity of the function v(•, •). For each pair (h ′, b ′) and each solution x ∈ SOL(h, b;M, A),
we may define the directional AVI ′(h, b;h ′, b ′;x) as in Section 2. By the remark made at the end of
Section 2, it follows that for all (q̂, b̂ ) sufficiently close to (q, b) with b̂ ∈ P(A), we have

v(q̂, b̂ ) = v(q, b) + ET SOL ′(h, b; ĥ− h; b̂− b;x)

for any solution x ∈ SOL(h, b;M, A) such that SOL ′(h, b; ĥ− h; b̂− b;x) is nonempty.
By Theorem 5, the AVI ′(h, b;h ′, b ′;x) has a solution for all x ∈ SOL(h, b;M, A) = SOL(q, b;E, G,A)

if and only if (b ′)T λ is bounded below on Λ(q, b) and the implication below holds:

EJG(v(q, b))ET y = 0

hT y ≤ 0

Ai•y ≤ 0, ∀ i ∈ γ(y, b)





⇒ ( h ′ )T y ≥ 0,

where
γ(q, b) ≡ { i : ( b−Ax )i = 0 for all x ∈ SOL(q, b;E, G,A) }.

With
h , q + EG(v(q, b))− EJG(v(q, b))v(q, b)

and
h ′ , q(τ) + EG(v(q(τ), b(τ)))− EJG(v(q, b))v(q(τ), b(τ)),

where (q(τ), b(τ)) , (q, b) + τ(q ′, b ′) for τ > 0, the above implication reduces to

ET y = 0

qT y ≤ 0

Ai•y ≤ 0, ∀ i ∈ γ(q, b)





⇒ ( q ′ )T y ≥ 0, (20)

which is independent of τ . The following theorem, which, together with Theorem 8, offers a complete
first-order sensitivity analysis of the strongly monotone composite VI (q, b;E, G,A).

Theorem 9. Suppose K∞ ∩ ker(ET ) = {0}. Let G be continuously differentiable, strongly monotone,
and Lipschitz continuous on an open convex set containing the range of ET . For every tuple (q, b, q ′, b ′)
such that b ∈ P(A), (b ′)T λ is bounded below on Λ(q, b), and the implication (20) holds, the limit

lim
τ↓0

v(q(τ), b(τ))− v(q, b)
τ

exists and equals ET SOL ′(h, b; q ′, b ′;x) for any solution x ∈ SOL(q, b;E, G,A).
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Proof. Let {τk} be a sequence of positive scalars for which the limit

lim
k→∞

v(q(τk), b(τk))− v(q, b)
τk

, v∞

exists. With h(τ) , q + τ q ′ + EG(v(q(τ), h(τ)))− EJG(v(q, b))v(q(τ), b(τ)), we have

h(τ)− h = τ q ′ + E [G(v(q(τ), h(τ)))−G(v(q, b))− JG(v(q, b))( v(q(τ), b(τ))− v(q, b) ) ] .

Thus,

lim
τ↓0

h(τ)− h

τ
= q ′.

Hence, for any x ∈ SOL(h, b;M, A) = SOL(q, b;E, G,A),

v∞ = lim
k→∞

v(q(τk), b(τk))− v(q, b)
τk

= lim
k→∞

ET SOL ′(h, b;h(τk)− h; b(τk)− b;x) = ET SOL′(h, b; q ′, b ′;x).

Since ET SOL′(h, b; q ′, b ′;x) does not depend on the sequence {τk}, the desired conclusion of the theorem
follows. ¤

A parametric extension

We discuss a generalization of Theorem 9 to a (parametric) VI of finding a vector x ∈ K , {x : Ax ≤ b}
such that

( y − x )T [ q + EH(ET x; p) ] ≥ 0, ∀ y ∈ K,

where H : R`+k → R` is a mapping of two arguments (v, p) ∈ R`+k, with v = ET x, x being the primary
variable of the VI and p being the parameter varying near a base value p∗. We continue to assume that
K∞∩kerET = {0}. Restricted to a local analysis near a tuple (p∗, q, b), we assume that H is continuously
differentiable in an open convex set containing (range of ET × {p∗}) and H(•; p) is strongly monotone
for all p near p∗. It follows that for all such p and for all b ∈ P(A), the VI (q, b;E, H(•; p), A) has
a nonempty compact polyhedral solution set with ET SOL(q, b;E, H(•; p), A) being a singleton, which
we denote v(p; q, b). We claim that this solution function v(p; q, b) has the same first-order sensitivity
properties as (the previous) v(q, b) for all p sufficiently near p∗.

For any tuple (p̂ ; q̂, b̂ ) and any solution x̂ of the VI (q̂, b̂;E, H(•, p̂ ), A), x̂ is a solution of the AVI
(q̂+ ê, b̂;EJvH(v(p∗; q, b); p∗)ET , A), where JvH(v(p∗; q, b); p∗) denotes the Jacobian matrix of H(•; p∗) at
v(p∗; q, b) and ê , EH(v(p̂, q̂, b̂ ); p̂ ) − EJvH(v(p∗; q, b); p∗)v(p̂; q̂, b̂ ). By the continuous differentiability
of H, it follows that for all (v, p) and (v ′, p ′) sufficiently near (v(p∗; q, b); p∗),

‖H(v; p)−H(v ′, p ′)− JvH(v(p∗; q, b); p∗)( v − v ′ ) ‖
≤ ‖H(v; p)−H(v ′, p ′)− JvH(v(p∗; q, b); p∗)( v − v ′ )− JpH(v(p∗; q, b), p∗)( p− p ′ ) ‖

+ ‖ JpH(v(p∗; q, b), p∗)( p− p ′ ) ‖
= o(‖ v − v ′ ‖) + O(‖ p− p ′ ‖ ).

From this inequality, and applying the same (non-parametric) derivations as before, we can establish that
for any given tuple (p∗; q, b) with b ∈ P(A) satisfying the above stipulations, the solution function v(p̂; q̂, b̂ )
is Lipschitz continuous in a neighborhood of (p∗; q, b). Moreover, based on the nominal AVI (h, b;M, A),
where M , EJvH(v(p∗; q, b)ET and h , q + EH(v(p∗, q, b); p∗)− EJvH(v(p∗; q, b); p∗)v(p∗; q, b), we can
carry out the same directional analysis as in the previous case. The details are omitted.
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Closing remarks. This paper has focused on the monotone-plus AVI and the linearly constrained,
strongly monotone composite VI. It is natural to ask what if the constraints are nonlinear but remain
convex and satisfy appropriate constraint qualifications. This question remains unanswered at this time.
One can ask a similar question for the class of VIs in positive semidefinite matrices. In other words, can
one develop a first-order sensitivity theory for a strongly monotone composite VI in positive semidefinite
matrices without the strong regularity assumption, or for a semidefinite program without the strong
second-order sufficiency condition, thereby extending the results in the papers [20, 26]?
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