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Abstract

The nuclear norm minimization problem is to find a matrix with the minimum
nuclear norm subject to linear and second order cone constraints. Such a problem
often arises from the convex relaxation of a rank minimization problem with noisy
data, and arises in many fields of engineering and science. In this paper, we study
inexact proximal point algorithms in the primal, dual and primal-dual forms for
solving the nuclear norm minimization with linear equality and second order cone
constraints. We design efficient implementations of these algorithms and present
comprehensive convergence results. In particular, we investigate the performance of
our proposed algorithms in which the inner sub-problems are approximately solved
by the gradient projection method or the accelerated proximal gradient method.
Our numerical results for solving randomly generated matrix completion problems
and real matrix completion problems show that our algorithms perform favorably in
comparison to several recently proposed state-of-the-art algorithms. Interestingly,
our proposed algorithms are connected with other algorithms that have been stud-
ied in the literature.
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1 Introduction

Let <n1×n2 be the linear space of all n1×n2 real matrices equipped with the inner product
〈X, Y 〉 = Tr(XT Y ) and its induced norm ‖ · ‖, i.e., the Frobenius norm. Let Sn ⊂ <n×n

be the space of n×n symmetric matrices. For any X ∈ <n1×n2 , the nuclear norm ‖X‖∗ of
X is defined as the sum of its singular values and the operator norm ‖X‖2 of X is defined
as the largest singular value. Let Q := {0}m1 ×Km2 , where the notation Km2 stands for
the second order cone (or ice-cream cone, or Lorentz cone) of dimension m2, defined by

Km2 := {x = (x0; x̄) ∈ < × <m2−1 : ‖x̄‖ ≤ x0}. (1)

In particular, K1 is the set of nonnegative reals <+.
In this paper, we are interested in the following nuclear norm minimization (NNM)

problem with linear equality and second order cone constraints:

min f0(X) := ‖X‖∗
s.t. X ∈ FP := {X ∈ <n1×n2 : A(X) ∈ b +Q}, (2)

where the linear transformation A : <n1×n2 → <m and the vector b ∈ <m are given.
Here, m = m1 + m2. We should emphasize that for the ease of presentation, we have
considered the cone Q = {0}m1 × Km2 . But the theory and algorithms developed in
this paper can easily be extended to the more general cone which has the form: Q =
{0}m1 × Kp1 × · · · × Kpt , where for each 1 ≤ j ≤ t, Kpj is a second order cone. In
particular, since K1 = <+, the case of linear inequality constraints of the form A(X) ≥ b
also fits the analysis in our framework by considering Q = <+ × · · · × <+.

The NNM problem (2) often arises from the convex relaxation of a rank minimization
problem with noisy data, and arises in many fields of engineering and science, see, e.g.,
[1, 3, 17, 18, 21, 27]. The rank minimization problem refers to finding a matrix X ∈ <n1×n2

to minimize rank(X) subject to linear constraints, i.e.,

min
{

rank(X) : A(X) = b, X ∈ <n1×n2

}
. (3)

Problem (3) is NP-hard in general and it is computationally hard to directly solve it
in practice. Recent theoretical results (see, e.g., [3, 14, 40]), which were built upon
recent breakthroughs in the emerging field of compressed sensing or compressive sampling
pioneered by Candès and Tao [11] and Donoho [15], showed that under certain conditions,
the rank minimization problem (3) may be solved via its tightest convex approximation:

min
{
‖X‖∗ : ‖b−A(X)‖ ≤ δ, X ∈ <n1×n2

}
, (4)

where δ > 0 estimates the uncertainty about the observation b if it is contaminated with
noise. It can be readily seen that problem (4) is a special application of problem (2), see,
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e.g., [2]. A frequent alternative to (4) is to consider solving the following nuclear norm
regularized linear least squares problem (see, e.g., [31, 45]):

min
{1

2
‖A(X)− b‖2 + µ‖X‖∗ : X ∈ <n1×n2

}
, (5)

where µ > 0 is a given parameter. For problems where a reasonable estimation of δ is
possible, problem (4) is often preferred over problem (5). By checking the optimality con-
ditions for problems (4) and (5), we can easily see that these two problems are equivalent
to each other if δ and µ are chosen suitably. But, in in general it is difficult to determine
δ a priori given µ or vice versa without knowing the solutions to problems (4) and (5).
Therefore, it is more natural to consider solving (4) directly if δ is known, rather than
solving (5). To the best of our knowledge, however, there has been no work developing
algorithms for directly solving (4) when δ may be known. This is the main motivation
of the paper to present the results concerning the proximal point algorithms for solving
problem (2), which includes problem (4) as a special case.

The NNM problem (2) can equivalently be reformulated as the following semidefinite
programming (SDP) problem (see, e.g., [28, 40]):

min
{

(Tr(W1) + Tr(W2))/2 : A(X) ∈ b +Q,
[
W1, X; XT ,W2

] º 0
}

, (6)

whose dual is:

max
{

bT y : y ∈ Q∗,
[
In1 ,A∗(y);A∗(y)T , In2

] º 0
}

, (7)

where X ∈ <n1×n2 ,W1 ∈ Sn1 ,W2 ∈ Sn2 , Q∗(:= <m1×Km2) is the dual cone of Q, and A∗

denotes the adjoint of A. Here, the notation “º 0” means positive semidefiniteness. This
suggests that one can use well developed SDP solvers based on interior point methods,
such as SeDuMi [44] and SDPT3 [47], to solve (6) or (7) and therefore solve (2), see, e.g.,
[14, 40] for this approach in solving (2) with only linear equality constraints. However,
these SDP solvers usually cannot solve (6) or (7) when both n1 and n2 are much larger
than 100 or m is larger than 5, 000 since they need to solve large systems of linear equations
to compute Newton directions.

Due to the difficulties in solving the SDP reformulation (6) or (7), several methods
have been proposed to solve (2) directly with only linear equality constraints. In [40],
Recht, Fazel and Parrilo considered the projected subgradient method. However, the
convergence of the projected subgradient method in [40] is not known since problem
(2) is a nonsmooth problem. Recht, Fazel and Parrilo [40] also made use of the low
rank factorization technique introduced by Burer and Monteiro [8, 9] to solve (2) with
only linear equality constraints. The potential difficulty of this method is that the low
rank factorization formulation is no longer convex and the rank of the optimal matrix is
generally unknown a priori. Recently, Cai, Candès and Shen [10] introduced the singular
value thresholding (SVT) algorithm to solve a regularized version of (2), i.e.,

min
{

λ‖X‖∗ +
1

2
‖X‖2 : A(X) = b, X ∈ <n1×n2

}
, (8)
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where λ > 0 is a given parameter1. The SVT algorithm is actually a gradient method
applied to the dual problem of (8).

In this paper, we develop three proximal point algorithms for solving (2) in the primal,
dual and primal-dual forms, all of which are based on the classic ideas of the general
proximal point method studied in [32, 42]. In addition, we show that some of the recently
proposed fast methods for solving (2) are actually either truncated or special cases of
these three algorithms.

The first algorithm for solving (2), namely, the primal proximal point algorithm (PPA),
is the application of the general proximal point method to the primal problem (2). Given
a sequence of positive parameters λk such that

0 < λk ↑ λ∞ ≤ +∞ (9)

and an initial point X0 ∈ <n1×n2 , the primal PPA for solving (2) generates a sequence
{Xk} by the following scheme:

Xk+1 ≈ arg min
X∈FP

{
f0(X) +

1

2λk

‖X −Xk‖2
}

. (10)

Here, (9) means that {λk} is a nondecreasing sequence of positive parameters that con-
verges to λ∞, which is allowed to take the +∞ value.

The second algorithm, namely, the dual PPA, is the application of the general proximal
point method to the dual problem of (2), which, as a by-product, yields an optimal solution
to problem (2). The dual problem associated with (2) is as follows:

max
y∈Q∗

g0(y), (11)

where g0 is the concave function defined by

g0(y) = inf
{

f0(X) + 〈y, b−A(X)〉 : X ∈ <n1×n2

}
.

Given a sequence {λk} satisfying (9) and an initial point y0 ∈ Q∗, the sequence {yk} ⊂ Q∗

generated by the dual PPA is as follows:

yk+1 ≈ argmax
y∈Q∗

{
g0(y)− 1

2λk

‖y − yk‖2
}

. (12)

The third algorithm, namely, the primal-dual PPA, is the application of the general
proximal point method to the monotone operator corresponding to the convex-concave
Lagrangian function, which generates a sequence {(Xk, yk)} by taking (Xk+1, yk+1) to be
an approximate solution to the following problem:

min
X∈<n1×n2

max
y∈Q∗

{
f0(X) + 〈y, b−A(X)〉+

1

2λk

‖X −Xk‖2 − 1

2λk

‖y − yk‖2
}

, (13)

1The SVT algorithm has been applied to the corresponding regularized counterpart of problem (4)
with noise in the revised version of [10].
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where a sequence {λk} satisfying (9) and an initial point (X0, y0) ∈ <n1×n2×Q∗ are given.
A key issue in the PPAs mentioned above for solving (2) is how to solve the regularized

problems (10), (12) and (13) efficiently. Based on the duality theory for convex program-
ming, we develop the Moreau-Yosida regularization of the functions in (10) and (12) (see
Section 2), which is important for the realizations of the general proximal point method
for maximal monotone operators. It turns out that these algorithms require solving an
inner sub-problem per iteration, which is a nonsmooth unconstrained convex optimization
problem or a smooth convex optimization problem with simple constraints (see Section
3). Another aspect of the PPAs for solving (2) is how to formulate an implementable
stopping criterion for approximately solving the inner sub-problems that still guarantees
the global convergence and the rate of local convergence of these algorithms. In [42],
Rockafellar introduced two criteria for inclusion problems with maximal monotone op-
erators (see (39a) and (39b)). We will put these criteria in concrete and implementable
forms in the context of problem (2) (see Remarks 3.1 and 3.4), and present comprehensive
convergence results.

Besides the theoretic results on the PPAs for solving (2), we also investigate the
performance of the aforementioned algorithms in which the inner sub-problems are solved
by either the gradient projection method or the accelerated proximal gradient method.
We design efficient implementations for these algorithms and present numerical results for
solving randomly generated matrix completion problems and matrix completion problems
arising from real applications. Our numerical results show that our algorithms perform
favorably in comparison to recently proposed state-of-the-art algorithms in the literature
including the SVT algorithm [10], the fixed point algorithm and the Bregman iterative
algorithm [31], and an accelerated proximal gradient algorithm [45].

Our contribution in this paper is three fold. First, we provide a proximal point al-
gorithmic framework for the NNM problem with complete convergence analysis. Our
algorithms, which can handle conic constraints as well as linear equality constraints, are
the applications of the general proximal point method to the primal, dual and primal-
dual forms, respectively. We establish the connections between our algorithms and other
algorithms that have been studied in the literature recently. In particular, the SVT algo-
rithm [10] is just one gradient step of the primal PPA for solving the NNM problem (see
Remark 3.2), and the Bregman iterative algorithm [31] is a special case of the dual PPA
with a fixed parameter at each iteration for solving the NNM problem without second
order cone constraints (see Remark 3.5). Second, we introduce checkable stopping criteria
applied to our algorithms for solving (2). An important feature of the proposed stopping
criteria is that they can be efficiently implemented in practice. These stopping criteria
are extendable to more general cases. Third, our algorithms are proposed to solve the
NNM problem with second order cone constraints, which are more applicable to practical
problems with noisy data. Consequently, our algorithms are often able to obtain a more
accurate solution when the practical problem is contaminated with noise.

The rest of this paper is organized as follows. In Section 2, we review and develop
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some results related to the Moreau-Yosida regularization for subsequent discussions. In
Section 3, we propose inexact PPAs for solving (2) in the primal, dual, and primal-dual
forms and present comprehensive convergence results for our proposed algorithms. In
Section 4, we discuss implementation issues of the PPAs, including the first-order methods
applied to the inner sub-problems of the PPAs and the efficient computation of singular
value decompositions. Numerical results for large matrix completion problems including
the randomly generated examples and the real data from the Netflix Prize Contest are
reported in Section 5. We make final conclusions and list possible directions for future
research in Section 6.

2 The Moreau-Yosida regularization

For the sake of subsequent analysis, in this section we review and develop some results
related to the Moreau-Yosida regularization.

Assume that X is a finite-dimensional real Hilbert space. Let φ : X → (−∞, +∞] be
a proper, lower semicontinuous, convex function (cf. [41]). We wish to solve the following
(possibly nondifferentiable) convex program:

min
x∈X

φ(x) . (14)

For a given parameter λ > 0, we denote by Φλ the Moreau [33]-Yosida [48] regularization
of φ associated with λ, which is defined by

Φλ(x) = min
z∈X

{
φ(z) +

1

2λ
‖z − x‖2

}
, x ∈ X . (15)

Let pλ(x) be the unique minimizer to (15), i.e.,

pλ(x) = arg min
z∈X

{
φ(z) +

1

2λ
‖z − x‖2

}
. (16)

Then pλ is called the proximal point mapping associated with φ.
We summarize below some well-known properties (see, e.g., [23]) of Φλ and pλ without

proofs. For additional properties, see, e.g., [23, 25].

Proposition 2.1. Let Φλ and pλ be defined as in (15) and (16), respectively. Then, the
following properties hold for any λ > 0:

(1). Φλ is a continuously differentiable convex function defined on X with its gradient
being given by

∇Φλ(x) =
1

λ
(x− pλ(x)) ∈ ∂φ(pλ(x)), (17)

where ∂φ is the subdifferential mapping of φ (cf. [41]). Moreover, ∇Φλ(·) is globally
Lipschitz continuous with modulus 1/λ.
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(2). For any x, x′ ∈ X , one has

〈pλ(x)− pλ(x
′), x− x′〉 ≥ ‖pλ(x)− pλ(x

′)‖2.

It follows that pλ(·) is globally Lipschitz continuous with modulus 1.

(3). The set of minimizers of (14) is exactly the set of minimizers of

min
x∈X

Φλ(x),

and x∗ minimizes φ if and only if ∇Φλ(x
∗) = 0 or equivalently pλ(x

∗) = x∗.

The following two examples on the Moreau-Yosida regularization are very useful for
our subsequent development.

Example 2.1. (The metric projection onto closed convex sets) Let C ⊆ X be a
closed convex set. Then, the metric projection of x ∈ X onto C, denoted by ΠC(x), is the
unique minimizer of the following convex program in the variable u ∈ X :

min
u∈X

{
χC(u) +

1

2
‖u− x‖2

}
,

where χC is the indicator function over C. Note that ΠC(·) is exactly the proximal point
mapping associated with χC(·). In particular, ΠKm2 (·) is the metric projector onto the
second order cone Km2. For any x = (x0; x̄) ∈ <×<m2−1, by a direct calculation we have
(cf. [16])

ΠKm2 (x) =





1

2

(
1 +

x0

‖x̄‖
)
(‖x̄‖; x̄) if |x0| < ‖x̄‖,

(x0; x̄) if ‖x̄‖ ≤ x0,

0 if ‖x̄‖ ≤ −x0.

Example 2.2. (The proximal mapping of the nuclear norm function) Let Pλ(·)
be the proximal point mapping associated with f0(·). That is, for any X, Pλ(X) is the
unique minimizer to

Sλ(X) := min
Y ∈<n1×n2

{
f0(Y ) +

1

2λ
‖Y −X‖2

}
. (18)

Then, by Proposition 2.1, we know that Sλ(X) is continuously differentiable with

∇Sλ(X) =
1

λ
(X − Pλ(X))

and
〈Pλ(X)−Pλ(X

′), X −X ′〉 ≥ ‖Pλ(X)−Pλ(X
′)‖2, ∀X, X ′ ∈ <n1×n2 ,
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and thus Pλ(·) is globally Lispchitz continuous with modulus 1.
For any given X ∈ <n1×n2, Pλ(X) admits an analytical solution. In fact, assume that

X is of rank r and has the following singular value decomposition (SVD):

X = UΣV T , Σ = diag({σi}r
i=1), (19)

where U ∈ <n1×r and V ∈ <n2×r have orthonormal columns, respectively, and the positive
singular values σi are arranged in descending order. Then, from (18), one can easily
derive (see, e.g., [10, 31]) 2 that

Pλ(X) = Udiag(max{σi − λ, 0})V T , (20)

and hence

Sλ(X) =
1

2λ

(
‖X‖2 − ‖Pλ(X)‖2

)
. (21)

In order to develop the PPAs for solving (2), we need the following related concepts.
Let l : <n1×n2 ×<m → < be the ordinary Lagrangian function for (2) in the extended

form:

l(X, y) :=

{
f0(X) + 〈y, b−A(X)〉 if y ∈ Q∗,

−∞ if y /∈ Q∗.
(22)

The essential objective function in (2) is

f(X) := sup
y∈<m

l(X, y) =

{
f0(X) if X ∈ FP ,

+∞ if X /∈ FP ,
(23)

while the essential objective function in (11) is

g(y) := inf
X∈<n1×n2

l(X, y) =

{
infX{f0(X) + 〈y, b−A(X)〉} if y ∈ Q∗,

−∞ if y /∈ Q∗.
(24)

In the following, we calculate the Moreau-Yosida regularizations of f and g, which play
an important role in the analysis of the PPAs for solving (2).

We first calculate the Moreau-Yosida regularization of f . Let Fλ be the Moreau-Yosida
regularization of f in (23) associated with λ, i.e.,

Fλ(X) = min
Y ∈<n1×n2

{
f(Y ) +

1

2λ
‖Y −X‖2

}
. (25)

2Donald Goldfarb first reported the formula (20) at the “Foundations of Computational Mathematics
Conference’08” held at the City University of Hong Kong, Hong Kong, China, June 2008.
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Then, from (23), we obtain that

Fλ(X) = min
Y ∈<n1×n2

sup
y∈<m

{
l(Y, y) +

1

2λ
‖Y −X‖2

}

= sup
y∈<m

min
Y ∈<n1×n2

{
l(Y, y) +

1

2λ
‖Y −X‖2

}

= sup
y∈Q∗

min
Y ∈<n1×n2

{
‖Y ‖∗ + 〈y, b−A(Y )〉+

1

2λ
‖Y −X‖2

}
, (26)

where the interchange of minY and supy follows from the growth properties in Y [41,
Theorem 37.3] and the third equality holds from (22). Note that

Θλ(y; X) := min
Y ∈<n1×n2

{
‖Y ‖∗ + 〈y, b−A(Y )〉+

1

2λ
‖Y −X‖2

}

= 〈b, y〉+
1

2λ
‖X‖2 − 1

2λ
‖X + λA∗(y))‖2 + min

Y

{
‖Y ‖∗ +

1

2λ
‖Y − (X + λA∗(y))‖2

}

= 〈b, y〉+
1

2λ
‖X‖2 − 1

2λ
‖Pλ[X + λA∗(y)]‖2. (27)

Thus

Fλ(X) = sup
y∈Q∗

Θλ(y; X). (28)

By the Saddle Point Theorem (see, e.g., [41, Theorem 28.3]), combining (26) with Example
2.2, we know that Pλ[X + λA∗(yλ(X))] is the unique solution to (25) for any yλ(X) such
that

yλ(X) ∈ arg sup
y∈Q∗

Θλ(y; X), (29)

where Θλ(y; X) is defined as in (27). Consequently, we have that

Fλ(X) = Θλ(yλ(X); X) (30)

and

∇Fλ(X) =
1

λ

(
X − Pλ[X + λA∗(yλ(X))]

)
. (31)

Next, we turn to the Moreau-Yosida regularization of g. Let Gλ be the Moreau-Yosida
regularization of g associated with λ, i.e.,

Gλ(y) = max
z∈<m

{
g(z)− 1

2λ
‖z − y‖2

}
. (32)

Then, from (24), we obtain that

Gλ(y) = max
z∈Q∗

inf
X∈<n1×n2

{
‖X‖∗ + 〈z, b−A(X)〉 − 1

2λ
‖z − y‖2

}

= inf
X∈<n1×n2

max
z∈Q∗

{
‖X‖∗ + 〈z, b−A(X)〉 − 1

2λ
‖z − y‖2

}

= inf
X∈<n1×n2

{
‖X‖∗ +

1

2λ

(‖ΠQ∗ [y + λ(b−A(X))]‖2 − ‖y‖2
)}

, (33)
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where the interchange of maxz and infX again follows from the growth properties in z
[41, Theorem 37.3] and the third equality is due to Example 2.1. By the Saddle Point
Theorem again, we also know that ΠQ∗ [y+λ(b−A(Xλ(y)))] is the unique optimal solution
to (32) for any Xλ(y) satisfying

Xλ(y) ∈ arg inf
X∈<n1×n2

{
‖X‖∗ + Ψλ(X; y)

}
, (34)

where Ψλ(X; y) is defined by

Ψλ(X; y) :=
1

2λ

(‖ΠQ∗ [y + λ(b−A(X))]‖2 − ‖y‖2
)
. (35)

Consequently, we have that

Gλ(y) = ‖Xλ(y)‖∗ + Ψλ(Xλ(y); y) (36)

and

∇Gλ(y) =
1

λ

(
ΠQ∗

[
y + λ(b−A(Xλ(y)))

]− y
)
, (37)

where Xλ(y) satisfies (34).

3 The proximal point algorithm in three forms

In this section, we present the proximal point algorithm for solving (2) in the primal, dual
and primal-dual forms.

Our approach is based on the classic idea of the proximal point method for solving
inclusion problems with maximal monotone operators [42, 43]. We briefly review it below.
Let X be a finite-dimensional real Hilbert space with inner product 〈·, ·〉 and T : X → X
be a, possibly multi-valued, maximal monotone operator. Given x0 ∈ X , the idea of the
proximal point method for solving the inclusion problem 0 ∈ T (x) is to solve iteratively
a sequence of regularized inclusion problems:

xk+1 approximately solves 0 ∈ T (x) + λ−1
k (x− xk) ,

or equivalently,
xk+1 ≈ pλk

(xk) := (I + λkT )−1(xk), (38)

where the given sequence {λk} satisfies (9). Two convergence criteria for (38) introduced
by Rockafellar [42] are as follows:

‖xk+1 − pλk
(xk)‖ ≤ εk, εk > 0,

∞∑

k=0

εk < ∞, (39a)

‖xk+1 − pλk
(xk)‖ ≤ δk‖xk+1 − xk‖, δk > 0,

∞∑

k=0

δk < ∞. (39b)
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In [42], Rockafellar showed that under mild assumptions, condition (39a) ensures the
global convergence of {xk}, i.e., the sequence {xk} converges to a particular solution x to
0 ∈ T (x), and if in addition (39b) holds and T −1 is Lipschitz continuous at the origin,
then the sequence {xk} locally converges at a linear rate whose ratio is, roughly speaking,
proportional to 1/λ∞ and in particular, if λ∞ = +∞, the convergence is superlinear. For
details on the convergence of the general proximal point method, see [42, Theorem 1 &
2].

The proximal point algorithm in three different forms studied in this paper corresponds
respectively to the one applied to the maximal monotone operators Tf , Tg and Tl, which
can be defined as in Rockafellar [43] by:





Tf (X) = {Y ∈ <n1×n2 : Y ∈ ∂f(X)}, X ∈ <n1×n2 ,

Tg(y) = {z ∈ <m : −z ∈ ∂g(y)}, y ∈ <m,

Tl(X, y) = {(Y, z) ∈ <n1×n2 ×<m : (Y,−z) ∈ ∂l(X, y)}, (X, y) ∈ <n1×n2 ×<m.

From the definition of Tf , we can easily see that for any Y ∈ <n1×n2 ,

T −1
f (Y ) = arg min

X∈<n1×n2

{
f(X)− 〈Y, X〉

}
.

Similarly, we have that for any z ∈ <m,

T −1
g (z) = arg max

y∈<m

{
g(y) + 〈z, y〉

}

and for any (Y, z) ∈ <n1×n2 ×<m,

T −1
l (Y, z) = arg min

X∈<n1×n2

max
y∈<m

{
l(X, y)− 〈Y,X〉+ 〈z, y〉

}
.

3.1 The primal form

In this subsection, we shall present the proximal point algorithm applied to the primal
form of the NNM problem (2).

Given X0 ∈ <n1×n2 , the exact primal PPA can be described as

Xk+1 = pλk
(Xk), (40)

where pλk
(Xk) is defined by

pλk
(Xk) := (I + λkTf )

−1(Xk) = arg min
X∈<n1×n2

{
f(X) +

1

2λk

‖X −Xk‖2
}

(41)

and the sequence {λk} satisfying (9) is given. It can be seen easily from (40), (41), and
(17) that

Xk+1 = Xk − λk∇Fλk
(Xk) . (42)
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From the computational point of view, the cost of computing the exact solution
pλk

(Xk) could be prohibitive. This motivates to consider an inexact primal PPA. Com-
bining (31) with (29), we can introduce an inexact primal PPA to solve (2), which has
the following template:

The Primal PPA. Given a tolerance ε > 0. Input X0 ∈ <n1×n2 and λ0 > 0. Set k := 0.
Iterate:

Step 1. Find an approximate maximizer

Q∗ 3 yk+1 ≈ arg sup
y∈<m

{
θk(y) := Θλk

(y; Xk)− χQ∗(y)
}

, (43)

where Θλk
(y; Xk) is defined as in (27).

Step 2. Compute
Xk+1 = Pλk

[Xk + λkA∗(yk+1)].

Step 3. If ‖(Xk −Xk+1)/λk‖ ≤ ε; stop; else; update λk such that (9) holds; end.

In the primal PPA stated above, we introduce the following stopping criteria to ter-
minate (43):

sup θk − θk(y
k+1) ≤ ε2

k

2λk

, εk > 0,
∞∑

k=0

εk < ∞, (44a)

sup θk − θk(y
k+1) ≤ δ2

k

2λk

‖Xk+1 −Xk‖2, δk > 0,
∞∑

k=0

δk < ∞, (44b)

dist(0, ∂θk(y
k+1)) ≤ δ′k‖Xk+1 −Xk‖, 0 ≤ δ′k → 0. (45)

It should be noted that one has

Fλk
(Xk) = sup θk, θk(y

k+1) = Θλk
(yk+1; Xk).

Remark 3.1. Note that in the stopping criteria (44a) and (44b), the unknown value
sup θk can be replaced by any of its upper bounds converging to it. One particular choice
is to let θ̂k := ‖X̂k+1‖∗ + (1/2λk)‖X̂k+1 − Xk‖2, where X̂k+1 := ΠFP

(Xk+1). It follows
from (25) and (26) that

θ̂k = ‖X̂k+1‖∗ + (1/2λk)‖X̂k+1 −Xk‖2 ≥ Fλk
(Xk) = sup θk.

Consequently, the stopping criteria (44a) and (44b) can be replaced by the following im-
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plementable conditions:

θ̂k − θk(y
k+1) ≤ ε2

k

2λk

, εk > 0,
∞∑

k=0

εk < ∞, (46a)

θ̂k − θk(y
k+1) ≤ δ2

k

2λk

‖Xk+1 −Xk‖2, δk > 0,
∞∑

k=0

δk < ∞. (46b)

We emphasize that for the matrix completion problem (see (79)), it is easy to compute
the projection ΠFP

(·) onto the feasible set.

The following result establishes the relation between the estimates (44)-(45) and (39),
which plays a key role in order to apply the convergence results in [42, Theorem 1] and
[42, Theorem 2] for the general proximal point method to the primal PPA. Our proof
closely follows the idea used in [43, Proposition 6].

Proposition 3.1. Let pλk
be given as in (41), Θλk

be given as in (27), and Xk+1 =
Pλk

[Xk + λkA∗(yk+1)]. Then, one has

‖Xk+1 − pλk
(Xk)‖2/(2λk) ≤ Fλk

(Xk)− θk(y
k+1). (47)

Proof. Since
∇XΘλk

(yk+1; Xk) = λ−1
k (Xk −Xk+1), (48)

we obtain from the convexity of Θλ(y; X) in X that the following inequality is valid for
any Y ∈ <n1×n2 :

Θλk
(yk+1; Xk) + 〈λ−1

k (Xk −Xk+1), Y −Xk〉

≤ Θλk
(yk+1; Y ) ≤ sup

y∈Q∗

{
Θλk

(y; Y )
}

= sup
y∈<m

min
X∈<n1×n2

{
l(X, y) +

1

2λk

‖X − Y ‖2
}

= min
X∈<n1×n2

sup
y∈<m

{
l(X, y) +

1

2λk

‖X − Y ‖2
}

= min
X∈<n1×n2

{
f(X) +

1

2λk

‖X − Y ‖2
}
≤ f(pλk

(Xk)) +
1

2λk

‖pλk
(Xk)− Y ‖2. (49)

It follows from (30) and (25) that

sup
y∈Q∗

{
Θλk

(y; Xk)
}

= Fλk
(Xk) = min

X∈<n1×n2

{
f(X) +

1

2λk

‖X −Xk‖2
}

= f(pλk
(Xk)) +

1

2λk

‖pλk
(Xk)−Xk‖2,

which, together with (49) and the fact that θk(y
k+1) = Θλk

(yk+1; Xk), implies that

Fλk
(Xk)− θk(y

k+1)

≥ [‖pλk
(Xk)−Xk‖2 − ‖pλk

(Xk)− Y ‖2 − 2〈Xk+1 −Xk, Y −Xk〉]/(2λk)

=
[
2〈pλk

(Xk)−Xk+1, Y −Xk〉 − ‖Y −Xk‖2
]
/(2λk). (50)
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Since this holds for all Y ∈ <n1×n2 , and

‖Xk+1 − pλk
(Xk)‖2 = max

Y ∈<n1×n2

{
2〈pλk

(Xk)−Xk+1, Y −Xk〉 − ‖Y −Xk‖2
}

,

we can obtain the estimate (47) by taking the maximum of (50). This completes the
proof.

For convergence analysis, we need the following condition for the NNM problem (2):
{
{Ai}m1

i=1 are linearly independent and ∃ X̂ ∈ <n1×n2 such that

Ai(X̂) = bi, i = 1, . . . , m1 and (Ai(X̂)− bi)
m
i=m1+1 ∈ int(Km2),

(51)

where “ int(Km2)” denotes the interior of Km2 .
We now state the global convergence and local linear convergence of the primal PPA

for solving problem (2).

Theorem 3.1. (Global Convergence) Assume FP 6= ∅. Let the primal PPA be executed
with stopping criterion (44a). Then the generated sequence {Xk} is bounded and Xk → X,
where X is some optimal solution to problem (2), and {yk} is asymptotically minimizing
for problem (11).

If problem (2) satisfies condition (51), then the sequence {yk} is also bounded, and
any of its accumulation points is an optimal solution to problem (2).

Proof. Since the nuclear norm function is coercive, together with FP 6= ∅ due to our
hypothesis, we conclude that there exists at least an optimal solution to problem (2).
Moreover, Proposition 3.1 shows that (44a) implies the more general criterion (39a) for
Tf . It follows from [42, Theorem 1] that the sequence {Xk} is bounded and converges
to a solution X to 0 ∈ Tf (X), i.e., a particular optimal solution to problem (2). The
remainder of the conclusions follows from the proof of [43, Theorem 4] without difficulty.
We omit it here.

Theorem 3.2. (Local Convergence) Assume FP 6= ∅. Let the primal PPA be executed
with stopping criteria (44a) and (44b). If T −1

f is Lipschitz continuous at the origin with

modulus af , then Xk → X, where X is the unique optimal solution to problem (2), and

‖Xk+1 −X‖ ≤ ηk‖Xk −X‖, for all k sufficiently large,

where
ηk = [af (a

2
f + λ2

k)
−1/2 + δk](1− δk)

−1 → η∞ = af (a
2
f + λ2

∞)−1/2 < 1.

Moreover, the conclusions of Theorem 3.1 about {yk} are valid.
If in addition to (44b) and the condition on T −1

f , one has (45) and T −1
l is Lipschitz

continuous at the origin with modulus al (≥ af), then Xk → X, where X is the unique
optimal solution to problem (2), and one has

‖yk+1 − y‖ ≤ η′k‖Xk+1 −Xk‖, for all k sufficiently large,

where η′k = al(1 + δ′k)/λk → η′∞ = al/λ∞.
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Proof. The proof can be obtained by following the ideas used in the proof of [43, Theorem
5] combining with Proposition 3.1. We omit it here.

Remark 3.2. Recall that the Tikhonov regularization method solves a sequence of sub-
problems of the form:

min
{
‖X‖∗ +

1

2λk

‖X‖2 : A(X) ∈ b +Q, X ∈ <n1×n2

}

with the positive sequence {λk} → +∞. The primal PPA is to replace the term 1
2λk
‖X‖2

in the Tikhonov regularization method by 1
2λk
‖X−Xk‖2. The benefit of making this change

is that in the primal PPA the sequence {λk} is no longer required to tend to +∞.
From the exact primal PPA, we can see that if X0 = 0 and λ0 = λ−1 > 0, then X1

solves the following regularized problem:

min
{

λ‖X‖∗ +
1

2
‖X‖2 : A(X) ∈ b +Q, X ∈ <n1×n2

}
. (52)

That is, the SVT algorithm considered in [10] solves (52) by applying the gradient method
to its dual problem (43) and thus it is just one gradient step of the exact primal PPA, i.e.,
k = 0 in (42), with X0 = 0.

3.2 The dual form

In this subsection, we shall discuss the proximal point algorithm applied to the dual
problem (11). This algorithm solves the dual problem (11).

Given y0 ∈ <m, the exact dual PPA can be described as

yk+1 = pλk
(yk), (53)

where pλk
(yk) is defined by

pλk
(yk) = (I + λkTg)

−1(yk) = arg max
y∈<m

{
g(y)− 1

2λk

‖y − yk‖2
}

, (54)

and the sequence {λk} satisfying (9) is given. It follows from (53), (54), and (17) that

yk+1 = yk + λk∇Gλk
(yk) .

Just like the primal PPA, it is impractical to solve (54) exactly. So we consider an
inexact dual PPA in which (54) is solved approximately. In view of (37) and (34), we can
state the following inexact dual PPA to solve (11):
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The Dual PPA. Given a tolerance ε > 0. Input y0 ∈ <m and λ0 > 0. Set k := 0.
Iterate:

Step 1. Find an approximate minimizer

Xk+1 ≈ arg inf
X∈<n1×n2

{
ψk(X) := ‖X‖∗ + Ψλk

(X; yk)
}

, (55)

where Ψλk
(X; yk) is defined as in (35).

Step 2. Compute
yk+1 = ΠQ∗

[
yk + λk(b−A(Xk+1))

]
.

Step 3. If ‖(yk − yk+1)/λk‖ ≤ ε; stop; else; update λk such that (9) holds; end.

In the dual PPA, we shall consider the following stopping criteria introduced by Rock-
afellar [42, 43] to terminate (55):

ψk(X
k+1)− inf ψk ≤ ε2

k

2λk

, εk > 0,
∞∑

k=0

εk < ∞, (56a)

ψk(X
k+1)− inf ψk ≤ δ2

k

2λk

‖yk+1 − yk‖2, δk > 0,
∞∑

k=0

δk < ∞, (56b)

dist(0, ∂ψk(X
k+1)) ≤ δ′k‖yk+1 − yk‖, 0 ≤ δ′k → 0. (57)

It follows from (26) and (55) that

Gλk
(yk) = inf ψk, ψk(X

k+1) = ‖Xk+1‖∗ + Ψλk
(Xk+1; yk).

Remark 3.3. Note that the dual PPA stated above actually corresponds to the method of
multipliers considered in [43, Section 4] applied to problem (2).

Remark 3.4. The unknown value inf ψk used in stopping criteria (56a) and (56b) can
be replaced by any of its lower bounds converging to it. For example, one can choose
ψ̌k := 〈b, y̌k+1〉−(1/2λk)‖y̌k+1−yk‖2, where y̌k+1 := yk+1 if ‖A∗(yk+1)‖2 ≤ 1 and otherwise
y̌k+1 := yk+1/‖A∗(yk+1)‖2. Then, by using the fact that y̌k+1 is feasible to the dual problem
(11), one can obtain from (24), (32), and (33) that

ψ̌k = 〈b, y̌k+1〉 − 1

2λk

‖y̌k+1 − yk‖2 = g(y̌k+1)− 1

2λk

‖y̌k+1 − yk‖2 ≤ Gλk
(yk) = inf ψk.

Therefore, the stopping criteria (56a) and (56b) can be replaced by the following imple-
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mentable conditions:

ψk(X
k+1)− ψ̌k ≤ ε2

k

2λk

, εk > 0,
∞∑

k=0

εk < ∞, (58a)

ψk(X
k+1)− ψ̌k ≤ δ2

k

2λk

‖yk+1 − yk‖2, δk > 0,
∞∑

k=0

δk < ∞. (58b)

We are ready to state the global convergence and local linear convergence of the dual
PPA for solving problem (2).

Theorem 3.3. (Global Convergence) Let the dual PPA be executed with stopping
criterion (56a). If condition (51) holds for problem (2), then the sequence {yk} ⊂ Q∗

generated by the dual PPA is bounded and yk → y, where y is some optimal solution to
problem (11). Moreover, the sequence {Xk} is also bounded, and any of its accumulation
points is an optimal solution to problem (2).

Proof. This corresponds to [43, Theorem 4].

Theorem 3.4. (Local Convergence) Let the dual PPA be executed with stopping cri-
terion (56a) and (56b). Assume that condition (51) holds for problem (2). If T −1

g is
Lipschitz continuous at the origin with modulus ag, then yk → y, where y is the unique
optimal solution to problem (11), and

‖yk+1 − y‖ ≤ ηk‖yk − y‖, for all k sufficiently large,

where
ηk = [ag(a

2
g + λ2

k)
−1/2 + δk](1− δk)

−1 → η∞ = ag(a
2
g + λ2

∞)−1/2 < 1.

Moreover, the conclusions of Theorem 3.3 about {Xk} are valid.
If in addition to (56b) and the condition on T −1

g , one has (57) and T −1
l is Lipschitz

continuous at the origin with modulus al (≥ ag), then yk → y, where y is the unique
optimal solution to problem (11), and one has

‖Xk+1 −X‖ ≤ η′k‖yk+1 − yk‖, for all k sufficiently large,

where η′k = al(1 + δ′k)/λk → η′∞ = al/λ∞.

Proof. The conclusions can be obtained by applying the results of [43, Theorem 5] to
problem (2).

Remark 3.5. From the dual PPA, we observe that if y0 = 0, then

y1 = λ0ΠQ∗ [b−A(X1)],
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where X1 (approximately) solves the following penalized problem of (2):

min
{1

2
‖ΠQ∗ [b−A(X)]‖2 + λ0

−1‖X‖∗ : X ∈ <n1×n2

}
. (59)

For the special case of (2) with equality constraints only, then with y0 = 0,

y1 = λ0(b−A(X1)),

where X1 (approximately) solves the following penalized problem:

min
{1

2
‖A(X)− b‖2 + λ−1

0 ‖X‖∗ : X ∈ <n1×n2

}
. (60)

Again, this says that y1 is the result for one outer gradient iteration of the dual PPA. The
problem (60) corresponds to the nuclear norm regularized linear least squares problems
considered in [31, 45].

The Bregman iterative method considered in [31] for solving problem (2) with equality
constraints only can be described as:





bk+1 = bk + (b−A(Xk))

Xk+1 = arg min
X∈<n1×n2

{1

2
‖A(X)− bk+1‖2 + µ‖X‖∗

} (61)

for some fixed µ > 0. By noting that bk+1 = µyk+1 with µ = λk
−1, we know that in this

case the Bregman iterative method [31] is actually a special case of the exact dual PPA
with λk ≡ µ−1.

3.3 The primal-dual form

In this subsection, we shall discuss the proximal point algorithm applied to compute a
saddle point of the Lagrangian function l.

Given (X0, y0) ∈ <n1×n2 ×<m, the exact primal-dual PPA can be described as

(Xk+1, yk+1) = pλk
(Xk, yk), (62)

where pλk
(Xk, yk) is defined by

pλk
(Xk, yk) = (I + λkTl)

−1(Xk, yk)

= arg min
X∈<n1×n2

max
y∈<m

{
l(X, y) +

1

2λk

‖X −Xk‖2 − 1

2λk

‖y − yk‖2
}

, (63)

and the sequence {λk} satisfying (9) is given.
We see that in the k-th step of the primal-dual PPAs, one needs to obtain the saddle

point of lk(X, y), where lk(X, y) is defined by

lk(X, y) := l(X, y) +
1

2λk

‖X −Xk‖2 − 1

2λk

‖y − yk‖2.
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By the Saddle Point Theorem, it can be easily verified that in order that (Xk+1, yk+1)
is the saddle point of lk(X, y), it is sufficient and necessary that one of the following
statements is valid:

(i). Xk+1 = Pλk
[X + λkA∗(yk+1)], where yk+1 satisfies

yk+1 = arg max
y∈Q∗

{
Θλk

(y; Xk)− 1

2λk

‖y − yk‖2
}

.

(ii). yk+1 = ΠQ∗ [yk + λk(b−A(Xk+1))], where Xk+1 satisfies

Xk+1 = arg min
X∈<n1×n2

{
‖X‖∗ + Ψλk

(X; yk) +
1

2λk

‖X −Xk‖2
}

.

The above results lead to two versions of the inexact primal-dual PPA. The first ver-
sion of the inexact primal-dual PPA based on part (i) can be stated as follows :

The Primal-Dual PPA-I. Given a tolerance ε > 0. Input X0 ∈ <n1×n2 , y0 ∈ <m, and
λ0 > 0. Set k := 0. Iterate:

Step 1. Approximately find the unique maximizer

Q∗ 3 yk+1 ≈ arg max
y∈<m

{
θk(y) := Θλk

(y; Xk)− χQ∗(y)− 1

2λk

‖y − yk‖2
}

. (64)

Step 2. Compute
Xk+1 = Pλk

[Xk + λkA∗(yk+1)].

Step 3. If ‖(Xk −Xk+1)/λk‖ ≤ ε; stop; else; update λk such that (9); end.

In the primal-dual PPA-I stated above, one does not need to solve problem (64) exactly.
Two stopping criteria to terminate them are treated as follows:

dist(0, ∂θk(y
k+1)) ≤ εk

λk

, εk > 0,
∞∑

k=0

εk < ∞, (65a)

dist(0, ∂θk(y
k+1)) ≤ δk

λk

‖(Xk+1, yk+1)− (Xk, yk)‖, δk > 0,
∞∑

k=0

δk < ∞. (65b)

We next apply the general convergence results [42] to the primal-dual PPA-I. The
following proposition is crucial for this purpose.

Proposition 3.2. Let pλk
be given by (63) and Xk+1 = Pλk

[Xk + λkA∗(yk+1)]. Then,
one has

‖(Xk+1, yk+1)− pλk
(Xk, yk)‖ ≤ λkdist(0, ∂θk(y

k+1)). (66)
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Proof. We first note that

∂θk(y
k+1) = ∂φk(y

k+1)− λ−1
k (yk+1 − yk),

where φk(y) = Θλk
(y; Xk) − χQ∗(y). Therefore, for any w ∈ ∂θk(y

k+1), one has w +
λ−1

k (yk+1−yk) ∈ ∂φk(y
k+1), and hence w+λ−1

k (yk+1−yk) ∈ ∂yl(X
k+1, yk+1). On the other

hand, from (23) and (31), we have that λ−1
k (Xk−Xk+1) ∈ ∂X l(Xk+1, yk+1). Consequently,

we obtain that

(λ−1
k (Xk −Xk+1),−w + λ−1

k (yk − yk+1)) ∈ Tl(X
k+1, yk+1),

or equivalently, (Xk,−λkw+yk) ∈ (I+λkTl)(X
k+1, yk+1), which implies that (Xk+1, yk+1) =

pλk
(Xk,−λkw + yk). Since pλk

is nonexpansive [42], we have

‖(Xk+1, yk+1)− pλk
(Xk, yk)‖ ≤ ‖(Xk,−λkw + yk)− (Xk, yk)‖ ≤ λk‖w‖.

Since this holds for any w ∈ ∂θk(y
k+1), we obtain the estimate (66). This completes the

proof.

We are ready to state the convergence results for the primal-dual PPA-I.

Theorem 3.5. (Global Convergence) Assume that FP 6= ∅ and condition (51) holds for
problem (2). Let the primal-dual PPA-I be executed with stopping criterion (65a). Then,
the generated sequence {(Xk, yk)} ⊂ <n1×n2 × Q∗ is bounded, and (Xk, yk) → (X, y),
where X is an optimal solution to problem (2) and y is an optimal solution to problem
(11).

Proof. Combining Proposition 3.2 with [42, Theorem 1], we know that (Xk, yk) converges
to some (X, y) such that (0, 0) ∈ Tl(X, y), which means that (X, y) is a saddle point of
the Lagrangian function l and hence X is an optimal solution to problem (2) and y is an
optimal solution to problem (11). This completes the proof.

Theorem 3.6. (Local Convergence) Assume that FP 6= ∅ and condition (51) holds
for problem (2). Let the primal-dual PPA-I be executed with stopping criterion (65a) and
(65b). If T −1

l is Lipschitz continuous at the origin with modulus al > 0, then {(Xk, yk)}
is bounded and (Xk, yk) → (X, y), where X is the unique optimal solution to problem (2)
and y is the unique optimal solution to problem (11). Furthermore, one has

‖(Xk+1 − yk+1)− (X, y)‖ ≤ ηk‖(Xk, yk)− (X, y)‖, for all k sufficiently large,

where
ηk = [al(a

2
l + λ2

k)
−1/2 + δk](1− δk)

−1 → η∞ = al(a
2
l + λ2

∞)−1/2 < 1.

Proof. By using Proposition 3.2, we get the conclusions from [42, Theorem 2].
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The second version of the inexact primal-dual PPA based on part (ii) takes the fol-
lowing form:

The Primal-Dual PPA-II. Given a tolerance ε > 0. Input X0 ∈ <n1×n2 , y0 ∈ <m, and
λ0 > 0. Set k := 0. Iterate:

Step 1. Approximately find the unique minimizer

Xk+1 ≈ arg min
X∈<n1×n2

{
ψk(X) := ‖X‖∗ + Ψλk

(X; yk) +
1

2λk

‖X −Xk‖2
}

. (67)

Step 2. Compute
yk+1 = ΠQ∗ [yk + λk(b−A(Xk+1))].

Step 3. If ‖(yk − yk+1)/λk‖ ≤ ε; stop; else; update λk such that (9); end.

From the computational point of view, in the primal-dual PPA-II, one only needs to
approximately solve (67). Two implementable stopping criteria to terminate them are
suggested here:

ψk(X
k+1)− ψ̌k ≤ ε2

k

4λk

, εk > 0,
∞∑

k=0

εk < ∞, (68a)

ψk(X
k+1)− ψ̌k ≤ δ2

k

4λk

‖(Xk+1, yk+1)− (Xk, yk)‖, δk > 0,
∞∑

k=0

δk < ∞, (68b)

where ψ̌k := Θλk
(yk+1; Xk)− (1/2λk)‖yk+1 − yk‖2. Note that

ψ̌k ≤ max
y∈Q∗

{
Θλk

(y; Xk)− 1

2λk

‖y − yk‖2
}

= inf ψk. (69)

Remark 3.6. Note that the primal-dual PPA-II is actually the proximal method of mul-
tipliers developed in [43, Section 5] applied to problem (2).

Before applying the general convergence results of the proximal point method [42] to
the primal-dual PPA-II, we need the following property.

Proposition 3.3. Let pλk
be given as in (63) and yk+1 = ΠQ∗ [yk + λk(b − A(Xk+1))].

Then, one has

‖(Xk+1, yk+1)− pλk
(Xk, yk)‖2/(4λk) ≤ ψk(X

k+1)− inf ψk. (70)

Proof. Let us denote pλk
(Xk, yk) by (X

k+1
, yk+1). Then, the same argument as in [43,

Proposition 6] or in Proposition 3.1 implies that

‖yk+1 − yk+1‖2/(2λk) ≤ ψk(X
k+1)− inf ψk. (71)
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Since ψk is strongly convex in X with modulus 1/λk, we know (see, e.g., [42, Proposition
6]) that

‖Xk+1 −X
k+1‖2/(2λk) ≤ ψk(X

k+1)− inf ψk,

which, together with (71), yields (70). This completes the proof.

Theorem 3.7. (Global Convergence) Assume that FP 6= ∅ and condition (51) holds
for (2). Let the primal-dual PPA-II be executed with stopping criterion (68a). Then, the
generated sequence {(Xk, yk)} ⊂ <n1×n2 × <m is bounded, and (Xk, yk) → (X, y), where
X is an optimal solution to problem (2) and y is an optimal solution to problem (11).

Proof. Combining Proposition 3.3 with [42, Theorem 1], we know that (Xk, yk) converges
to some (X, y) such that (0, 0) ∈ Tl(X, y), which means that (X, y) is a saddle point of
the Lagrangian function l and hence X is an optimal solution to problem (2) and y is an
optimal solution to problem (11). This completes the proof.

Theorem 3.8. (Local Convergence) Assume that FP 6= ∅ and condition (51) holds for
problem (2). Let the primal-dual PPA-II be executed with stopping criterion (68a) and
(68b). If T −1

l is Lipschitz continuous at the origin with modulus al > 0, then {(Xk, yk)}
is bounded and (Xk, yk) → (X, y), where X is the unique optimal solution to problem (2)
and y is the unique optimal solution to problem (11). Furthermore, one has

‖(Xk+1 − yk+1)− (X, y)‖ ≤ ηk‖(Xk, yk)− (X, y)‖, for all k sufficiently large,

where
ηk = [al(a

2
l + λ2

k)
−1/2 + δk](1− δk)

−1 → η∞ = al(a
2
l + λ2

∞)−1/2 < 1.

Proof. By virtue of (68a) and (68b), from Proposition 3.3, we can easily obtain the conclu-
sions by applying the convergence rate of the general proximal point method [42, Theorem
2] to the case of Tl.

4 Implementation issues

For the PPAs to be practical, we need to be able to solve the inner sub-problems and
evaluate the proximal mapping Pλ(·) efficiently. Here we describe our implementations to
achieve these goals.

4.1 First-order methods for the inner sub-problems

In this subsection, we describe the application of first-order methods to solve the inner
sub-problems in the PPAs. In particular, we propose to solve the inner sub-problems
of the primal PPA and the primal-dual PPA-I by the gradient projection method, and
the inner sub-problems of the dual PPA and the primal-dual PPA-II by an accelerated
proximal gradient method.
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First, we consider the gradient projection method to solve the inner sub-problems of
the primal PPA and the primal-dual PPA-I. For some fixed X ∈ <n1×n2 , z ∈ <m, and
λ > 0, the inner sub-problems in these PPAs have the following form:

min
{

h(y) : y ∈ Q∗
}

, (72)

where h is continuously differentiable and its gradient is Lipshitz continuous with modulus
L > 0. Actually, from (43) and (64), we know that for the primal PPA, h(y) = −Θλ(y; X),
∇h(y) = APλ[X + λA∗(y)] − b and L = λ‖A‖2

2; and for the primal-dual PPA-I, h(y) =
−Θλ(y; X)+‖y−z‖2/(2λ), ∇h(y) = APλ[X +λA∗(y)]−b+(y−z)/λ and L = λ‖A‖2

2+ 1
λ
,

where ‖A‖2 denotes the operator norm of A.
One of the simplest methods for solving (72) is the following gradient projection (GP)

method:
yj+1 = ΠQ∗ [yj − αj∇h(yj)], (73)

where y0 ∈ Q∗ is given, and αj > 0 is the steplength which can be determined by various
rules, e.g., the Armijo line search rule. In particular, if yj − αj∇h(yj) is feasible, the GP
iteration reduces to the standard steepest descent iteration. Let s > 0, ρ ∈ (0, 1), and
γ ∈ (0, 1) be given. The Armijo line search rule is to choose αj = sρij , where ij is the
smallest nonnegative integer i such that

h(ΠQ∗ [yj − sρi∇h(yj)])− h(yj) ≤ γ〈∇h(yj), ΠQ∗ [yj − sρi∇h(yj)]− yj〉. (74)

Alternatively, since ∇h is Lipschitz continuous with modulus L, one can choose the con-
stant steplength rule

αj = s with s ∈ (0, 2/L), (75)

which was first proposed by Goldstein [22] and Levitin and Poljak [26]. The constant
steplength choice is, however, too conservative and the convergence is typically slow. In
our implementation, we use the Armijo line search rule, which is shown to be better
than the constant steplength rule (see Subsection 5.1). The global convergence of the GP
method with the Armijo line search rule (74) was originally shown by Bertsekas [6] for
(72) in which h is continuously differentiable and Q∗ is replaced by bound constraints. In
1984, Gafni and Bertsekas [20] proved the global convergence of the GP method with the
Armijo line search rule (74) for a general closed convex set. The following theorem gives
the results on the complexity iteration of the GP method with the constant steplength
rule. For the details, see, e.g., [36, Theorem 2.2.14].

Theorem 4.1. Let {yj} be generated by the GP method with the steplength αj chosen by
the constant steplength rule (75). Then, for every j ≥ 1, one has

h(yj)− inf h ≤ O(L/j),

and hence O(L/εsub) iterations suffice to achieve within εsub > 0 of the optimal value.
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Note that theoretically, the accuracy tolerance εsub needed for solving the inner sub-
problem (72) should depend on the stopping conditions (46a), (46b) and (45). In our
practical implementation of the primal PPA, for the subproblem at the kth iteration, we
find that choosing εsub to be 10−2‖(Xk+1−Xk)/λk‖ is usually good enough for the overall
algorithm to attain the required accuracy.

For a comprehensive study on the GP methods in general, we refer to Bertsekas [7,
Chapter 2] and references therein.

Remark 4.1. In our implementation of the primal PPA and the primal-dual PPA-I where
the inner sub-problems are solved by the GP method with Armijo line search, the initial
steplength estimate s in (74) at the j iteration is chosen as follows:

s =

{
1.11 αj−1 if ij−1 = 0,

αj−1 otherwise.

In our numerical experiments of the primal PPA and the primal-dual PPA-I on NNM
problems arising from random matrix completion problems, such an initial estimate is
typically accepted as the steplength αj.

Next, we turn to consider an accelerated proximal gradient method to solve the inner
sub-problems of the dual PPA and the primal-dual PPA-II. For some fixed Z ∈ <n1×n2 ,
y ∈ <m, and λ > 0, in the dual PPA and the primal-dual PPA-II, the inner sub-problems
have the following form:

min
{

H(X) := ‖X‖∗ + h(X) : X ∈ <n1×n2

}
. (76)

It is readily seen from (55) and (64) that h is proper, convex, continuously differentiable
on <n1×n2 , and ∇h is globally Lipschitz continuous with (different) modulus L > 0.
In fact, for the dual PPA, h(X) = Ψλ(X; y), ∇h(X) = −A∗ΠQ∗ [y + λ(b − A(X))] and
L = λ‖A‖2

2; and for the primal-dual PPA-II, h(X) = Ψλ(X; y)+‖X−Z‖2/(2λ), ∇h(X) =
−A∗ΠQ∗ [y + λ(b−A(X))] + (X − Z)/λ and L = λ‖A‖2

2 + 1
λ
.

Recently, Toh and Yun [45] proposed an accelerated proximal gradient (APG) algo-
rithm for solving a more general form of (76) and reported good performances of the
APG algorithm on large scale matrix completion problems. (The APG algorithm is in
the class of accelerated first-order methods studied by Nesterov, Nemirovski, and others;
see [34, 35, 36, 37, 38, 46] and references therein.) A few recent papers have also reported
promising numerical results using improved variants of the APG method for some large
scale convex optimization problems, see, e.g., [5, 30, 45] and related works. This motivates
us to consider APG methods for solving (76).

For given τ0 = τ−1 = 1 and X0 = X−1 ∈ <n1×n2 , the APG algorithm applied to
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solving (76) can be expressed as:




Y j = Xj + τ−1
j (τj−1 − 1)(Xj −Xj−1),

Xj+1 = PL−1 [Y j − L−1∇h(Y j)],

τj+1 = (
√

1 + 4τ 2
j + 1)/2,

(77)

where L is the Lipschitz modulus of ∇h.
The following theorem shows that the APG algorithm given in (77) has an attractive

iteration complexity of O(
√

L/εsub) for achieving εsub-optimality for any εsub > 0. For
the more general discussions, see, e.g., [46, Corollary 2].

Theorem 4.2. Let {Y j}, {Xj}, {τj} be generated by the APG algorithm (77). Then, for
any X ∈ <n1×n2 such that H(X) ≤ infX∈<n1×n2{H(X)}+ εsub, we have

min
i=0,1,...,j+1

{H(X i)} ≤ H(X) + εsub whenever j ≥
√

4L‖X −X0‖2

εsub

− 2.

Remark 4.2. Notice that L−1 in the second step of (77) plays the role of the steplength,
and the default steplength of L−1 could be too conservative. The APG method in (77)
can generally be accelerated by using a smaller L. As explained in [46], one chooses an
initial under estimate of L and increasing the estimate by a pre-specified constant factor
and repeating the iteration whenever the following condition is violated:

h(Xj+1) ≤ h(Y j) + 〈∇h(Y j), Xj+1 − Y j〉+
L

2
‖Xj+1 − Y j‖2. (78)

We use the linesearch-like scheme stated above in our implementation, which has been
shown in [45] to greatly accelerate the convergence of the APG algorithm.

Again, the accuracy tolerance εsub in solving the subproblem (76) should theoretically
be dependent on the stopping conditions (58a), (58b) and (57). In our practical imple-
mentation of the dual PPA, we choose εsub = 2× 10−2‖(yk − yk+1)/λk‖ when solving the
subproblem at the k iteration.

Remark 4.3. We should mention that the APG method (see, e.g., [46, Algorithm 2])
applied to the inner sub-problems of the primal PPA and the primal-dual PPA-I requires
two SVDs per iteration if the linesearch-like strategy in (78) is employed. Since the itera-
tion complexities of the GP method and the APG method are O(L/εsub) and O(

√
L/εsub),

respectively, it seems that one may still benefit more from the APG method than from the
GP method. However, our numerical results show that the number of iterations taken by
the GP method is at most twice that of iterations taken by the APG method3. Therefore,
the total computational cost consumed by the APG method is more than that consumed by
the GP method since the latter (with the line search) only requires slightly more than one
SVD per iteration on the average.

3Such an observation is possible because the O(L/εsub) and O(
√

L/εsub) iteration complexities are
for the worst cases.
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4.2 Evaluation of singular value decompositions

The main computational cost at each iteration of the GP method and the APG algorithm
is to compute a partial SVD (see (19) and (20)) so as to compute Pλ[X + λA∗(yj)] or
PL−1 [Y j − L−1∇h(Y j)]. In particular, in the j-th iteration of the GP method, for given
X and λ, we need to know those singular values of X + λA∗(yj) exceeding λ and their
corresponding singular vectors; and in the j-th iteration of the APG algorithm, for given
y and λ, we need to know those singular values of Y j − L−1∇h(Y j) exceeding L−1 and
their corresponding singular vectors.

As in [10, 45], we use the PROPACK package (see [24]) based on the Lanczos bidi-
agonalization algorithm with partial reorthogonalization to compute a partial SVD. Note
that PROPACK cannot automatically compute only those singular values of a matrix
greater than a given constant but it can compute a specified number sv of the largest or
smallest singular values and their corresponding singular vectors. Hence, we must specify
the number svk of the largest singular values to compute beforehand at the k-th iteration.
We use the following procedure given in [45] to update svk. Input sv0 = 5, for k = 0, 1, . . .,
update svk+1 by

svk+1 =

{
svpk + 1 if svpk < svk,

svpk + 5 if svpk = svk,

where svpk is the rank of Xk. In our experiments, the above procedure appears to work
well.

In addition, we use the truncation technique introduced in [45] in the implementation
of the GP method and the APG algorithm. For the details on the description of the
truncation technique, see [45, Section 3.4]. The benefit of using the truncation technique
is that the rank of the iterate Xk is kept as low as possible without severely affecting the
convergence of the algorithms. The main motivation for keeping the rank of Xk low is
to reduce the cost of computing the partial SVD of Xk + λA∗(yk) or Y k − L−1∇h(Y k),
where Y k is linear combination of Xk and Xk−1.

5 Numerical experiments

In this section, we report some numerical results on the application of the PPAs to NNM
problems arising in minimum rank matrix completion problems.

In the matrix completion problem, the goal is to recover an unknown matrix from a
sampling of its entries by solving the following problem:

min
{

rank(X) : Xij = Mij, (i, j) ∈ Ω
}

, (79)

where X is the decision variable, M is the unknown matrix with m available sampled
entries, and Ω is the set of indices of the observed entries. This is a special case of the
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rank minimization problem (3) for which one has

A(X) = XΩ, (80)

where XΩ ∈ <|Ω| is the vector consisting of elements selected from X whose indices are
in Ω.

We have implemented the primal PPA, the dual PPA and the primal-dual PPA-I (-II)
in MATLAB, using PROPACK package to evaluate partial SVDs. All runs are performed
on an Intel Xeon 3.20GHz PC with 4GB memory, running Linux and MATLAB (Version
7.6). In our experiments, the initial point for the primal PPA, the dual PPA and the
primal-dual PPA-I (-II) is set to be X0 = 0, y0 = 0, (X0, y0) = (0, 0), respectively.

We first consider random matrix completion problems, which are generated as in [14].
For each triple (n, r,m), where n (we set n1 = n2 = n) is the dimension of matrix, r
is the predetermined rank, and m is the number of sampled entries, we first generate
M = MLMT

R , where ML and MR are n× r matrices with i.i.d. standard Gaussian entries.
Then we select a subset Ω uniformly at random among all sets of cardinality m. Note
that from (80), we have b = A(M).

We also consider random matrix completion problems with noisy sampled entries. For
the random matrix completion problem with noisy data, the matrix M is contaminated
with a noisy matrix Ξ, and

b = A(M + ωΞ),

where Ξ is a matrix with i.i.d. standard Gaussian random entries and ω is set to be

ω = κ
‖A(M)‖
‖A(Ξ)‖ ,

and κ is a given noise factor.
In our experiments, the primal PPA or the primal-dual PPA-I is stopped when any of

the following conditions is satisfied:

(i)
‖b−A(Xk)‖
max{1, ‖b‖} < Tol,

(ii)

∣∣∣∣
‖b−A(Xk)‖
‖b−A(Xk−1)‖ − 1

∣∣∣∣ < 10−2 and
‖Xk −Xk−1‖
max{1, ‖Xk‖} < 10−1.

where Tol is a given tolerance. The dual PPA or the primal-dual PPA-II is stopped when
the following condition is satisfied:

1

λk

‖yk − yk−1‖ < Tol.

Unless otherwise specified, in our experiments, Tol is set to be 10−4. In addition, the
accuracy of the recovery solution Xsol of the PPAs is measured by the relative error
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defined by:

error :=
‖Xsol −M‖

‖M‖ , (81)

where M is the pre-generated low-rank matrix.

5.1 Sensitivity of the primal PPA to the parameter λ

Here we investigate the benefits of the primal PPA for solving (2) as opposed to the SVT
algorithm in [10] applied to the regularized problem (52). For simplicity, we only consider
the case without second order cone constraints, i.e., Q = {0}m1 .

In this experiment, we use the stopping criterion in the SVT algorithm (downloaded
from [12] in April 2009) for the primal PPA, i.e.,

‖b−A(Xk)‖
max{1, ‖b‖} < 10−4.

Table 1 reports the number of iterations for one random instance without noise and
gives the ratio (m/dr) between the number of sampled entries (m) and the degrees of free-
dom (dr := r(2n−r)) of an n×n rank-r matrix. Table 1 also presents the results on the per-
formance of the SVT algorithm with different constant steplengths δ = 1.0/p, 1.2/p, 1.5/p,
where p := m/n2 is the proportion of observed entries. From Table 1, we can see that
when λ is set to n/2 or n, the primal PPA recovers the matrix M , whereas the SVT
algorithm fails to recover it. In addition, the number of iterations of the SVT algorithm
varies greatly with the constant steplength δ. This behavior is consistent with the fact
that the SVT algorithm used a heuristic choice of constant steplength which may be
overly optimistic and it has no known convergence guarantee, whereas the primal PPA
incorporated the Armijo line search rule to guarantee convergence by ensuring sufficient
descent in the objective function at each iteration.

Table 1: Numerical results for the primal PPA versus the SVT
algorithm.

n/r/(m/dr) method λ = n/2 λ = n λ = 5n λ = 10n

1000/50/4 PPA 64 60 88 169
SVT (δ = 1.0/p) fail fail 135 250
SVT (δ = 1.2/p) fail fail 112 208
SVT (δ = 1.5/p) fail fail 89 165

5000/50/5 PPA 70 72 86 141
SVT (δ = 1.0/p) fail fail 129 239
SVT (δ = 1.2/p) fail fail 108 199
SVT (δ = 1.5/p) fail fail 86 159
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5.2 Performance of PPAs on random matrix completion prob-
lems

In this section, we report the performance of the PPAs for solving randomly generated
matrix completion problems without and with noise.

Notice that for the primal PPA, we fixed the parameter λ to be λ = max{103, n}. The
performance of the primal PPA on random matrix completion problems without noise
is displayed in Table 2. In this table, we give the ratio (m/dr), the mean value of the
parameter (λ), the average number of iterations (iter), the average number of positive
singular values of the recovered matrix (#sv), the average CPU time (in seconds), and
the average error (as defined in (81)) of the recovered matrix, of five runs. As can be seen
from Table 2, the maximum average number of iterations is 99 for the case of n = 105

and r = 10, and for all the other cases, the average number of iterations are at most 83.
Notice that all the errors are smaller than or roughly equal to 10−4, except for the case
n = 50000 and r = 10. In addition, the primal PPA can recover a 100, 000 × 100, 000
matrix of rank 10 from about 0.12% of the sampled entries in less than 1000 seconds with
an error of 8.58× 10−5.

Table 2: Numerical results for the primal PPA on random matrix
completion problems without noise.

Unknown M Results
n m r m/dr λ−1 iter #sv time error
1000 119560 10 6 1.00e-03 54 10 5.77e+00 7.02e-05

389638 50 4 1.00e-03 61 50 3.19e+01 7.42e-05
569896 100 3 1.00e-03 77 100 1.03e+02 5.34e-05

5000 599936 10 6 2.00e-04 57 10 2.23e+01 6.11e-05
2487739 50 5 2.00e-04 72 50 2.13e+02 4.12e-05
3960882 100 4 2.00e-04 83 100 6.94e+02 1.04e-04

10000 1200730 10 6 1.00e-04 52 10 4.40e+01 1.43e-04
4985869 50 5 1.00e-04 81 50 5.61e+02 3.05e-05
7959722 100 4 1.00e-04 82 100 1.48e+03 8.35e-05

20000 2400447 10 6 5.00e-05 66 10 1.07e+02 1.20e-04
30000 3599590 10 6 3.33e-05 72 10 1.86e+02 5.90e-05
50000 5995467 10 6 2.00e-05 70 10 3.49e+02 5.59e-04

100000 11994813 10 6 1.00e-05 99 10 9.85e+02 8.58e-05

The performance of the primal PPA on random matrix completion problems with
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noise is displayed in Table 3. We report the same results as in Table 2. As can be seen
from Table 3, the primal PPA takes at most 67 iterations on the average to recover the
unknown matrices. More importantly, the relative errors are all smaller than 7.94× 10−2,
which is smaller than the given noise level of κ = 0.1.

Table 3: Numerical results for the primal PPA on random matrix
completion problems with noise. The noise factor κ is set to 0.1.

Unknown M Results
n /κ m r m/dr λ−1 iter #sv time error

1000 /0.10 119560 10 6 1.00e-03 38 10 5.10e+00 5.62e-02
389638 50 4 1.00e-03 47 51 3.16e+01 7.74e-02
569896 100 3 1.00e-03 45 100 5.80e+01 7.94e-02

5000 /0.10 599936 10 6 2.00e-04 45 10 2.38e+01 5.02e-02
2487739 50 5 2.00e-04 53 50 2.23e+02 5.93e-02
3960882 100 4 2.00e-04 47 100 4.93e+02 7.72e-02

10000 /0.10 1200730 10 6 1.00e-04 45 10 5.59e+01 4.89e-02
4985869 50 5 1.00e-04 36 50 3.62e+02 5.84e-02
7959722 100 4 1.00e-04 57 100 1.24e+03 6.82e-02

20000 /0.10 2400447 10 6 5.00e-05 47 10 9.32e+01 5.60e-02
30000 /0.10 3599590 10 6 3.33e-05 53 10 1.69e+02 4.80e-02
50000 /0.10 5995467 10 6 2.00e-05 58 10 3.33e+02 5.24e-02

100000 /0.10 11994813 10 6 1.00e-05 67 10 7.53e+02 5.42e-02

In Table 4 and Table 5, we report the performance of the dual PPA on random matrix
completion problems without and with noise, respectively. Note that for the dual PPA,
we fixed λ to be λ = 104/‖A∗(b)‖2. As shown in the tables, we can see that the dual PPA
works well with relatively small values of λ.

Comparing the performance of the primal PPA and the dual PPA on random matrix
completion problems without/with noise, we observe that the dual PPA outperforms the
primal PPA4. For the case n = 105 and r = 10 without noise, the dual PPA solves
the problem in 519 seconds whereas the primal PPA takes 985 seconds. There are two
possible reasons to explain this difference. First, the inner sub-problems of the dual PPA
are solved by an APG method, while those of the primal PPA are solved by a gradient
projection method. Second, the former works well with relatively small values of λ, while
the latter requires larger values of λ. However, a larger value of λ often leads to a slower
rate of convergence for the outer iteration in the PPA.

4Here our conclusion is based on using the gradient-type methods to solve the corresponding sub-
problems.
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Table 4: Numerical results for the dual PPA on random matrix
completion problems without noise.

Unknown M Results
n m r m/dr λ−1 iter #sv time error
1000 119560 10 6 1.44e-02 35 10 3.90e+00 1.05e-04

389638 50 4 5.37e-02 51 50 2.95e+01 6.21e-05
569896 100 3 8.66e-02 56 100 7.78e+01 2.41e-05

5000 599936 10 6 1.38e-02 42 10 1.71e+01 7.34e-05
2487739 50 5 6.08e-02 50 50 1.47e+02 6.50e-05
3960882 100 4 1.02e-01 56 100 4.32e+02 9.68e-05

10000 1200730 10 6 1.37e-02 40 10 2.96e+01 1.40e-04
4985869 50 5 5.93e-02 51 50 3.19e+02 6.54e-05
7959722 100 4 9.88e-02 56 100 9.05e+02 1.04e-04

20000 2400447 10 6 1.35e-02 45 10 6.72e+01 1.50e-04
30000 3599590 10 6 1.35e-02 54 10 1.21e+02 1.41e-04
50000 5995467 10 6 1.34e-02 58 10 2.46e+02 4.83e-05

100000 11994813 10 6 1.34e-02 55 10 5.19e+02 1.04e-04

Table 5: Numerical results for the dual PPA on random matrix
completion problems with noise. The noise factor κ is set to 0.1.

Unknown M Results
n /κ m r m/dr λ−1 iter #sv time error

1000 /0.10 119560 10 6 1.44e-02 29 10 3.95e+00 4.49e-02
389638 50 4 5.37e-02 31 50 1.52e+01 5.49e-02
569896 100 3 8.67e-02 39 100 4.36e+01 6.39e-02

5000 /0.10 599936 10 6 1.38e-02 39 10 2.20e+01 4.51e-02
2487739 50 5 6.08e-02 39 50 1.09e+02 4.96e-02
3960882 100 4 1.02e-01 41 100 2.71e+02 5.67e-02

10000 /0.10 1200730 10 6 1.37e-02 44 10 4.73e+01 4.53e-02
4985869 50 5 5.93e-02 39 50 2.26e+02 4.99e-02
7959722 100 4 9.89e-02 47 100 6.92e+02 5.73e-02

20000 /0.10 2400447 10 6 1.35e-02 44 10 9.65e+01 4.52e-02
30000 /0.10 3599590 10 6 1.35e-02 45 10 1.45e+02 4.53e-02
50000 /0.10 5995467 10 6 1.34e-02 47 10 2.70e+02 4.53e-02

100000 /0.10 11994813 10 6 1.34e-02 43 10 5.42e+02 4.53e-02

Remark 5.1. Here we do not report the numerical results for the primal-dual PPA-I and
PPA-II for the sake of saving some space. Indeed, in our experiments, we observe that
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the performance of the primal-dual PPA-I is similar to that of the primal PPA, and the
performance of the primal-dual PPA-II is similar to that of the dual PPA.

5.3 Performance of the dual PPA on real matrix completion
problems

Now we consider the well-known matrix completion problem in the Netflix Prize Contest
[39]. Three data sets are provided in the Contest.

1. training set: consists of about 100 million ratings from 480189 randomly chosen
users on 17770 movie titles. The ratings are integers on a scale from 1 to 5.

2. qualifying set: contains over 2.8 million user/movie pairs but with the ratings
withheld. The qualifying set is further randomly divided into two disjoint subsets
called quiz and test subsets.

3. probe set: this is a subset of the training set consisting of about 1.4 million
user/movie pairs with known ratings. This subset is constructed to have similar
properties as the qualifying set.

For convenience, we assume that the users are enumerated from 1 to 480189, and the
movies are enumerated from 1 to 17770. We define

Ωt =
{
(i, j) : user i has rated movie j in the training set

}
,

Ωq =
{
(i, j) : user i has rated movie j in the qualifying set

}
,

Ωp =
{
(i, j) : user i has rated movie j in the probe set

}
.

The Netflix Prize Contest solicits algorithms that can make predictions for all the
withheld ratings for the user/movie pairs in the qualifying set. The quality of the
predictions is measured by the root mean squared error:

RMSE =


 1

|Ωq|
∑

(k,j)∈Ωq

(xpred
kj − xtrue

kj )2




1/2

,

where xpred
kj , xtrue

kj are the predicted and actual ratings for the k-th user on the j-th movie.
For any predictions submitted to the Contest, the RMSE for the quiz subset will be
reported publicly on [39] whereas the RMSE for the test subset is withheld but will
be employed for the purpose of selecting the winner in the Contest. At the start of the
Contest, the RMSE of Netflix’s proprietary Cinematch algorithm on the quiz and test

subsets, based on the training data set alone, were 0.9514 and 0.9525, respectively. The
RMSE obtained by the Cinematch algorithm on the probe set is 0.9474.
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Due to memory constraint, in our numerical experiment, we divide the training set

and probe set respectively into 5 disjoint subsets according to the users’ id as follows:

training-k =
{
(i, j) ∈ Ωt\Ωp : (k − 1)100, 000 < i ≤ (k + 1)100, 000

}
,

probe-k =
{
(i, j) ∈ Ωp : (k − 1)100, 000 < i ≤ (k + 1)100, 000

}
, k = 1, . . . , 5.

Note that we removed the data in the probe set from the training set in the experi-
ments.

We apply the dual PPA to (4) for all the 5 subsets to predict the ratings of all the
users on all the movies. As the noise level δ for these problems are not known, we
estimate δ dynamically from (outer) iteration to iteration. That is, for the k-th outer
iteration in the dual PPA, we set δ = 0.5‖b − A(Xk)‖. In addition, as the optimal
solutions of these problems are not necessarily low-rank, we truncate the rank of Xj+1 =
PL−1 [Y j − L−1∇h(Y j)] in the APG algorithm (77) to 10 in each iteration of the APG
algorithm. We have tested truncating the rank to 50, but the results were slightly worse.

For each of the subsets training-k, we compute the RMSE for the corresponding
probe subsets probe-k. Table 6 shows the results we obtained. We should note that
in our experiment, we do not preprocess the data sets via any statistical means, except
to center the partially observed matrix Mk corresponding to training-k such that the
modified matrix M̄k has all its rows and columns each having zero sum. That is,

M̄k
ij = Mk

ij − di − fj, ∀ i, j

and di, fj are determined so that
∑

j M̄k
ij = 0 and

∑
i M̄

k
ij = 0 for all i and j.

Table 6: Numerical results for the dual PPA on matrix completion
problems arising from Netflix Contest. The number of movies is
17770.

Unknown M Results

n m λ−1 iter #sv time training
RMSE

probe
RMSE

training-1 100000 2.08e+07 2.92e+00 35 10 3.9e+02 0.8148 0.9309

training-2 100000 2.08e+07 2.93e+00 35 10 4.0e+02 0.8126 0.9292

training-3 100000 2.09e+07 2.93e+00 35 10 4.0e+02 0.8131 0.9278

training-4 100000 2.07e+07 2.94e+00 35 10 3.9e+02 0.8152 0.9331

training-5 80189 1.66e+07 2.64e+00 35 10 2.9e+02 0.8136 0.9366

training\probe 160378 9.98e+07 1.9e+03 0.8139 0.9313
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As we can observe from Table 6, the training set (with probe set removed) RMSE
is much lower than the probe set RMSE, and this reflects that the dual PPA on (4) over
trains the data. Despite that, the probe set RMSE of 0.9313 we obtained is better
than that obtained by Netflix’s Cinematch algorithm. The computed RMSE for the quiz

subset is 0.9416.

6 Conclusions and discussions

In this paper, we have proposed implementable proximal point algorithms in the primal,
dual and primal-dual forms for solving the nuclear norm minimization problem with linear
equality and second order cone constraints, and presented comprehensive convergence re-
sults. These algorithms are efficient and competitive to state-of-the-art alternatives when
the inner sub-problems of these algorithms are solved by either the gradient projection
method or the accelerated proximal point method.

Before closing this paper, we would like to discuss future research directions related to
this work. Firstly, our algorithms achieve linear rate of convergence under the condition
that T −1

f or T −1
g or T −1

l is Lipschitz continuous at the origin. It is then interesting to
know whether one can characterize these conditions as in [50]. Secondly, it would be worth
exploring the performance of these algorithms in which the inner sub-problems are solved
by second-order methods such as semismooth Newton and smoothing Newton methods,
where applicable. Finally, we plan to study how the general framework presented in this
paper can help solve more general nuclear norm optimization problems, see, e.g., [49] for
the nuclear norm constrained optimization problem.
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