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The Metric Projector over the PSD Cone

1 Let Sn be set of n by n symmetric matrices in Rm×n and Sn+ be the cone of positive
semidefinite matrices in Sn.

2 Let X ∈ Sn have the following spectral decomposition

X = PΛPT =
n∑
i=1

λipip
T
i ,

where Λ is the diagonal matrix of eigenvalues λ1, . . . , λn of X and P is a corresponding
orthogonal matrix of orthonormal eigenvectors. Then

X+ := ΠSn
+

(X) = PΛ+P
T =

n∑
i=1

(λi)+pip
T
i .

Here ΠSn
+

(X) is the unique optimal solution to

min
1

2
‖Z −X‖2F

s.t. Z ∈ Sn+ .
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Löwner Operators

1 Let f : < → < be a scalar function. The corresponding Löwner operator F : Sn → Sn is
defined by1

F (X) :=

n∑
i=1

f(λi)pip
T
i , X ∈ Sn

2 Let g : < → < be an odd scalar function satisfying g(−t) = −g(t) for all t ≥ 0 (naturally
g(0) = 0). One may define Löwner’s operator G : Rm×n → Rm×n (assuming m ≤ n) by

G(Z) :=

m∑
i=1

g(σi(Z))uiv
T
i , Z ∈ Rm×n,

where for any given Z ∈ Rm×n, σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z) denotes the singular
values of Z (always nonnegative and counting multiplicity) and σ(Z) denotes the vector of
the singular values of Z; Om,n(Z) denotes the set of matrix pairs (U, V ) ∈ Om ×On
satisfying the singular value decomposition

Z = U [Σ(Z) 0]V T,

where Σ(Z) is an m×m diagonal matrix whose i-th diagonal entry is σi(Z) ≥ 0.
1Löwner, K.: Über monotone matrixfunktionen, Mathematische Zeitschrift 38 (1934) 177–216. 3



Beyond Löwner Operators

Let X ∈ Rm×n admit the following singular value decomposition:

X = U [Σ(X) 0]V
T

= U [Σ(X) 0]
[
V 1 V 2

]T
= UΣ(X)V

T

1 , (1)

where U ∈ Om, V ∈ On and V 1 ∈ Rn×m, V 2 ∈ Rn×(n−m) and V =
[
V 1 V 2

]
. The set of

such matrices (U, V ) in the singular value decomposition (1) is denoted by Om,n(X), i.e.,

Om,n(X) := {(U, V ) ∈ <m×m ×<n×n |X = U [Σ(X) 0]V T } .
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For any positive constant ε > 0, denote the closed convex cone Dεn by

Dεn := {(t, x) ∈ R× Rn | ε−1t ≥ xi, i = 1, . . . , n} . (2)

Let ΠDε
n
(·) be the metric projector over Dεn under the Euclidean inner product in Rn. That is,

for any (t, x) ∈ R× Rn, ΠDε
n
(t, x) is the unique optimal solution to the following convex

optimization problem

min
1

2

(
(τ − t)2 + ‖y − x‖2

)
s.t. ε−1τ ≥ yi, i = 1, . . . , n .

(3)
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For any x ∈ Rn, let x↓ be the vector of components of x being arranged in the non-increasing
order x↓1 ≥ . . . ≥ x↓n. Let sgn(x) be the sign vector of x, i.e., (sgn)i(x) = 1 if xi ≥ 0 and −1
otherwise. We use “ ◦ ” to denote the Hadamard product operation either for two vectors or
two matrices of the same dimensions.

Proposition

Assume that ε > 0 and (t, x) ∈ R× Rn are given. Let π be a permutation of {1, . . . , n} such

that x↓ = xπ, i.e., x↓i = xπ(i), i = 1, . . . , n and π−1 the inverse of π. For convenience, write

x↓0 = +∞ and x↓n+1 = −∞. Let κ̄ be the smallest integer k ∈ {0, 1, . . . , n} such that

x↓k+1 ≤
( k∑
j=1

x↓j + εt
)
/(k + ε2) < x↓k . (4)
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Define ȳ ∈ Rn and τ̄ ∈ R+, respectively, by

ȳi :=


( κ̄∑
j=1

x↓j + εt
)
/(κ̄+ ε2) if 1 ≤ i ≤ κ̄ ,

x↓i otherwise

and

τ̄ := εȳ1 = ε
( k̄∑
j=1

x↓j + εt
)
/(k̄ + ε2) .

The metric projection ΠDε
n
(t, x) is computed by ΠDε

n
(t, x) = (τ̄ , ȳπ−1).
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For any positive constant ε > 0, define the matrix cone Mε
n in Sn as the epigraph of the

convex function ελmax(·), i.e.,

Mε
n := {(t,X) ∈ R× Sn | ε−1t ≥ λmax(X)} . (5)

Proposition

Assume that (t,X) ∈ R× Sn is given. Let X have the eigenvalue decomposition

X = Pdiag(λ(X))P
T
, (6)

where P ∈ On. Let ΠMε
n
(·, ·) be the metric projector over Mε

n under Frobenius norm in Sn.
Then,

ΠMε
n
(t,X) = (t̄, Pdiag(ȳ)P

T
) ∀ (t,X) ∈ R× Sn , (7)

where (t̄, ȳ) = ΠDε
n
(t, λ(X)) ∈ < × <n.
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For any positive constant ε > 0, denote the closed convex cone Cεn by

Cεn := {(t, x) ∈ R× Rn | ε−1t ≥ ‖x‖∞} . (8)

Let ΠCεn(·, ·) be the metric projector over Cεn under the Euclidean inner product in Rn. That is,
for any (t, x) ∈ R× Rn, ΠCεn(t, x) is the unique optimal solution to the following convex
optimization problem

min
1

2

(
(τ − t)2 + ‖y − x‖2

)
s.t. ε−1τ ≥ ‖y‖∞ .

(9)

In the following discussions, we frequently drop n from Cεn when its size can be found from the
context.
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Assume that ε > 0 and (t, x) ∈ R× Rn are given. Let π be a permutation of {1, . . . , n} such

that |x|↓ = |x|π, i.e., |x|↓i = |x|π(i), i = 1, . . . , n and π−1 be the inverse of π. Let |x|↓0 = +∞
and |x|↓n+1 = 0. Let s0 = 0 and sk =

∑k
i=1 |x|

↓
i , k = 1, . . . , n+ 1. Let k be the smallest

integer k ∈ {0, 1, . . . , n} such that

|x|↓k+1 ≤ (sk + εt)/(k + ε2) < |x|↓k (10)

or k = n+ 1 if such an integer does not exist. Denote

θε(t, x) := (sk + εt)/(k + ε2) . (11)
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Let α, β and γ be the index sets of |x|↓ as

α := {i | |x|↓i > θε(t, x)}, β := {i | |x|↓i = θε(t, x)} (12)

and
γ := {i | |x|↓i < θε(t, x)} . (13)

Define ȳ ∈ Rn and τ̄ ∈ <+, respectively, by

ȳi :=

{
max{θε(t, x), 0} if i ∈ α ,
|x|↓i otherwise

and
τ̄ := εmax{θε(t, x), 0} .
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Proposition

Assume that ε > 0 and (t, x) ∈ R× Rn are given. The metric projection ΠCε(t, x) of (t, x)
onto Cε can be computed as follows

ΠCε(t, x) = (τ̄ , sgn(x) ◦ ȳπ−1) . (14)

Theorem

Assume that (t,X) ∈ R× Rm×n is given. Let X have the singular value decomposition (1).
Let ΠKε(·, ·) be the metric projector over Kε under Frobenius norm in Rm×n, where

Kε := {(t,X) ∈ R× Rm×n | ε−1t ≥ ‖X‖2} . (15)

For any (t,X) ∈ R× Rm×n, we have

ΠKε(t,X) =
(
t̄, U [diag(ȳ) 0]V

T
)
, (16)

where
(t̄, ȳ) = ΠCε(t, σ(X)) ∈ < × <m .
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Matrix Optimization

1 Löwner operators are inadequate for applications

2 For a given unitarily invariant proper closed convex function f : X → (−∞,∞], in matrix
optimization one often considers the proximal mapping of f at X:

Pf (X) := argminY ∈X

{
f(Y ) +

1

2
‖Y −X‖2

}
, X ∈ X , (17)

where X is either the real vector subspace Sm of m×m real symmetric (or complex)
Hermitian matrices, or the real vector subspace Vm×n of m× n

3 For example, for f(Y ) = ||Y ||2 = σmax(Y ), the spectral norm of Y , Pf (·) is no longer the
Löwner operator [it is the Löwner operator for f(Y ) = ||Y ||∗ =

∑m
i=1 σi(Y )].

4 If f(·) is the indicator function of a matrix cone, then the proximal mapping Pf (·) is the
metric projector over the corresponding matrix cone.
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The Setting

Let s be a positive integer and 0 ≤ s0 ≤ s be a nonnegative integer. For given positive integers
m1, . . . ,ms and ns0+1, . . . , ns, define the real vector space X by

X := Sm1 × . . .× Sms0 × Vms0+1×ns0+1 × . . .× Vms×ns . (18)

Without loss of generality, we assume that mk ≤ nk, k = s0 + 1, . . . , s.

For any X = (X1, . . . , Xs) ∈ X , we have for 1 ≤ k ≤ s0, Xk ∈ Smk and s0 + 1 ≤ k ≤ s,
Xk ∈ Vmk×nk . Denote

Y := Rm1 × . . .× Rms0 × Rms0 × . . .× Rms . (19)

For any X ∈ X , define κ(X) ∈ Y by

κ(X) := (λ(X1), . . . , λ(Xs0), σ(Xs0+1), . . . , σ(Xs)) .
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Define the set P by

P := {(Q1, . . . , Qs) | Qk ∈ Pmk , 1 ≤ k ≤ s0 and Qk ∈ ±Pmk , s0 + 1 ≤ k ≤ s} .

Let g : Y → Y be a given mapping. For any x = (x1, . . . , xs) ∈ Y with xk ∈ Rmk , we write
g(x) ∈ Y in the form g(x) = (g1(x), . . . , gs(x)) with gk(x) ∈ Rmk for 1 ≤ k ≤ s.

Definition

The given mapping g : Y → Y is said to be mixed symmetric, with respect to P, at
x = (x1, . . . , xs) ∈ Y with xk ∈ Rmk , if

g(Q1x1, . . . , Qsxs) = (Q1g1(x), . . . , Qsgs(x)) ∀ (Q1, . . . , Qs) ∈ P. (20)

The mapping g is said to be mixed symmetric, with respect to P, over a set D ⊆ Y if (20)
holds for every x ∈ D. We call g a mixed symmetric mapping, with respect to P, if (20) holds
for every x ∈ Y.
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Spectral Operators

Note that for each k ∈ {1, . . . , s}, the function value gk(x) ∈ Rmk is dependent on all
x1, . . . , xs. When there is no danger of confusion, in later discussions we often drop the phrase
“with respect to P” from Definition 1. Let N be a given nonempty set in X . Define
κN := {κ(X) ∈ Y | X ∈ N}. The following definition of the spectral operator with respect to
a mixed symmetric mapping g.

Definition

Suppose that g : Y → Y is mixed symmetric on κN . The spectral operator G : N → X with
respect to g is defined as G(X) := (G1(X), . . . , Gs(X)) for X = (X1, . . . , Xs) ∈ N such that

Gk(X) :=

{
PkDiag

(
gk(κ(X))

)
PT
k if 1 ≤ k ≤ s0,

Uk
[
Diag

(
gk(κ(X))

)
0
]
V T
k if s0 + 1 ≤ k ≤ s,

where Pk ∈ Omk(Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s.
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Spectral Operators

Next, we will focus on the study of spectral operators for the case that X ≡ Vm×n. The
corresponding extensions for the spectral operators defined on the general Cartesian product of
several matrix spaces can be considered in a similar fashion.
Let N be a given nonempty open set in Vm×n. Suppose that g : Rm → Rm is mixed
symmetric with respect to P ≡ ±Pm (i.e., absolutely symmetric), on an open set σ̂N in Rm
containing σN := {σ(X) | X ∈ N}. The spectral operator G : N → Vm×n with respect to g
then takes the form of

G(X) = U [Diag(g(σ(X))) 0]V T, X ∈ N ,

where (U, V ) ∈ Om,n(X). For a given X ∈ N , consider the singular value decomposition
(SVD) of X, i.e.,

X = U
[
Σ(X) 0

]
V

T
, (21)

where Σ(X) is an m×m diagonal matrix whose i-th diagonal entry is σi(X), U ∈ Om and
V =

[
V 1 V 2

]
∈ On with V 1 ∈ Vn×m and V 2 ∈ Vn×(n−m).
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A brief review on nonsmooth Newton methods

1 Let X ,Y be two finite-dimensional real Euclidean spaces
2 F : X → Y a locally Lipschitz continuous function.

Since F is almost everywhere differentiable [Rademacher, 1912], we can define

∂BF (x) :=
{

limF ′(xk) : xk → x, xk ∈ DF

}
.

Here DF is the set of points where F is differentiable. Hence, Clarke’s generalized Jacobian of
F at x is given by

∂F (x) = conv ∂BF (x).
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A brief review on nonsmooth Newton methods

Definition

Let K : X ⇒ L(X ,Y) be a nonempty, compact valued and upper-semicontinous multifunction.
We say that F is semismooth x ∈ X with respect to K if (i) F is directionally differentiable at
x; and (ii) for any ∆x ∈ X and V ∈ K(x+ ∆x) with ∆x→ 0,

F (x+ ∆x)− F (x)− V (∆x) = o(‖∆x‖) (g−semismooth). (22)

Furthermore, if (22) is replaced by

F (x+ ∆x)− F (x)− V (∆x) = O(‖∆x‖1+γ), (23)

where γ > 0 is a constant, then F is said to be γ-order (strongly if γ = 1) semismooth at x
with respect to K.
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Nonsmooth (local) Newton’s method

Assume that F (x̄) = 0.

Given x0 ∈ X . For k = 0, 1, . . .

Main Step Choose an arbitrary Vk ∈ K(xk). Solve

F (xk) + Vk(xk+1 − xk) = 0

Rates of Convergence: Assume that K(x̄) is nonsingular and that x0 is sufficiently close to x̄.
If F is g-semismooth at x̄, then

‖xk+1 − x̄‖ = ‖ V −1
k︸︷︷︸

bounded

[F (xk)− F (x̄)− Vk(xk − x̄)︸ ︷︷ ︸
g-semismooth

]‖ = o(‖xk − x̄‖)︸ ︷︷ ︸
superlinear

.

It takes o(‖xk − x̄‖1+γ) if F is γ-order g-semismooth at x̄ [the directional differentiability of
F is not needed in the above local convergence analysis]
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Nonsmooth Equations

1 The nonsmooth equation approach is popular in the complementarity and variational
inequalities (nonsmooth equations) community (Robinson, Pang, . . . )

2 Josephy (1979) introduced Newton and quasi-Newton methods for generalized equations
(in terms of Robinson).

3 Kojima and Shindo (1986) investigated Newton’s method for piecewise smooth equations.

4 Kummer (1988, 1992) gave a sufficient condition (22) to extend Kojima and Shindo’s
work.

5 L. Qi and J. Sun (1993) proved what we know now.

6 Since then, many exciting developments, in particular in the large-scale settings ...

Why nonsmooth Newton methods important in solving large-scale optimization problems? We
illustrate this with an example.
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The nearest correlation matrix problem: An example

Consider the nearest correlation matrix (NCM) problem:

min

{
1

2
‖X −G‖2F | X � 0, Xii = 1, i = 1, . . . , n

}
.

The dual of the above problem can be written as (in its minimization format)

min 1
2‖Ξ‖

2 − 〈b, y〉 − 1
2‖G‖

2

s.t. S − Ξ +A∗y = −G, S � 0

or via eliminating Ξ and S � 0, the following

min

{
ϕ(y) :=

1

2
‖ΠSn

+
(A∗y +G)‖2 − 〈b, y〉 − 1

2
‖G‖2

}
,

which is equivalent to the strongly semismooth system (S. & Sun, 02) of equations

∇ϕ(y) = AΠSn
+

(A∗y +G)− b = 0.
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Numerical results for the NCM

Test the second order nonsmooth Newton-CG method [H.-D. Qi & S. 06] ([X,y] =
CorrelationMatrix(G,b,tau,tol) in Matlab from Sun’s webpage) and two popular first order
methods (FOMs) [APG of Nesterov; ADMM of Glowinski (steplength 1.618)] all to the dual
forms for the NCM with real financial data:
G: Cor3120, n = 3, 120, obtained from [N. J. Higham & N. Strabić, SIMAX, 2016] [Optimal
sol. rank = 3, 025, high rank]

n = 3, 120 Newton-CG ADMM APG

Rel. KKT Res. 2.7-8 2.9-7 9.2-7

time (s) 26.8 246.4 459.1

iters 4 58 111

avg-time/iter 6.7 4.3 4.1

Newton’s method only takes at most 40% time more than ADMM & APG (or FISTA) per
iteration (Newton will take less time on average per iteration if it took more iterations).
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Spectral Operators

Theorem

Suppose that X ∈ N has the SVD (21). The spectral operator G is continuous at X if and
only if g is continuous at σ(X).

Theorem

Suppose that X has the SVD (21). The spectral operator G is locally Lipschitz continuous
near X if and only if g is locally Lipschitz continuous near σ = σ(X).
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Divided Difference, Addition and Division Matrices

Let η(σ) ∈ Rm be the vector defined by (i ∈ {1, . . . ,m})

(η(σ))i :=

{
(g′(σ))ii − (g′(σ))ij if ∃ j ∈ {1, . . . ,m} and j 6= i such that σi = σj ,
(g′(σ))ii otherwise ,

. (24)

Define the corresponding divided difference matrix E1(σ) ∈ Rm×m, the divided addition matrix
E2(σ) ∈ Rm×m, the division matrix F(σ) ∈ Rm×(n−m), respectively, by

(E1(σ))ij :=


gi(σ)− gj(σ)

σi − σj
if σi 6= σj ,

(η(σ))i otherwise ,
i, j ∈ {1, . . . ,m} , (25)

(E2(σ))ij :=


gi(σ) + gj(σ)

σi + σj
if σi + σj 6= 0 ,

(g′(σ))ii otherwise ,
i, j ∈ {1, . . . ,m} , (26)

(F(σ))ij :=


gi(σ)

σi
if σi 6= 0 ,

(g′(σ))ii otherwise,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} . (27)
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Divided Difference, Addition and Division Matrices (2)

Define the matrix C(σ) ∈ Rm×m to be the difference between g′(σ) and Diag(η(σ)), i.e.,

C(σ) := g′(σ)−Diag(η(σ)) . (28)

When the dependence of η, E1, E2, F and C on σ is clear from the context, we often drop σ
from the corresponding notations. Note that the divided difference matrix E1(σ) is the same
with the commonly defined for the symmetric matrix case. The divided addition matrix E2(σ)
and the division matrix F(σ) are particular to general non-Hermitian matrices.

Denote η = η(σ) ∈ Rm to be the vector defined by (24). Let E1, E2, F and C be the real
matrices defined in (25)–(28) with respect to σ.
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Differentiability

Theorem

Suppose that the given matrix X ∈ N has the SVD (21). Then the spectral operator G is
F-differentiable at X if and only if g is F-differentiable at σ. In that case, the derivative of G
at X is given by

G′(X)H = U [E1 ◦S(A) + Diag
(
Cdiag(S(A))

)
+ E2 ◦T (A) F ◦B]V

T ∀ H ∈ Vm×n, (29)

where A := U
T
HV 1, B := U

T
HV 2 and for any X ∈ Vm×m, diag(X) denotes the column

vector consisting of all the diagonal entries of X being arranged from the first to the last.

Here the two linear matrix operators S : Vp×p → Sp and T : Vp×p → Vp×p are given by

S(Y ) :=
1

2
(Y + Y T), T (Y ) :=

1

2
(Y − Y T), Y ∈ Vp×p. (30)
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B(ouligand)-Differentiability

Let Z be a finite dimensional real Euclidean space equipped with an inner product 〈·, ·〉 and its
induced norm ‖ · ‖. Let O be an open set in Z and Z ′ be another finite dimensional real
Euclidean space. The function F : O ⊆ Z → Z ′ is said to be B(ouligand)-differentiable at
z ∈ O if for any h ∈ Z with h→ 0,

F (z + h)− F (z)− F ′(z;h) = o(‖h‖).

A stronger notion than B-differentiability is ρ-order B-differentiability with ρ > 0. The function
F : O ⊆ Z → Z ′ is said to be ρ-order B-differentiable at z ∈ O if for any h ∈ Z with h→ 0,

F (z + h)− F (z)− F ′(z;h) = O(‖h‖1+ρ).

Theorem

Suppose that X ∈ N has the SVD (21). Let 0 < ρ ≤ 1 be given.

(i) If g is locally Lipschitz continuous near σ(X) and ρ-order B-differentiable at σ(X), then
G is ρ-order B-differentiable at X.

(ii) If G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at σ(X).
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Semismoothness

Theorem

Suppose that X ∈ N has the singular value decomposition (21). Let 0 < ρ ≤ 1 be given. G is
ρ-order g-semismooth at X if and only if g is ρ-order g-semismooth at σ.
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Characterizations of the Generalized Jacobians

Assume that g is locally Lispchitz continuous. Then since the spectral operator G is locally
Lipschitz continuous near X, Ψ = G′(X; ·) is globally Lipschitz continuous if exists. In that
case, ∂BΨ(0) and ∂Ψ(0) are well-defined. Furthermore, we have the following characterization
of the B-subdifferential and Clarke’s subdifferential of the spectral operator G at X.

Theorem

Suppose that the given X ∈ N has the decomposition (21). Suppose that there exists an open
neighborhood B ⊆ Rm of σ in σ̂N such that g is differentiable at σ ∈ B if and only if g′(σ; ·) is
differentiable at σ − σ. Assume further that the function d : Rm → Rm defined by

d(h) := g(σ + h)− g(σ)− g′(σ;h), h ∈ Rm (31)

is strictly differentiable at zero. Then, we have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0).

Many more to be developed ...
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