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Abstract

In this paper, we aim at finding a nearest correlation matrix to a given symmetric matrix,
measured by the componentwise weighted Frobenius norm, with a prescribed rank and bound
constraints on its correlations. This is in general a non-convex and difficult problem due to
the presence of the rank constraint. To deal with this difficulty, we first consider a penalized
version of this problem and then apply the essential ideas of the majorization method to
the penalized problem by solving iteratively a sequence of least squares correlation matrix
problems without the rank constraint. The latter problems can be solved by a recently devel-
oped quadratically convergent smoothing Newton-BiCGStab method. Numerical examples
demonstrate that our approach is very efficient for obtaining a nearest correlation matrix
with both rank and bound constraints.

Key words: correlation matrix, penalty method, majorization, least squares, Newton’s
method

1 Introduction

In recent years, we have witnessed a lot of interests from the finance and insurance industries
in finding a nearest correlation matrix1 whose rank is not more than a given positive integer
r. In response to these needs, the quantitative finance community has proposed a variety of
nearest correlation matrix problems with rank conditions. Wu [61], Zhang and Wu [63], and
Brigo and Mercurio [7] considered such a problem for pricing interest rate derivatives under
the LIBOR and swap market models. The factor models of basket options, collateralized debt
obligations (CDOs), portfolio risk models (VaR), and multivariate time series discussed by Lillo
and Mantegna [37] rely on low rank nearest correlation matrices. A correlation matrix of low rank
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is particularly useful in the Monte Carlo simulation for solving derivatives pricing problems as
a model with low factors can significantly reduce the cost of drawing random numbers. Beyond
quantitative finance, the rank constrained nearest correlation matrix problems also occur in
many engineering fields, see for examples, [9, 13, 29, 55].

Let Sn and Sn
+ be the space of n×n symmetric matrices and the cone of positive semidefinite

matrices in Sn, respectively. Denote the Frobenius norm induced by the standard trace inner
product 〈·, ·〉 in Sn by ‖ · ‖. Let C be a given matrix in Sn and H ∈ Sn a given weight matrix
whose entries are nonnegative. Then the rank constrained nearest correlation matrix problem
(rank-NCM) can be formulated as follows:

min
1

2
‖H ◦ (X − C)‖2

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(1)

where “◦” denotes the Hadamard product, i.e., (A ◦ B)ij = AijBij, i, j = 1, . . . , n and r ∈
{1, . . . , n} is a given integer. The weight matrix H is introduced by adding larger weights to
correlations that are better estimated or are of higher confidence in their correctness. Zero
weights are usually assigned to those correlations that are missing or not estimated. See [45] for
more discussions.

The rank-NCM problem (1) has been investigated by many researchers. In [56], Simon gave
a comprehensive literature review and summarized thirteen methods for solving the rank-NCM
problem (1) and its many different variations. Here we will only briefly discuss several methods
which are most relevant to our approach to be introduced in this paper.

We start with mentioning the method of “principal component analysis” (PCA). This method
truncates the spectral decomposition of the symmetric matrix C to a positive semidefinite matrix
by taking the first r largest eigenvalues of C. Its modified version (mPCA), perhaps firstly
introduced by Flurry [21], is to take account of the unit diagonal constraints via a normalization
procedure. The mPCA method is very popular in the financial industry due to its simplicity
and has been widely implemented by many financial institutions for obtaining a correlation
matrix with the required rank. The major drawback of the mPCA approach is that it only
produces a non-optimal feasible solution to problem (1). Nevertheless, it can be used as a
good initial feasible point for other methods of solving the rank-NCM problem. In terms of
finding an optimal solution, Zhang and Wu [63] and Wu [61] took an important step by using
a Lagrange dual method to solve the rank-NCM problem (1) with equal weights, i.e., H = E,
where E is a symmetric matrix whose entries are all ones. Under the assumptions that the given
matrix C is a valid correlation matrix and the rth and (r + 1)th eigenvalues (arranged in the
non-increasing order in terms of their absolute values) of C + diag(ȳ) have different absolute
values, where ȳ is an optimal solution to the Lagrange dual problem of (1) and diag(ȳ) is a
diagonal matrix whose diagonal is ȳ, Zhang and Wu [63] provided a way to get a global solution
of problem (1). This global optimality checking is very rare in non-convex optimization. The
Lagrange dual method is effective when the required rank r is large. One interesting question
is to know if this method can handle the rank-NCM problem with general matrices C and H.
The next major progress is achieved by Pietersz and Groenen [45] who proposed an innovative
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row by row alternating majorization method. This method can be applied to problem (1) with
an arbitrary symmetric nonnegative weight matrix H and is particularly efficient when r is
small as its computational cost at each iteration is of the order O(r2n2). In [25], Grubisic and
Pietersz introduced a geometric programming approach for solving problem (1). This approach
is applicable to any weight matrix H too, but its numerical performance is not so efficient as the
majorization method of Pietersz and Groenen as far as we know. Another well studied method
for solving problem (1) is the trigonometric parametrization method of Rebonato [50, 51, 52, 53],
Brigo [6], Brigo and Mercurio [8] and Rapisarda et al. [49]. In this method, they first decompose
X = RRT with R ∈ IRn×r and then parameterize each row vector of R by trigonometric functions
through spherical coordinates. The resulting problem is unconstrained, but highly nonlinear
and non-convex. It is not clear to us if the problem can be efficiently solved in practice. The
trigonometric parametrization method has been considered earlier for the cases without the rank
constraint [39, 53]. A class of alternating direction methods, which are easy to implement, are
also well studied by many researchers for solving the rank-NCM problem. For example, Morini
and Webber [41] suggested an iterative algorithm called eigenvalue zeroing by iteration (EZI).
This algorithm generally does not converge to a stationary point of the rank-NCM problem
and cannot be extended to the case with a general weight matrix H. Very recently, Li and Qi
[38] proposed a sequential semismooth Newton method for solving problem (1) with H = E.
They formulate the problem as a bi-affine semidefinite programming and then use an augmented
Lagrange method to solve a sequence of least squares problems. This approach can be effective
when the required rank r is relatively large.

So far we have seen that unless r ≤ O(
√

n) in which case the majorization method of Pietersz
and Groenen [45] is an excellent choice, there still lacks an efficient method for solving the rank-
NCM problem (1). The target of this paper is to fill up this gap by developing an efficient
method of finding a nearest correlation matrix X with a prescribed rank and bound constraints
on its components in the following sense

min θ(X) :=
1

2
‖H ◦ (X − C)‖2

s.t. Xii = 1, i = 1, . . . , n ,

Xij = eij , (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(2)

where Be, Bl, and Bu are three index subsets of {(i, j) | 1 ≤ i < j ≤ n} satisfying Be ∩ Bl = ∅,
Be ∩ Bu = ∅, −1 ≤ eij , lij , uij ≤ 1 for any (i, j) ∈ Be ∪ Bl ∪ Bu, and −1 ≤ lij < uij ≤ 1 for
any (i, j) ∈ Bl ∩ Bu. Denote the cardinalities of Be, Bl, and Bu by qe, ql, and qu, respectively.
Let p := n + qe and m := p + ql + qu. Note that problem (2) is a generalization of problem
(1) and for problem (2) to have a feasible solution, the required rank r cannot be arbitrarily
chosen as in problem (1) when m is large. In some real-world applications in the financial
industry, such bound constraints in problem (2) are imposed in the context of calibraing an
improper correlation matrix. For example, in several financial models, such as the Monte Carlo
VaR models, stress testing is necessary in order to determine the value of a bank’s portfolio
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via the stressed correlation matrices. This is usually done by fixing some of the correlations
while stressing the remaining ones to be within a certain confidence level to reflect the stressing
scenarios. This naturally leads to the nearest correlation matrix problem with both equality and
inequality constraints. See [1, 2, 34] for related finance problems with inequality constraints.
From numerical algorithmic point of view, however, there is no much progress in extending
approaches from problem (1) to deal with the more challenging problem (2). Only recently,
Simon [56] extended the majorization method of Pietersz and Groenen [45] by incorporating
some equality constraints of the kind Xij = 0. But unlike the case for the simpler problem
(1), this extension can easily fail even the number of such constraints is not large. The main
reason is that the desired monotone decreasing property of the objective function is no longer
valid whenever the off-diagonal bounds exist. In this paper we will propose a majorized penalty
approach to solve problem (2). Our main idea is to first consider a penalized version of this
problem and then to apply the essential ideas of the majorization method to the penalized
problem by solving a sequence of diagonal weighted nearest correlation matrix problems, which
take the following form

min
1

2
‖D1/2(X − G)D1/2‖2

s.t. Xii = 1, i = 1, . . . , n ,

Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(3)

where D1/2 is a positive definite diagonal matrix and G is some symmetric matrix. Several meth-
ods can be readily applied to solve problem (3), such as the projected gradient method of Boyd
and Xiao [5], the augmented Lagrangian dual method of Qi and Sun [47], the inexact smoothing
Newton-BiCGStab method of Gao and Sun [23] and the SQP-Newton method of Chen, Gao
and Liu [10]. Among them, the quadratically convergent smoothing Newton-BiCGStab method
is particularly suitable for the efficiency of our majorized penalty approach.

The remaining part of this paper are organized as follows. In Section 2, we present some
preliminaries on matrix valued functions and symmetric convex functions defined on matrix
spaces. These results will facilitate our subsequent analysis. In Section 3, we introduce our
majorized penalty approach for the rank constrained least squares correlation matrix problem
(2). In Section 4, we discuss the Lagrangian dual reformulation and the related issues in global
optimality checking, which does not need C to be a valid correlation matrix as in [63, Theorem
4.5]. We report some numerical experiments in Section 5 and make our final conclusions including
future research directions in Section 6.

2 Preliminaries

For subsequent discussions, in this section we introduce some basic properties of matrix valued
functions and real valued symmetric convex functions defined on matrix spaces.

We shall first write problem (2) in a compact form to facilitate the discussions below. Recall
that the cardinalities of Be, Bl, and Bu are denoted by qe, ql, and qu, respectively. Let q := ql+qu.
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For any (i, j) ∈ {1, . . . , n} × {1, . . . , n}, define E ij ∈ IRn×n by

(E ij)lk :=

{
1 if (l, k) = (i, j) ,
0 otherwise ,

l, k = 1, . . . , n .

Denote Aij := 1
2(E ij + Eji). Let A : Sn → IRm be defined by

AX :=




{〈Aii,X〉}n
i=1

{〈Aij ,X〉}(i,j)∈Be

{〈Aij ,X〉}(i,j)∈Bl

−{〈Aij ,X〉}(i,j)∈Bu


 , X ∈ Sn , (4)

and

b :=




b0

{eij}(i,j)∈Be

{lij}(i,j)∈Bl

−{uij}(i,j)∈Bu


 ,

where b0 ∈ IRn is the vector of all ones. Now problem (2) can be equivalently reformulated as

min θ(X) =
1

2
‖H ◦ (X − C)‖2

s.t. AX ∈ b + Q ,

X ∈ Sn
+ ,

rank(X) ≤ r ,

(5)

where Q := {0}p × IRq
+ is a polyhedral convex cone with 1 ≤ p ≤ m and p + q = m. For

any symmetric matrix X ∈ Sn, we write X � 0 and X ≻ 0 to represent that X is positive
semidefinite and positive definite, respectively. Let Ωr denote the feasible set of (5), i.e.,

Ωr := {X ∈ Sn | AX ∈ b + Q, X � 0, rank(X) ≤ r} . (6)

In this paper we always assume that Ωr 6= ∅. Let k be a positive integer. We use Ok to denote
the set of all orthogonal matrices in IRk×k, i.e.,

Ok = {Q ∈ IRk×k | QT Q = I} ,

where I is the identity matrix with appropriate dimensions. Let τ ⊆ {1, . . . , k} be an index set
and M be a k by k matrix. We denote the cardinality of τ by |τ | and the matrix containing
the columns in M indexed by τ as Mτ . For any v ∈ IRk, we use diag(v) to denote the k by k
diagonal matrix whose ith diagonal entry is vi, i = 1, . . . , n, ‖v‖ to denote the 2-norm of v, and
‖v‖0 to denote the cardinality of the set {i | vi 6= 0, i = 1, . . . , k}. We also use |v| to denote the
column vector in IRk such that its ith component is defined by |v|i = |vi|, i = 1, . . . , k.

Let X ∈ Sn be arbitrarily chosen. Suppose that X has the spectral decomposition

X = PΛ(X)P T , (7)

5



where Λ(X) := diag(λ(X)), λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of X being arranged in the
decreasing order and P ∈ On is a corresponding orthogonal matrix of orthonormal eigenvectors
of X. Define

α := {i | λi(X) > λr(X) }, β := {i | λi(X) = λr(X) }, and γ := {i | λi(X) < λr(X) }

and write P = [Pα Pβ Pγ ].

For any z ∈ IRn, let sr(z) be the sum of the r largest components of z, i.e.,

sr(z) :=

r∑

i=1

z↓i = max
v∈IRn

{ vT z |
n∑

i=1

vi = r , 0 ≤ vi ≤ 1, i = 1, . . . , n } .

Let x = λ(X). Let ∂Bsr(x) be the B-subdifferential of sr at x, i.e,

∂Bsr(x) := { lim
xk→x

s′r(x
k) , sr(·) is differentiable at xk} .

Then, one can easily check that the B-subdifferential of sr(·) at x is given by

∂Bsr(x) = {v ∈ IR1×n | vi = 1 for i ∈ α , vi = 0 for i ∈ γ ,

vi ∈ {0, 1} for i ∈ β and
∑

i∈β vi = r − |α|
}

.
(8)

The subdifferential of sr(·) at x, which is the convex hull of ∂Bsr(x) (see [12, Theorem 2.5.1]),
takes the form of

∂sr(x) = {v ∈ IR1×n | vi = 1 for i ∈ α , vi = 0 for i ∈ γ ,

0 ≤ vi ≤ 1 for i ∈ β and
∑

i∈β vi = r − |α|
}

.
(9)

Define Sr : Sn → IR by

Sr(Z) := sr(λ(Z)) , (10)

where for any Z ∈ Sn, λ(Z) is the column vector containing all the eigenvalues λ1(Z) ≥ · · · ≥
λn(Z) of Z. That is, for any Z ∈ Sn, Sr(Z) is the sum of the r largest eigenvalues of Z. It is well
known that Sr(·) is a convex function [20] and the subdifferential of Sr(·) at X is well defined.
By [59, 44, 35] and the structure of ∂sr(x) given in (9), we can fully characterize ∂Sr(X) as
follows

∂Sr(X) = { [Pα PβQ Pγ ]diag(v) [Pα PβQ Pγ ]T | v ∈ ∂sr(λ(X)) , Q ∈ O|β|} . (11)

Since Sr(·) is (continuously) differentiable at X if and only if λr(X) > λr+1(X) (cf. [35]), we
know that the B-subdifferential ∂BSr(X) of Sr(·) at X is given by

∂BSr(X) = { [Pα PβQ Pγ ]diag(v) [Pα PβQ Pγ ]T | v ∈ ∂Bsr(λ(X)) , Q ∈ O|β|} . (12)

By noting that

IR1×n ∋ (1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0) ∈ ∂Bsr(x) ,
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one has
(PαP T

α + Pβ1
P T

β1
) ∈ ∂BSr(X) ⊆ ∂Sr(X) , (13)

where β1 := {|α| + 1, . . . , r}.
Denote

Sn(r) := {Z ∈ Sn | rank(Z) ≤ r} . (14)

We next discuss the projection operators over the closed convex cone Sn
+ and the closed non-

convex cone Sn(r), respectively. Let X ∈ Sn have the spectral decomposition as in (7). Then,
since Sn

+ is a closed convex cone in Sn, it follows that the optimization problem

min
1

2
‖Z − X‖2

s.t. Z ∈ Sn
+

(15)

has a unique optimal solution, which is called the metric projection of X over Sn
+ under the

Frobenius norm and is denoted by ΠSn
+
(X). It has long been known that ΠSn

+
(X) can be

computed analytically (e.g., [57])

ΠSn
+
(X) = Pdiag

(
(λ1(X))+, . . . , (λn(X))+

)
P T , (16)

where for any y ∈ IR, y+ := max(0, y). For more properties about the metric projector ΠSn
+
(·),

see [23] and references therein. When it comes to the metric projection over the set Sn(r), much
more analysis is involved due to the non-convex nature of Sn(r). We first make some notations
for the convenience of the subsequent analysis.

Let Y ∈ Sn be arbitrarily chosen. Suppose that Y has the spectral decomposition

Y = UΣ(Y )UT , (17)

where U ∈ On is a corresponding orthogonal matrix of orthonormal eigenvectors of Y and
Σ(Y ) := diag(σ(Y )) where σ(Y ) = (σ1(Y ), . . . , σn(Y ))T is the column vector containing all the
eigenvalues of Y being arranged in the non-increasing order in terms of their absolute values,
i.e.,

|σ1(Y )| ≥ · · · ≥ |σn(Y )| ,
and whenever the equality holds, the larger one comes first, i.e.,

if |σi(Y )| = |σj(Y )| and σi(Y ) > σj(Y ), then i < j .

Define

ᾱ := {i | |σi(Y )| > |σr(Y )| }, β̄ := {i | |σi(Y )| = |σr(Y )| }, γ̄ := {i | |σi(Y )| < |σr(Y )| },

and β̄+ := {i | σi(Y ) = |σr(Y )| }, β̄− := {i | σi(Y ) = −|σr(Y )| } .

Write U = [Uᾱ Uβ̄ Uγ̄ ]. Denote

Ψr(Y ) := min
1

2
‖Z − Y ‖2

s.t. Z ∈ Sn(r) .
(18)
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Denote the set of optimal solutions to (18) by ΠSn(r)(Y ), which is called the metric projection
of Y over Sn(r). Define V ∈ On by

V = Udiag(v),

where for each i ∈ {1, . . . , n}, vi = σi(Y )/|σi(Y )| if σi(Y ) 6= 0 and vi = 1 if otherwise. Then, we
have

Y = Udiag(|σ(Y )|)V T .

Define Z∗ ∈ Sn by

Z∗ :=
r∑

i=1

|σ(Y )|iUiV
T
i =

r∑

i=1

|σi(Y )|Ui(viU
T
i ) =

r∑

i=1

σi(Y )UiU
T
i . (19)

It is well known that (see, e.g., [58, Theorem 5.9]) Z∗ is an optimal solution to

min
1

2
‖Z − Y ‖2

s.t. Z ∈ IRn×n , rank(Z) ≤ r .

Thus, by using the fact that Z∗ ∈ Sn(r), we have

Z∗ ∈ ΠSn(r)(Y ) and Ψr(Y ) =
1

2

n∑

i=r+1

σ2
i (Y ) . (20)

By employing Fan’s inequality (e.g., see [3, (IV.62)]),

‖Z − Y ‖ ≥ ‖λ(Z) − λ(Y )‖, Z ∈ Sn , (21)

where the equality holds if and only if Y and Z admit a simultaneous ordered spectral decom-
position, we have for any Ẑ ∈ ΠSn(r)(Y ) that

n∑

i=r+1

σ2
i (Y ) = ‖Ẑ − Y ‖2 ≥ ‖λ(Ẑ) − λ(Y )‖2 ≥

n∑

i=r+1

σ2
i (Y ) . (22)

Then we can easily prove the following lemma, whose proof is dropped for the sake of brevity.

Lemma 2.1 Let Y ∈ Sn have the spectral decomposition as in (17). Then the solution set
ΠSn(r)(Y ) to problem (18) can be characterized as follows

ΠSn(r)(Y ) =

{
[Uᾱ Uβ̄Qβ̄ Uγ̄ ]diag(v) [Uᾱ Uβ̄Qβ̄ Uγ̄ ]T

∣∣∣

v ∈ V , Qβ̄ =

[
Qβ̄+ 0

0 Qβ̄−

]
, Qβ̄+ ∈ O|β̄+|, Qβ̄− ∈ O|β̄−|

}
,

(23)

where

V :=
{
v ∈ IRn | vi = σi(Y ) for i ∈ ᾱ ∪ β̄1, vi = 0 for i ∈ (β̄ \ β̄1) ∪ γ̄ ,

where β̄1 ⊆ β̄ and |β̄1| = r − |ᾱ|
}

.
(24)
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Since Ψr(Y ) takes the same value as in (20) for any element in ΠSn(r)(Y ), for notational

convenience, with no ambiguity, we use 1
2‖ΠSn(r)(Y ) − Y ‖2 to represent Ψr(Y ).

Define Ξr : Sn → IR by

Ξr(Z) = −1

2
‖ΠSn(r)(Z) − Z‖2 +

1

2
‖Z‖2 , Z ∈ Sn . (25)

Then we have

Ξr(Y ) =
1

2

r∑

i=1

σ2
i (Y ) =

1

2
‖ΠSn(r)(Y )‖2 ,

where ‖ΠSn(r)(Y )‖ is interpreted as ‖Z‖ for any Z ∈ ΠSn(r)(Y ), e.g., the matrix Z∗ defined by
(19). By noting that for any Z ∈ Sn, Ξr(Z) can be reformulated as

Ξr(Z) = max
X∈Sn(r)

{1

2
‖Z‖2 − 1

2
‖X − Z‖2

}

= max
X∈Sn(r)

{
〈X,Z〉 − 1

2
‖X‖2

}
, (26)

we know that Ξr(·) is a convex function as it is the maximum of infinitely many affine functions.

Proposition 2.2 Let Y ∈ Sn have the spectral decomposition as in (17). Then

∂Ξr(Y ) = conv ΠSn(r)(Y ) , (27)

where for any set W, convW denotes the convex hull of W.

Proof. See the Appendix A. �

The first equation in (27) is particularly useful in developing a technique for global optimality
checking in Section 4.

Remark 2.3 Proposition 2.2 implies that when |σr(Y )| > |σr+1(Y )| , Ξr(·) is continuously dif-
ferentiable near Y and Ξ′

r(Y ) = ΠSn(r)(Y ) = {Z∗}, where Z∗ is defined in (19).

Remark 2.4 Since, for a given n by n symmetric positive definite matrix W , the following
W -weighted problem

min
1

2
‖W 1/2(Z − Y )W 1/2‖2

s.t. Z ∈ Sn(r) ,
(28)

admits the solution set as W− 1

2 ΠSn(r)(W
1

2 Y W
1

2 )W− 1

2 , there is no difficulty to work out the
corresponding results presented in Lemma 2.1 and Proposition 2.2 for this more general case.
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3 The majorized penalty approach

The purpose of this section is to introduce our majorized penalty approach for solving the rank
constrained weighted least squares problem (5). The essential idea is to first consider a penalized
version of problem (5) and then to apply a majorization method to the penalized problem.

For a given continuous function f : IRn → IR and a closed set Ω ⊂ IRn, the principle of a
majorization method for minimizing f(x) over Ω is to start with an initial point x0 ∈ Ω and for
each k ≥ 0, to minimize f̂k(x) over Ω to get xk+1, where f̂k(·) is a majorization function of f
at xk, i.e., f̂k(·) satisfies

f̂k(xk) = f(xk) and f̂k(x) ≥ f(x) ∀x ∈ Ω .

The efficiency of the above majorization method hinges on two key issues: i) the majorization
functions should be simpler than the original function f so that the resulting minimization
problems are easier to solve, and ii) they should not deviate too much from f in order to get
fast convergence. These two often conflicting issues need to be addressed on a case by case basis
to achieve best possible overall performance.

The idea of using a majorization function in optimization appeared as early as in Ortega and
Rheinboldt [43, Section 8.3] for the purpose of doing line searches to decide a step length along
a descent direction. This technique was quickly replaced by more effective inexact line search
models such as the back tracking. The very first majorization method was introduced by de
Leeuw[14, 15] and de Leeuw and Heiser [19] to solve multidimensional scaling problems. Since
then much progress has been made on using majorization methods to solve various optimization
problems [17, 18, 26, 27, 31, 32], to name only a few.

3.1 The penalty function

In this subsection, we shall introduce a penalty technique to deal with the non-convex rank
constraint in (5). Given the fact that for any X ∈ Sn

+, rank(X) ≤ r if and only if λr+1(X) +
. . . + λn(X) = 0, we can equivalently rewrite (5) as follows

θ̄ := min θ(X) =
1

2
‖H ◦ (X − C)‖2

s.t. AX ∈ b + Q ,
X � 0 ,
λr+1(X) + . . . + λn(X) = 0 .

(29)

Now we consider the following penalized problem by taking a trade-off between the rank con-
straint and the weighted least squares distance:

min θ(X) + c(λr+1(X) + . . . + λn(X))
s.t. AX ∈ b + Q ,

X � 0 ,
(30)

where c > 0 is a given penalty parameter that decides the allocated weight to the rank constraint
in the objective function. By noting that for any X ∈ Sn,

n∑

i=r+1

λi(X) =

n∑

i=1

λi(X) −
r∑

i=1

λi(X) = 〈I,X〉 −
r∑

i=1

λi(X) , (31)
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we can equivalently write problem (30) as

min fc(X) := θ(X) − cp(X)
s.t. AX ∈ b + Q ,

X � 0 ,
(32)

where for any X ∈ Sn,

p(X) :=

r∑

i=1

λi(X) − 〈I,X〉 . (33)

Note that the penalized problem (32) is not equivalent to the original problem (5). Then the
question is how much we can say about the solutions to (5) by solving the penalized problem
(32). We will address this question in the following two propositions.

Let X∗
c ∈ Sn be a global optimal solution to the penalized problem (32).

Proposition 3.1 If the rank of X∗
c is not larger than r, then X∗

c is a global optimal solution to
problem (5).

Proof. Assume the rank of X∗
c is not larger than r. Then X∗

c is a feasible solution to (5) and
p(X∗

c ) = 0. Let Xr ∈ Sn be any feasible point to (5). Thus, by noting that p(Xr) = 0, we have

θ(X∗
c ) = θ(X∗

c ) − cp(X∗
c ) ≤ θ(Xr) − cp(Xr) = θ(Xr) .

This shows that the conclusion of this proposition holds. �

Proposition 3.1 says in the ideal situation when the rank of X∗
c is not larger than r, X∗

c

actually solves the original problem (5). Though this ideal situation is always observed in our
numerical experiments for a properly chosen penalty parameter c > 0, there is no theoretical
guarantee that this is the case. However, when the penalty parameter c is large enough, |p(X∗

c )|
can be proven to be very small. To see this, let X∗ be an optimal solution to the following least
squares convex optimization problem

min θ(X)
s.t. AX ∈ b + Q ,

X � 0 .
(34)

Proposition 3.2 Let ε > 0 be a given positive number and Xr ∈ Sn a feasible solution to
problem (5). Assume that c > 0 is chosen such that

(
θ(Xr) − θ(X∗)

)
/c ≤ ε. Then we have

| p(X∗
c ) | ≤ ε and θ(X∗

c ) ≤ θ̄ − c|p(X∗
c )| ≤ θ̄. (35)

Proof. By noting that Xr is feasible to the penalized problem (32) and p(Xr) = 0, we have

θ(Xr) = θ(Xr) − cp(Xr) = fc(Xr) ≥ fc(X
∗
c ) = θ(X∗

c ) − cp(X∗
c ) ≥ θ(X∗) − cp(X∗

c ) ,

which implies

| p(X∗
c ) | = −p(X∗

c ) ≤
(
θ(Xr) − θ(X∗)

)
/c ≤ ε .

11



Let X be a global optimal solution to problem (5). Then from

θ(X) − cp(X) = fc(X) ≥ fc(X
∗
c ) = θ(X∗

c ) − cp(X∗
c )

and the fact that p(X) = 0, we obtain that θ(X∗
c ) ≤ θ(X)− c|p(X∗

c )| = θ̄ − c|p(X∗
c )|. The proof

is completed. �

Proposition 3.2 says that an ε-optimal solution to the original problem (5) in the sense of
(35) is guaranteed by solving the penalized problem (32) as long as the penalty parameter c is
above some ε-dependent number. This provides the rationale to replace the rank constraint in
problem (5) by the penalty function −cp(·) in problem (32).

Remark 3.3 In Proposition 3.2, we need to choose a feasible point Xr to problem (5). That is
equivalently to say that we need to find a global solution to

min λr+1(X) + . . . + λn(X) = −p(X)
s.t. AX ∈ b + Q ,

X � 0 .
(36)

To solve problem (36), one may use the majorization method to be introduced in next subsection.
This corresponds to the case that H = 0. However, this is not needed in many situations when a
feasible point to problem (5) is readily available. For example, the mPCA of X∗ is such a choice
if there are no bound constraints on the off-diagonal entries.

3.2 The majorized penalty approach

In this subsection, we focus on the penalized problem (32). Note that in problem (32) the
objective function fc(·) = θ(·) − cp(·) is the difference of a convex quadratic function θ(·) and
a nonsmooth convex function cp(·). In order to design a majorization method to solve problem
(32), we need first to find majorization functions of θ(·) and −p(·). Let Ω denote the feasible
set to problem (32), i.e.,

Ω := {X ∈ Sn | AX ∈ b + Q , X � 0 } .

For any X and Y in Ω, let θ̂(X,Y ) be defined by

θ̂(X,Y ) := θ(Y ) + 〈∇θ(Y ) , X − Y 〉 + 1
2‖ĤY ◦ (X − Y )‖2

= θ(Y ) + 〈H ◦ H ◦ (Y − C) , X − Y 〉 + 1
2‖ĤY ◦ (X − Y )‖2 ,

(37)

where Sn ∋ ĤY ≥ 0 is a componentwise nonnegative symmetric matrix satisfying

‖H ◦ (Z − Y )‖2 ≤ ‖ĤY ◦ (Z − Y )‖2 ∀Z ∈ Ω . (38)

Define p̂ : Sn × Sn → IR by

p̂(X,Y ) := p(Y ) + 〈WY ,X − Y 〉 , (39)

12



where WY is any element in ∂Bp(Y ) and (X,Y ) ∈ Sn × Sn. Thus, by the convexity of p(·), we
know that for any given Y ∈ Ω, θ̂(·, Y ) and −p̂(·, Y ) are the majorization functions of θ(·) and
−p(·) at Y , respectively. Consequently, for any Y ∈ Ω, the function fc(·) is majorized at Y by

f̂c(·, Y ) := θ̂(·, Y ) − cp̂(·, Y ) . (40)

For any X ∈ Ω, let NΩ(X) denote the normal cone of Ω at the point X:

NΩ(X) := {Z ∈ Sn | 〈Z, Y − X〉 ≤ 0 ∀Y ∈ Ω}.

A point X ∈ Ω is said to be a stationary point of problem (32) if

(∇θ(X) + NΩ(X)) ∩ (c∂p(X)) 6= ∅

and a B-stationary point of problem (32) if

(∇θ(X) + NΩ(X)) ∩ (c∂Bp(X)) 6= ∅ .

A B-stationary point of problem (32) is always a stationary point of the problem itself and the
converse is not necessarily true.

Now we can summarize our majorized penalty approach for solving problem (5) as follows.

A Majorized Penalty Approach (MPA)

Step 0. Select a penalty parameter c > 0. Replace the rank constraint in problem (5) by the
penalty function −cp(·) and start to solve problem (32).

Step 1. Choose X0 ∈ Ω. Set k := 0.

Step 2. Choose Sn ∋ Ĥk := ĤXk
≥ 0 satisfying (38) and W k := WXk

∈ ∂Bp(Xk). Compute
the majorization functions θ̂k(·) and −p̂k(·) of θ(·) and −p(·) at Xk , respectively, as in
(37) and (39), i.e.,

θ̂k(·) := θ̂(·,Xk) and − p̂k(·) := −p̂(·,Xk) .

Then fc(·) is majorized at Xk by

f̂k
c (·) := f̂c(·,Xk) = θ̂k(·) − cp̂k(·) .

Solve
min f̂k

c (X)

s.t. X ∈ Ω
(41)

to get Xk+1.

Step 3. If Xk+1 = Xk, stop; otherwise, set k := k + 1 and goto Step 2.
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Theorem 3.4 Let {Xk} be the sequence generated by the MPA. Then {fc(X
k)} is a monoton-

ically decreasing sequence. If Xk+1 = Xk for some integer k ≥ 0, then Xk+1 is a B-stationary
point of problem (32). Otherwise, the infinite sequence {fc(X

k)} satisfies

1

2
‖Ĥk ◦ (Xk+1 − Xk)‖2 ≤ fc(X

k) − fc(X
k+1) , k = 0, 1, . . . (42)

Moreover, any accumulation point of the bounded sequence {Xk} is a B-stationary point of
problem (32) provided that there exist two positive number κ1, κ2 such that κ2 ≥ κ1 > 0 and for
all k ≥ 0

κ1 ≤ min
i,j=1,...,n

Ĥk
ij ≤ max

i,j=1,...,n
Ĥk

ij ≤ κ2 . (43)

Proof. The monotone decreasing property of {fc(X
k)} follows easily from the so-called sandwich

inequality ([16]) for the general majorization method

fc(X
k+1) ≤ f̂k

c (Xk+1) ≤ f̂k
c (Xk) = fc(X

k), k = 0, 1, . . . (44)

We first consider the case that Xk+1 = Xk for some integer k ≥ 0. Since Xk+1 is an optimal
solution to problem (41), one has

0 ∈ ∇θ̂k(Xk+1) − c∇p̂k(Xk+1) + NΩ(Xk+1) .

From the facts that

∇θ̂k(Xk+1) = H ◦ H ◦ (Xk − C) + Ĥk ◦ Ĥk ◦ (Xk+1 − Xk) = ∇θ(Xk) = ∇θ(Xk+1)

and

∇p̂k(Xk+1) = W k ∈ ∂Bp(Xk) = ∂Bp(Xk+1) ,

we obtain

0 ∈ ∇θ(Xk+1) − c∂Bp(Xk+1) + NΩ(Xk+1) ,

which implies that Xk+1 is a B-stationary point of problem (32).
Next we assume that Xk+1 6= Xk for all k ≥ 0. Then an infinite bounded sequence {Xk} is

generated as Ω is a bounded set. For each k ≥ 0, since Xk+1 solves the convex optimization
problem (41), there exists Dk+1 ∈ NΩ(Xk+1) such that

∇f̂k
c (Xk+1) + Dk+1 = ∇θ(Xk) + Mk ◦ (Xk+1 − Xk) − cW k + Dk+1 = 0 , (45)

where Mk := Ĥk ◦ Ĥk. Thus, from (44) we have for each k ≥ 0 that

fc(X
k+1) − fc(X

k)

≤ f̂k
c (Xk+1) − fc(X

k)

= 〈Xk+1 − Xk,∇θ(Xk)〉 + 1
2〈Xk+1 − Xk, Mk ◦ (Xk+1 − Xk)〉 − c〈Xk+1 − Xk,W k〉

= −〈Xk+1 − Xk, Mk ◦ (Xk+1 − Xk) + Dk+1〉 + 1
2 〈Xk+1 − Xk, Mk ◦ (Xk+1 − Xk)〉

= −1
2〈Xk+1 − Xk, Mk ◦ (Xk+1 − Xk)〉 + 〈Xk − Xk+1,Dk+1〉 ,
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which, together with the fact that 〈Xk −Xk+1,Dk+1〉 ≤ 0 since Xk ∈ Ω and Dk+1 ∈ NΩ(Xk+1),
shows that

fc(X
k+1) − fc(X

k) ≤ −1

2
〈Xk+1 − Xk, Mk ◦ (Xk+1 − Xk)〉 .

This shows that (42) holds.

To prove the remaining part of this theorem, we assume that X is an accumulation point of
{Xk} and that (43) holds. Let {Xkj} be a subsequence of {Xk} such that limj→+∞ Xkj = X.
Then from (42) we have

lim
i→+∞

1

2

i∑

k=0

‖Ĥk ◦ (Xk+1 − Xk)‖2 ≤ lim inf
i→+∞

(
fc(X

0) − fc(X
i+1)

)
≤ fc(X

0) < +∞ ,

which implies limk→+∞ ‖Ĥk ◦ (Xk+1 − Xk)‖ = 0. By using the condition (43), we obtain that

lim
j→+∞

Xkj+1 = lim
j→+∞

Xkj = X and lim
j→+∞

Mkj ◦ (Xkj+1 − Xkj ) = 0 .

Since {Xkj} is bounded, from convex analysis [54, Chap 24, Thm 24.7] we know that {W kj} is
also bounded. By taking a subsequence if necessary, we assume that there exists W ∈ ∂Bp(X)
such that limj→+∞ W kj = W . Therefore, we obtain from (45) that

D := lim
j→+∞

Dkj+1 = lim
j→+∞

(
−∇θ(Xkj) − Mkj ◦ (Xkj+1 − Xkj ) + cW kj

)
= −∇θ(X) + cW .

Now in order to show that X is a B-stationary point of problem (32), we only need to show that

D ∈ NΩ(X) .

Suppose that D /∈ NΩ(X), i.e., there exists X̃ ∈ Ω such that 〈D, X̃ − X〉 > 0 . Since for each
kj ≥ 0, Dkj+1 ∈ NΩ(Xkj+1), we have

〈Dkj+1, X̃ − Xkj+1〉 ≤ 0,

which, from the convergence of the two subsequences {Dkj+1} and {Xkj+1}, gives rise to

〈D, X̃ − X〉 ≤ 0 .

This is a contradiction. So the proof is completed. �

Note that in the MPA, we need to solve a sequence of problems in the form of (41), i.e.,

min f̂k
c (X) =

1

2
‖Ĥk ◦ (X − Xk)‖2 + 〈X,H ◦ H ◦ (Xk − C) − cW k〉 + gk

c

s.t. AX ∈ b + Q ,

X � 0 ,

(46)

where

gk
c := θ(Xk) −

〈
H ◦ H ◦ (Xk − C), Xk

〉
− cp(Xk) + c

〈
W k, Xk

〉
.
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Problem (46) is a convex optimization problem, which can be solved by known algorithms, e.g.,
the augmented Lagrangian method discussed in [47]. However, for the sake of easy computations,
in our implementation, we always choose a positive vector d ∈ IRn such that Hij ≤ Ĥk

ij =
√

didj

for all i, j ∈ {1, . . . , n}. Let D = diag(d). Then the objective function f̂k
c (·) in (46) can be

equivalently written as

f̂k
c (X) = 1

2‖D1/2(X − Xk)D1/2‖2 +
〈
X,H ◦ H ◦ (Xk − C) − cW k

〉
+ gk

c

= 1
2‖D1/2

(
X − (Xk + Ck)

)
D1/2‖2 + fc(X

k) − 1
2‖D1/2CkD1/2‖2 , X ∈ Sn ,

where Ck := D−1
(
cW k − H ◦ H ◦ (Xk − C)

)
D−1. By dropping the constant terms in f̂k

c (X),
we can equivalently write problem (46) as the following well-studied diagonally weighted least
squares problem

min
1

2
‖D1/2

(
X − (Xk + Ck)

)
D1/2‖2

s.t. AX ∈ b + Q ,

X � 0 ,

(47)

which can be solved efficiently by the recently developed smoothing Newton-BiCGStab method
[23]. For the choice of d ∈ IRn, one can simply take

d1 = . . . = dn = max
{
δ, max{Hij | i, j = 1, . . . , n}

}
, (48)

where δ > 0 is a small positive number. However, a better way is to choose d ∈ IRn as follows

di = max
{
δ, max{Hij | j = 1, . . . , n }

}
, i = 1, . . . , n . (49)

Remark 3.5 The choice of d in (48) is simpler and will lead to an unweighted least squares
problem. The disadvantage of this choice is that the resulting MPA generally takes more iter-
ations to converge than the one obtained from the choice of (49) due to the fact that the error
‖H − ddT ‖ is larger for the choice of (48). If H takes the form of hhT for some column vector
IRn ∋ h > 0, we can just take Ĥk ≡ H for all k ≥ 1. In this case, the majorization function of
θ(·) is itself.

4 The Lagrangian dual problem

In this section, we shall study the Lagrangian dual of (5) in order to check the optimality of the
solution obtained by the majorization penalty method introduced in the previous section. Note
that (5) can be equivalently reformulated as 2

min
1

2
‖H ◦ (X − C)‖2 +

1

2
‖H ◦ (Z − C)‖2

s.t. AX ∈ b + Q ,
Z − X = 0 ,
X ∈ Sn

+ ,
rank(Z) ≤ r .

(50)

2The optimal value of (50) is twice of the optimal value of (5).
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The Lagrange function of (50) is

L(X,Z, y, Y ) =
1

2
‖H ◦ (X − C)‖2 +

1

2
‖H ◦ (Z − C)‖2 + 〈b −AX, y〉 + 〈Z − X, Y 〉 ,

where (X,Z, y, Y ) ∈ Sn
+ ×Sn(r)× IRm ×Sn. The Lagrange dual problem of (50) then takes the

form of
max

y∈Q∗, Y ∈Sn
V (y, Y ) , (51)

where Q∗ = IRp × IRq
+ is the dual cone of Q and V (y, Y ) is defined by

V (y, Y ) := inf
X∈Sn

+
, Z∈Sn(r)

{
L(X,Z, y, Y )

}

= inf
X∈Sn

+
, Z∈Sn(r)

{
1

2
‖H ◦ (X − C)‖2 +

1

2
‖H ◦ (Z − C)‖2 + 〈b −AX, y〉 + 〈Z − X, Y 〉

}
.

(52)
Suppose that (ȳ, Y ) ∈ Q∗ × Sn is an optimal solution to (51). Then for any feasible (X̂, Ẑ) to
(50), one has

‖H ◦ (X̂ − C)‖2 ≥ 1

2
‖H ◦ (X̂ − C)‖2 +

1

2
‖H ◦ (Ẑ − C)‖2 + 〈b −AX̂, ȳ〉 + 〈Ẑ − X̂, Y 〉

≥ V (ȳ, Y ) ,
(53)

which implies that the dual solution (ȳ, Y ) provides a valid lower bound for checking the op-
timality of the primal solution. When H is the matrix with all the entries equal to 1, we can
further simplify (52) and write V (y, Y ) explicitly as

V (y, Y ) = inf
X∈Sn

+
, Z∈Sn(r)

{
1

2
‖X − C‖2 +

1

2
‖Z − C‖2 + 〈b −AX, y〉 + 〈Z − X, Y 〉

}

= inf
X∈Sn

+
, Z∈Sn(r)

{
1

2
‖X − (C + A∗y + Y )‖2 +

1

2
‖Z − (C − Y )‖2 + 〈b, y〉

−1

2
‖C + A∗y + Y ‖2 − 1

2
‖C − Y ‖2 + ‖C‖2

}

= −1

2
‖ΠSn

+
(C + A∗y + Y )‖2 − 1

2
‖ΠSn(r)(C − Y )‖2 + 〈b, y〉 + ‖C‖2

where A∗ is the adjoint of A. For any (y, Y ) ∈ IRm ×Sn, let Φ(y, Y ) := −V (y, Y ) + ‖C‖2. Now
we can rewrite the dual problem as follows

min Φ(y, Y ) =
1

2
‖ΠSn

+
(C + A∗y + Y )‖2 +

1

2
‖ΠSn(r)(C − Y )‖2 − 〈b, y〉

s.t. y ∈ Q∗ = IRp × IRq
+ ,

Y ∈ Sn .

(54)

Remark 4.1 When H takes the form of H = hhT for some column vector h > 0 in IRn, we can
also derive a similar explicit expression for V (y, Y ) as in (54). For the general weight matrix H,
we cannot reformulate (52) explicitly. However, we can still apply the majorized penalty method
introduced early in this paper to compute V (y, Y ).
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Next we discuss the existence of the optimal solution to (54). For this purpose, we need the
following Slater condition:





{Ai}p
i=1 are linearly independent,

there exists X0 ≻ 0 such that AjX
0 = bj for j = 1, . . . , p ,

and AjX
0 > bj for j = p + 1, . . . ,m .

(55)

Lemma 4.2 Assume that the Slater condition (55) holds. Then 〈b, ȳ〉 < 0 for any 0 6= ȳ ∈ Q∗

satisfying A∗ȳ � 0 .

Proof. Let 0 6= ȳ ∈ Q∗ be such that A∗ȳ � 0. Since the Slater condition (55) is assumed to hold,
there exists an X0 ≻ 0 such that AjX

0 = bj for 1 ≤ j ≤ p and AjX
0 > bj for p + 1 ≤ j ≤ m .

Next, we prove 〈b, ȳ〉 < 0 by considering the following two cases.

1). There exists an index j ∈ {p + 1, . . . ,m} such that ȳj > 0. For this index j, we have
(
AjX

0 − bj

)
ȳj > 0.

It then follows that

〈b, ȳ〉 =

m∑

i=1

biȳi ≤
m∑

i=1

i6=j

AiX
0ȳi + bj ȳj < 〈AX0 , ȳ〉 = 〈X0, A∗ȳ〉 ≤ 0 .

2). There does not exist j ∈ {p+1, . . . ,m} such that ȳj > 0. Since ȳ ∈ Q∗, this implies ȳj = 0
for j = p + 1, . . . ,m. Then, from the assumptions that {Ai}p

i=1 are linearly independent

and ȳ 6= 0, we obtain A∗ȳ =

p∑

i=1

A∗
j ȳ 6= 0. Therefore, by using the fact that X0 ≻ 0, we

obtain that
〈b, ȳ〉 = 〈AX0 , ȳ〉 = 〈X0, A∗ȳ〉 < 0 .

In both cases, we have shown that 〈b, ȳ〉 < 0. �

Proposition 4.3 Assume that the Slater condition (55) holds. Then, for any constant ν ∈ IR,
the level set Lν :=

{
(y, Y ) ∈ Q∗ × Sn | Φ(y, Y ) ≤ ν

}
is bounded.

Proof. We prove the conclusion of this proposition by contradiction. Suppose that on the
contrary that there exists a constant ν ∈ IR such that Lν is unbounded. Then there exists a
sequence {(yk, Y k)} ∈ Q∗×Sn such that Φ(yk, Y k) ≤ ν for all k ≥ 1 and lim

k→+∞
(‖yk‖+‖Y k‖) =

+∞.
We consider the following two cases:

1). There exists a positive number δ > 0 such that lim sup
k→+∞

‖Y k‖
‖yk‖ ≥ δ > 0. For each k ≥ 1,

define Ck := C/‖Y k‖ − Y k/‖Y k‖ . By taking a subsequence if necessary, we may assume
that ‖Y k‖ → ∞ as k → ∞ and there exists a matrix 0 6= Y ∈ Sn such that

Y k/‖Y k‖ → Y and Ck → −Y as k → ∞ .
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Then, for all k sufficiently large, there exists δ̄ > 0 such that

‖ΠSn(r)(C
k)‖2 ≥ δ̄ .

Thus,

lim inf
k→+∞

Φ(yk, Y k) ≥ lim inf
k→+∞

(1

2
‖ΠSn(r)(C − Y k)‖2 − 〈b, yk〉

)

= lim inf
k→+∞

(1

2
‖Y k‖2‖ΠSn(r)(C

k)‖2 − 〈b, yk〉‖Y k‖/‖Y k‖
)

≥ lim inf
k→+∞

‖Y k‖
(1

2
‖Y k‖‖ΠSn(r)(C

k)‖2 − ‖b‖‖yk‖/‖Y k‖
)

≥ δ̄

4
lim inf
k→+∞

‖Y k‖2 = +∞ .

2). lim sup
k→+∞

‖Y k‖
‖yk‖ = 0 . Without loss of generality, we may assume that yk 6= 0 for each k ≥ 1

and ||yk|| → ∞ as k → ∞. For k ≥ 1, let Bk := (C + A∗yk + Y k)/‖yk‖. We assume, by
taking a subsequence if necessary, that there exists ȳ 6= 0 such that

lim
k→+∞

yk

‖yk‖ = ȳ .

Next we consider the following two subcases:

2.1). A∗ȳ � 0, i.e., A∗ȳ has at least one positive eigenvalue. It then follows that there
exists a positive number δ > 0 such that

lim inf
k→+∞

‖ΠSn
+
(Bk)‖2 = lim inf

k→+∞
‖ΠSn

+
(A∗ȳ)‖2 ≥ δ > 0 .

Hence, we have

lim inf
k→+∞

Φ(yk, Y k) ≥ lim inf
k→+∞

(1

2
‖ΠSn

+
(C + A∗yk + Y k)‖2 − 〈b, yk〉

)

≥ lim inf
k→+∞

‖yk‖
(1

2
‖yk‖‖ΠSn

+
(Bk)‖2 − ‖b‖

)
= +∞ .

2.2). A∗ȳ � 0. Then 〈b, ȳ〉 < 0 follows immediately from Lemma 4.2. Therefore,

lim inf
k→+∞

Φ(yk, Y k) ≥ lim inf
k→+∞

‖yk‖
(
− 〈b, yk/‖yk‖〉

)
≥ −〈b, ȳ〉 lim inf

k→+∞
‖yk‖/2 = +∞ .

In summary, we have shown that Φ(yk, Y k) → +∞ as k → ∞, which is a contradiction to our
assumption that Φ(yk, Y k) ≤ ν for all k ≥ 1. This contradiction shows that the conclusion of
this proposition holds. �

Proposition 4.3 says that if the Slater condition (55) holds, the dual problem (54) always
has optimal solutions. Let (ȳ, Y ) ∈ Q∗ × Sn be an optimal solution to (54). Then we have

0 ∈ ∂Φ(ȳ, Y ) + NQ∗(ȳ) × {0}. (56)
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Theorem 4.4 The optimal solution (ȳ, Y ) ∈ Q∗ × Sn to the the dual problem (54) satisfies

b −AΠSn
+

(
C + A∗ȳ + Y

)
∈ NQ∗(ȳ) (57)

and
ΠSn

+

(
C + A∗ȳ + Y

)
∈ conv

{
ΠB

Sn(r)(C − Y )
}

, (58)

where ΠB
Sn(r)(·) is defined as in Lemma 2.1. Furthermore, if there exists a matrix X ∈ ΠB

Sn(r)(C−
Y ) such that X = ΠSn

+

(
C +A∗ȳ + Y

)
, then X and (ȳ, Y ) globally solve the primal problem (50)

with H = E and the corresponding dual problem (54), respectively and there is no duality gap
between the primal and dual problems.

Proof. Recall that for (y, Y ) ∈ Q∗ × Sn,

Φ(y, Y ) =
1

2
‖ΠSn

+
(C + A∗y + Y )‖2 +

1

2
‖ΠSn(r)(C − Y )‖2 − 〈b, y〉

=
1

2
‖ΠSn

+
(C + A∗y + Y )‖2 + Ξr(C − Y ) − 〈b, y〉 .

It is well known that ‖ΠSn
+
(·)‖2 is continuously differentiable [62] and for any Z ∈ Sn,

∇(‖ΠSn
+
(Z)‖2) = 2ΠSn

+
(Z) .

Then, by using Proposition 2.2, we know that the sub-differential of Φ(·, ·) at the optimal solution
point (ȳ, Y ) can be written as

∂Φ(ȳ, Y ) =

{ (
ωT , Γ

) ∣∣ω = AΠSn
+

(
C + A∗ȳ + Y

)
− b ,

Γ ∈ ΠSn
+

(
C + A∗ȳ + Y

)
− conv

{
ΠB

Sn(r)(C − Y )
}

}
. (59)

The inclusions (57) and (58) now follow directly from (56). Note that (57) implies that

AΠSn
+

(
C + A∗ȳ + Y

)
∈ b + Q and

〈
b −AΠSn

+

(
C + A∗ȳ + Y

)
, ȳ

〉
= 0 .

Moreover, if there exists a matrix X ∈ ΠB
Sn(r)(C − Y ) such that X = ΠSn

+

(
C + A∗ȳ + Y

)
, then

we know that X is feasible to the primal problem (50) and

V (ȳ, Y )

= 1
2‖X − C‖2 + 1

2‖Z − C‖2 + 〈b −AX, ȳ〉 + 〈Z − X, Y 〉
= 1

2‖X − C‖2 + 1
2‖Z − C‖2 ,

which, together with the fact that (ȳ, Y ) is feasible to the dual problem (54), completes the
proof of the remaining part of the theorem. �

Note that Theorem 4.4 shows that, ΠSn
+

(
C + A∗ȳ + Y

)
is feasible to the primal prob-

lem without the rank constraint meanwhile it is the convex combination of several matrices in
ΠB

Sn(r)(C − Y ), which consists of matrices of rank less than or equal to r. If ΠSn
+

(
C +A∗ȳ + Y

)

happens to be an extreme point of conv ΠSn(r)(C − Y ) , the convex hull of all solutions of the

metric projection problem (18) with Y = C − Y , then ΠSn
+

(
C + A∗ȳ + Y

)
globally solves the

primal problem.
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Corollary 4.5 If |σr(C − Y )| > |σr+1(C − Y )|, then X = ΠSn
+
(C +A∗ȳ + Y ) = ΠSn(r)(C − Y )

globally solves problem (5).

Proof. By noting, from Remark 2.3, that the set ΠB
Sn(r)(C−Y ) is a singleton when |σr(C−Y )| >

|σr+1(C − Y )|, we derive the conclusion of this corollary directly from Theorem 4.4. �

Remark 4.6 Theorem 4.4 and Corollary 4.5 also hold for the following W -weighted problem

min
1

2
‖W 1/2(X − C)W 1/2‖2

s.t. AX ∈ b + Q ,
X ∈ Sn

+ ,
rank(X) ≤ r ,

(60)

where W is a symmetric positive definite matrix. If the rank constraint rank(X) ≤ r is dropped
from (60), then its dual problem can be simply reformulated, without requiring the additional
matrix variable Z, as follows

min
1

2

∥∥ΠSn
+

(
W 1/2(C + W−1A∗yW−1)W 1/2

)∥∥2 − 〈b, y〉 − 1

2
‖W 1/2CW 1/2‖2

s.t. y ∈ Q∗ = IRp × IRq
+ .

(61)

The dual formulation (61) will be repeated used in our numerical experiments.

Remark 4.7 Theorem 4.4 extends the globalization checking results of Zhang and Wu [63, The-
orem 4.5] in several aspects:

(E1). The matrix C is no longer required to be a valid correlation matrix.

(E2). The problem may have more general constraints including the simple lower and upper bound
constraints.

(E3). The assumption |σr(C − Y )| > |σr+1(C − Y )| is weakened to include the situation that
σr(C − Y ) may have multiplicity larger than 1.

5 Numerical experiments

In this section, we shall first address several practical issues in the implementation of applying
the majorized penalty approach (MPA) to problem (5) and then report our numerical results.

1. The choice of the initial point X0 ∈ Ω. Compute d as in (49). Let D = diag(d). We then
apply the majorization method alternatively (first fix Z and then X) to approximately
solve

min
1

2
‖H ◦ (X − C)‖2 +

1

2
‖H ◦ (Z − C)‖2 +

ρ

2
‖D1/2(X − Z)D1/2‖2

s.t. AX ∈ b + Q ,
X ∈ Sn

+ ,
rank(Z) ≤ r

(62)
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to obtain a feasible solution, say (X̃, Z̃), where ρ > 0 is initially set as 100 and is increased
by 10 times at each step. The maximum number of steps is set as 10. Then we set
X0 := X̃ ∈ Ω.

2. The choice of the penalty parameter c. Let X∗ be an optimal solution to the convex
problem (34). We choose the initial penalty parameter c to be

c := min
{
1, 0.25

(
θ(X0) − θ(X∗)

)
/max

{
1, p(X0) − p(X∗)

}}
.

Thereafter, c is updated as follows: when |p(Xk)|/max{1, r} > 0.1, c is increased by
4 times; otherwise, c is increased by 1.4 times. The penalty parameter c will be kept
unchanged if |p(Xk)| ≤ 10−8.

3. The choice of the algorithm for solving the subproblems (41). The success of our MPA
heavily relies on our ability in solving a sequence of majorized subproblems of the form
(41). For this purpose, we use the well tested smoothing Newton-BiCGStab method
developed in [23].

4. The stopping criterion. We terminate our algorithm if

|p(Xk)| ≤ 10−8 and
|
√

fc(Xk) −
√

fc(Xk−1)|
max

(
100,

√
fc(Xk−1)

) ≤ 10−5 .

We did our numerical experiments in MATLAB 7.8.0 (R2009a) running on a PC Intel (R)
Core (TM) 2 of 3.16 GHz CPU each and 2.96 GB of RAM. The testing examples to be reported
are given below.

Example 5.1 Let n = 500 and the weight matrix H = E. For i, j = 1, . . . , n, Cij = 0.5 +
0.5e−0.05|i−j|. The index sets are Be = Bl = Bu = ∅. This matrix C is a valid correlation matrix
and has been used by a number of authors [6, 38].

Example 5.2 Let n = 500 and the weight matrix H = E. The matrix C is extracted from the
correlation matrix which is based on a 10, 000 gene micro-array data set obtained from 256 drugs
treated rat livers; see Natsoulis et al. [42] for details. The index sets are Be = Bl = Bu = ∅.

Example 5.3 Let n = 500. The matrix C is the same as in Example 5.1, i.e., C = 0.5 +
0.5e−0.05|i−j| for i, j = 1, . . . , n. The index sets are Be = Bl = Bu = ∅ . The weight matrix H is
generated in the same way as in [47] such that all its entries are uniformly distributed in [0.1, 10]
except for 2 × 100 entries in [0.01, 100].

Example 5.4 Let n = 500. The matrix C is the same as in Example 5.2. The index sets are
Be = Bl = Bu = ∅ . The weight matrix H is generated in the same way as in Example 5.3.

Example 5.5 The matrix C is an estimated 943×943 correlation matrix based on 100, 000 rat-
ings for 1682 movies by 943 users. Due to missing data, the generated matrix G is not positive
semi-definite [22]. This rating data set can be downloaded from http://www.grouplens.org/node/73.
The index sets are Be = Bl = Bu = ∅. The weight matrix H is provided by T. Fushiki at Institute
of Statistical Mathematics, Japan.
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Figure 1: Example 5.1

Example 5.6 The matrix C is obtained from the gene data sets with dimension n = 1, 000 as
in Example 5.2. The weight matrix H is the same as in Example 5.3. The index sets Be, Bl,
and Bu ⊂ {(i, j) | 1 ≤ i < j ≤ n} consist of the indices of min(n̂r, n − i) randomly generated
elements at the ith row of X, i = 1, . . . , n with n̂r = 5 for Be and n̂r = 10 for Bl and Bu. We
take eij = 0 for (i, j) ∈ Be, lij = −0.1 for (i, j) ∈ Bl and uij = 0.1 for (i, j) ∈ Bu.

Our numerical results are reported in Tables 1-5, where “time” and “residue” stand for the
total computing time used (in seconds) and the residue

√
2θ(Xk) at the final iterate Xk of each

algorithm, respectively. For the simplest rank-NCM problem (1) of equal weights (i.e., H = E),
there are many algorithms to choose from. For the purpose of comparison, we only selected
three most efficient ones from the literure: the dual approach of Zhang and Wu [63] and Wu
[61] (C is required to be a valid correlation matrix), the majorization approach of Pietersz and
Groenen [45], and the augmented Lagrangian approach of Li and Qi [38]. For the majorization
approach and the augmented Lagrangian approach, we used the codes developed by the authors
of [45] and [38]. They are referred to as Major3 and SemiNewton, respectively, in Examples
5.1 and 5.2. For the dual approach of [63, 61], we used the BFGS implementation of Lewis
and Overton [36] to solve the Lagrangian dual problem. This is denoted by Dual-BFGS. The
Dual-BFGS solves the Lagrangian dual problem to get an approximate optimal dual solution yk.
This approximate optimal dual solution may not always be able to generate an optimal solution
to the primal problem as the rth and (r+1)th eigenvalues (arranged in the non-increasing order
in terms of their absolute values) of C +diag(yk) may be of the same absolute values, but it does
provide a valid lower bound for the optimal value of the primal problem. The final iterate of the

3
Majorw is the corresponding code for solving the weighted cases.
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Example 5.1 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap time residue relgap time residue relgap time residue relgap

2 1.9 1.564e2 3.4e-3 63.0 1.564e2 3.5e-3 432.0 1.660e2 6.5e-2 25.7 1.564e2 3.4e-3

5 2.2 7.883e1 6.5e-5 23.5 7.883e1 2.8e-5 24.6 7.883e1 1.1e-15 7.5 7.883e1 7.0e-5

10 2.7 3.869e1 6.9e-5 19.0 3.868e1 8.0e-6 8.0 3.868e1 1.7e-14 4.4 3.869e1 6.7e-5

15 4.2 2.325e1 8.3e-5 18.5 2.324e1 7.3e-6 6.0 2.324e1 3.4e-14 3.9 2.325e1 7.9e-5

20 7.5 1.571e1 8.8e-5 15.3 1.571e1 7.6e-6 5.6 1.571e1 2.9e-14 4.1 1.571e1 6.9e-5

25 12.8 1.145e1 1.1e-4 14.4 1.145e1 8.6e-6 5.0 1.145e1 1.8e-13 3.2 1.145e1 1.0e-4

30 19.4 8.797e0 1.3e-4 14.0 8.796e0 9.5e-6 4.3 8.795e0 4.4e-13 3.0 8.796e0 9.4e-5

35 34.4 7.020e0 1.7e-4 14.0 7.019e0 1.0e-5 4.8 7.019e0 2.0e-13 4.7 7.019e0 2.8e-5

40 43.4 5.766e0 2.2e-4 1.3 5.774e0 1.7e-3 4.3 5.764e0 5.6e-13 3.0 5.765e0 3.9e-5

45 63.6 4.843e0 3.0e-4 1.3 4.849e0 1.6e-3 4.5 4.841e0 7.4e-13 3.0 4.841e0 4.2e-5

50 80.1 4.141e0 4.0e-4 1.4 4.146e0 1.6e-3 4.3 4.139e0 1.8e-12 1.8 4.139e0 6.8e-5

60 145.0 3.156e0 6.7e-4 1.4 3.158e0 1.4e-3 4.5 3.153e0 8.4e-13 1.6 3.154e0 8.4e-5

70 243.0 2.507e0 1.1e-3 1.4 2.507e0 1.3e-3 4.3 2.504e0 3.4e-12 1.6 2.504e0 1.0e-4

80 333.0 2.053e0 1.6e-3 1.5 2.052e0 1.2e-3 4.1 2.050e0 4.2e-12 1.6 2.050e0 1.2e-4

90 452.0 1.722e0 2.4e-3 1.6 1.720e0 1.2e-3 4.2 1.718e0 1.1e-11 1.7 1.718e0 1.4e-4

100 620.0 1.471e0 3.3e-3 1.5 1.468e0 1.1e-3 4.3 1.467e0 3.3e-12 1.6 1.467e0 1.5e-4

125 1180.0 1.055e0 6.8e-3 1.7 1.049e0 9.9e-4 4.2 1.048e0 1.0e-11 1.7 1.048e0 1.8e-4

Table 1: Numerical results for Example 5.1
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Example 5.2 Major SemiNewton Dual-BFGS PenCorr

rank time residue relgap time residue relgap time residue relgap time residue relgap

2 0.6 2.858e2 6.5e-4 54.4 2.860e2 1.5e-3 304.5 2.862e2 2.1e-3 37.2 2.859e2 8.2e-4

5 6.0 1.350e2 2.0e-3 38.2 1.358e2 8.1e-3 78.8 1.367e2 1.5e-2 99.2 1.351e2 2.4e-3

10 9.3 6.716e1 4.4e-4 32.7 6.735e1 3.2e-3 58.3 6.802e1 1.3e-2 32.1 6.719e1 9.7e-4

15 8.8 4.097e1 3.4e-4 26.8 4.100e1 1.0e-3 44.6 4.096e1 1.0e-4 18.4 4.099e1 7.5e-4

20 13.0 2.842e1 7.3e-4 18.8 2.844e1 1.4e-3 40.4 2.842e1 8.9e-4 16.6 2.843e1 1.1e-3

25 34.9 2.149e1 1.2e-3 18.0 2.152e1 2.6e-3 26.6 2.149e1 1.2e-3 16.4 2.151e1 2.2e-3

30 33.7 1.693e1 4.3e-4 17.3 1.695e1 1.7e-3 23.0 1.694e1 7.8e-4 14.5 1.694e1 1.2e-3

35 71.8 1.379e1 1.3e-3 18.1 1.381e1 2.6e-3 19.7 1.378e1 7.1e-4 11.9 1.379e1 1.6e-3

40 50.0 1.151e1 1.5e-3 12.5 1.152e1 2.1e-3 34.7 1.145e1 3.2e-4 7.7 1.151e1 1.6e-3

45 43.3 9.733e0 9.6e-4 10.6 9.736e0 1.3e-3 23.1 9.733e0 9.2e-4 6.3 9.733e0 1.0e-3

50 44.5 8.318e0 4.1e-4 10.7 8.319e0 4.8e-4 19.7 8.315e0 5.1e-6 5.7 8.318e0 4.5e-4

60 66.5 6.214e0 8.1e-4 10.9 6.214e0 7.4e-4 6.1 6.209e0 1.4e-13 6.9 6.213e0 5.9e-4

70 91.2 4.733e0 1.1e-3 11.0 4.731e0 8.2e-4 23.1 4.728e0 1.9e-4 4.6 4.731e0 7.2e-4

80 93.0 3.663e0 8.7e-4 2.2 3.800e0 3.8e-2 5.2 3.660e0 4.0e-13 2.9 3.662e0 4.5e-4

90 125.0 2.865e0 1.2e-3 2.0 2.962e0 3.5e-2 5.0 2.862e0 5.1e-13 3.0 2.864e0 7.0e-4

100 150.0 2.255e0 1.4e-3 1.7 2.323e0 3.2e-2 15.1 2.254e0 7.8e-4 2.9 2.254e0 8.3e-4

125 288.6 1.269e0 2.4e-3 1.4 1.304e0 3.0e-2 17.1 1.266e0 1.6e-4 2.7 1.268e0 1.4e-3

Table 2: Numerical results for Example 5.2

Example 5.3 Example 5.4

Majorw PenCorr Majorw PenCorr

rank time residue time residue time residue time residue

2 8.8 1.805e2 81.2 1.804e2 2.9 3.274e2 141.6 3.277e2

5 27.0 8.984e1 70.0 8.986e1 34.4 1.523e2 245.0 1.522e2

10 38.7 4.382e1 48.7 4.383e1 48.5 7.423e1 98.7 7.428e1

15 55.5 2.616e1 43.7 2.618e1 70.5 4.442e1 79.9 4.446e1

20 84.4 1.751e1 39.1 1.753e1 101.4 2.985e1 67.0 2.987e1

25 117.0 1.265e1 38.2 1.266e1 289.6 2.197e1 69.8 2.204e1

30 171.8 9.657e0 36.5 9.657e0 335.6 1.694e1 65.8 1.699e1

35 250.6 7.639e0 39.8 7.632e0 436.7 1.345e1 71.0 1.343e1

40 324.7 6.213e0 38.8 6.203e0 470.7 1.098e1 50.5 1.098e1

45 408.4 5.169e0 38.4 5.148e0 498.7 9.104e0 47.7 9.094e0

50 502.2 4.391e0 37.5 4.355e0 639.5 7.625e0 48.0 7.623e0

60 654.1 3.290e0 35.6 3.219e0 837.6 5.552e0 44.0 5.523e0

70 972.5 2.579e0 38.2 2.481e0 987.5 4.135e0 44.9 4.084e0

80 1274.9 2.090e0 42.6 1.959e0 1212.0 3.127e0 38.0 3.082e0

90 1526.9 1.740e0 44.0 1.588e0 1417.0 2.393e0 35.6 2.345e0

100 1713.7 1.478e0 40.9 1.310e0 1612.0 1.865e0 32.7 1.814e0

125 2438.1 1.052e0 44.6 8.591e-1 1873.0 1.030e0 27.7 9.748e-1

Table 3: Numerical results for Example 5.3 and 5.4
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Example 5.5 Majorw PenCorr

rank time residue time residue

5 233.4 5.242e2 1534.9 5.273e2

10 706.5 3.485e2 1634.6 3.509e2

20 926.7 2.389e2 1430.2 2.398e2

50 2020.1 1.706e2 829.9 1.709e2

100 3174.3 1.609e2 537.5 1.611e2

150 3890.6 1.608e2 687.1 1.610e2

250 7622.5 1.608e2 694.2 1.610e2

Table 4: Numerical results for Example 5.5

Example 5.6 PenCorr

rank time residue

20 11640.0 1.872e2

50 1570.0 1.011e2

100 899.0 8.068e1

250 318.3 7.574e1

500 326.3 7.574e1

Table 5: Numerical results for Example 5.6
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Dual-BFGS is obtained by applying the modified PCA procedure to C +diag(yk). Our own code
is indicated by PenCorr. In Tables 1-2, “relgap” denotes the relative gap which is computed as

relgap :=
residue − lower bound

max{1, lower bound} ,

where the lower bound is obtained by the Dual-BFGS. This “relgap” indicates the worst possible
relative error from the global optimal value.

From Tables 1-2, we can see that even for the simplest rank-NCM problem (1) of equal
weights (i.e., H = E), PenCorr is quite competitive in terms of computing time and solution
quality except for small rank cases that Major is a clear winner. Examples 5.3, 5.4, and 5.5
belong to the rank-NCM problem (1) of general weights. For these three examples, we can
see clearly from Tables 3-4 that Majorw performs better than PenCorr when the ranks are not
large and loses its competitiveness quickly to PenCorr as the rank increases. When there are
constraints on the off-diagonal parts as in Example 5.6, PenCorr seems to be the only viable
approach.

6 Conclusions

In this paper, we proposed a majorized penalty approach for solving the rank constrained cor-
relation matrix problem of the general form (5). Our approach is first to absorb the non-convex
rank constraint into the objective function via a penalty technique by using the fact that for any
X ∈ Sn

+, rank(X) ≤ r if and only if λr+1(X)+ . . .+λn(X) = 0. Then we apply the majorization
method to solve a sequence of recently well studied least squares problems in the form of (47).
Numerical results indicate that our approach is able to handle both the rank and the bound
constraints effectively, in particular in the situations when the rank is not very small. Though
in order to make problem (5) feasible, one cannot ask the rank to be very small when there are a
large number of bound constraints, it is still interesting to know if one can design a more efficient
method to solve problem (5) with a small rank and a small number of bound constraints.

There are several directions that our approach presented here can be further researched. The
first one is to replace the Frobenius norm by any other matrix norm, e.g., the matrix l1 norm
or the spectral norm, in the rank constrained nearest correlation matrix optimization problem
(5). Another direction is to extend our approach to deal with even more complicated models
on nearest correlation matrices of low rank in finance and risk management. For example, one
may consider the following weighted version of the problem introduced by Werner and Schöttle
in [60],

min
1

2
‖H ◦ (X − C)‖2

s.t. Xii = 1, i = 1, . . . , n,

X = B + D,

D = diag(d1, . . . , dn),

D � 0,X � 0,

B � 0, rank(B) ≤ r .

This type of problems comes from factor models in financial markets. See [60] for details. Finally,
our majorized penalty approach can be extended to the following structured low rank matrix,
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not necessary symmetric, approximation problem

min
1

2
‖H ◦ (X − C)‖2

s.t. AX ∈ b + Q ,

rank(X) ≤ r ,

X ∈ IRn1×n2 ,

(63)

where the matrices H and C are no longer required to be symmetric, the linear operator A is
now defined from IRn1×n2 to IRm, b ∈ IRm, and Q is a closed convex cone in IRm. It is not
clear at the moment if problem (63) has any specific application in finance or risk management.
However, it has many applications in numerical linear algebra, engineering, and other fields. For
a related survey article, see [11]. By using the fact that for any X ∈ IRn1×n2 (without loss of
generality, we assume n1 ≤ n2),

rank(X) ≤ r ⇐⇒ σr+1(X) + . . . + σn1
(X) = 0 ⇐⇒

n1∑

i=1

σi(X) −
r∑

i=1

σi(X) = 0 ,

where σi(X) ≥ 0 denotes the ith largest singular value of X, i = 1, . . . , n1, we derive the
following analogue of problem (32)

min
1

2
‖H ◦ (X − C)‖2 + c‖X‖∗ − c(σ1(X) + . . . + σr(X))

s.t. AX ∈ b + Q ,

X ∈ IRn1×n2 ,

where c > 0 is the penalty parameter and ‖X‖∗ := σ1(X) + . . . + σn1
(X) is the nuclear norm of

X. With slight modifications, one may use the majorized penalty method introduced in Section
3 to solve the above problem.
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Appendix A. Proof of Proposition 2.2.

For any z ∈ IRn, define

ξr(z) = max
x∈Fr

{1

2
‖z‖2 − 1

2
‖x − z‖2

}
= max

x∈Fr

{
〈x, z〉 − 1

2
‖x‖2

}
, (64)

where Fr := {x ∈ IRn | ‖x‖0 ≤ r}. Then ξr(·) is a convex function and its sub-differential is well
defined. Let y = σ(Y ). Thus

ξr(y) = max
x∈Fr

{1

2
‖y‖2 − 1

2
‖x − y‖2

}
=

1

2
‖σ(Y )‖2 − min

x∈Fr

1

2
‖x − y‖2 . (65)

Denote the solution set of (65) by F∗
r . Define α := {i |xi 6= 0} and β := {i |xi = 0} for any

given x ∈ Fr. It then follows that

n∑

i=1

(xi − yi)
2 =

∑

i∈α

(xi − yi)
2 +

∑

i∈β

(xi − yi)
2 ≥

∑

i∈β

y2
i ≥

n∑

i=r+1

y2
i , (66)

where the last inequality is from the facts that |β| ≥ n − r and the non-increasing order of y in
terms of the absolute value. Therefore, we know that

ξr(y) =
1

2

r∑

i=1

y2
i and F∗

r = V , (67)

where V is defined in (24). From convex analysis [54], we can easily derive that

∂ξr(y) = conv V

and that ξr(·) is differentiable at y if and only if |σ(Y )|r > |σ(Y )|r+1. In the latter case,

∂ξr(y) = {∇ξr(y)T } =
{
v ∈ IR1×n | vi = σi(Y ) for 1 ≤ i ≤ r and vi = 0 for r + 1 ≤ i ≤ n

}
.

Since the convex function ξr(·) is symmetric, i.e., ξr(z) = ξr(Sz) for z ∈ IRn and any
permutation matrix S, for Z ∈ Sn we can rewrite Ξr(Z) as

Ξr(Z) = ξr(λ(Z)) = ξr(σ(Z)) ,
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where λ1(Z) ≥ . . . ≥ λn(Z) are the eigenvalues of Z being arranged in the non-increasing order.
By [35, Theorem 1.4], we know that Ξr(·) is differentiable at Y ∈ Sn if and only if ξr(·) is
differentiable at λ(Y ) and

∂Ξr(Y ) = {Pdiag(v)P T | v ∈ ∂ξr(λ(Y )) , P ∈ On, Pdiag(λ(Y ))P T = Y }.

Thus Ξr(·) is differentiable at Y if and only if |σ(Y )|r > |σ(Y )|r+1. In the latter case,

∂Ξr(Y ) = {Ξ′
r(Y )} =

{
Udiag(v)UT | vi = σi(Y ) for 1 ≤ i ≤ r and vi = 0 for r + 1 ≤ i ≤ n}.

Let the B-subdifferential of Ξr(·) at Y be defined by

∂BΞr(Y ) =
{

lim
Y k→Y

Ξ′
r(Y

k) , Ξr(·) is differentiable at Y k
}
.

Then we can easily check that
∂BΞr(Y ) = ΠSn(r)(Y ) , (68)

where we used the fact that the two matrices
∑

i∈ᾱ

σi(Y )UiU
T
i and

∑

i∈γ̄

σi(Y )UiU
T
i are independent

of the choices of U ∈ On satisfying (17). Thus, by Theorem 2.5.1 in [12], one has

∂Ξr(Y ) = conv ∂BΞr(Y ) = conv ΠSn(r)(Y ) .

The proof is completed. �
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