On a conjecture in Moreau-Yosida approximation of a nonsmooth convex function

SUN Defeng and HAN Jive

Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China

Keywords: convex function, Moreau-Yosida approximation, piecewise smooth.

CONSIDER

$$\min f(x), \tag{1}$$

where $f: \mathbb{R}^n \to [-\infty, +\infty]$ is an extended valued closed proper convex function. The Moreau-Yosida approximation F_{λ} of f is defined by

$$F_{\lambda}(x) = \min_{y \in \mathbb{R}^{n}} \left\{ f(y) + \frac{1}{2\lambda} \parallel y - x \parallel^{2} \right\}, \qquad (2)$$

where λ is a positive parameter and $\|\cdot\|$ denotes the Euclidean norm.

From ref. [1] we know that F_{λ} is a differentiable convex function defined in the whole space of \mathbb{R}^n . The derivative of F_{λ} is

$$G_{\lambda}(x) \equiv \frac{1}{\lambda} (x - p_{\lambda}(x)) \in g(p_{\lambda}(x)), \qquad (3)$$

where $g = \partial f$ is the subdifferential mapping of f and $p_{\lambda}(x)$ is the unique minimizer of eq. (2). An often discussed case is

$$f(x) = \max\{f_i(x): i \in J\},$$
 (4)

where J is a finite index set and f_i , $i \in J$, are proper convex functions. When f_i , $i \in J$, are linear functions, $Qi^{(1)}$ proved that G_{λ} is piecewise affine, hence semismooth, under a regular

¹⁾ Qi, L., Second-order analysis of the Moreau-Yosida approximation of a convex function, *Mathematical Programming*, 1997 (to appear).

BULLETIN

assumption. When f_i , $i \in J$, are twice continuously differentiable nonlinear convex functions, $Qi^{(1)}$ posed a question: will G_{λ} be piecewise smooth^[2], hence semismooth, under a similar regularity condition? We will give a positive answer to this question under a more relaxed condition here.

Define $J(p_{\lambda}(x)) = \{i \in J: f_i(p_{\lambda}(x)) = f(p_{\lambda}(x))\}.$

Constant Rank Constraint Qualification (CRCQ). CRCQ is said to hold at $p_{\lambda}(x)$ if there exists a neighborhood V of $p_{\lambda}(x)$ such that for every subset $K \subseteq J(p_{\lambda}(x))$, the family of the vectors

$$\left| \begin{pmatrix} \nabla f_i(z) \\ 1 \end{pmatrix} : i \in K \right|$$
(5)

has the same rank (which depends on K) for all vectors $z \in V$.

Remark 1. CRCQ will hold if $|J(p_{\lambda}(x))| = 1$ or the linear independence constraint qualification (LICQ) holds. CRCQ holds automatically if all f_i , $i \in J$, are linear functions.

Let $\mathcal{M}(x)$ denote the set of all multipliers $\alpha(x)$ such that

$$\begin{cases} G_{\lambda}(x) = \frac{1}{\lambda}(x - p_{\lambda}(x)) = \sum_{i \in J(p_{\lambda}(x))} \alpha_{i}(x) \nabla f_{i}(p_{\lambda}(x)), \\ \alpha_{i}(x) \ge 0, \ j \in J; \ \alpha_{i}(x) = 0, \ i \in J \setminus J(p_{\lambda}(x)), \ \sum_{i \in J(p_{\lambda}(x))} \alpha_{i}(x) = 1. \end{cases}$$

$$(6)$$

For a nonnegative vector $d \in \mathbb{R}^{|J|}$, let $\operatorname{supp}(d)$ be the subset of $\{1, \dots, |J|\}$ consisting of the indexes *i* for $d_i > 0$. Define the family $\mathscr{B}(x)$ of subsets of *J* as follows: $K \in \mathscr{B}(x)$ if and only if $\operatorname{supp}(\alpha(x)) \subseteq K \subseteq J(p_{\lambda}(x))$ for some $\alpha(x) \in \mathscr{M}(x)$ and the vectors

$ \nabla$	$f_i(p_\lambda(x$))).	;	<i>C</i>	K
\mathbb{N}	1):	ι	C	17

are linearly independent. This family $\mathscr{B}(x)$ is nonempty because $\mathscr{M}(x)$ has an extreme point which easily yields a desired index set K with the stated properties.

Theorem 1. Suppose that f_i , $i \in J$, are twice continuously differentiable convex functions and CRCQ holds at $p_{\lambda}(x)$. Then there exists an open neighborhood N of x such that $G_{\lambda}(x)$, the derivative of the Moreau-Yosida approximation of f, is piecewise smooth in N.

Proof. First we can prove that there exists a neighborhood U of x such that

 $\mathscr{B}(y) \subseteq \mathscr{B}(x) \text{ for all } y \in U.$ (7)

For y close to x, $J(p_{\lambda}(y)) \subseteq J(p_{\lambda}(x))$. Hence if $|J(p_{\lambda}(x))| = 1$, then $G_{\lambda}(x)$ is continuously differentiable in a neighborhood of x. In the following, we assume that $|J(p_{\lambda}(x))| > 1$. By eqs. (6) and (7), for any $y \in U$ and $K \in \mathscr{B}(y)$, there exist $\alpha^{K}(y) \in \mathscr{M}(y)$, supp $(\alpha^{K}(y)) \subseteq K$, such that

$$\begin{cases} G_{\lambda}(y) = \frac{1}{\lambda}(y - p_{\lambda}(y)) = \sum_{i \in K} \alpha_{i}^{K}(y) \nabla f_{i}(p_{\lambda}(y)), \\ \sum_{i \in K} \alpha_{i}^{K}(y) = 1. \end{cases}$$
(8)

For all $i \in K$, we have

$$f(p_{\lambda}(y)) = f_{i}(p_{\lambda}(y)).$$
(9)

Without loss of generality, for $K \in \mathcal{B}(x)$, we will assume that $K = \{1, \dots, m\}, m = |K|$. Consider the following systems:

¹⁾ See footnate 1) on page 1423.

$$H^{K}(z, q, y) := \begin{pmatrix} \lambda(f_{1}(z) - f_{m}(z)) \\ \vdots \\ \lambda(f_{m-1}(z) - f_{m}(z)) \\ \lambda \sum_{i=1}^{m-1} q_{i} \nabla f_{i}(z) + \left(1 - \sum_{i=1}^{m-1} q_{i}\right) \nabla f_{m}(z) + z - y \end{pmatrix}$$

where $(z, q, y) \in \mathbb{R}^n \times \mathbb{R}^{m-1} \times \mathbb{R}^n$. If we set $z^0 = p_\lambda(x)$, $q_i^0 = a_i^K(x)$, $i = 1, \dots, m-1$, and $y^0 = x$, then from eqs. (8) and (9) we have $H^K(z^0, q^0, y^0) = 0$. Denote

$$A^{K}(z, q, y) = \begin{pmatrix} \lambda \nabla f_{\overline{K}}(z)^{\mathrm{T}} & 0\\ I + \lambda \Big(\sum_{i \in \overline{K}} q_{i} \nabla^{2} f_{i}(z) + \Big(1 - \sum_{i \in \overline{K}} q_{i} \Big) \nabla^{2} f_{m}(z) \Big) & \lambda \nabla \overline{f}_{\overline{K}}(z) \Big|,$$

where $\nabla \overline{f}_i(z) = \nabla f_i(z) - \nabla f_m(z)$, $i \in \overline{K}$, and $\overline{K} = \{1, \dots, m-1\}$. Denote $B^K(z, q, y) = I + i \left(\sum_{i=1}^{n} \sum_{j=1}^{n} f_j(z) + \left(1 - \sum_{i=1}^{n} \sum_{j=1}^{n} f_j(z)\right) \right)$

$$B^{K}(z, q, y) = I + \lambda \Big(\sum_{i \in \overline{K}} q_{i} \nabla^{2} f_{i}(z) + \Big(1 - \sum_{i \in \overline{K}} q_{i} \Big) \nabla^{2} f_{m}(z) \Big)$$

Since f_i , $i \in J$, are twice continuously differentiable convex functions and $q_i^0 = \alpha_i^K(x) > 0$, $i = 1, \dots, |\overline{K}|, 1 - \sum_{i \in \overline{K}} q_i^0 = 1 - \sum_{i \in \overline{K}} \alpha_i(x) = \alpha_m(x) > 0$, there exists a neighborhood V^K of (z^0, q^0, y^0) such that $B^K(z, q, y)$ is a symmetric positive definite matrix when $(z, q, y) \in V^K$. By CRCQ and since the vectors

$$\left| \begin{pmatrix} \nabla f_i(z^0) \\ 1 \end{pmatrix} : i \in K \right|$$

are linearly independent, there exists a neighborhood (we still denote it by V^{K}) of (z^{0}, q^{0}, y^{0}) such that the vectors

$$\left| \left(\frac{\nabla f_i(z)}{1} \right) : i \in K \right|$$

are linearly independent when $(z, q, y) \in V^K$. Then it follows that the vectors $\{\nabla f_i(z): i \in \overline{K}\}$ are linearly independent. So the nonsingularity of $A^K(z, q, y)$ follows easily when $(z, q, y) \in V^K$. By the implicit function theorem, there exist an open neighborhood U^K of $y^0(=x)$ and an open neighborhood W^K of (z^0, q^0) such that when $y \in cl U^K$, the equation $H^K(z, q, y) = 0$ has a unique solution $(z^K(y), q^K(y)) \in cl W^K$, where clS denotes the closure of a set S. Moreover, $(z^K(y), q^K(y))$ is continuously differentiable in U^K . Define $G^K: U^K \rightarrow \mathbb{R}^n$ as $G^K(y) = \frac{1}{\lambda}(y - z^K(y)), y \in U^K$. Then $G^K(y)$ is continuously differentiable in U^K .

Let $N \subseteq \{ \bigcap_{K \in \mathscr{B}(x)} U^K \} \cap U$ be an open neighborhood of $y^0 (= x)$ such that for any $y \in N$ and $K \in \mathscr{B}(x)$,

$$(p_{\lambda}(y), \alpha_{\overline{K}}^{K}(y)) \in \operatorname{cl} W^{K}.$$
 (10)

The above relation (10) can be satisfied due to the facts that $a^{K}(y) \rightarrow a^{K}(x)$ and $p_{\lambda}(y) \rightarrow p_{\lambda}(x)$ as $y \rightarrow x$. For $K \in \mathscr{B}(x)$, denote $N^{K} = \{y \in N: K \in \mathscr{B}(y)\}$. Then from eq. (7) $N = \bigcup_{K \in \mathscr{B}(x)} N^{K}$. So for any $y \in N$, there exists $K \in \mathscr{B}(x)$ such that $y \in N^{K}$. But from eqs. (8) and (9) we know that

$$H^{K}(p_{\lambda}(y), \alpha_{\overline{K}}^{K}(y), y) = 0.$$

Then it follows that

Chinese Science Bulletin Vol. 42 No. 17 September 1997

BULLETIN

$$(p_{\lambda}(y), \alpha_{\overline{K}}^{K}(y)) = (z^{K}(y), q^{K}(y))$$

from eq. (10) and the uniqueness of the solution of the equation $H^{K}(z, q, y) = 0$ in $cl W^{K}$ for $y \in N^{K} \subseteq cl U^{K}$. So for $y \in N^{K}$,

$$G_{\lambda}(y) = \frac{1}{\lambda}(y - p_{\lambda}(y)) = \frac{1}{\lambda}(y - z^{K}(y)) = G^{K}(y),$$

which means that for any $y \in N$, there exists at least a continuously differentiable function $G^K: U^K \supseteq N \rightarrow \mathbb{R}^n$ such that $G_{\lambda}(y) = G^K(y)$. This shows that in the neighborhood N of x, G_{λ} is piecewise smooth.

When f_i , $i \in J$, are linear functions, CRCQ holds automatically, so we have

Theorem 2. Suppose that f_i , $i \in J$, are linear functions. Then G_{λ} , the derivative of the Moreau-Yosida approximation of f, is a piecewise affine function, hence a semismooth function in a neighborhood of any $x \in \mathbb{R}^n$.

(Received January 27, 1997)

References

- 1 Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM J. Control and Optimization, 1976, 14: 877.
- 2 Chaney, R. W., Piecewise C^K functions in nonsmooth analysis, Nonlinear Analysis, Theory, Methods and Applications, 1990, 15: 649.

Acknowledgement This work was supported by the National Natural Science Foundation of China (Grant No. 19136012) and the Management, Decision and Information System Lab, Chinese Academy of Sciences.