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Abstract

Estimation of the precision matrix (or inverse covariance matrix) is of great importance in
statistical data analysis. However, as the number of parameters scales quadratically with
the dimension p, computation becomes very challenging when p is large. In this paper,
we propose an adaptive sieving reduction algorithm to generate a solution path for the
estimation of precision matrices under the `1 penalized D-trace loss, with each subproblem
being solved by a second-order algorithm. In each iteration of our algorithm, we are able
to greatly reduce the number of variables in the problem based on the Karush-Kuhn-
Tucker (KKT) conditions and the sparse structure of the estimated precision matrix in the
previous iteration. As a result, our algorithm is capable of handling datasets with very high
dimensions that may go beyond the capacity of the existing methods. Moreover, for the
sub-problem in each iteration, other than solving the primal problem directly, we develop
a semismooth Newton augmented Lagrangian algorithm with global linear convergence
on the dual problem to improve the efficiency. Theoretical properties of our proposed
algorithm have been established. In particular, we show that the convergence rate of our
algorithm is asymptotically superlinear. The high efficiency and promising performance of
our algorithm are illustrated via extensive simulation studies and real data applications,
with comparison to several state-of-the-art solvers.

Keywords: Adaptive sieving reduction, Precision matrix, Semismooth Newton, Sparsity,
Solution path

1. Introduction

The estimation of high dimensional sparse precision matrices has been a central topic in
statistical learning, with a wide range of applications such as genomics (Wille et al., 2004;
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Li and Gui, 2006), image analysis (Li, 2009), among others. Owing to the fast development
of data engineering and technology, modern datasets are oftentimes having much higher
dimensions than before, and the estimation of the precision matrices becomes more chal-
lenging as the number of variables scales quadratically in the dimension p. For example, in
the breast cancer data set studied in our numerical experiments, p is equal to 22, 283, and
the number of variables is nearly 250 million. Many existing algorithms or solvers could
easily fail to produce a meaningful estimator in this case. Highly efficient algorithms with
sound theoretical guarantees are thus in great need of meeting the computation requirement
of the time.

Assume that x1, · · · , xn are independently identically distributed (iid) variables with an
observationX = (X1, · · · , Xn) from a p-dimensional Gaussian distributionN (µ,Σ), where µ
and Σ are population mean and covariance matrix respectively. The precision matrix Θ (also
known as the concentration matrix) is defined as the inverse of Σ, namely, Θ = Σ−1. For the
undirected Gaussian graphical model, it is well known that the conditional independence
of variables is directly reflected in the zero components of the precision matrix (Lauritzen,
1996). Specifically, for any 1 ≤ i 6= j ≤ p, Θij = 0 if and only if xi is conditionally
independent of xj given all other variables xk, k 6= i, j, 1 ≤ k ≤ p.

So far, many methods have been proposed to estimate the high-dimensional sparse preci-
sion matrix. Meinshausen et al. (2006) estimated the conditional independence restrictions
of each node of an undirected graph model by identifying the zero patterns of the associ-
ated precision matrix through a sequence of lasso penalized least square regression models.
Yuan (2010) studied the above regression models via a Dantzig selector. Later, Cai et al.
(2011) proposed a constrained `1 minimization approach and established the convergence
rates under different norms. However, among the methods mentioned above, none of them
are truly treating the precision matrix as a whole. There is another well-known estima-
tor called the lasso penalized Gaussian likelihood estimator (Yuan and Lin, 2007; Banerjee
et al., 2008; Friedman et al., 2008), also known as graphical lasso or glasso. Given the
sample covariance matrix Σ̂ ∈ Sp and a tuning parameter λ > 0, the glasso estimator is
obtained by minimizing the l1 penalized log-likelihood function:

min
Ω∈Sp+

{
tr(ΩΣ̂)− logdet(Ω) + λ ‖Ω‖1

}
, (1)

where Sp+ is the space of p × p real symmetric positive definite matrices, tr(·) and ‖·‖1
are the trace and `1-norm, respectively. Researchers have designed different optimization
algorithms to solve this problem. Some first-order methods have been applied to solve
(1), such as the interior point method (Yuan and Lin, 2007), the block coordinate descent
method (Banerjee et al., 2008; Friedman et al., 2008) and the alternating linearization
method (Scheinberg et al., 2010). To solve the graphical lasso problem more efficiently,
some second-order methods such as the quadratic approximation method (Hsieh et al.,
2014) and the Newton-like methods (Oztoprak et al., 2012) were also developed. However,
these two methods may not be the best choice. For the quadratic approximation method,
the computational complexity could be up to O(p3) unless a block diagonal structure of the
estimated precision matrix is detected. As for the Newton-like methods, the algorithms are
more or less heuristic and related convergence properties are yet to be explored. We note
that the graphical lasso brings much complexity to the calculation because its objective
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function contains a log determine term. Although Witten et al. (2011) provides a strategy
to further improve the efficiency by identifying the block diagonal structure, which has been
implemented in the glasso package, such a strategy can easily fail in practice, especially when
the tuning parameter is small. The total computation time on the breast cancer dataset
shown in Table 7 can further illustrate such a conclusion.

Recently, a `1-penalized D-trace loss estimator was proposed in Zhang and Zou (2014);
Liu and Luo (2015). This new estimator is obtained by solving a convex composite opti-
mization problem, which involves a quadratic loss function with a `1-regularized penalty:

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT )− tr(Ω) + λ ‖Ω‖1,off

}
, (2)

where Sp is the space of p × p real symmetric matrices and ‖·‖1,off is the off-diagonal `1-
norm, i.e., ‖Ω‖1,off =

∑
i 6=j |Ωi,j |. Zhang and Zou (2014) derived the convergence rates of

this new estimator and showed that it could be comparable with the graphical lasso. Clearly,
this new loss function is simpler in form than the graphical lasso, which could bring great
convenience to calculation. In particular, when dealing with big data where the dimension
is very large, computational efficiency owing to the simple form of the loss function would
be a favorable feature for practical applications. However, existing methods for solving (2)
are all first-order methods, such as the coordinate descent method (Liu and Luo, 2015) and
the alternating direction method of multipliers (ADMM) (Zhang and Zou, 2014; Wang and
Jiang, 2020). Although it has been shown that these methods are able to handle data with
a larger dimension than glasso (Wang and Jiang, 2020), these algorithms suffer from some
well-known deficiencies of first-order methods such as relatively slow convergence rates.

In this paper, we first propose an adaptive sieving reduction strategy to generate a
solution path of precision matrices. The main idea of this algorithm is to reduce the number
of variables in each iteration to improve efficiency. Firstly, by collecting the indexes of the
non-zero components in the previous solution, we can obtain an initial non-zero index set
for the new problem with a smaller tuning parameter. Secondly, we use the KKT residual
for adaptive sieving to obtain another index set of non-zero components for the new problem
and then solve it until obtaining a satisfactory solution. This strategy reduces the number
of estimated components from p2 to t in each iteration, where t is the number of non-zero
elements in the upper-triangular precision matrix and may not be larger than p+n(n−1)/2
to ensure the validity of the estimation in some cases. Thus, our algorithm is not only
significantly efficient but also can solve the problem of insufficient data storage space for
huge data to a certain extent. Specifically, the problem we solved in the main loop is

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT )− tr(Ω) + λ ‖Ω‖1,off − 〈∆,Ω〉 | ΩĪ = 0

}
, (3)

where ∆ ∈ Sp is an error matrix with ‖∆‖ ≤ ε for some small ε > 0, ‖·‖ is the `2 norm and
Ī is the complement set of the non-zero components index set. Since we can always use the
KKT residual to find an optimal index set, the difference between (2) and (3) is only the
small term −〈∆,Ω〉, and we will show the optimal solution of (3) is an approximate solution
of (2) with a controllable error O(ε). Then, we develop an efficient second-order algorithm,
or more precisely, a semismooth Newton augmented Lagrangian algorithm, to solve (3)
by finding a unique optimal solution of its dual. In the design of the algorithm, we use
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the high dimensional setting of the data, i.e., p is much larger than n, to skillfully rewrite
the original problem to obtain a dual problem where the dimension of the dual variable
is p × n instead of p × p. More importantly, due to the facts that the piecewise linear-
quadratic structure of the primal problem provides asymptotically superlinear convergence
rate of the augmented Lagrange method (Li et al., 2018), and the strong convexity of the
dual problem, our algorithm only needs a few iterations to obtain a desirable solution.
Although commonly, the computation cost of second-order algorithms in each step could
be much more expensive than that of first-order algorithms, by making use of the second-
order sparsity of the augmented Lagrangian functions here in our design, our algorithm
is computationally as cheap as first-order algorithms. Moreover, we provide a technique
to determine the maximum λ. This technique limits the choice of λ to avoid unnecessary
waste of time for generating a solution path. In subsequent numerical experiments, we
shall see that our algorithm significantly outperforms several state-of-the-art solvers and is
competent to handle huge-scale problems.

We highlight the main contributions of this paper as follows:

1. We develop a dual approach for the precision matrix estimation. By equivalently
rewriting the primal problem under the high-dimensional setting where p is much
large than n, we obtain a dual problem where the dimension of a dual variable is p×n
instead of p× p. Such an approach can fundamentally improve the efficiency when n
is much smaller than p.

2. This is the first attempt to implement the adaptive sieving strategy and the semis-
mooth Newton augmented Lagrangian algorithm for variables with matrix forms.
With the development of the dual approach, this combination can avoid some time-
consuming operations in the main loops, such as the multiplication of two p×n matri-
ces. More importantly, although we are adopting a second-order method for solving
the subproblems in each iteration, the computational complexity of our proposed algo-
rithm is comparable to first-order algorithms. The promising numerical performance
of our algorithm is also theoretically justified by the global linear convergence and
asymptotically superlinear convergence rate we established.

3. We have developed a R package for applications to estimate the sparse precision
matrix effectively. Comparing with other existing solvers/packages, our algorithm is
much more efficient and is able to handle datasets with much higher dimensions. For
instance, on a publicly available breast cancer data set, our algorithm can be up to
more than 20 times faster than the popular glasso package (Friedman et al., 2008;
Witten et al., 2011) for estimating a precision matrix with five-fold cross-validation
included.

The remaining subsequent arrangements are as follows. In section 2, we will develop an
adaptive sieving reduction strategy for generating solution paths. In section 3, we derive
an inexact augmented Lagrangian method (ALM) to solve the dual problem of the inner
problem in section 2. Then for the subproblem in the inexact ALM, we design a semismooth
Newton algorithm to obtain an expected solution. In section 4, after introducing some al-
gorithms, by comparing with the introduced algorithms and several state-of-the-art solvers,
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we will demonstrate the promising performance of our algorithm through some numerical
experiments and the analysis of two real datasets. We conclude our paper in section 5.

Notation and preliminaries: Throughout this paper, X and Y represent finite-dimensional
real Euclidean spaces. We use ‖·‖F to denote the Frobenius norm, and its induced inner
product is denoted by 〈·, ·〉. Specificly, let X = (Xij)1≤i≤p, i≤j≤n and Y = (Yij)1≤i≤p, i≤j≤n

be two real matrices, ‖X‖F =
(∑

i,j X
2
ij

)1/2
and 〈X,Y 〉 = tr

(
XTY

)
=
∑

i,j XijYij , where

XT denotes the transpose of X. The `1 norm denoted by ‖·‖1, namely, ‖X‖1 =
∑

ij |Xij |,
and the spectral norm is denoted by ‖·‖(2). The Jacobian of f at X ∈ DF is denoted as

F ′(X), where DF = {X | F (·) is differentiable at X}. We also use “◦” to denote the Hard-
mard product, i.e., (X ◦ Y )ij = XijYij and sup {·} to denote the supremum. The cardinal
number of a real vector or matrix V is denoted by |V |, but for a one-component variable v,
|v| denotes its absolute value.

Let f : X → (−∞,+∞] be an extended real-valued closed and proper convex function
on the real Euclidean space X . The unique optimal solution of the Moreau-Yosida regular-
ization of f at X ∈ X is called the proximal point mapping of X associated with f , denoted
by Proxf (X), where the Moreau-Yosida regularization is defined as

Hf (X) := min
Y ∈X

{
f(Y ) +

1

2
‖Y −X‖2F

}
.

For later use, we present some useful propositions of the Moreau-Yosida regularization first.
Hf (·) is continuously differentiable, and furthermore, the gradient of Hf (·) at X ∈ X is
known as in the form of ∇Hf (X) = X −Proxf (X). Another important and useful formula
is the Moreau decomposition, which is, for any X ∈ X , X = Proxf (X) + Proxf∗(X), where
f∗ is the Fenchel conjugate of f and is defined by f∗(Y ) = sup {〈Y,X〉 − f(X) | X ∈ X} for
any Y ∈ X . It can be shown that the pointwise supremum function of a collection of convex
(closed) function is also convex (closed). Hence, as long as f is a closed convex function, f∗

is always convex and closed. In addition, we should emphasize here that Proxf is globally
Lipschitz continuous with modulus 1 (Lemaréchal and Sagastizábal, 1997).

2. An adaptive sieving reduction strategy

In this section, based on the adaptive sieving strategy (Lin et al., 2020), we will develop
a reduction algorithm to generate solution paths for the problem (2). Since our algorithm
is designed for Matrix estimation via an Adaptive sieving Reduction and a Semismooth
Newton algorithm, we call our algorithm MARS. The main idea of this strategy is to
reduce the number of variables to be consistent with the number of non-zero components
of the optimal solution, which can not only greatly improve the efficiency of an algorithm,
but also save plenty of storage space.

As we mentioned in the introduction, we will solve (2) by finding an optimal solution
of its dual after obtaining an equivalent problem of (2). Specifically, it can be equivalently
written as

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

}
, (4)
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where A is a real matrix with rank n such that AAT = Σ̂. Note that we can always use
the singular value decomposition for a given sample to find such matrix A. Without loss of
generality, we assume that A is a p × n matrix with rank n. For later use, we also denote
θ(Ω) := ‖Ω‖1,off , ∀Ω ∈ Sp. Moreover, we further denote the optimal solution set of (4) by
Θλ, and the associated proximal residual function by

Rλ(Ω) := h(Ω) + ProxδBλ (Ω− h(Ω)), ∀Ω ∈ Sp,

where h(Ω) := 1
2(ΩΣ̂ + Σ̂Ω)− Ip with Ip being the p dimensional identity matrix, and δBλ

is the indicator function with Bλ = {Z ∈ Sp | Zii = 0, |Zij | ≤ λ, i, j = 1, · · · , p, i 6= j},
i.e., δBλ(Z) = 0 for any Z ∈ Bλ and δBλ(Z) = +∞ otherwise. By the KKT conditions, we

know that Ω̃ ∈ Θλ if and only if Rλ(Ω̃) = 0.
Detailed steps of our adaptive sieving reduction strategy are given in Algorithm 1. For

a sequence of positive tuning parameters sorted in descending order, we first solve the
problem (4) inexactly with λ equal to the largest parameter to obtain the initial non-zero
components index set and an approximate solution with a tolerable error ε. Then, for the
next smaller λ, we continuously use the KKT residual to perform adaptive sieving to obtain
a new non-zero components index set, while updating its solution until a desirable solution is
obtained. Such a procedure is performed for all the tuning parameters until the algorithm
stops (we will show the while loop can terminate in a finite number of iterations in the
proof of theorem 3). Noted that the existence of ∆0 and {∆l

i} in Steps 1 and 10 means the
minimization problems are solved inexactly. Both of them are not given in prior but are
automatically obtained when the original minimization problems are solved inexactly.

Next, we will establish the convergence of Algorithm 1. Before that, we present the
following proposition to interpret the connection between the optimal solution in Step 1 of
Algorithm 1 and an approximate solution of (4) firstly.

Proposition 1 The optimal solution Ω∗(λ) of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off − 〈∆,Ω〉

}
, (5)

with ‖∆‖F ≤ ε can be equivalently found by

Ω∗(λ) = Proxλθ(Ω̂(λ)− h(Ω̂(λ))), (6)

where Ω̂(λ) is an approximate solution of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

}
(7)

such that ∥∥∥Rλ(Ω̂(λ))
∥∥∥
F
≤ ε
√

2
(

1 + ‖Σ̂‖F
) . (8)

Proof Denote the optimal solution of (7) by Ω̃(λ). For any i = 1, 2, · · · , let Ωi → Ω̃(λ),
and we further define

∆i := Rλ(Ωi) + h
(
Proxλθ(Ω

i − h(Ωi))
)
− h(Ωi). (9)
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Algorithm 1 Adaptive sieving reduction strategy for generating a solution path.

Require:
A real matrix A ∈ Rp×n and a tolerance constant ε ≥ 0;
A sequence of tuning parameters λ0 > λ1 > · · · > λk > 0 with λmax ≥ λ0;

Ensure:
A solution path: Ω∗(λ0),Ω∗(λ1), · · · ,Ω∗(λk);

1: Initialization:
For λ0 > 0, solve

Ω∗(λ0) ∈ argminΩ∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ0 ‖Ω‖1,off − 〈∆0,Ω〉

}
,

where ∆0 ∈ Sp is an error matrix such that ‖∆0‖F ≤ ε. Then let

I∗(λ0) := {(i, j) | Ω∗(λ0)ij 6= 0, i, j = 1, · · · , p};

2: Main loop:
3: for i = 1; i < k + 1; i+ + do
4: Set Ω0(λi) = Ω∗(λi−1) and I0(λi) = I∗(λi−1);
5: Calculate Rλi(Ω

0(λi)) and set l = 0;
6: while

∥∥Rλi(Ωl(λi))
∥∥
F
> ε do

7: l + +;
8: Create J l(λi) by

J l(λi) =

(i, j) ∈ Īl−1(λi) | −
(
h(Ωl−1(λi))

)
ij
/∈ λi

(
∂θ(Ωl−1(λi)) +

ε

λi
√

2|Īl−1(λi)|
B∞

)
ij

 ,

where Ī l−1(λi) denotes the complement of I l−1(λi) and B∞ is the infinity norm
unit ball;

9: Update I l(λi) = I l−1(λi) ∪ J l(λi);
10: Solve

Ωl(λi) ∈ argminΩ∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λi ‖Ω‖1,off −

〈
∆l
i,Ω
〉
| ΩĪl(λi)

= 0

}
,

where ∆l
i ∈ Sp is an error vector such that

∥∥∆l
i

∥∥
F
≤ ε/
√

2 and (∆l
i)Īl(λi) = 0;

11: Compute Rλi(Ω
l(λi));

12: end while
13: Set Ω∗(λi) = Ωl(λi), I

∗(λi) = I l(λi) and ∆i = ∆l
i;

14: end for
15: return Ω∗;

From Lemma 4.5 of Du (2015), we know that limi→∞
∥∥∆i

∥∥
F

= 0. This implies the existence

of Ω̂(λ) satisfying the inequality (8). Next we verify that Ω∗(λ) and Ω̂(λ) are connected
with a proximal point mapping as in 6. Beginning with the definition of Rλ, we have
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Rλ(Ω̂(λ)) = Ω̂(λ) − Proxλθ(Ω̂(λ) − h(Ω̂(λ))) = Ω̂(λ) − Ω∗(λ). By combining this with the
equation (6), we obtain

Rλ(Ω̂(λ))− h(Ω̂(λ)) ∈ λ∂θ(Ω∗(λ)).

Now, let us define ∆ := Rλ(Ω̂(λ)) + h(Ω∗(λ))− h(Ω̂(λ)). It is easily seen that

∆ ∈ h(Ω∗(λ)) + λ∂θ(Ω∗(λ)),

which means Ω∗(λ) is an optimal solution of (5) with the given ∆. Besides, we have

‖∆‖F =
∥∥∥Rλ(Ω̂(λ)) + h(Ω∗(λ))− h(Ω̂(λ))

∥∥∥
F
≤
(

1 +
∥∥∥Σ̂
∥∥∥
F

)∥∥∥Rλ(Ω̂(λ))
∥∥∥
F
≤ ε/
√

2.

Remark 2 Proposition 1 presents the connection between Ω∗(λ) and Ω̂(λ). Following sim-

ilar arguments as in inequality (12), we immediately have
∥∥∥Ω∗(λ)− Ω̃(λ)

∥∥∥ = O(ε), where

the tolerance error ε can be set to be arbitrarily small.

As for the Step 10 in Algorithm 1, a more detailed interpretation can be found from the
proof of the following theorem.

Theorem 3 The solution path {Ω∗(λi) | i = 0, 1, · · · , k} generated by Algorithm 1 are
approximate optimal solutions of a sequence problems of form

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λi ‖Ω‖1,off

}
,

with ‖Rλi(Ω∗(λi))‖F ≤ ε, i = 0, 1, · · · , k.

Proof Firstly, we show the index J l(λi) is nonempty when
∥∥Rλi(Ωl(λi))

∥∥
F
> ε. We use

the proof by contradiction. Suppose that J l(λi) = ∅. Then we have

−
(
h(Ωl−1(λi))

)
ij
∈ λi

(
∂θ(Ωl−1(λi)) +

ε

λi
√

2|Ī l−1(λi)|
B∞

)
ij

, ∀(i, j) ∈ Ī l−1(λi).

Thus, there is a matrix ∆̂l
i ∈ Sp with (∆̂l

i)Il−1(λi) = 0 and
∥∥∥∆̂l

i

∥∥∥
∞
≤ ε√

2|Īl−1(λi)|
such that

−
(
h(Ωl−1(λi))− ∆̂l

i

)
ij
∈ λi

(
∂θ(Ωl−1(λi))

)
ij
, ∀(i, j) ∈ Ī l−1(λi). (10)

Since Ωl−1(λi) is an optimal solution of

min
Ω∈Sp

{
1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λi ‖Ω‖1,off −

〈
∆l−1
i ,Ω

〉
| ΩĪl−1(λi)

= 0

}
,
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where ∆l−1
i is an error matrix with

∥∥∥∆l−1
i

∥∥∥
F
≤ ε/

√
2 and (∆l−1

i )Īl−1(λi)
= 0, by the KKT

conditions, we know that there exists Λ ∈ Sp with ΛIl−1(λi) = 0 such that0 ∈ h(Ωl−1(λi))−∆l−1
i + λi∂θ(Ω

l−1(λi))− Λ,(
Ωl−1(λi)

)
Īl−1(λi)

= 0.
(11)

Thus, combining (10) and (11), we obtain

−h(Ωl−1(λi)) + ∆̃l−1
i ∈ λi∂θ(Ωl−1(λi)),

where ∆̃l−1
i ∈ Sp with (∆̃l−1

i )Il−1(λi) = (∆l−1
i )Il−1(λi) and (∆̃l−1

i )Īl−1(λi)
= (∆̂l−1

i )Īl−1(λi)
.

This means
Ωl−1(λi) = Proxλiθ(Ω

l−1(λi)− h(Ωl−1(λi)) + ∆̃l−1
i ).

Therefore, we have∥∥∥Rλi(Ωl−1(λi))
∥∥∥
F

=
∥∥∥Proxλiθ(Ω

l−1(λi)− h(Ωl−1(λi)) + ∆̃l−1
i )− Proxλiθ(Ω

l−1(λi)− h(Ωl−1(λi)))
∥∥∥
F

≤
∥∥∥∆̃l−1

i

∥∥∥
F
≤ ε,

where the first inequality is followed by the property that the proximal mapping is globally
Lipschitz continuous with modulus 1. Hence, a contradiction is found. Then we can say
J l(λi) 6= ∅ if and only if

∥∥Rλi(Ωl(λi))
∥∥ > ε. Since the total number of components of

Ω is finite, the while loop in Algorithm 1 will terminate in a finite number of iterations.
Additionally, by the KKT conditions, we have Ω∗(λ0) = Proxλ0θ(Ω

∗(λ0))−h(Ω∗(λ0)))+∆0).
Thus

‖Rλ0(Ω∗(λ0))‖F ≤ ‖∆0‖F ≤ ε.

The above proposition and theorem indicate that Algorithm 1 is well defined. In the
following corollaries we show that the approximate solution path generated by Algorithm
1 is positive definite with probability tending to 1 under some standard assumptions. Be-
fore that, we give some notations and describe some assumptions. Suppose that the true
precision matrix Θ is sparse and its minimum eigenvalue γmin(Θ) > r with r > 0. For
the associated graph, we denote the maximum node degree and number of edges by m and
s respectively. Then, we denote sθ = min{

√
s+ p,m} to describe the sparse level of Θ.

For convenience, we write an = Ξ(bn) to denote an ≥ c1bn for some constants c1 > 0 and
an = O(bn) to denote an ≤ c2bn for some constants c2 > 0. We also give the following two
conditions for later use:

(C1) θmin = Ξ
(
m
√

log p/n
)
,

(C2) θmin = Ξ(mpη/2q
√
n),

where we use θmin to denote the minimum non-zero absolute value of Θ.
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Now, we assume that the following irrepresentability condition holds:

max
v∈Ψ

∥∥Γv,Ψ(ΓΨ,Ψ)−1
∥∥

1
= 1− α,

for 0 < α < 1, where Ψ is the support of Θ, Ψ is its complement, Γ = 1
2Σ⊕Σ, and ⊕ denotes

the Kronecker matrix sum. Similarly to the assumption in Section 3.3 of Ravikumar et al.

(2011), for simplicity, we assume in addition that
∥∥∥Γ−1

Ψ,Ψ

∥∥∥
1,∞

, ‖Σ‖1,∞ and α are not scaling

with p and m, where ‖X‖1,∞ = maxi
∑

j |Xij | for any real matrix X.

Corollary 4 Assume that x1, · · · , xn are iid variables from a sub-Gaussian distribution
with covariance Σ and for the i-th coordinate xij of any random variable xj, j ∈ [1, n], the
following sub-Gaussian tails with parameter σs condition holds:

E
[
exp{txijΣ

−1/2
ii }

]
≤ exp{σ2

s t
2/2}, t ∈ R.

Let λ̄n = Ce

√
η log p
n with a constant Ce sufficiently large for some η > 2 and the sample

size n = Ξ
(
(sθm/r)

2η log p
)

under (C1). Then with probability 1− 1/pη−2, we have∥∥Ω∗(λ̄n)−Θ
∥∥

(2)
= O(sθm

√
η log p/n),

where Ω∗(λ̄n) is generated by Algorithm 1 such that
∥∥Rλ̄n(Ω∗(λ̄n))

∥∥
F
≤ ε for a small enough

tolerance ε ≥ 0.

Proof Denote Ω̃(λ̄n) as an optimal solution of (4) with tuning parameter λ̄n. Then by
Proposition 1 and Theorem 3, we have

Ω∗(λ̄n) = Proxλθ(Ω̂(λ̄n)− h(Ω̂(λ̄n))),

where Ω̂(λ̄n) is an approximate solution of Ω̃(λn) with
∥∥∥Rλ̄n(Ω̂(λ̄n))

∥∥∥
F
≤ ε/

(
1 +

∥∥∥Σ̂
∥∥∥
F

)
.

It is reasonable to assume that
∥∥∥Rλ̄n(Ω̂(λ̄n))

∥∥∥
F
> 0, since if it is not, Ω̂(λ̄n) is exactly an

optimal solution, and so is Ω∗(λ̄n). Then, there is a constant ι ≥ 0 such that∥∥∥Ω∗(λ̄n)− Ω̃(λ̄n)
∥∥∥

(2)
≤
∥∥∥Ω∗(λ̄n)− Ω̃(λ̄n)

∥∥∥
F

(12)

=
∥∥∥Proxλθ(Ω̂(λ̄n)− h(Ω̂(λ̄n)))− Proxλθ(Ω̃(λ̄n)− h(Ω̃(λ̄n)))

∥∥∥
F

≤ (1 +
∥∥∥Σ̂
∥∥∥
F

)
∥∥∥Ω̂(λ̄n)− Ω̃(λ̄n)

∥∥∥
F

≤

∥∥∥Ω̂(λ̄n)− Ω̃(λ̄n)
∥∥∥
F∥∥∥Rλ̄n(Ω̂(λ̄n))

∥∥∥
F

ε

≤ ιε,

where the second inequality is followed by the proximal point mapping is globally Lipschitz
continuous with modulus 1 and the last inequality is induced by the fact that the opti-
mal solution set is compact and lemma 12 (this lemma implies the distance between any
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feasible solution and the optimal solution set can be bounded by the associated KKT resid-

ual). Then, by
∥∥Ω∗(λ̄n)−Θ

∥∥
(2)
≤
∥∥∥Ω∗(λ̄n)− Ω̃(λ̄n)

∥∥∥
(2)

+
∥∥∥Ω̃(λ̄n)−Θ

∥∥∥
(2)

and Theorem 2

of Zhang and Zou (2014), we can readily obtain the stated conclusion.

Remark 5 If sθm
√
η log p/n → 0, then the estimated solution Ω∗(λ̄n) is positive definite

with probability tending to 1. Moreover, assuming that n is the same as the statement
of Theorem 2 in Zhang and Zou (2014), then the positive definite property of the optimal
solution estimated by the D trace estimator can be guaranteed. Moreover, if the estimated
solution is not positive definite, a common remedy is to add a matrix πIp with a small
π > |γmin(Ω∗(λ̄n))| to obtain a positive definite estimation.

For the polynomial tails case, we have the following corollary to state a similar conclu-
sion.

Corollary 6 Assume that x1, · · · , xn are iid variables from a distribution with polynomial
tails and for all i-th coordinate xij of any random variable xj, j ∈ [1, n], the following finite
4q-th moments condition holds:

E
[
Σ
−1/2
ii xij

]4q
≤ Kq, Kq ∈ R.

Let λ̄n = Cpp
η/2q/

√
n with a constant Cp sufficiently large for some η > 2 and the sample

size n = Ξ
(
(sθm/r)

2pη/q
)
. Then with probability 1− 1/pη−2, we have

∥∥Ω∗(λ̄n)−Θ
∥∥

(2)
= O(sΘm

√
(pη/q)/n),

where Ω∗(λ̄n) is generated by Algorithm 1 such that Rλn(Ω∗(λ̄n)) ≤ ε for a small enough
tolerance ε ≥ 0.

We end this section by providing some further remarks for Algorithm 1.

Remark 7 Determination of λmax in the “Input” of Algorithm 1. Assume that the solu-
tion set to (4) is nonempty. We can set

λmax = max
i<j

{
1

2
|Σ̂ij/Σ̂ii + Σ̂ij/Σ̂jj |

}
.

If λ ≥ λmax, the optimal solution of (4) is a diagonal matrix Ω∗ with Ω∗ii = 1/Σ̂ii, i =
1, · · · , p. This can be easily verified: suppose that the optimal solution is not Ω∗ with such
a λ. We can readily know Ω∗−h(Ω∗) ∈ Bλ. Thus we have Rλ(Ω∗) = 0, which is contradict
to the KKT conditions.

Remark 8 Direct extension to the relaxed lasso. Since we have defined the non-zero com-
ponents set Ī in Algorithm 1, we can easily insert the relaxed lasso (Meinshausen, 2007)
into our algorithm after Step 13 to obtain a solution with a better prediction accuracy.
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3. A semismooth Newton augmented Lagrangian method

In this section, we will develop a semismooth Newton augmented Lagrangian method for
solving the minimization problems in Steps 1 and 10 of Algorithm 1. In order to implement
the adaptive sieving reduction strategy more effectively, we will first define some linear
operators which allow us to reformulate the original problem into a neater form by remov-
ing the zero components. After that, we shall derive an inexact augmented Lagrangian
algorithm (ALM) for solving the dual of the original problem and a semismooth Newton
algorithm (SSN) for solving its inner problems. Moreover, we also analyze the global linear
convergence and the asymptotic superlinear convergence rate of the proposed algorithm.

After introducing a matrix W ∈ Rp×n, for any λ ∈ {λi, i = 0, 1, · · · , k}, we can rewrite
the original problems in Steps 1 and 10 as:

min
Ω,W

{
1

2
‖W‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off |W − ΩA = 0, Ω ∈ SĪ(λ)

}
, (13)

where SĪ(λ) := {Ω ∈ Sp | Ωij = 0, (i, j) ∈ Ī(λ)}. Note that the number of nonzero
components in the upper triangle of Ω is less than or equal to t = (|I(λ)| + p)/2. Since
we are dealing with a problem that is designed for a sparse estimation, t will not be very
large. In practical applications, in order to ensure the statistical validity of the estimated
solution, t is generally no greater than p+ n(n− 1)/2.

Define a linear operator L : Sp → Rt as follows: for any Ω ∈ Sp, let ω = L(Ω) be the
vector of the remaining components of svec(Ω) with those components Ωij , (i, j) ∈ SĪ being
removed, where svec(Ω) is the vectorized components of the upper triangular (including the
diagonal) of Ω. The generalized inverse of L is defined by L† : Rt → Sp such that for any
vector ω ∈ Rt, Ω = L†(ω) is a symmetric matrix with ω = L(Ω) and all other components
{Ωij | (ij) ∈ SĪ} equaling to 0. For later use, we further denote

e1 := L(Ip); e2 := 2L(E − Ip); e3 := e1 + e2/4; e4 := e1 + e2,

where E is the p-dimensional all-ones matrix. Let L∗ and (L†)∗ be the adjoints of L
and L†, respectively. For any vector v ∈ Rt, by the definition of the adjoint, we have
〈L(Ω), v〉 = 〈Ω, L∗(v)〉. Then we immediately have

L∗(v) = L†(v ◦ e3).

Similarly, for any matrix V ∈ Sp, we know

(L†)∗(V ) = L(V ) ◦ e4.

We also define another linear operator S : Rp×n → Rt by S(Y ) := 1
2L(Y AT +AY T ), ∀Y ∈

Rp×n, whose adjoint S∗ : Rt → Rp×n is, for any vector v ∈ Rt given by

S∗(v) = L∗(v)A.

Before preceding to introduce our algorithm, we put a negative sign in front of the
objective function of problem (13) to obtain a minimization dual problem. After rewriting
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the original problem by using the operators defined above and introducing another variable
x ∈ Rt such that x = ω ◦ e4 with ω = L(Ω), we have the following equivalent problem:

(P) max
x∈Rt

{
−
(

Γ(x) :=
1

2
‖S∗(x)‖2F − 〈x, e1〉+ λ/2 ‖x ◦ e2‖1

)}
,

whose dual is

(D) min
Y ∈Rp×n, z∈Rt

{
1

2
‖Y ‖2F + δbλ(z) | S(Y ) + z = e1

}
,

where δbλ is an indicator function with bλ = {z ∈ Rt | e1 ◦ z = 0, |zi| ≤ λ, i = 1, · · · , t}.
As mentioned earlier, we solve (P ) by solving its dual, provided that the KKT system

associated with (D) is nonempty (Borwein and Lewis, 2010). Assume that the solution
set to (P ) is nonempty. Then, as we shall see in the proof of proof of Theorem 13, there
exists (Y 0, z0) ∈ Rp×n × Rt such that the constraints S(Y 0) + z0 = e1 and z0 ∈ bλ are
satisfied. According to the Kuhn-Tucker theorem (Rockafellar, 1970), we know that (Y, z̄)
is the optimal solution of (D) if and only if there is x̄ ∈ Rt such that (Y, z̄, x̄) satisfies the
KKT system corresponding to (D). For any Y × z × x ∈ Rp×n × Rt × Rt, the associated
Lagrangian function of (D) is

L(Y, z, x) =
1

2
‖Y ‖2F + δbλ(z)− 〈S(Y ) + z − e1, x〉 .

Then the KKT system can be easily obtained as follows
Y − S∗(x) = 0,

0 ∈ ∂(δbλ(z))− x,
S(Y ) + z − e1 = 0,

withY ∈ Rp×n, z, x ∈ Rt. (14)

Given σ > 0, the augmented Lagrangian function associated with (D) is given by

Lσ(Y, z;x) =
1

2
‖Y ‖2F + δbλ(z)− 〈S(Y ) + z − e1, x〉+

σ

2
‖S(Y ) + z − e1‖2F .

Now, all the preparation works are done, we can introduce our semismooth Newton aug-
mented Lagrangian method in the following two subsections.

3.1 An inexact augmented Lagrangian algorithm

In this subsection, we will develop an inexact ALM for solving (P ) and (D), and prove the
global linear convergence of the proposed algorithm. This implies that the initial point of
our algorithm can be chosen arbitrarily on the associated effective domain. Moreover, we
will establish the asymptotic superlinear convergence of our algorithm when applied to (D),
at the end of this subsection. We remark that some standard stopping criteria are used
for analyzing the convergence rate of our algorithm here since we cannot solve the inner
problems of the inexact ALM exactly. A semismooth Newton algorithm to solve the inner
problems of the inexact ALM together with the implementations of the stopping criteria
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Algorithm 2 An inexact augmented Lagrangian method for solving (D).

Require:
A given parameter σ0 > 0;
An initial point (Y 0, z0, x0) ∈ Rp×n × Rt × Rt; An integer k = 0;

Ensure:
Approximate optimal solution (Ŷ , ẑ, x̂);

1: while Stopping criteria are not satisfied do
2: Compute

(Y k+1, zk+1) ≈ arg min{Ψk(Y, z) := Lσk(Y, z;xk)}; (15)

3: Compute xk+1 = xk − σk
(
S(Y k+1) + zk+1 − e1

)
and update σk+1 ↑ σ∞ ≤ ∞;

4: Update Ŷ = Y k+1, ẑ = zk+1, x̂ = xk+1;
5: k + +;
6: end while

will be introduced in the next subsection. Details of the inexact ALM are provided in
Algorithm 2.

Next, we will establish the global linear convergence and the asymptotic superlinear
convergence rate of Algorithm 2. Firstly, we shall analyze some properties of (P ), which is a
piecewise linear-quadratic programming. These properties will be further used to establish
the global linear convergence when combined with the convergence theorem introduced
later. Denote dist(Y,C) := infY ′∈C ‖Y − Y ′‖ , ∀Y ∈ Y and ∀C ⊂ Y and O as the optimal
solution set of (P ). Note that if C = ∅, then dist(Y,C) = +∞. We also define two maximal
monotone operators TΓ and Tl by

TΓ(x) := ∂Γ(x), TL(Y, z, x) := {(Y ′, z′, x′) | (Y ′, z′,−x′) ∈ ∂L(Y, z, x)}.

Now, we begin the analysis by introducing the following definition, which is given by Robin-
son (1981).

Definition 9 Let F : Y ⇒ X be a closed-valued multifunction. If there exists κ ≥ 0, for
some neighbourhood N of ȳ and for all y ∈ N ,

F (y) ⊂ F (ȳ) + κ ‖y − ȳ‖Bx,

with Bx = {x | ‖x‖ ≤ 1}, then we say F is locally upper Lipschitzian at the point ȳ with
modulus κ.

After obtaining a conclusion that T −1
Γ is locally upper Lipschitzian at the origin with

modulus κ ≥ 0, we state the following lemma to establish an upper bound for the distance
between some points x ∈ Rt and O with O 6= ∅.

Lemma 10 Suppose that T −1
Γ (0) is nonempty. There exist κ ≥ 0 and some neighborhood

N0 such that for all x ∈ Rt, we have

dist(x,O) ≤ κdist(0, TΓ(x) ∩N0). (16)
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Proof Since (P ) is a `1 regularized convex piecewise linear-quadratic programming, from
Sun (1986) and Robinson (1981), we know that the operators TΓ and its inverse T −1

Γ are
polyhedral multifunctions and there exists a constant κ such that T −1

Γ is locally upper
Lipschitzian at the origin with a neighborhood N0. We know that, for any x ∈ Rt, if
TΓ(x) ∩ N0 = ∅, the inequality (16) holds automatically. Let TΓ(x) ∩ N0 6= ∅. Since TΓ is
closed-valued, then there exists y ∈ TΓ(x) ∩N0 with

‖y‖ = dist(0, TΓ(x) ∩N0).

Therefore,
TΓ(y) ⊂ TΓ(0) + κ ‖y‖Bx,

but since x ∈ T −1
Γ (y) and O = T −1

Γ (0) 6= ∅, we have

dist(x,O) ≤ κdist(0, TΓ(x) ∩N0).

This completes the proof.

Remark 11 From Lemma 10, we know that there exists ε > 0 such that for any x ∈ Rt
with dist(0, TΓ(x)) < ε we have dist(x,O) ≤ κdist(0, TΓ(x)), which is also consistent with
the corollary introduced by Robinson (1981).

With the conclusion stated in Lemma 10, we can then verify that inequality (16) still
holds for any point x chosen arbitrarily on the effective domain of TΓ in the following lemma.

Lemma 12 Suppose that T −1
Γ (0) is nonempty. For any r > 0, there exists κ ≥ 0 such that

dist(x,O) ≤ κdist(0, TΓ(x)), ∀x ∈ Rn satisfying dist(x,O) ≤ r. (17)

Proof From Lemma 10, we know that there exist κ1 ≥ 0 and some neighborhood N0 such
that for all x ∈ Rn inequality (16) holds. Then, for any x ∈ Rn satisfying dist(x,O) ≤ r, if
TΓ(x) ∩N0 6= ∅, we readily have

dist(x,O) ≤ κ1 dist(0, TΓ(x) ∩N0) ≤ κ1 dist(0, TΓ(x)),

otherwise, there exists δ̄ > 0 satisfying dist(0, TΓ(x)) ≥ δ̄, hence we can find κ2 ≥ r/δ̄ such
that

dist(x,O) ≤ κ2 dist(0, TΓ(x)).

We complete our proof by setting κ = max{κ1, κ2}.

Now, we are ready to proceed with the analysis of convergence properties of Algorithm
2. Since we can’t obtain an exact optimal solution for the inner problem (15), we use
the following standard stopping criterion introduced in Rockafellar (1976) to obtain an
approximated solution:

Ψk(Y
k+1, zk+1)− infΨk ≤ ε2k/2σk,

∞∑
k=0

εk ≤ αε <∞. (18)
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Besides, for analyzing the convergence rate, we need to introduce the following two stopping
criteria (Li et al., 2018):

(S1) Ψk(Y
k+1, zk+1)− infΨk ≤ (θ2

k/2σk)
∥∥∥xk+1 − xk

∥∥∥2
,
∞∑
k=0

θk < +∞,

(S2) dist(0, ∂Ψk(Y
k+1, zk+1)) ≤ (θ′k/σk)

∥∥∥xk+1 − xk
∥∥∥ , 0 ≤ θ′k → 0.

Based on Rockafellar (1976); Li et al. (2018) and Lemma 12, the following theorem
establishes convergence results for the primal iteration sequence {xk} and the dual iteration
sequence {(yk, zk)} generated by the inexact ALM.

Theorem 13 Suppose that the solution set to (P ) is nonempty and the initial point x0 ∈ Rt
satisfies dist(x0,O) ≤ r − αε, where αε is a constant as given in (18). {(Y k, zk, xk), k =
1, 2, · · · } is a sequence generated by Algorithm 2 with stopping criteria (18) and (S1). There
is a constant γf ≥ 0 such that the sequence {xk} converges to the optimal solution x∗ ∈ O
and for all k ≥ 0, we have

dist(xk+1,O) ≤ ζkdist(xk,O), (19)

where ζk = (γf (γ2
f + σ2

k)
−1/2 + 2θk)(1 − θk)

−1 and ζk → ζ∞ = γf (γ2
f + σ2

∞)−1/2 < 1

when k → ∞. In addition, the sequence {Y k, zk} converges to the unique optimal solution
(Y ∗, z∗) of (D). Furthermore, if the stopping criteria (S2) is satisfied, for all k ≥ 0, there
is a constant γl ≥ 0 such that∥∥∥(Y k+1, zk+1)− (Y k, zk)

∥∥∥ ≤ ζ ′k ∥∥∥xk+1 − xk
∥∥∥ , (20)

where ζ ′k = γl(1 + θ′k)/σk and ζ ′k → ζ ′∞ = γl/σ∞ as k →∞.

Proof Since the solution set to (P ) is nonempty and the objective function of (D) is
strongly convex on a convex set, according to Fenchel’s duality theorem (Rockafellar, 1970),
the solution set to (D) is nonempty and the optimal values of these two problems are equal
to each other and also finite. This implies the solutions of the associated KKT system is
nonempty. The uniqueness of the optimal solution of (D) is obtained directly by the strong
convexity of its objective function. Then, The first part of the theorem can be obtained di-
rectly from Lemma 12, Theorem 2.1 in Luque (1984) and Theorem 5 in Rockafellar (1976).
For the second part, from Theorem 2.7 in Li et al. (2018), we know that the operator Tl is
satisfied with the condition in theorem 3.3 in Li et al. (2018). Hence, it can be concluded
trivially.

Remark 14 From Theorem 13, we know that Algorithm 2 enjoys a global linear conver-
gence.

Remark 15 If σ∞ = +∞, from (19), the sequence {xk} generated by Algorithm 2 will
converge Q-superlinearly. Combing this with (20), we know that the sequence {(yk, zk)}
converges R-superlinearly. Thus, according to Theorem 13, we can say that our algorithm
here converges asymptotically superlinearly.

16



3.2 A semismooth Newton algorithm for solving the subproblem in Algorithm
2

In this subsection, we will develop a semismooth Newton algorithm (SSN) for solving (15),
and introduce the implementations of the stopping criteria used in the previous subsection.
Given σ > 0 and x ∈ Rt, the problem is to find an optimal solution of minY,zΨ(Y, z),
∀ (Y, z) ∈ Rp×n × Rt. Since Ψ(·) is strongly convex, there is a unique optimal solution
(Y, z̄) ∈ Rp×n×Rt and it can be obtained by solving min

Y
{inf
Z

Ψ(Z, Y )}. For any Y ∈ Rp×n,

we first denote

ψ(Y ) := inf
z

Ψ(Y, z)

=
1

2
‖Y ‖2F −

1

2σ
‖x‖2F + σ inf

z

{
σ−1δbλ(z) +

1

2
‖z − (x/σ − S(Y ) + e1)‖2F

}
.

Thus, we can obtain (Y , z̄) simultaneously by

Y = arg minψ(Y ), z̄ = Proxδbλ (x/σ − S(Y ) + e1). (21)

To solve (21), for any Y ∈ Rp×n, we need to find ∇ψ(Y ) first. Let us start by defining
f(Y ) := x/σ − S(Y ) + e1, ∀Y ∈ Rp×n and G(v) := infz σ

−1δBλ(z) + 1
2 ‖z − v‖

2
F , ∀ v ∈ Rt.

Notice that ∇G(·) is continuously differentiable. We thus have

∇ψ(Y ) = Y − σS∗ (∇G(f(Y ))) , (22)

where ∇G(f(Y )) = Proxφ(f(Y )) with φ(v) = λ/2 ‖v ◦ e4‖1, ∀ v ∈ Rt. Therefore, Y can be
found by solving

∇ψ(Y ) = 0. (23)

For deriving a semismooth Newton algorithm, we need to find the second-order in-
formation of the objective function, i.e., the generalized Hessian matrix of ψ(·). For any
Y ∈ Rp×n, we denote ∂2ψ(Y ) as the generalized Hessian matrix of ψ(·) at Y . According to
Hiriart-Urruty et al. (1984), for any vector v, v̄ ∈ Rt, since (S∗)′(v)(v̄) = L†(v̄ ◦ e3)A, we
have

∂2ψ(Y )(D) = {D + σL†(S(D) ◦ u ◦ e3)A | u ∈ U}, ∀D ∈ Rp×n,

where U := ∂Proxφ(f(Y )). For later use, we define ∂̂2ψ(Y ) as follows:

V ∈ ∂̂2ψ(Y ) ⇔ ∃u ∈ U such that V (D) ∈ ∂2ψ(Y )(D), ∀D ∈ Rp×n. (24)

We know from Clarke (1990) that there is a useful fact: ∂2ψ(Y ) (∆Y ) ⊆ ∂̂2ψ(Y )(∆Y ),
∀∆Y ∈ Rp×n. Now, we can introduce our semismooth Newton algorithm for solving (23)
as in Algorithm 3.

In order to establish the convergence of our semismooth Newton algorithm, two condi-
tions must be satisfied. The first condition is that any element in ∂̂2ψ(Y ), Y ∈ Rp×n are
non-singular. This can be checked by simple calculation. Another condition is that ∇ψ(·)
is Lipschitz continuous and semismooth. ∇ψ(·) is globally Lipschitz continuous provided
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Algorithm 3 A semismooth Newton algorithm for solving (23).

Require:
Given parameters µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1);
An initial point Y 0 ∈ Rp×n and a given x ∈ Rt;
An integer j = 0;

Ensure:
Approximate optimal solution Ŷ ;

1: while Stopping criteria are not satisfied do
2: Choose uj ∈ ∂Proxφ(x/σ − S(Y j) + e1). For D ∈ Rp×n, let VjD := D + σL†(S(D) ◦

uj ◦ e3)A. Solve the equation

VjD +∇ψ(Y j) = 0 (25)

by the conjugate gradient algorithm to find Dj such that∥∥VjDj +∇ψ(Y j)
∥∥ ≤ min(η̄,

∥∥∇ψ(Y j)
∥∥1+τ

); (26)

3: (Line search) Set αj = δmj , where mj is the first nonnegative integer m such that

ψ(Y j + δmjDj) ≤ ψ(Y j) + µδmj
〈
∇ψ(Y j), Dj

〉
; (27)

4: Set Y j+1 = Y j + αjD
j and update Ŷ = Y k+1;

5: j + +;
6: end while

that the proximal point mapping is Lipschitz continuous. As for the semismooth property,
we first present a useful conclusion that twice continuously differentiable functions and con-
tinuous piecewise affine functions are strongly semismooth. Since Proxλ‖·‖1(·) is a Lipschitz
continuous piecewise affine function, we know that ∇ψ(·) is strongly semismooth. Finally,
we can state the convergence results of SSN in the following theorem.

Theorem 16 The sequence {Y k} generated by the Algorithm 3 is converge to the unique
optimal solution Y ∈ Rp×n of the problem in (21) and the convergence is of the order 1 + τ ,
that is ∥∥∥Y j+1 − Y

∥∥∥ = O

(∥∥∥Y j − Y
∥∥∥1+τ

)
.

Proof Since any V ∈ ∂̂2ψ(Y ) is self-adjoint positive definite, Algorithm 3 always can find
a descent direction as long as ∇ψ(Y j) 6= 0. Due to the fact that ∇ψ(·) is strongly semis-
mooth, the stated conclusion can be easily derived from Theorem 3.5 of Zhao et al. (2010).

Theorem 16 shows that the convergence rate of SSN is of order (1 + τ). This implies
that SSN can converge quadratically if τ = 1. However, this setting will results in more
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iterations in the conjugate gradient method for solving (25). In practice, we suggest to set
τ to be smaller, such as 0.1 or 0.2, to obtain a superlinear convergence.

Now, we can discuss how to insert the stopping criteria (18), (S1), and (S2) into Algo-
rithm 3 to guarantee the convergence results discussed in Section 3.1. Since ψ is strongly
convex with a parameter τ > 1, we can obtain

Ψk(Y
k+1, zk+1)− infΨk = ψk(Y

k+1)− infψk ≤ 1/2τ
∥∥∥∇ψk(Y k+1)

∥∥∥2
,

and (∇ψk(Y k+1), 0) ∈ ∂Ψk(Y
k+1, Zk+1). As a result, in practical implementation, we can

replace the stopping criteria (18), (S1) and (S2) with ∇ψk(Y k+1) to

∥∥∥∇ψk(Y k+1)
∥∥∥ ≤√τ/σkεk, ∞∑

k=0

εk <∞,

∥∥∥∇ψk(Y k+1)
∥∥∥ ≤ √τσkθk ∥∥∥∥1

2
Y k+1AT +

1

2
A(Y k+1)T + zk+1 − c

∥∥∥∥ , ∞∑
k=0

θk < +∞,

∥∥∥∇ψk(Y k+1)
∥∥∥ ≤ θ′k ∥∥∥∥1

2
Y k+1AT +

1

2
A(Y k+1)T + zk+1 − c

∥∥∥∥ , 0 ≤ θ′k → 0.

In other words, the stopping criteria (18), (S1), and S2 will be satisfied when
∥∥∇ψk(Y k+1)

∥∥
is small enough.

4. Numerical experiments

In this section, we will conduct several tests to illustrate the performance of our MARS.
For comparison, we consider several popular solvers including SCIO (Liu and Luo, 2015),
EQUAL (Wang and Jiang, 2020), CLIME (Pang et al., 2014), glasso (Friedman et al.,
2008) and BigQuic (Hsieh et al., 2013). Since the existing methods are all first-order and
the stopping criteria of those algorithms are different from each other and also ours, for
better comparison, we will also introduce some other algorithms for solving (4) in Section
4.1. Specifically, we will introduce a second-order algorithm, namely “a semismooth Newton
augmented Lagrangian method (SSNAL)”, and two kinds of alternating direction methods
of multipliers, where one is derived by solving the sub-problem inexactly (iADMM) and the
other derived by solving it exactly (eADMM). The tests here are divided into two parts by
the source of the data. The first part is conducted for some random data generated by five
given models, and for the second part, the data is derived from real applications.

Before proceeding to the experiments, we provide some explanations about our MARS
first. For any vector ν ∈ Rt, to find a u ∈ ∂Proxφ(ν), we can choose the i-th component of
u as

ui =

{
0, if di 6= 0 & |νi| ≤ λ,
1, otherwise,

i = 1, 2, . . . , t.

Apparently we have u ∈ ∂Proxφ(ν), which is because the components of νp := Proxφ(ν)
can be found by

νpi =

{
sign(νi) ·max{|νi| − λ , 0}, if di 6= 0,

νi, if di = 0,
i = 1, 2, . . . , t.
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For the stopping criteria of our MARS, we use the relative KKT residual

η =
‖R(Ω)‖F

1 + ‖h (Ω)‖F + ‖Ω‖F

to estimate the distance between the generated solution Ω and the optimal solution set of
(4), and we use η to decide whether our MARS should be stopped or not. The stopping
tolerance we set in the following experiments is 10−4 for all the solvers/algorithms except
EQUAL. Based on several tests, the stopping tolerance of EQUAL is set to be 10−6. The
reason for such an adjustment is that their stopping criterion is determined by the distance
between two subsequent generating solutions, and a slightly larger stopping tolerance may
cause the generated solution to be too far from the optimal solution set, in terms of the
associated objective value and relative KKT residual. Moreover, from the test results in
section 4.3, we found that even if the stopping tolerance is set to be 10−6, the relative KKT
residuals of the solutions obtained by EQUAL are still not less than 10−3 (we also try to set
stopping tolerance to be 10−5 here, but none of the associated relative KKT residuals is less
than 5× 10−2. More details can be found from appendix 5). All the numerical results are
obtained by running Microsoft R Open 4.0.2 on a Windows workstation (Intel(R) Core(TM)
i7-10700 CPU @2.90GHz 2.00GHz RAM 32GB). For simplicity, we will use R to represent
Microsoft R Open 4.0.2.

4.1 Some other algorithms

In this subsection, we will introduce some other algorithms to compare the performance
with our MARS. The first algorithm is an SSNAL, which is similar to our algorithm, but do
not use the adaptive sieving reduction strategy. For later use, we define a linear operator
S : Rp×n → Sp by S(Y ) = 1

2(Y AT + AY T ), ∀Y ∈ Rp×n, whose conjugate S∗ can be
expressed in the form S∗(Ω) = ΩA, ∀Ω ∈ Sp. By putting a negative sign in front of the
objective function of the original problem (4), we obtain an equivalent problem

max
Ω∈Sp

{
−
(

1

2
‖ΩA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

)}
, (28)

whose dual is

min
Y ∈Rp×n,Z∈Sp

{
1

2
‖Y ‖2F + δBλ(Z) | 1

2
(Y AT +AY T ) + Z = Ip

}
. (29)

Given σ > 0, the augmented Lagrangian function associated with (29) is given by

Lmσ (Y,Z; Ω)

=
1

2
‖Y ‖2F + δBλ(Z)−

〈
1

2
(Y AT +AY T ) + Z − Ip,Ω

〉
+
σ

2

∥∥∥∥1

2
(Y AT +AY T ) + Z − Ip

∥∥∥∥2

F

.

With a fixed Ω ∈ Sp, the inner problem of SSNAL in each iteration is to find an optimal
solution of the problem minY,ZLmσ (Y,Z; Ω), (Y, Z) ∈ Rp×n × Sp. Since Lmσ (·) is strongly

convex, there is a unique optimal solution (Y, Z) ∈ Rp×n×Sp. Besides, this unique solution
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Algorithm 4 A semismooth Newton augmented Largangian method for solving (29).

Require:
Given parameters σ0 > 0, µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1);
An initial point (Y 0, Z0,Ω0) ∈ Rp×n × Sp × Sp; An integer k = 0;

Ensure:
Approximate optimal solution (Ŷ , Ẑ, Ω̂);

1: while Stopping criteria are not satisfied do
2: An integer j = 0; Set an initial value Y0 = Y k for the inner loop;
3: while Stopping criteria of the inner problem are not satisfied do
4: Choose Uj ∈ ∂Proxθ(Ω

k/σ−S(Yj) + Ip). For D ∈ Rp×n, let VjD := D+ σ(S(D) ◦
Uj)A. Solve the equation

VjD +∇ψm(Yj) = 0 (30)

by the conjugate gradient algorithm to find Dj such that

‖VjDj +∇ψm(Yj)‖ ≤ min(η̄, ‖∇ψm(Yj)‖1+τ ); (31)

5: (Line search) Set αj = δmj , where mj is the first nonnegative integer m such that

ψm(Yj + δmjDj) ≤ ψm(Yj) + µδmj 〈∇ψm(Yj), Dj〉 ; (32)

6: Set Yj+1 = Yj + αjDj and update Y k+1 = Yj+1;
7: j + +;
8: end while
9: Compute Zk+1 = ProxδBλ (Ωk/σk − S(Y k+1) + Ip);

10: Compute Ωk+1 = Ωk − σk
(
S(Y k+1) + Zk+1 − Ip

)
and update σk+1 ↑ σ∞ ≤ ∞;

11: Update Ŷ = Y k+1, Ẑ = Zk+1, Ω̂ = Ωk+1;
12: k + +;
13: end while

can be obtained by solving min
Y
{inf
Z
Lmσ (Y, Z; Ω)}. For any Y ∈ Rp×n, we first define

ψm(Y ) := inf
Z
Lmσ (Y,Z; Ω)

=
1

2
‖Y ‖2F −

1

2σ
‖Ω‖2F + σ inf

Z

{
σ−1δBλ(Z) +

1

2
‖Ω/σ − S(Y ) + Ip − Z‖2F

}
.

Then, we can fleetly obtain (Y,Z) ∈ Rp×n × Sp by

Y = arg minψm(Y ), Z = ProxδBλ (Ω/σ − S(Y ) + Ip). (33)

Similar to the arguments in Section 3.2, we obtain that the first order derivative of ψm at
Y ∈ Rp×n is

∇ψm(Y ) = Y − σProxθ(Ω/σ − S(Y ) + Ip)A, (34)
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and the generalized Hessian of ψm at Y ∈ Rp×n is

∂2ψm(Y )(D) = {D + σS(D) ◦ U)A | U ∈ U}, ∀D ∈ Rp×n.

Now, assume that the solution set of the KKT system of (29) is nonempty, the detailed
steps of SSNAL are then introduced in Algorithm 4.

Next, we will introduce an iADMM for solving (29). Given Z, Ω ∈ Sp, we first define

ψa(Y ) := Lmσ (Y,Z; Ω) =
1

2
‖Y ‖2F +

σ

2
‖S(Y )− C‖2F + δBλ(Z)− 1

2σ
‖Ω‖2F ,

where C = Ω/σ + Ip − Z. Similarly, we can obtain that the gradient of ψa(·) at Y ∈ Rp×n
is

∇ψa(Y ) = Y + S(Y )A− σCA. (35)

Then the optimal solution Ya = argminY ψ
a(Y ) can be found by solving the equality system

∇ψa(Y ) = 0, which can be rewritten as

(Ip + σS∗S)(Y ) = σCA, ∀Y ∈ Rp×n. (36)

Since the operator SS∗ is positive semidefinite, we can use the conjugate gradient method
to find a solution of (36). Detailed steps of iADMM are provided in Algorithm 5.

Algorithm 5 An inexact ADMM for solving (29).

Require:
Given parameters σ > 0 and π ∈ (0,∞); An initial point (Y 0, Z0,Ω0) ∈ Rp×n×Sp×Sp;
An integer k = 0;

Ensure:
Approximate optimal solution (Ŷ , Ẑ, Ω̂);

1: while Stopping criteria are not satisfied do
2: Use conjugate gradient method to find an optimal solution Y k+1 such that

Y k+1 ≈ argminY ∈Rp×nψ
a(Y ).

3: Compute Zk+1 = ProxδBλ (Ωk/σ − S(Y k+1) + Ip);

4: Compute Ωk+1 = Ωk − πσ
(
S(Y k+1) + Zk+1 − Ip

)
;

5: Update Ŷ = Y k+1, Ẑ = Zk+1, Ω̂ = Ωk+1;
6: k + +;
7: end while

For introducing an eADMM, we should first equivalently rewrite (28) to be

max
Ω,M∈Sp

{
−
(

1

2
‖MA‖2F − 〈Ω, Ip〉+ λ ‖Ω‖1,off

)
|M − Ω = 0

}
, (37)

whose dual is

min
V, Z∈Sp

{
1

2
‖V A‖2F + δBλ(Z) | 1

2
(V Σ̂ + Σ̂V ) + Z = Ip

}
. (38)
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This reformulation is designed for implementing the conclusion in Wang and Jiang (2020)
to let eADMM be able to solve the inner problems exactly. We point out that, the main
difference between (29) and (38) is the dimensions of variables Y and V are p × n and
p × p respectively. Under the high-dimensional setting, it is easily seen that solving (29)
can be much more efficient than solving (38). But, when p is relative small, eADMM could
be slightly efficient than other algorithms. Now, we can start introducing eADMM. Given
σ > 0, for any V,Z ∈ Sp, the augmented Lagrangian function associated with (38) is given
by

Leσ(V,Z; Ω) =
1

2
‖V A‖2F + δBλ(Z)− 〈T (V ) + Z − Ip,Ω〉+

σ

2
‖T (V ) + Z − Ip‖2F ,

where T (V ) := 1
2(V S + SV ). Likewise, given fixed Z,Ω ∈ Sp, we first define

ψe(V ) := Leσ(V,Z; Ω) =
1

2
‖V A‖2F +

σ

2
‖T (V )− C‖2F + δBλ(Z)− 1

2σ
‖Ω‖2F ,

where C = Ω/σ + Ip − Z. Then then optimal solution Ve of problem arg minψe(V ) can be
obtained by solving

V/σ + T (V )− C = 0. (39)

Algorithm 6 An exact ADMM for solving (38).

Require:
Given parameters σ > 0 and π ∈ (0,∞); An initial point (V 0, Z0,Ω0) ∈ Sp × Sp × Sp;
An integer k = 0;

Ensure:
Approximate optimal solution (V̂ , Ẑ, Ω̂);

1: Calculate Λ1 and Λ2;
2: while Stopping criteria are not satisfied do
3: Update Ck = Ωk/σ + Ip − Zk;
4: Compute V k+1 using formula (40);
5: Compute Zk+1 = ProxδBλ (Ωk/σ − T (V k+1) + Ip);

6: Compute Ωk+1 = Ωk − πσ
(
T (V k+1) + Zk+1 − Ip

)
;

7: Update Ŷ = Y k+1, Ẑ = Zk+1, Ω̂ = Ωk+1;
8: k + +;
9: end while

By applying the thin singular value decomposition to the sample covariance matrix, we
can obtain V ∈ Rp×n and Λ = diag(τ1, · · · , τm) with τ1, · · · , τm ≥ 0 such that Σ̂ = VΛVT
and VTV = In. After calculating Λ1 and Λ2 by

Λ1 = diag

{
τ1

τ1 + 2/σ
, · · · , τm

τm + 2/σ

}
,

Λ2 =

{
τiτj(τi + τj + 4/σ)

(τi + 2/σ)(τj + 2/σ)(τi + τj + 2/σ)

}
m×m

,
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we then have

Ve = σ
(
C − CVΛ1VT − VΛ1VTC + V(Λ2 ◦ (VTCV))VT

)
. (40)

Now, we give the detailed steps of eADMM in Algorithm 6.

Table 1: Average performance among different methods for precision matrix estimation
with 100 replications, p = 500 in models 1 to 4, p = 484 in model 5 and n = 400
for all the models

Frobenius Spectral Infity TP TN soff s̄off

mean | sd mean | sd mean | sd mean | sd mean | sd mean mean

Model 1

MARS 7.0335 | 0.1717 0.7498 | 0.0227 1.1045 | 0.0433 0.9040 | 0.0214 0.9838 | 0.0029 5755.06 5753.90
SSNAL 7.0304 | 0.1691 0.7495 | 0.0225 1.1047 | 0.0426 0.9045 | 0.0211 0.9836 | 0.0028 5814.36 5774.74
iADMM 7.0317 | 0.1719 0.7497 | 0.0227 1.1048 | 0.0434 0.9046 | 0.0213 0.9834 | 0.0030 5873.46 5795.42
eADMM 7.0318 | 0.1719 0.7497 | 0.0227 1.1048 | 0.0434 0.9046 | 0.0213 0.9834 | 0.0030 5873.68 5796.04
SCIO 7.2442 | 0.1734 0.7639 | 0.0221 1.0730 | 0.0371 0.8720 | 0.0250 0.9887 | 0.0021 4461.72 4459.66
glasso 7.4821 | 0.0943 0.7834 | 0.0138 1.2662 | 0.0640 0.8851 | 0.0161 0.9762 | 0.0028 7591.48 7588.22

Model 2

MARS 11.4759 | 0.0392 1.5585 | 0.0122 1.9502 | 0.0459 0.6748 | 0.0071 0.9818 | 0.0004 6982.66 6981.14
SSNAL 11.4761 | 0.0392 1.5585 | 0.0122 1.9501 | 0.0459 0.6751 | 0.0071 0.9817 | 0.0004 7024.72 6985.08
iADMM 11.4744 | 0.0392 1.5583 | 0.0122 1.9504 | 0.0460 0.6772 | 0.0072 0.9812 | 0.0004 7160.74 7019.38
eADMM 11.4745 | 0.0392 1.5583 | 0.0122 1.9504 | 0.0460 0.6773 | 0.0072 0.9812 | 0.0004 7161.74 7020.46
SCIO 11.6522 | 0.0380 1.5777 | 0.0117 1.9261 | 0.0375 0.6270 | 0.0076 0.9872 | 0.0003 5461.84 5459.66
glasso 11.8553 | 0.0308 1.6073 | 0.0087 2.1313 | 0.0661 0.6549 | 0.0078 0.9724 | 0.0007 9206.80 9202.38

Model 3

MARS 8.5468 | 0.1284 0.9120 | 0.0193 1.1033 | 0.0318 0.5969 | 0.0457 0.9922 | 0.0022 2931.00 2930.48
SSNAL 8.5418 | 0.1259 0.9114 | 0.0189 1.1044 | 0.0330 0.5993 | 0.0452 0.9919 | 0.0022 2990.91 2966.44
iADMM 8.5453 | 0.1284 0.9120 | 0.0192 1.1036 | 0.0319 0.5978 | 0.0459 0.9920 | 0.0023 2974.42 2948.34
eADMM 8.5454 | 0.1284 0.9120 | 0.0192 1.1036 | 0.0319 0.5978 | 0.0459 0.9920 | 0.0023 2974.72 2948.28
SCIO 8.7575 | 0.0893 0.9284 | 0.0168 1.0693 | 0.0214 0.5129 | 0.0325 0.9959 | 0.0012 1785.08 1784.12
glasso 8.7660 | 0.0558 0.9197 | 0.0135 1.1593 | 0.0361 0.5450 | 0.0227 0.9923 | 0.0017 2774.44 2772.96

Model 4

MARS 5.1517 | 0.1276 0.5186 | 0.0162 0.7655 | 0.0446 0.0130 | 0.0024 0.9925 | 0.0039 2744.56 2743.52
SSNAL 5.1527 | 0.1274 0.5188 | 0.0162 0.7652 | 0.0445 0.0132 | 0.0024 0.9924 | 0.0040 2785.84 2757.18
iADMM 5.1503 | 0.1271 0.5186 | 0.0162 0.7660 | 0.0448 0.0132 | 0.0024 0.9922 | 0.0041 2798.62 2775.30
eADMM 5.1503 | 0.1271 0.5186 | 0.0162 0.7660 | 0.0448 0.0132 | 0.0024 0.9922 | 0.0041 2798.82 2775.22
SCIO 5.2148 | 0.0935 0.5209 | 0.0148 0.7515 | 0.0404 0.0118 | 0.0013 0.9938 | 0.0031 2432.92 2431.60
glasso 5.2565 | 0.0564 0.5263 | 0.0119 0.8307 | 0.0429 0.0155 | 0.0007 0.9901 | 0.0036 3367.54 3365.96

Model 5

MARS 4.9748 | 0.1298 0.5449 | 0.0209 0.9325 | 0.0452 0.9949 | 0.0022 0.9820 | 0.0035 6007.48 6006.36
SSNAL 4.9701 | 0.1281 0.5444 | 0.0214 0.9332 | 0.0461 0.9949 | 0.0021 0.9818 | 0.0034 6047.16 6046.34
iADMM 4.9795 | 0.1342 0.5455 | 0.0209 0.9321 | 0.0455 0.9953 | 0.0021 0.9815 | 0.0038 6122.64 5974.92
eADMM 4.9822 | 0.1320 0.5458 | 0.0208 0.9313 | 0.0464 0.9953 | 0.0021 0.9816 | 0.0038 6104.16 5956.28
SCIO 5.0845 | 0.0595 0.5481 | 0.0163 0.8936 | 0.0424 0.9922 | 0.0023 0.9877 | 0.0003 4680.18 4678.16
glasso 5.2337 | 0.0559 0.5754 | 0.0146 1.0700 | 0.0591 0.9974 | 0.0014 0.9734 | 0.0007 8004.50 8000.88

4.2 Simulation studies

In this subsection, we will compare performance of the algorithms by using randomly gen-
erated data from the following five different models:

1. Θij = 0.2, if i 6= j and 1 ≤ |i− j| ≤ 2; Θii = 1; Θij = 0 otherwise.
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Table 2: Average performance among different methods for precision matrix estimation
with 100 replications, p = 1000 in models 1 to 4, p = 1024 in model 5 and n =
400 for all the models

Frobenius Spectral Infity TP TN soff s̄off

mean | sd mean | sd mean | sd mean | sd mean | sd mean mean

Model 1

MARS 10.9437 | 0.0433 0.8193 | 0.0119 1.0949 | 0.0280 0.8134 | 0.0069 0.9947 | 0.0001 8353.36 8351.84
SSNAL 10.9469 | 0.0438 0.8195 | 0.0119 1.0947 | 0.0280 0.8134 | 0.0069 0.9947 | 0.0001 8375.55 8350.06
iADMM 10.9460 | 0.0433 0.8195 | 0.0119 1.0949 | 0.0280 0.8148 | 0.0070 0.9945 | 0.0001 8528.64 8348.64
eADMM 10.9460 | 0.0433 0.8195 | 0.0119 1.0949 | 0.0280 0.8148 | 0.0070 0.9945 | 0.0001 8529.00 8349.04
SCIO 11.2131 | 0.0424 0.8315 | 0.0117 1.0782 | 0.0237 0.7697 | 0.0065 0.9964 | 0.0001 6399.24 6396.24
glasso 11.2632 | 0.0346 0.8287 | 0.0081 1.2692 | 0.0374 0.8111 | 0.0065 0.9903 | 0.0002 12724.18 12717.21

Model 2

MARS 17.2284 | 0.0372 1.6560 | 0.0094 1.9535 | 0.0282 0.5399 | 0.0052 0.9944 | 0.0001 9390.04 9388.16
SSNAL 17.2320 | 0.0372 1.6564 | 0.0094 1.9534 | 0.0282 0.5399 | 0.0051 0.9944 | 0.0001 9407.36 9382.32
iADMM 17.2295 | 0.0372 1.6561 | 0.0094 1.9536 | 0.0282 0.5427 | 0.0050 0.9942 | 0.0001 9624.22 9377.70
eADMM 17.2295 | 0.0372 1.6561 | 0.0094 1.9536 | 0.0282 0.5427 | 0.0050 0.9942 | 0.0001 9625.02 9377.74
SCIO 17.4139 | 0.0363 1.6704 | 0.0092 1.9402 | 0.0236 0.4965 | 0.0052 0.9962 | 0.0001 7208.28 7204.52
glasso 17.3500 | 0.0300 1.6623 | 0.0064 2.1461 | 0.0480 0.5721 | 0.0052 0.9883 | 0.0003 15757.24 15748.44

Model 3

MARS 12.6053 | 0.0964 0.9441 | 0.0117 1.0930 | 0.0247 0.4480 | 0.0351 0.9978 | 0.0007 3461.28 3459.78
SSNAL 12.6059 | 0.0961 0.9441 | 0.0117 1.0928 | 0.0247 0.4498 | 0.0329 0.9978 | 0.0007 3486.69 3473.66
iADMM 12.6056 | 0.0957 0.9442 | 0.0117 1.0931 | 0.0248 0.4508 | 0.0332 0.9977 | 0.0007 3528.22 3473.72
eADMM 12.6057 | 0.0959 0.9442 | 0.0117 1.0931 | 0.0248 0.4508 | 0.0332 0.9977 | 0.0007 3528.30 3473.78
SCIO 12.8151 | 0.0246 0.9555 | 0.0103 1.0715 | 0.0142 0.3708 | 0.0089 0.9991 | 0.0001 1710.32 1709.18
glasso 12.7205 | 0.0376 0.9425 | 0.0099 1.1469 | 0.0319 0.4338 | 0.0151 0.9976 | 0.0005 3583.68 3581.24

Model 4

MARS 7.7640 | 0.0493 0.5496 | 0.0115 0.7630 | 0.0332 0.0064 | 0.0001 0.9973 | 0.0001 4289.52 4288.96
SSNAL 7.7651 | 0.0493 0.5496 | 0.0115 0.7629 | 0.0331 0.0064 | 0.0001 0.9973 | 0.0001 4367.77 4347.22
iADMM 7.7642 | 0.0493 0.5497 | 0.0115 0.7631 | 0.0331 0.0065 | 0.0001 0.9972 | 0.0001 4414.12 4347.84
eADMM 7.7642 | 0.0493 0.5497 | 0.0115 0.7631 | 0.0331 0.0065 | 0.0001 0.9972 | 0.0001 4414.08 4347.86
SCIO 7.9572 | 0.0492 0.5570 | 0.0120 0.7479 | 0.0267 0.0054 | 0.0001 0.9982 | 0.0001 3341.48 3339.84
glasso 7.7360 | 0.0516 0.5459 | 0.0094 0.8877 | 0.0399 0.0096 | 0.0003 0.9943 | 0.0003 7458.78 7454.63

Model 5

MARS 8.0015 | 0.0603 0.6061 | 0.0145 0.9493 | 0.0358 0.9893 | 0.0021 0.9938 | 0.0001 10389.18 10386.06
SSNAL 8.0058 | 0.0603 0.6064 | 0.0145 0.9493 | 0.0358 0.9893 | 0.0021 0.9932 | 0.0001 11059.55 10378.32
iADMM 8.0000 | 0.0604 0.6060 | 0.0145 0.9494 | 0.0358 0.9904 | 0.0019 0.9935 | 0.0001 10662.36 10385.10
eADMM 8.0002 | 0.0604 0.6060 | 0.0145 0.9494 | 0.0358 0.9904 | 0.0019 0.9935 | 0.0001 10663.20 10384.46
SCIO 8.3156 | 0.0613 0.6213 | 0.0147 0.9294 | 0.0325 0.9825 | 0.0026 0.9963 | 0.0001 7747.98 7745.16
glasso 8.2708 | 0.0559 0.6212 | 0.0111 1.1149 | 0.0560 0.9951 | 0.0015 0.9881 | 0.0002 16319.38 16310.56
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2. Θij = 0.2, if i 6= j and 1 ≤ |i− j| ≤ 4; Θii = 1; Θij = 0 otherwise.

3. Θ = diag{Θ0, · · · ,Θ0} with Θ0 ∈ S5, the off-diagonal components are equal to 0.2
and the diagonal is all 1; Θij = 0 otherwise.

4. Θij = 0.2|i−j|.

5. Θij = 0.2, if the remainder after division of i by
√
p is not equal to 0 and j = i+ 1;

Θij = 0.2, if j = i+
√
p; Θii = 1; Θij = 0 otherwise.

For the last model, the sample dimension p must satisfy with that
√
p is an integer. Thus,

we set p = 500 in models 1 to 4 and p = 484 in model 5 in test 1, p = 1000 in models
1 to 4 and p = 1024 in model 5 in test 2 and n = 400 for all the models in both two
tests. We point out that models 1, 2, and 5 are derived from Zhang and Zou (2014). In
the tests, the estimated precision matrix for each random sample is chosen by five-fold
cross-validation. The test results conducted by 100 replications are shown in Tables 1 and
2. The performance among different algorithms compared in terms of seven quantities: the
Frobenius norm (Frobenius), the spectral norm (Spectral) and the infinity norm (Infinity)
between the estimated precision matrix and the true precision matrix, the ratio (TP) of
correctly estimated non-zero components, the ratio (TN) of correctly estimated zero com-
ponents, the number (soff) of the off-diagonal non-zero components and the number (s̄off) of
the off-diagonal components whose absolute values are greater than 10−5 in the estimated
solution.

By comparing the first five quantities of the results in Tables 1 and 2, we can see that
the performance among the first four algorithms is similar to each other. The reason is that
they are using the same estimator and stopping criteria. The performance of these four
algorithms is slightly better than that of both SCIO and glasso in most cases. We point
out that the main difference between our MARS and SCIO is that SCIO estimates the
precision matrix column by column, and the stopping criteria set by SCIO is based on the
values of the updates instead of the relative KKT residual we used. As for the sparsity of
the estimated solutions, the results are quite different. Specifically, SCIO always generates
more sparse solutions compared with others and the solutions obtained by glasso are less
sparse than others for all the cases except model 3 in test 1. MARS can generate more sparse
solutions when comparing with SSNAL and two kinds of ADMM, and more importantly,
it can generate solutions with fewer small value components. In other words, we do not
need to artificially remove some components with insignificant values. In addition, all the
estimated precision matrices in Tables 1 and 2 are positive definite.

Next, we compare the total computation time with different algorithms for generating
a solution path. For simplicity, here we still use the five models given earlier to generate
random data. Firstly, we set p to be 1000 and 2000 in models 1 to 4, set p to be 1024
and 2025 in model 5 and n to be 50 and 100 to obtain four combinations for the usage of
the following numerical experiments. After observing the test results in Table 3, we found
that MARS, SSNAL, glasso and EQUAL are much more efficient than other algorithms,
and so when p is set to be 3000 and 5000 for models 1 to 4 and 3025 and 5041 in model
5, we will only focus on the comparison among these four algorithms. Due to the obvious
gap of the computation time among different algorithms, we have carried out 10 repeated
experiments here only. The vector of tuning parameter λ is fixed from 0.5 to 0.99 by 0.01
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Table 3: Average computation time (seconds) with different algorithms of 10 replications
to generating a solution path for some low-dimensional generated data

Model 1 Model 2 Model 3 Model 4 Model 5

mean | sd mean | sd mean | sd mean | sd mean | sd

Models 1 to 4: p = 1000; Modle 5: p = 1024

n
=

5
0

MARS 1.34 | 0.08 1.31 | 0.07 1.31 | 0.11 1.28 | 0.08 1.45 | 0.08
SSNAL 5.59 | 0.63 5.44 | 0.48 5.42 | 0.78 5.16 | 0.54 6.72 | 0.58
iADMM 21.63 | 1.54 21.19 | 1.07 20.69 | 2.02 20.44 | 1.33 24.78 | 1.71
eADMM 30.43 | 1.94 30.38 | 1.84 29.34 | 2.51 29.79 | 1.65 34.76 | 2.59
SCIO 19.53 | 0.09 19.53 | 0.11 19.58 | 0.24 19.65 | 0.17 19.61 | 0.18
EQUAL 7.08 | 0.30 7.21 | 0.21 7.56 | 0.18 7.53 | 0.32 8.11 | 0.30
CLIME 57.71 | 0.31 58.43 | 0.50 58.20 | 0.40 58.53 | 0.73 57.82 | 0.56
glasso 1.67 | 0.01 1.67 | 0.02 1.71 | 0.02 1.69 | 0.03 1.70 | 0.06
BigQuic 10.88 | 0.40 10.58 | 0.05 10.62 | 0.11 10.60 | 0.05 11.06 | 0.83

n
=

1
0
0

MARS 0.97 | 0.07 1.00 | 0.07 0.96 | 0.03 0.99 | 0.06 1.18 | 0.17
SSNAL 1.70 | 0.31 1.77 | 0.23 1.65 | 0.03 1.71 | 0.38 2.86 | 0.91
iADMM 5.43 | 0.78 5.86 | 0.79 5.12 | 0.04 5.46 | 0.88 8.28 | 1.75
eADMM 7.09 | 0.65 7.45 | 0.81 6.80 | 0.09 7.06 | 0.70 9.83 | 1.81
SCIO 19.39 | 0.04 19.55 | 0.18 19.53 | 0.11 19.82 | 0.29 19.58 | 0.12
EQUAL 4.26 | 0.08 4.26 | 0.07 4.40 | 0.08 4.45 | 0.04 4.36 | 0.09
CLIME 57.57 | 0.37 58.47 | 0.60 57.99 | 0.49 58.99 | 0.82 57.86 | 0.52
glasso 1.65 | 0.01 1.66 | 0.01 1.68 | 0.03 1.68 | 0.04 1.68 | 0.02
BigQuic 14.65 | 0.03 14.60 | 0.02 14.60 | 0.03 14.65 | 0.05 14.71 | 0.08

Models 1 to 4: p = 2000; Modle 5: p = 2025

n
=

5
0

MARS 5.47 | 0.24 5.61 | 0.25 5.45 | 0.24 5.66 | 0.32 5.54 | 0.18
SSNAL 26.08 | 1.62 27.31 | 2.38 25.79 | 1.28 27.70 | 2.63 28.70 | 2.33
iADMM 171.31 | 7.47 167.03 | 8.69 168.18 | 7.73 178.36 | 13.31 183.69 | 10.00
eADMM 393.00 | 15.69 402.37 | 16.71 384.16 | 15.20 411.98 | 17.17 429.69 | 27.03
SCIO 224.02 | 0.67 225.31 | 2.49 224.05 | 0.59 225.00 | 1.23 224.85 | 2.74
EQUAL 56.53 | 2.47 58.66 | 2.60 56.35 | 2.63 58.92 | 3.37 58.19 | 1.10
CLIME 494.14 | 1.70 494.70 | 2.62 493.80 | 1.15 495.18 | 3.03 493.86 | 3.10
glasso 8.09 | 0.18 8.00 | 0.12 7.99 | 0.06 8.05 | 0.09 8.07 | 0.13
BigQuic 46.49 | 0.22 46.16 | 0.28 46.09 | 0.23 46.21 | 0.48 46.59 | 0.38

n
=

1
0
0

MARS 4.40 | 0.06 4.35 | 0.12 4.24 | 0.18 4.49 | 0.21 4.79 | 0.21
SSNAL 7.96 | 0.39 8.01 | 0.45 7.73 | 0.24 8.23 | 0.82 11.13 | 1.65
iADMM 39.17 | 4.03 34.83 | 2.20 35.70 | 2.53 41.19 | 6.06 58.23 | 6.08
eADMM 62.98 | 11.00 61.06 | 9.99 56.52 | 5.55 67.83 | 14.71 100.20 | 8.77
SCIO 224.31 | 0.53 224.14 | 0.80 224.12 | 0.37 224.14 | 1.00 225.11 | 2.88
EQUAL 30.81 | 0.14 30.79 | 0.22 29.60 | 1.51 30.77 | 0.34 28.01 | 0.33
CLIME 495.46 | 1.06 496.80 | 3.90 496.02 | 5.03 495.19 | 1.87 493.40 | 3.59
glasso 7.93 | 0.02 7.91 | 0.01 7.93 | 0.02 7.94 | 0.05 7.95 | 0.02
BigQuic 56.35 | 0.27 56.08 | 0.25 55.96 | 0.22 55.97 | 0.28 56.15 | 0.26
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Table 4: Average computation time (seconds) with different algorithms of 10 replications
to generating a solution path for some high-dimensional generated data

Model 1 Model 2 Model 3 Model 4 Model 5

mean | sd mean | sd mean | sd mean | sd mean | sd

Models 1 to 4: p = 3000; Modle 5: p = 3024

n
=

5
0

MARS 12.73 | 0.48 12.94 | 0.22 12.63 | 0.36 12.73 | 0.29 13.93 | 0.29
SSNAL 64.71 | 5.17 66.19 | 2.63 64.09 | 2.80 65.44 | 2.31 76.58 | 3.83
EQUAL 177.31 | 3.46 174.95 | 1.08 175.21 | 0.67 175.41 | 0.56 188.42 | 3.08
glasso 21.13 | 0.40 22.76 | 1.08 22.83 | 0.88 23.06 | 0.97 22.69 | 0.66

n
=

1
0
0 MARS 9.59 | 0.17 9.71 | 0.40 9.54 | 0.25 9.61 | 0.34 11.27 | 0.47

SSNAL 19.15 | 0.79 21.13 | 2.11 20.85 | 0.94 20.70 | 2.44 31.12 | 3.67
EQUAL 85.32 | 0.42 86.35 | 0.61 85.87 | 0.54 85.61 | 0.37 87.16 | 0.92
glasso 22.29 | 0.82 22.71 | 1.46 22.85 | 0.94 22.31 | 0.52 22.80 | 1.53

Models 1 to 4: p = 5000; Modle 5: p = 5041

n
=

5
0

MARS 33.14 | 0.48 32.83 | 0.56 32.73 | 0.94 32.80 | 0.55 34.43 | 0.40
SSNAL 184.99 | 6.77 182.30 | 5.16 176.63 | 5.56 179.72 | 4.85 203.69 | 3.53
EQUAL 628.45 | 9.60 636.69 | 30.54 638.59 | 26.00 642.46 | 25.60 652.96 | 16.36
glasso − − − − −

n
=

1
0
0 MARS 25.22 | 0.54 25.13 | 0.35 25.10 | 0.26 25.20 | 0.36 28.51 | 1.21

SSNAL 52.06 | 4.05 50.39 | 1.31 50.46 | 1.86 51.90 | 2.54 73.57 | 8.13
EQUAL 306.33 | 9.36 308.95 | 10.73 303.11 | 1.16 308.40 | 9.15 322.45 | 14.73
glasso − − − − −

“−” indicates out of memory.

with 50 parameters in total. This setting is because when λ is too small, there may not exist
a feasible solution for the estimator. Especially when the gap between p and n is greater,
the smallest λ that guarantees the existence of optimal solutions of the estimator will be
greater. For fairness of comparison, we did not use Remark 7 to narrow the range of λ path
for MARS, SSNAL, iADMM, and eADMM, and the generated data are all standardized in
the first beginning.

The computation time (in terms of the mean and standard deviation (sd)) of the tests
are shown in Tables 3 and 4. We can see that MARS is significantly faster than other
algorithms. Especially, when p is larger, the computation time of MARS is roughly half
of that of glasso, which performs better compared with the remaining algorithms. In the
next subsection, we will illustrate the promising performance of MARS on two real data
sets with very high dimensions.

4.3 Real data analysis

In this subsection, we will use some real data sets to demonstrate the promising performance
of our MARS for generating a solution path. The publicly available data sets we are going
to use include a prostate data set (https://web.stanford.edu/~hastie/CASI_files/
DATA/prostate.html) and a breast cancer data set (Hess et al., 2006), which can be found
on (https://bioinformatics.mdanderson.org/public-datasets/). The prostate data
set contains two groups, the first one is 6033 genetic activity measurements of 50 control
subjects and the other is that of 52 prostate cancer subjects. Thus, the number of variables
contained in the precision matrix that needs to be estimated is more than 18 million. As for
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the breast cancer data set, it contains the measurements of 22283 genes with 133 subjects,
where 99 of them are labeled as residual disease (RD) and the remaining 34 subjects are
labeled as pathological complete response (pCR). For this data set, the estimated precision
matrix contains about 250 million parameters.

Firstly, after standardizing the two groups of the prostate data set, we use MARS,
SSNAL, EQUAL, and SCIO to generate solution paths for the two groups separately. We
should note that, when λ is too small, there may not exist optimal solutions of the precision
matrix estimator. Therefore, before going further to the main comparison tests, we should
conduct some pre-tests to find a suitable smallest λ. The performance of the estimations
generated by different algorithms is concluded in Table 5. Since η is to measure the distance
between an estimated solution and the optimal solution set, we notice that when λ is larger,
the estimated solutions generated by SCIO perform very well, but when λ gradually becomes
smaller, its estimated solutions are far away from the optimal solution set, which can also be
observed from the associated objective value. The performance of EQUAL is the opposite,
that is, it performs better when λ is smaller. We should point out that even if the stopping
tolerance of EQUAL has been set to be 10−6, none of the generated solutions make η less
than 10−3. Thus, by comparing the objective value and η, we conclude that MARS and
SSNAL can outperform both EQUAL and SCIO since all the η are smaller than the set
tolerance 10−4. Although both MARS and SSNAL can generate satisfactory solutions, from
Table 6, we find that MARS is much more efficient. In particular, the computation time of
SSNAL to generate the solution path is more than 17 times of that of MARS in the Control
group, and is more than 20 times of that of MARS in the Cancer group. This can also be
seen from Figure 1, which illustrates that MARS has high efficiency in generating solutions
for each λ. Besides, we obtain the final precision matrix estimations of the two different
groups through 5-fold cross-validation, and the corresponding graphs are shown in Figure
2. From this figure, we can clearly see that the genes of the control group and the cancer
group have different connections.

Next, we will test the performance of MARS and glasso on the breast cancer data set.
We follow the same assumption stated in Cai et al. (2011), that is, this gene measurements
data are normally distributed with N(µk,Σ), k = 1, 2, where Σ is the same for RD and
pCR group, but the means are different. Firstly, two-sample t-tests are performed with
some given p-value tolerances, which are set to be 0.005, 0.01, 0.05, 0.1, and 1, to obtain
the most significant genes (with a smaller p-value). Under those set p-values, the number of
chosen genes are 1228, 1646, 3640, 5418, and 22283 respectively. Note that, the last one is
just all the genes with nearly 250 million parameters. We point out that, the λ paths for all
the tests, except the test with p-value tolerance 0.05, are set from λmin to 1 by 0.01, where
λmin is decided by some pre-tests with the D-trace estimator. When the p-value tolerance
is 0.05, if the gap between two subsequent tuning parameters in the path is 0.01, glasso will
fail due to insufficient memory, so we set the λ gap for this test to be 0.02. The tuning
parameters for each test are chosen by five-fold cross-validation, and the total computation
times are concluded in Table 7. The estimated graphs obtained by MARS and glasso with
p-value tolerance 0.005, 0.01, and 0.01 can be found in Figure 3. From this figure, we
notice that the graphs obtained by MARS and glasso are similar to each other, but the
times taken by MARS are obviously less than those taken by glasso. Especially when the
p-value tolerance is 0.05, the total computation time of glasso is more than 20 times that of
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Table 6: The computation time (seconds) of different algorithms for generating a solution
path with the prostate data set

MARS SSNAL EQUAL SCIO

control group 97.29 1726.92 1283.25* 5372.70+
cancer group 103.86 2329.45 1235.68* 5614.00+

“∗” indicates that none of the relative KKT residuals of
EQUAL is less than 10−3.
“+” indicates that, due to out of memory, the time here
does not include the time for generating estimations by
SCIO with the two smallest λ.

Figure 1: The computation time of MARS and SSNAL for each λ with the prostate data
set
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Figure 2: The estimated graphs chosen by five-fold cross-validation generated by MARS
with the prostrate data set

MARS. Besides, Figure 4 shows the estimated graphs obtained by MARS when the p-value
tolerances are 0.1 and 1, but the figure on the right only plots the connections among the
most significant 5418 genes.

Table 7: Test results of MARS and glasso on the breast cancer data sets with different
p-value tolerances

p-value tolerance No. of genes
time (mins) including cross-validation

No. of λ
MARS glasso

0.005 1228 20.26 71.51 63
0.01 1646 23.06 159.79 60
0.05 3640 58.32 1257.81 28
0.1 5418 150.54 − 54
1 22283 553.35 − 29

“−” indicates out of memory.

5. Conclusions

In this paper, we have derived an efficient second-order algorithm for high-dimensional
sparse precision matrices estimation under the `1-penalized D-trace loss. By using a dual
approach and adopting an adaptive sieving reduction strategy, our algorithm is capable of
handling large-scale datasets. Theoretical properties of our algorithm have been well estab-
lished. In particular, we have shown that our algorithm enjoys global linear convergence
and converges asymptotically superlinearly. Numerical results have further convincingly
demonstrated the promising performance and high efficiency of our algorithm when com-
pared with other state-of-the-art solvers. For instance, our algorithm can be up to 3 − 20
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Figure 3: The estimated graphs for the breast cancer data set chosen by five-fold cross-
validation with using MARS and glasso under different p-value tolerances
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Figure 4: The estimated graphs for the breast cancer data set chosen by five-fold cross-
validation with using MARS under different p-value tolerances

times faster than glasso for some subsets of a breast cancer dataset with much less storage
requirement.

We conclude by pointing out that our algorithm is not only designed for sparse precision
matrix estimation but also can be extended to solve other matrix-form problems under a
penalized quadratic loss function. More specifically, our algorithm can be extended to solve
problems of the following form:

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT )− tr(Q̂Ω) + penλ(Ω)

}
, (41)

where penλ(Ω) is a penalty term to encourage different structures. The algorithm we derived
in this paper can be viewed as a special case with Q̂ = Ip, and penλ(Ω) = λ ‖Ω‖1,off . With

different choices of Σ̂ and Q̂, the quadratic loss (41) outputs sparse solutions for different
statistical analysis such as canonical vectors for Fisher’s LDA (Gaynanova et al., 2016),
sparse canonical correlation analysis, and sparse sliced inverse regression (Tan et al., 2018).
This is left for future work.
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Appendix A.

This is the test performance of EQUAL, in terms of the objective value and relative KKT
residual (η), for generating solution paths under different stopping tolerances, which are set
to be 10−5 and 10−6.

Table 8: Test performance of the estimated solution paths with different stopping tolerances
by using EQUAL on the prostate data set

λ

control group cancer group

EQUAL (1e-6) EQAUL (1e-5) EQUAL (1e-6) EQAUL (1e-5)

objective value η objective value η objective value η objective value η

0.99 924.68 5.05e-02 276912.70 5.16e-01 -1964.80 3.40e-02 264907.50 5.03e-01
0.98 -861.70 3.89e-01 21190.85 1.30e-01 -1966.85 3.41e-02 263387.60 5.06e-01
0.97 -1798.68 3.54e-02 20554.88 1.31e-01 -2448.14 6.39e-02 18529.18 1.36e-01
0.96 -1802.12 3.56e-02 9137.18 9.49e-02 -2447.90 6.40e-02 7894.90 8.70e-02
0.95 -2351.89 7.22e-02 9518.00 9.85e-02 -2456.80 6.31e-02 8194.18 8.98e-02
0.94 -2356.68 7.18e-02 9696.31 1.01e-01 -2700.02 2.20e-02 8304.20 9.18e-02
0.93 -2371.45 7.04e-02 9670.20 1.03e-01 -2698.98 2.22e-02 8225.00 9.29e-02
0.92 -2645.23 2.33e-02 9444.32 1.04e-01 -2704.31 2.22e-02 7962.94 9.30e-02
0.91 -2643.28 2.35e-02 9029.55 1.03e-01 -2858.82 2.50e-02 7530.24 9.22e-02
0.90 -2648.98 2.35e-02 8442.32 1.01e-01 -2858.34 2.54e-02 6943.96 9.04e-02
0.89 -2832.42 2.70e-02 2736.37 2.65e-01 -2860.17 2.55e-02 2018.53 3.05e-01
0.88 -2833.94 2.73e-02 2927.30 2.55e-01 -2863.98 2.56e-02 2186.41 2.92e-01
0.87 -2837.75 2.74e-02 3034.11 2.49e-01 -2931.86 1.40e-02 2280.82 2.84e-01
0.86 -2912.43 1.49e-02 3051.66 2.47e-01 -2939.44 1.39e-02 2295.27 2.81e-01
0.85 -2918.38 1.49e-02 2977.98 2.49e-01 -2995.49 1.05e-02 2226.93 2.82e-01
0.84 -2989.64 1.12e-02 2814.58 2.53e-01 -3002.93 1.08e-02 2076.93 2.88e-01
0.83 -2993.46 1.20e-02 2566.14 2.62e-01 -3008.80 1.14e-02 1850.30 2.98e-01
0.82 -2997.82 1.30e-02 2240.63 2.76e-01 -3020.96 9.59e-03 1554.29 3.14e-01
0.81 -3014.42 1.00e-02 1848.97 2.96e-01 -3040.97 7.75e-03 1198.97 3.37e-01
0.80 -3057.88 5.86e-03 1404.33 3.24e-01 -3067.80 5.64e-03 796.57 3.67e-01
0.79 -3069.02 6.06e-03 -480.09 5.09e-02 -3081.18 5.79e-03 -942.61 4.70e-02
0.78 -3066.00 1.06e-02 -236.76 5.41e-02 -3084.28 8.97e-03 -714.84 4.97e-02
0.77 -3085.58 7.64e-03 -41.10 5.71e-02 -3102.08 7.10e-03 -528.46 5.22e-02
0.76 -3106.15 5.13e-03 89.13 5.97e-02 -3124.53 4.94e-03 -401.82 5.43e-02
0.75 -3121.64 4.35e-03 141.05 6.16e-02 -3144.88 3.75e-03 -345.45 5.59e-02
0.74 -3139.48 4.26e-03 110.25 6.29e-02 -3164.75 3.75e-03 -363.44 5.68e-02
0.73 -3144.13 8.05e-03 -2.31 6.32e-02 -3172.27 7.52e-03 -455.55 5.70e-02
0.72 -3162.36 6.12e-03 -191.14 6.27e-02 -3190.12 6.33e-03 -616.71 5.65e-02
0.71 -3188.84 4.08e-03 -2316.43 5.47e-02 -3220.13 3.79e-03 -837.45 5.51e-02
0.70 -3204.06 6.15e-03 -2231.19 6.00e-02 -3244.18 3.82e-03 -2394.92 5.10e-02
0.69 -3229.79 3.71e-03 -2140.55 6.55e-02 -3271.68 3.70e-03 -2338.51 5.46e-02
0.68 -3257.15 3.59e-03 -2048.69 7.11e-02 -3285.98 7.49e-03 -2279.14 5.85e-02
0.67 -3289.17 3.31e-03 -1958.72 7.68e-02 -3310.62 6.34e-03 -2220.84 6.23e-02
0.66 -3310.93 5.40e-03 -1873.05 8.23e-02 -3349.71 3.58e-03 -2166.39 6.62e-02
0.65 -3330.89 6.44e-03 -1793.58 8.77e-02 -3370.41 7.03e-03 -2117.65 7.00e-02
0.64 -3370.90 3.53e-03 -1721.91 9.27e-02 -3424.12 2.13e-03 -2075.66 7.36e-02
0.63 -3399.63 5.77e-03 -1659.54 9.72e-02 -3445.53 7.45e-03 -2040.94 7.71e-02
0.62 -3429.19 5.79e-03 -1607.92 1.01e-01 -3475.93 6.86e-03 -2013.80 8.04e-02
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