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A HIGHLY EFFICIENT SEMISMOOTH NEWTON AUGMENTED
LAGRANGIAN METHOD FOR SOLVING LASSO PROBLEMS∗
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Abstract. We develop a fast and robust algorithm for solving large-scale convex composite
optimization models with an emphasis on the `1-regularized least squares regression (lasso) problems.
Despite the fact that there exist a large number of solvers in the literature for the lasso problems,
we found that no solver can efficiently handle difficult large-scale regression problems with real data.
By leveraging on available error bound results to realize the asymptotic superlinear convergence
property of the augmented Lagrangian algorithm, and by exploiting the second order sparsity of
the problem through the semismooth Newton method, we are able to propose an algorithm, called
Ssnal, to efficiently solve the aforementioned difficult problems. Under very mild conditions, which
hold automatically for lasso problems, both the primal and the dual iteration sequences generated by
Ssnal possess a fast linear convergence rate, which can even be superlinear asymptotically. Numerical
comparisons between our approach and a number of state-of-the-art solvers, on real data sets, are
presented to demonstrate the high efficiency and robustness of our proposed algorithm in solving
difficult large-scale lasso problems.
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1. Introduction. In this paper, we aim to design a highly efficient and robust
algorithm for solving convex composite optimization problems including the following
`1-regularized least squares (LS) problem:

min

{
1

2
‖Ax− b‖2 + λ‖x‖1

}
,(1)

where A : X → Y is a linear map whose adjoint is denoted as A∗, b ∈ Y and λ > 0 are
given data, and X , Y are two real finite-dimensional Euclidean spaces each equipped
with an inner product 〈·, ·〉 and its induced norm ‖ · ‖.

With the advent of convenient automated data collection technologies, the Big
Data era brings new challenges in analyzing massive data due to the inherent sizes—
large samples and high dimensionality [15]. In order to respond to these challenges,
researchers have developed many new statistical tools to analyze such data. Among
these, the `1-regularized models are arguably the most intensively studied. They are
used in many applications, such as in compressive sensing, high-dimensional variable
selection, and image reconstruction. Most notably, the model (1), called lasso, was
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434 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

proposed in [48] and has been used extensively in high-dimensional statistics and
machine learning. The model (1) has also been studied in the signal processing context
under the name basis pursuit denoising [9]. In addition to its own importance in
statistics and machine learning, lasso problem (1) also appears as an inner subproblem
of many important algorithms. For example, in recent papers [4, 1], a level set method
was proposed to solve a computationally more challenging reformulation of the lasso
problem, i.e.,

min

{
‖x‖1 |

1

2
‖Ax− b‖2 ≤ σ

}
.

The level set method relies critically on the assumption that the optimization problem

min

{
1

2
‖Ax− b‖2 + δBλ(x)

}
, Bλ = {x | ‖ · ‖1 ≤ λ},

of the same type as (1), can be efficiently solved to high accuracy. The lasso-type op-
timization problems also appear as subproblems in various proximal Newton methods
for solving convex composite optimization problems [7, 29, 53]. Notably, in a broader
sense, all these proximal Newton methods belong to the class of algorithms studied
in [17].

The above-mentioned importance together with a wide range of applications of
(1) has inspired many researchers to develop various algorithms for solving this prob-
lem and its equivalent reformulations. These algorithms can roughly be divided into
two categories. The first category consists of algorithms that use only the gradient
information, for example, the accelerated proximal gradient (APG) method [37, 2],
GPSR [16], SPGL1 [4], SpaRSA [50], FPC AS [49], and NESTA [3], to name only
a few. Meanwhile, algorithms in the second category, including but not limited to
mfIPM [18], SNF [36], BAS [6], SQA [7], OBA [26], and FBS-Newton [51], utilize
the second order information of the underlying problem in the algorithmic design to
accelerate the convergence. Nearly all of these second order information based solvers
rely on certain nondegeneracy assumptions to guarantee the nonsingularity of the
corresponding inner linear systems. The only exception is the inexact interior-point-
algorithm based solver mfIPM, which does not rely on the nondegeneracy assumption
but requires the availability of appropriate preconditioners to ameliorate the extreme
ill-conditioning in the linear systems of the subproblems. For nondegenerate problems,
the solvers in the second category generally work quite well and usually outperform
the algorithms in the first category when high accuracy solutions are sought. In this
paper, we also aim to solve the lasso problems by making use of the second order
information. The novelty of our approach is that we do not need any nondegeneracy
assumption in our theory or computations. The core idea is to analyze the fundamen-
tal nonsmooth structures in the problems to formulate and solve specific semismooth
equations with well conditioned symmetric and positive definite generalized Jacobian
matrices, which consequently play a critical role in our algorithmic design. When
applied to solving difficult large-scale sparse optimization problems, even for degen-
erate ones, our approach can outperform the first order algorithms by a huge margin
regardless of whether low- or high-accuracy solutions are sought. This is in sharp
contrast to most of the other second order based solvers mentioned above, where
their competitive advantages over first order methods only become apparent when
high-accuracy solutions are sought.

Our proposed algorithm is a semismooth Newton augmented Lagrangian (in short,
Ssnal) method for solving the dual of problem (1), where the sparsity property of the
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second order generalized Hessian is wisely exploited. This algorithmic framework is
adapted from those that appeared in [54, 25, 52, 31] for solving semidefinite program-
ming problems where impressive numerical results have been reported. Specialized
to the vector case, our Ssnal possesses unique features that are not available in the
semidefinite programming case. It is these combined unique features that allow our
algorithm to converge at a very fast speed with very low computational costs at each
step. Indeed, for large-scale sparse lasso problems, our numerical experiments show
that the proposed algorithm needs at most a few dozens of outer iterations to reach so-
lutions with the desired accuracy while all the inner semismooth Newton subproblems
can be solved very cheaply. One reason for this impressive performance is that the
piecewise linear-quadratic structure of the lasso problem (1) guarantees the asymp-
totic superlinear convergence of the augmented Lagrangian algorithm. Beyond the
piecewise linear-quadratic case, we also study more general functions to guarantee this
fast convergence rate. More importantly, since there are several desirable properties
including the strong convexity of the objective function in the inner subproblems, in
each outer iteration we only need to execute a few (usually one to four) semismooth
Newton steps to solve the underlying subproblem. As will be shown later, for lasso
problems with sparse optimal solutions, the computational costs of performing these
semismooth Newton steps can be made to be extremely cheap compared to other
costs. This seems to be counterintuitive as normally one would expect a second order
method to be computationally much more expensive than the first order methods
at each step. Here, we make this counterintuitive achievement possible by carefully
exploiting the second order sparsity in the augmented Lagrangian functions. Notably,
our algorithmic framework not only works for models such as lasso, adaptive lasso
[56], and elastic net [57], but can also be applied to more general convex composite
optimization problems. The high performance of our algorithm also serves to show
that the second order information, more specifically the nonsmooth second order in-
formation, can be and should be incorporated intelligently into the algorithmic design
for large-scale optimization problems.

The remaining parts of this paper are organized as follows. In the next section, we
introduce some definitions and present preliminary results on the metric subregularity
of multivalued mappings. We should emphasize here that these stability results play
a pivotal role in the analysis of the convergence rate of our algorithm. In section 3,
we propose an augmented Lagrangian algorithm to solve the general convex com-
posite optimization model and analyze its asymptotic superlinear convergence. The
semismooth Newton algorithm for solving the inner subproblems and the efficient
implementation of the algorithm are also presented in this section. In section 4, we
conduct extensive numerical experiments to evaluate the performance of Ssnal in
solving various lasso problems. We conclude our paper in sections.

2. Preliminaries. We discuss in this section some stability properties of convex
composite optimization problems. It will become apparent later that these stability
properties are the key ingredients for establishing the fast convergence of our aug-
mented Lagrangian method.

Recall that X and Y are two real finite-dimensional Euclidean spaces. For a given
closed proper convex function p : X → (−∞,+∞], the proximal mapping Proxp(·)
associated with p is defined by

Proxp(x) := arg min
u∈X

{
p(x) +

1

2
‖u− x‖2

}
∀x ∈ X .D
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436 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

We will often make use of the Moreau identity Proxtp(x) + tProxp∗/t(x/t)
= x, where t > 0 is a given parameter. Denote dist(x,C) = infx′∈C ‖x − x′‖ for
any x ∈ X and any set C ⊂ X .

Let F : X ⇒ Y be a multivalued mapping. We define the graph of F to be the
set

gphF := {(x, y) ∈ X × Y | y ∈ F (x)}.
F−1, the inverse of F , is the multivalued mapping from Y to X whose graph is
{(y, x) | (x, y) ∈ gphF}.

Definition 2.1 (error bound). Let F : X ⇒ Y be a multivalued mapping and
y ∈ Y satisfy F−1(y) 6= ∅. F is said to satisfy the error bound condition for the point
y with modulus κ ≥ 0 if there exists ε > 0 such that if x ∈ X with dist(y, F (x)) ≤ ε,
then

dist
(
x, F−1(y)

)
≤ κdist(y, F (x)).(2)

The above error bound condition was called the growth condition in [34] and was
used to analyze the local linear convergence properties of the proximal point algorithm.
Recall that F : X ⇒ Y is called a polyhedral multifunction if its graph is the union
of finitely many polyhedral convex sets. In [39], Robinson established the following
celebrated proposition on the error bound result for polyhedral multifunctions.

Proposition 2.2. Let F be a polyhedral multifunction from X to Y. Then, F
satisfies the error bound condition (2) for any point y ∈ Y satisfying F−1(y) 6= ∅ with
a common modulus κ ≥ 0.

For later use, we present the following definition of metric subregularity from
Chapter 3 in [13].

Definition 2.3 (metric subregularity). Let F : X ⇒ Y be a multivalued map-
ping and (x̄, ȳ) ∈ gphF. F is said to be metrically subregular at x̄ for ȳ with modulus
κ ≥ 0 if there exist neighborhoods U of x̄ and V of ȳ such that

dist(x, F−1(ȳ)) ≤ κdist(ȳ, F (x) ∩ V ) ∀x ∈ U.

From the above definition, we see that if F : X ⇒ Y satisfies the error bound
condition (2) for ȳ with the modulus κ, then it is metrically subregular at x̄ for ȳ with
the same modulus κ for any x̄ ∈ F−1(ȳ).

The following definition on essential smoothness is taken from [40, section 26].

Definition 2.4 (essential smoothness). A proper convex function f on X is es-
sentially smooth if f is differentiable on int (dom f) 6= ∅ and limk→∞ ‖∇f(xk)‖ = +∞
whenever {xk} is a sequence in int (dom f) converging to a boundary point x of
int (dom f).

In particular, a smooth convex function on X is essentially smooth. Moreover, if
a closed proper convex function f is strictly convex on dom f , then its conjugate f∗

is essentially smooth [40, Theorem 26.3].
Consider the following composite convex optimization model:

(3) max {− (f(x) = h(Ax)− 〈c, x〉+ p(x))} ,

where A : X → Y is a linear map, h : Y → < and p : X → (−∞,+∞] are two
closed proper convex functions, and c ∈ X is a given vector. The dual of (3) can be
written as

(4) min {h∗(y) + p∗(z) | A∗y + z = c} ,
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where g∗ and p∗ are the Fenchel conjugate functions of g and h, respectively. Through-
out this section, we make the following blanket assumption on h∗(·) and p∗(·).

Assumption 2.5. h∗(·) is essentially smooth and p∗(·) is either an indicator func-
tion δP (·) or a support function δ∗P (·) for some nonempty polyhedral convex set
P ⊆ X . Moreover, ∇h∗ is locally Lipschitz continuous and directionally differen-
tiable on int (domh∗).

Under Assumption 2.5, by [40, Theorem 26.1], we know that ∂h∗(y) = ∅ whenever
y 6∈ int (domh∗). Denote by l the Lagrangian function for (4):

(5) l(y, z, x) = h∗(y) + p∗(z)− 〈x, A∗y + z − c〉 ∀ (y, z, x) ∈ Y × X × X .

Corresponding to the closed proper convex function f in the objective of (3) and the
convex-concave function l in (5), define the maximal monotone operators Tf and Tl
[42] by

Tf (x) := ∂f(x), Tl(y, z, x) := {(y′, z′, x′) | (y′, z′,−x′) ∈ ∂l(y, z, x)},

whose inverses are given, respectively, by

T −1f (x′) := ∂f∗(x′), T −1l (y′, z′, x′) := {(y, z, x) | (y′, z′,−x′) ∈ ∂l(y, z, x)}.

Unlike the case for Tf [33, 47, 58], stability results of Tl which correspond to the
perturbations of both primal and dual solutions are very limited. Next, as a tool for
studying the convergence rate of Ssnal, we shall establish a theorem which reveals
the metric subregularity of Tl under some mild assumptions.

The KKT system associated with problem (4) is given as follows:

0 ∈ ∂h∗(y)−Ax, 0 ∈ −x+ ∂p∗(z), 0 = A∗y + z − c, (x, y, z) ∈ X × Y × X .

Assume that the above KKT system has at least one solution. This existence assump-
tion together with the essential smoothness assumption on h∗ implies that the above
KKT system can be equivalently rewritten as

(6)


0 = ∇h∗(y)−Ax,
0 ∈ −x+ ∂p∗(z),

0 = A∗y + z − c,
(x, y, z) ∈ X × int(domh∗)×X .

Therefore, under the above assumptions, we only need to focus on int (domh∗) × X
when solving problem (4). Let (ȳ, z̄) be an optimal solution to problem (4). Then,
we know that the set of the Lagrangian multipliers associated with (ȳ, z̄), denoted as
M(ȳ, z̄), is nonempty. Define the critical cone associated with (4) at (ȳ, z̄) as follows:

(7) C(ȳ, z̄) :=

{
(d1, d2) ∈ Y × X | A∗d1 + d2 = 0,

〈∇h∗(ȳ), d1〉+ (p∗)′(z̄; d2) = 0, d2 ∈ Tdom(p∗)(z̄)

}
,

where (p∗)′(z̄; d2) is the directional derivative of p∗ at z̄ with respect to d2 and
Tdom(p∗)(z̄) is the tangent cone of dom(p∗) at z̄. When the conjugate function p∗

is taken to be the indicator function of a nonempty polyhedral set P , the above defi-
nition reduces directly to the standard definition of the critical cone in the nonlinear
programming setting.
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Definition 2.6 (second order sufficient condition). Let (ȳ, z̄) ∈ Y × X be an
optimal solution to problem (4) with M(ȳ, z̄) 6= ∅. We say that the second order
sufficient condition for problem (4) holds at (ȳ, z̄) if

〈d1, (∇h∗)′(ȳ; d1)〉 > 0 ∀ 0 6= (d1, d2) ∈ C(ȳ, z̄).

By building on the proof ideas from the literature on nonlinear programming
problems [11, 27, 24], we are able to prove the following result on the metric subreg-
ularity of Tl. This allows us to prove the linear and even the asymptotic superlinear
convergence of the sequences generated by the Ssnal algorithm to be presented in the
next section even when the objective in problem (3) does not possess the piecewise
linear-quadratic structure as in the lasso problem (1).

Theorem 2.7. Assume that the KKT system (6) has at least one solution, and
denote it as (x̄, ȳ, z̄). Suppose that Assumption 2.5 holds and that the second order
sufficient condition for problem (4) holds at (ȳ, z̄). Then, Tl is metrically subregular
at (ȳ, z̄, x̄) for the origin.

Proof. First, we claim that there exists a neighborhood U of (x̄, ȳ, z̄) such that
for any w = (u1, u2, v) ∈ W := Y × X × X with ‖w‖ sufficiently small, any solution
(x(w), y(w), z(w)) ∈ U of the perturbed KKT system

(8) 0 = ∇h∗(y)−Ax− u1, 0 ∈ −x− u2 + ∂p∗(z), 0 = A∗y + z − c− v

satisfies the following estimate:

(9) ‖(y(w), z(w))− (ȳ, z̄)‖ = O(‖w‖).

For the sake of contradiction, suppose that our claim is not true. Then, there ex-
ist some sequences {wk:= (uk1 , u

k
2 , v

k)} and {(xk, yk, zk)} such that wk → 0 and
(xk, yk, zk)→ (x̄, ȳ, z̄), for each k the point (xk, yk, zk) is a solution of (8) for w = wk,
and

‖(yk, zk)− (ȳ, z̄)‖ > γk‖wk‖

with some γk > 0 such that γk →∞. Passing to a subsequence if necessary, we assume
that {

(
(yk, zk) − (ȳ, z̄)

)
/‖(yk, zk) − (ȳ, z̄)‖} converges to some ξ = (ξ1, ξ2) ∈ Y × X ,

‖ξ‖ = 1. Then, setting tk = ‖(yk, zk) − (ȳ, z̄)‖ and passing to a subsequence further
if necessary, by the local Lipschitz continuity and the directional differentiability of
∇h∗(·) at ȳ, we know that for all k sufficiently large

∇h∗(yk)−∇h∗(ȳ) =∇h∗(ȳ + tkξ1)−∇h∗(ȳ) +∇h∗(yk)−∇h∗(ȳ + tkξ1)

= tk(∇h∗)′(ȳ; ξ1) + o(tk) +O(‖yk − ȳ − tkξ1‖)

= tk(∇h∗)′(ȳ; ξ1) + o(tk).

Denote, for each k, x̂k := xk + uk2 . Simple calculations show that for all k sufficiently
large

(10) 0 = ∇h∗(yk)−∇h∗(ȳ)−A(x̂k−x̄)+Auk2−uk1 = tk(∇h∗)′(ȳ; ξ1)+o(tk)−A(x̂k−x̄)

and

(11) 0 = A(yk − ȳ) + (zk − z̄)− vk = tk(A∗ξ1 + ξ2) + o(tk).
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Dividing both sides of (11) by tk and then taking limits, we obtain

(12) A∗ξ1 + ξ2 = 0,

which further implies that

(13) 〈∇h∗(ȳ), ξ1〉 = 〈Ax̄, ξ1〉 = −〈x̄, ξ2〉.

Since x̂k ∈ ∂p∗(zk), we know that for all k sufficiently large,

zk = z̄ + tkξ2 + o(tk) ∈ dom p∗.

That is, ξ2 ∈ Tdom p∗(z̄).
According to the structure of p∗, we separate our discussions into two cases.

Case I. There exists a nonempty polyhedral convex set P such that p∗(z) =
δ∗P (z) for all z ∈ X . Then, for each k, it holds that

x̂k = ΠP (zk + x̂k).

By [14, Theorem 4.1.1], we have

(14) x̂k = ΠP (zk+ x̂k) = ΠP (z̄+ x̄)+ΠC(z
k− z̄+ x̂k− x̄) = x̄+ΠC(z

k− z̄+ x̂k− x̄),

where C is the critical cone of P at z̄ + x̄, i.e.,

C ≡ CP (z̄ + x̄) := TP (x̄) ∩ z̄⊥.

Since C is a polyhedral cone, we know from [14, Proposition 4.1.4] that ΠC(·) is a
piecewise linear function, i.e., there exist a positive integer l and orthogonal projectors
B1, . . . , Bl such that for any x ∈ X ,

ΠC(x) ∈ {B1x, . . . , Blx} .

By restricting to a subsequence if necessary, we may further assume that there exists
1 ≤ j′ ≤ l such that for all k ≥ 1,

(15) ΠC(z
k − z̄ + x̂k − x̄) = Bj′(z

k − z̄ + x̂k − x̄) = ΠRange(Bj′ )
(zk − z̄ + x̂k − x̄).

Denote L := Range(Bj′). Combining (14) and (15), we get

C ∩ L 3 (x̂k − x̄) ⊥ (zk − z̄) ∈ C◦ ∩ L⊥,

where C◦ is the polar cone of C. Since x̂k − x̄ ∈ C, we have 〈x̂k − x̄, z̄〉 = 0, which,
together with 〈x̂k− x̄, zk− z̄〉 = 0, implies 〈x̂k− x̄, zk〉 = 0. Thus, for all k sufficiently
large,

〈zk, x̂k〉 = 〈zk, x̄〉 = 〈z̄ + tkξ2 + o(tk), x̄〉,

and it follows that

(16)

(p∗)′(z̄; ξ2) = lim
k→∞

δ∗P (z̄ + tkξ2)− δ∗P (z̄)

tk
= lim
k→∞

δ∗P (zk)− δ∗P (z̄)

tk

= lim
k→∞

〈zk, x̂k〉 − 〈z̄, x̄〉
tk

= 〈x̄, ξ2〉.
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440 XUDONG LI, DEFENG SUN, AND KIM-CHUAN TOH

By (12), (13), and (16), we know that (ξ1, ξ2) ∈ C(ȳ, z̄). Since C ∩ L is a polyhedral
convex cone, we know from [40, Theorem 19.3] that A(C ∩ L) is also a polyhedral
convex cone, which, together with (10), implies

(∇h∗)′(ȳ; ξ1) ∈ A(C ∩ L).

Therefore, there exists a vector η ∈ C ∩ L such that

〈ξ1, (∇h∗)′(ȳ; ξ1)〉 = 〈ξ1, Aη〉 = −〈ξ2, η〉 = 0,

where the last equality follows from the fact that ξ2 ∈ C◦ ∩ L⊥. Note that the last
inclusion holds since the polyhedral convex cone C◦ ∩ L⊥ is closed and

ξ2 = lim
k→∞

zk − z̄
tk

∈ C◦ ∩ L⊥.

As 0 6= ξ = (ξ1, ξ2) ∈ C(ȳ, z̄) but 〈ξ1, (∇h∗)′(ȳ; ξ1)〉 = 0, this contradicts the assump-
tion that the second order sufficient condition holds for (4) at (ȳ, z̄). Thus, we have
proved our claim for Case I.

Case II. There exists a nonempty polyhedral convex set P such that p∗(z) =
δP (z) for all z ∈ X . Then, we know that for each k,

zk = ΠP (zk + x̂k).

Since (δP )′(z̄; d2) = 0 for all d2 ∈ Tdom(p∗)(z̄), the critical cone in (7) now takes the
following form:

C(ȳ, z̄) =
{

(d1, d2) ∈ Y × X | A∗d1 + d2 = 0, 〈∇h∗(ȳ), d1〉 = 0, d2 ∈ Tdom(p∗)(z̄)
}
.

Similar to Case I, without loss of generality, we can assume that there exists a subspace
L such that for all k ≥ 1,

C ∩ L 3 (zk − z̄) ⊥ (x̂k − x̄) ∈ C◦ ∩ L⊥,

where
C ≡ CP (z̄ + x̄) := TP (z̄) ∩ x̄⊥.

Since C ∩ L is a polyhedral convex cone, we know

ξ2 = lim
k→∞

zk − z̄
tk

∈ C ∩ L,

and consequently 〈ξ2, x̄〉 = 0, which, together with (12) and (13), implies ξ =
(ξ1, ξ2) ∈ C(ȳ, z̄). By (10) and the fact that A(C◦ ∩ L⊥) is a polyhedral convex
cone, we know that

(∇h∗)′(ȳ; ξ1) ∈ A(C◦ ∩ L⊥).

Therefore, there exists a vector η ∈ C◦ ∩ L⊥ such that

〈ξ1, (∇h∗)′(ȳ; ξ1)〉 = 〈ξ1, Aη〉 = −〈ξ2, η〉 = 0.

Since ξ = (ξ1, ξ2) 6= 0, we arrive at a contradiction to the assumed second order
sufficient condition. So our claim is also true for this case.

In summary, we have proven that there exists a neighborhood U of (x̄, ȳ, z̄) such
that for any w close enough to the origin, (9) holds for any solution (x(w), y(w),
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z(w)) ∈ U to the perturbed KKT system (8). Next we show that Tl is metrically
subregular at (ȳ, z̄, x̄) for the origin.

Define the mapping ΘKKT : X × Y × X ×W → Y ×X × X by

ΘKKT (x, y, z, w) :=

 ∇h∗(y)−Ax− u1
z − Proxp∗(z + x+ u2)
A∗y + z − c− v

 ∀(x, y, z, w) ∈ X × Y × X ×W

and define the mapping θ : X → Y × X × X as follows:

θ(x) := ΘKKT(x, ȳ, z̄, 0) ∀x ∈ X .

Then, we have x ∈ M(ȳ, z̄) if and only if θ(x) = 0. Since Proxp∗(·) is a piecewise
affine function, θ(·) is a piecewise affine function and thus a polyhedral multifunction.
By using Proposition 2.2 and shrinking the neighborhood U if necessary, for any w
close enough to the origin and any solution (x(w), y(w), z(w)) ∈ U of the perturbed
KKT system (8), we have

dist(x(w),M(ȳ, z̄)) = O(‖θ(x(w))‖)

= O(‖ΘKKT(x(w), ȳ, z̄, 0)−ΘKKT(x(w), y(w), z(w), w)‖)

= O(‖w‖+ ‖(y(w), z(w))− (ȳ, z̄)‖),

which, together with (9), implies the existence of a constant κ ≥ 0 such that

(17) ‖(y(w), z(w))− (ȳ, z̄)‖+ dist(x(w),M(ȳ, z̄)) ≤ κ‖w‖.

Thus, by Definition 2.3, we have proven that Tl is metrically subregular at (ȳ, z̄, x̄)
for the origin. The proof of the theorem is complete.

Remark 2.8. For convex piecewise linear-quadratic programming problems such
as the `1 and elastic net regularized LS problem, we know from J. Sun’s thesis [46]
on the characterization of the subdifferentials of convex piecewise linear-quadratic
functions (see also [43, Proposition 12.30]) that the corresponding operators Tl and Tf
are polyhedral multifunctions and thus, by Proposition 2.2, the error bound condition
holds. Here we emphasize again that the error bound condition holds for the lasso
problem (1). Moreover, Tf , associated with the `1 or elastic net regularized logistic
regression model, i.e., for a given vector b ∈ <m, the loss function h : <m → < in
problem (3) takes the form

h(y) =

m∑
i=1

log(1 + e−biyi) ∀y ∈ <m,

also satisfies the error bound condition [33, 47]. Meanwhile, from Theorem 2.7, we
know that Tl corresponding to the `1 or the elastic net regularized logistic regression
model is metrically subregular at any solutions to the KKT system (6) for the origin.

3. An augmented Lagrangian method with asymptotic superlinear con-
vergence. Recall the general convex composite model (3)

(P) max {− (f(x) = h(Ax)− 〈c, x〉+ p(x))}

and its dual
(D) min{h∗(y) + p∗(z) | A∗y + z = c}.
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In this section, we shall propose an asymptotically superlinearly convergent aug-
mented Lagrangian method for solving (P) and (D). In this section, we make the
following standing assumptions regarding the function h.

Assumption 3.1.
(a) h : Y → < is a convex differentiable function whose gradient is 1/αh-Lipschitz

continuous, i.e.,

‖∇h(y′)−∇h(y)‖ ≤ (1/αh)‖y′ − y‖ ∀y′, y ∈ Y.

(b) h is essentially locally strongly convex [21], i.e., for any compact and convex
set K ⊂ dom ∂h, there exists βK > 0 such that

(1−λ)h(y′) +λh(y) ≥ h((1−λ)y′+λy) +
1

2
βKλ(1−λ)‖y′−y‖2 ∀y′, y ∈ K,

for all λ ∈ [0, 1].

Many commonly used loss functions in the machine learning literature satisfy the
above mild assumptions. For example, h can be the loss function in the linear regres-
sion, logistic regression, and Poisson regression models. While the strict convexity of a
convex function is closely related to the differentiability of its conjugate, the essential
local strong convexity in Assumption 3.1(b) for a convex function was first proposed
in [21] to obtain a characterization of the local Lipschitz continuity of the gradient of
its conjugate function.

The aforementioned assumptions on h imply the following useful properties of h∗.
First, by [43, Proposition 12.60], we know that h∗ is strongly convex with modulus
αh. Second, by [21, Corollary 4.4], we know that h∗ is essentially smooth and ∇h∗ is
locally Lipschitz continuous on int (domh∗). If the solution set to the KKT system
associated with (P) and (D) is further assumed to be nonempty, similar to what we
have discussed in the last section, one only needs to focus on int (domh∗)× X when
solving (D). Given σ > 0, the augmented Lagrangian function associated with (D) is
given by

Lσ(y, z;x) := l(y, z, x) +
σ

2
‖A∗y + z − c‖2 ∀ (y, z, x) ∈ Y × X × X ,

where the Lagrangian function l(·) is defined in (5).

3.1. SSNAL: A semismooth Newton augmented Lagrangian algorithm
for (D). The detailed steps of our algorithm Ssnal for solving (D) are given as fol-
lows. Since a semismooth Newton method will be employed to solve the subproblems
involved in this prototype of the inexact augmented Lagrangian method [42], it is
natural for us to call our algorithm Ssnal.

Algorithm SSNAL: An inexact augmented Lagrangian method for (D).

Let σ0 > 0 be a given parameter. Choose (y0, z0, x0) ∈ int(domh∗) × dom p∗ × X .
For k = 0, 1, . . . , perform the following steps in each iteration:
Step 1. Compute

(18) (yk+1, zk+1) ≈ arg min{Ψk(y, z) := Lσk(y, z;xk)}.

Step 2. Compute xk+1 = xk − σk(A∗yk+1 + zk+1 − c) and update σk+1 ↑ σ∞ ≤ ∞ .

Next, we shall adapt the results developed in [41, 42, 34] to establish the global
and local superlinear convergence of our algorithm.
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Since the inner problems cannot be solved exactly, we use the following standard
stopping criterion studied in [41, 42] for approximately solving (18):

(A) Ψk(yk+1, zk+1)− inf Ψk ≤ ε2k/2σk,
∞∑
k=0

εk <∞.

Now, we can state the global convergence of Algorithm Ssnal from [41, 42] without
much difficulty.

Theorem 3.2. Suppose that Assumption 3.1 holds and that the solution set to
(P) is nonempty. Let {(yk, zk, xk)} be the infinite sequence generated by Algorithm
Ssnal with stopping criterion (A). Then, the sequence {xk} is bounded and converges
to an optimal solution of (P). In addition, {(yk, zk)} is also bounded and converges
to the unique optimal solution (y∗, z∗) ∈ int(domh∗)× dom p∗ of (D).

Proof. Since the solution set to (P) is assumed to be nonempty, the optimal value
of (P) is finite. From Assumption 3.1(a), we have that domh = Y and h∗ is strongly
convex [43, Proposition 12.60]. Then, by Fenchel’s duality theorem [40, Corollary
31.2.1], we know that the solution set to (D) is nonempty and the optimal value
of (D) is finite and equal to the optimal value of (P). That is, the solution set to
the KKT system associated with (P) and (D) is nonempty. The uniqueness of the
optimal solution (y∗, z∗) ∈ int(domh∗) × X of (D) then follows directly from the
strong convexity of h∗. By combining this uniqueness with [42, Theorem 4], one can
easily obtain the boundedness of {(yk, zk)} and other desired results readily.

We need the the following stopping criteria for the local convergence analysis:

(B1) Ψk(yk+1, zk+1)− inf Ψk ≤ (δ2k/2σk)‖xk+1 − xk‖2,
∑∞
k=0 δk < +∞,

(B2) dist(0, ∂Ψk(yk+1, zk+1)) ≤ (δ′k/σk)‖xk+1 − xk‖, 0 ≤ δ′k → 0,

where xk+1 := xk + σk(A∗yk+1 + zk+1 − c).
Theorem 3.3. Assume that Assumption 3.1 holds and that the solution set Ω to

(P) is nonempty. Suppose that Tf satisfies the error bound condition (2) for the origin
with modulus af . Let {(yk, zk, xk)} be any infinite sequence generated by Algorithm
Ssnal with stopping criteria (A) and (B1). Then, the sequence {xk} converges to
x∗ ∈ Ω and for all k sufficiently large,

(19) dist(xk+1,Ω) ≤ θkdist(xk,Ω),

where θk =
(
af (a2f + σ2

k)−1/2 + 2δk
)
(1 − δk)−1 → θ∞ = af (a2f + σ2

∞)−1/2 < 1 as

k → +∞. Moreover, the sequence {(yk, zk)} converges to the unique optimal solution
(y∗, z∗) ∈ int(domh∗)× dom p∗ to (D).

Moreover, if Tl is metrically subregular at (y∗, z∗, x∗) for the origin with modulus
al and the stopping criterion (B2) is also used, then for all k sufficiently large,

‖(yk+1, zk+1)− (y∗, z∗)‖ ≤ θ′k‖xk+1 − xk‖,

where θ′k = al(1 + δ′k)/σk with limk→∞ θ′k = al/σ∞.

Proof. The first part of the theorem follows from [34, Theorem 2.1], [42, Propo-
sition 7 and Theorem 5], and Theorem 3.2. To prove the second part, we recall that
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if Tl is metrically subregular at (y∗, z∗, x∗) for the origin with the modulus al and
(yk, zk, xk)→ (y∗, z∗, x∗), then for all k sufficiently large,

‖(yk+1, zk+1)− (y∗, z∗)‖+ dist(xk+1,Ω) ≤ al dist(0, Tl(yk+1, zk+1, xk+1)).

Therefore, by the estimate (4.21) in [42] and the stopping criterion (B2), we obtain
that for all k sufficiently large,

‖(yk+1, zk+1)− (y∗, z∗)‖ ≤ al(1 + δ′k)/σk‖xk+1 − xk‖.

This completes the proof of Theorem 3.3.

Remark 3.4. In the above theorem, when σ∞ = +∞, the inequality (19) directly
implies that {xk} converges Q-superlinearly. Moreover, recent advances in [12] also
established the asymptotic R-superlinear convergence of the dual iteration sequence
{(yk, zk)}. Indeed, from [12, Proposition 4.1], under the same conditions of Theorem
3.3, we have that for k sufficiently large,

(20) ‖(yk+1, zk+1)− (y∗, z∗)‖ ≤ θ′k‖xk+1 − xk‖ ≤ θ′k(1− δk)−1dist(xk, Ω),

where θ′k(1 − δk)−1 → al/σ∞. Thus, if σ∞ = ∞, the Q-superlinear convergence of
{xk} and (20) further imply that {(yk, zk)} converges R-superlinearly.

We should emphasize here that by combining Remarks 2.8 and 3.4 and Theo-
rem 3.3, our Algorithm Ssnal is guaranteed to produce an asymptotically super-
linearly convergent sequence when used to solve (D) for many commonly used reg-
ularizers and loss functions. In particular, the Ssnal algorithm is asymptotically
superlinearly convergent when applied to the dual of (1).

3.2. Solving the augmented Lagrangian subproblems. Here we shall pro-
pose an efficient semismooth Newton algorithm to solve the inner subproblems in the
augmented Lagrangian method (18). That is, for some fixed σ > 0 and x̃ ∈ X , we
aim to solve

(21) min
y,z

Ψ(y, z) := Lσ(y, z; x̃).

Since Ψ(·, ·) is a strongly convex function, we have that, for any α ∈ <, the level set
Lα := {(y, z) ∈ domh∗ × dom p∗ | Ψ(y, z) ≤ α} is a closed and bounded convex
set. Moreover, problem (21) admits a unique optimal solution denoted as (ȳ, z̄) ∈
int(domh∗)× dom p∗.

Denote, for any y ∈ Y,

ψ(y) := inf
z

Ψ(y, z) = h∗(y) + p∗(Proxp∗/σ(x̃/σ −A∗y + c))

+
1

2σ
‖Proxσp(x̃− σ(A∗y − c))‖2 − 1

2σ
‖x̃‖2.

Therefore, if (ȳ, z̄) = arg min Ψ(y, z), then (ȳ, z̄) ∈ int(domh∗)× dom p∗ can be com-
puted simultaneously by

ȳ = arg minψ(y), z̄ = Proxp∗/σ(x̃/σ −A∗ȳ + c).
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Note that ψ(·) is strongly convex and continuously differentiable on int(domh∗) with

∇ψ(y) = ∇h∗(y)−AProxσp(x̃− σ(A∗y − c)) ∀y ∈ int(domh∗).

Thus, ȳ can be obtained via solving the following nonsmooth equation:

(22) ∇ψ(y) = 0, y ∈ int(domh∗).

Let y ∈ int(domh∗) be any given point. Since h∗ is a convex function with a locally
Lipschitz continuous gradient on int(domh∗), the following operator is well defined:

∂̂2ψ(y) := ∂(∇h∗)(y) + σA∂Proxσp(x̃− σ(A∗y − c))A∗,

where ∂(∇h∗)(y) is the Clarke subdifferential of ∇h∗ at y [10], and ∂Proxσp(x̃ −
σ(A∗y−c)) is the Clarke subdifferential of the Lipschitz continuous mapping Proxσp(·)
at x̃−σ(A∗y−c). Note that from [10, Proposition 2.3.3 and Theorem 2.6.6], we know
that

∂2ψ(y) (d) ⊆ ∂̂2ψ(y) (d) ∀ d ∈ Y,

where ∂2ψ(y) denotes the generalized Hessian of ψ at y. Define

(23) V := H + σAUA∗

with H ∈ ∂2h∗(y) and U ∈ ∂Proxσp(x̃ − σ(A∗y − c)). Then, we have V ∈ ∂̂2ψ(y).
Since h∗ is a strongly convex function, we know that H is symmetric positive definite
on Y and thus V is also symmetric positive definite on Y.

Under the mild assumption that ∇h∗ and Proxσp are strongly semismooth (the
definition of which is given next), we can design a superlinearly convergent semismooth
Newton method to solve the nonsmooth equation (22).

Definition 3.5 (semismoothness [35, 38, 45]). Let F : O ⊆ X → Y be a locally
Lipschitz continuous function on the open set O. F is said to be semismooth at x ∈ O
if F is directionally differentiable at x and for any V ∈ ∂F (x+ ∆x) with ∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = o(‖∆x‖).

F is said to be strongly semismooth at x if F is semismooth at x and

F (x+ ∆x)− F (x)− V∆x = O(‖∆x‖2).

F is said to be a semismooth (respectively, strongly semismooth) function on O if it
is semismooth (respectively, strongly semismooth) everywhere in O.

Note that it is widely known in the nonsmooth optimization/equation commu-
nity that continuous piecewise affine functions and twice continuously differentiable
functions are all strongly semismooth everywhere. In particular, Prox‖·‖1 , as a Lips-
chitz continuous piecewise affine function, is strongly semismooth. See [14] for more
semismooth and strongly semismooth functions.

Now, we can design a semismooth Newton (Ssn) method to solve (22) as follows
and could expect to get a fast superlinear or even quadratic convergence.D
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Algorithm SSN: A semismooth Newton algorithm for solving (22)
(SSN(y0, x̃, σ)).

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], and δ ∈ (0, 1). Choose y0 ∈ int(domh∗).
Iterate the following steps for j = 0, 1, . . . .
Step 1. Choose Hj ∈ ∂(∇h∗)(yj) and Uj ∈ ∂Proxσp(x̃ − σ(A∗yj − c)). Let Vj :=

Hj + σAUjA∗. Solve the linear system

(24) Vjd+∇ψ(yj) = 0

exactly or by the conjugate gradient (CG) algorithm to find dj such that

‖Vjdj +∇ψ(yj)‖ ≤ min(η̄, ‖∇ψ(yj)‖1+τ ).

Step 2. (Line search) Set αj = δmj , where mj is the first nonnegative integer m for
which

yj+δmdj ∈ int(domh∗) and ψ(yj+δmdj)≤ψ(yj)+µδm〈∇ψ(yj), dj〉.

Step 3. Set yj+1 = yj + αj d
j .

The convergence results for the above Ssn algorithm are stated in the next
theorem.

Theorem 3.6. Assume that ∇h∗(·) and Proxσp(·) are strongly semismooth on
int(domh∗) and X , respectively. Let the sequence {yj} be generated by Algorithm
Ssn. Then {yj} converges to the unique optimal solution ȳ ∈ int(domh∗) of the
problem in (22) and

‖yj+1 − ȳ‖ = O(‖yj − ȳ‖1+τ ).

Proof. Since, by [54, Proposition 3.3], dj is a descent direction, Algorithm Ssn is

well defined. By (23), we know that for any j ≥ 0, Vj ∈ ∂̂2ψ(yj). Then, we can prove
the conclusion of this theorem by following the proofs of [54, Theorems 3.4 and 3.5].
We omit the details here.

We shall now discuss the implementations of stopping criteria (A), (B1), and (B2)
for Algorithm Ssn to solve the subproblem (18) in Algorithm Ssnal. Note that when
Algorithm Ssn is applied to minimize Ψk(·) to find

yk+1 = Ssn(yk, xk, σk) and zk+1 = Proxp∗/σk(xk/σk −A∗yk+1 + c),

we have, by simple calculations and the strong convexity of h∗, that

Ψk(yk+1, zk+1)− inf Ψk = ψk(yk+1)− inf ψk ≤ (1/2αh)‖∇ψk(yk+1)‖2

and (∇ψk(yk+1), 0) ∈ ∂Ψk(yk+1, zk+1), where ψk(y) := infz Ψk(y, z) for all y ∈ Y.
Therefore, the stopping criteria (A), (B1), and (B2) can be achieved by the following
implementable criteria:

(A′) ‖∇ψk(yk+1)‖ ≤
√
αh/σk εk,

∞∑
k=0

εk <∞,

(B1′) ‖∇ψk(yk+1)‖ ≤
√
αhσk δk‖A∗yk+1 + zk+1 − c‖,

∞∑
k=0

δk < +∞,

(B2′) ‖∇ψk(yk+1)‖ ≤ δ′k‖A∗yk+1 + zk+1 − c‖, 0 ≤ δ′k → 0.
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That is, the stopping criteria (A), (B1), and (B2) will be satisfied as long as
‖∇ψk(yk+1)‖ is sufficiently small.

3.3. An efficient implementation of SSN for solving subproblems (18).
When Algorithm Ssnal is applied to solve the general convex composite optimization
model (P), the key part is to use Algorithm Ssn to solve the subproblems (18). In
this subsection, we shall discuss an efficient implementation of Ssn for solving the
aforementioned subproblems when the nonsmooth regularizer p is chosen to be λ‖ · ‖1
for some λ > 0. Clearly, in Algorithm Ssn, the most important step is the computation
of the search direction dj from the linear system (24). So we shall first discuss the
solving of this linear system.

Let (x̃, y) ∈ <n × <m and σ > 0 be given. We consider the following Newton
linear system:

(25) (H + σAUAT )d = −∇ψ(y),

where H ∈ ∂(∇h∗)(y), A denotes the matrix representation of A with respect to the
standard bases of <n and <m, and U ∈ ∂Proxσλ‖·‖1(x) with x := x̃−σ(AT y−c). Since
H is a symmetric and positive definite matrix, (25) can be equivalently rewritten as(

Im + σ(L−1A)U(L−1A)T
)
(LT d) = −L−1∇ψ(y),

where L is a nonsingular matrix obtained from the (sparse) Cholesky decomposition
of H such that H = LLT . In many applications, H is usually a sparse matrix. Indeed,
when the function h in the primal objective is taken to be the squared loss or the
logistic loss functions, the resulting matrices H are in fact diagonal matrices. That is,
the costs of computing L and its inverse are negligible in most situations. Therefore,
without loss of generality, we can consider a simplified version of (25) as follows:

(26) (Im + σAUAT )d = −∇ψ(y),

which is precisely the Newton system associated with the standard lasso problem
(1). Since U ∈ <n×n is a diagonal matrix, at first glance, the costs of computing
AUAT and the matrix-vector multiplication AUAT d for a given vector d ∈ <m are
O(m2n) and O(mn), respectively. These computational costs are too expensive when
the dimensions of A are large and can make the commonly employed approaches such
as the Cholesky factorization and the conjugate gradient method inappropriate for
solving (26). Fortunately, under the sparse optimization setting, if the sparsity of U
is wisely taken into the consideration, one can substantially reduce these unfavorable
computational costs to a level such that they are negligible or at least insignificant
compared to other costs. Next, we shall show how this can be done by taking full
advantage of the sparsity of U . This sparsity will be referred to as the second order
sparsity of the underlying problem.

For x = x̃−σ(AT y− c), in our computations, we can always choose U = Diag(u),
the diagonal matrix whose ith diagonal element is given by ui with

ui =

{
0 if |xi| ≤ σλ,

1 otherwise,
i = 1, . . . , n.

Since Proxσλ‖·‖1(x) = sign(x) ◦ max{|x| − σλ, 0}, it is not difficult to see that U ∈
∂Proxσλ‖·‖1(x). Let J := {j | |xj | > σλ, j = 1, . . . , n} and r = |J |, the cardinality
of J . By taking the special 0-1 structure of U into consideration, we have that
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m

n

AUAT =
O(m2n)

AJA
T
J =

m

r

= O(m2r)

Fig. 1. Reducing the computational costs from O(m2n) to O(m2r).

(27) AUAT = (AU)(AU)T = AJA
T
J ,

where AJ ∈ <m×r is the submatrix of A with those columns not in J being removed
from A. Then, by using (27), we know that now the costs of computing AUAT and
AUAT d for a given vector d are reduced to O(m2r) and O(mr), respectively. Due to
the sparsity-promoting property of the regularizer p, the number r is usually much
smaller than n. Thus, by exploring the aforementioned second order sparsity, we can
greatly reduce the computational costs in solving the linear system (26) when using
the Cholesky factorization. More specifically, the total computational costs of using
the Cholesky factorization to solve the linear system are reduced from O(m2(m+n))
to O(m2(m+ r)). See Figure 1 for an illustration on the reduction. This means that
even if n happens to be extremely large (say, larger than 107), one can still solve the
Newton linear system (26) efficiently via the Cholesky factorization as long as both
m and r are moderate (say, less than 104). If, in addition, r � m, which is often the
case when m is large and the optimal solutions to the underlying problem are sparse,
instead of factorizing an m×m matrix, we can make use of the Sherman–Morrison–
Woodbury formula [22] to get the inverse of Im+σAUAT by inverting a much smaller
r × r matrix as follows:

(Im + σAUAT )−1 = (Im + σAJA
T
J )−1 = Im −AJ (σ−1Ir +ATJAJ )−1ATJ .

See Figure 2 for an illustration on the computation of ATJAJ . In this case, the total
computational costs for solving the Newton linear system (26) are reduced significantly
further from O(m2(m + r)) to O(r2(m + r)). We should emphasize here that this
dramatic reduction in computational costs results from the wise combination of the
careful examination of the existing second order sparsity in the lasso-type problems
and some “smart” numerical linear algebra.

From the above arguments, we can see that as long as the number of the nonzero
components of Proxσλ‖·‖1(x) is small, say less than

√
n, and Hj ∈ ∂(∇h∗)(yj) is a

sparse matrix, e.g., a diagonal matrix, we can always solve the linear system (24)
at very low costs. In particular, this is true for the lasso problems admitting sparse
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r
m

=ATJAJ = O(r2m)

Fig. 2. Further reducing the computational costs to O(r2m).

solutions. Similar discussions on the reduction of the computational costs can also
be conducted for the case when the conjugate gradient method is applied to solve
the linear systems (24). Note that one may argue that even if the original problem
has only sparse solutions, at certain stages, one may still encounter the situation that
the number of the nonzero components of Proxσλ‖·‖1(x) is large. Our answer to this
question is simple. First, this phenomenon rarely occurs in practice since we always
start with a sparse feasible point, e.g., the zero vector. Second, even if at certain
steps this phenomenon does occur, we just need to apply a small number of conjugate
gradient iterations to the linear system (24) as in this case the parameter σ is normally
small and the current point is far away from any sparse optimal solution. In summary,
we have demonstrated how Algorithm Ssn can be implemented efficiently for solving
sparse optimization problems of the form (18) with p(·) being chosen to be λ‖ · ‖1.

4. Numerical experiments for lasso problems. In this section, we shall
evaluate the performance of our algorithm Ssnal for solving large-scale lasso prob-
lems (1). We note that the relative performance of most of the existing algorithms
mentioned in the introduction has recently been well documented in the two recent
papers [18, 36], which appears to suggest that for some large-scale sparse reconstruc-
tion problems, mfIPM1 and FPC AS2 have mostly outperformed the other solvers.
Hence, in this section we will compare our algorithm with these two popular solvers.
Note that mfIPM is a specialized interior-point based second order method designed
for the lasso problem (1), whereas FPC AS is a first order method based on forward-
backward operator splitting. Moreover, we also report the numerical performance of
two commonly used algorithms for solving lasso problems: the accelerated proximal
gradient (APG) algorithm [37, 2] as implemented by Liu, Ji, and Ye in SLEP3 [32]
and the alternating direction method of multipliers (ADMM) [19, 20]. For the pur-
pose of comparisons, we also test the linearized ADMM (LADMM) [55]. We have
implemented both ADMM and LADMM in MATLAB with the step length set to
be 1.618. Although the existing solvers can perform impressively well on some easy-
to-solve sparse reconstruction problems, as one will see later, they lack the ability to
efficiently solve difficult problems such as the large-scale regression problems when
the data A is badly conditioned.

For testing purposes, the regularization parameter λ in the lasso problem (1) is
chosen as

λ = λc‖A∗b‖∞,

where 0 < λc < 1. In our numerical experiments, we measure the accuracy of an
approximate optimal solution x̃ for (1) by using the following relative KKT residual:

η =
‖x̃− proxλ‖·‖1(x̃−A∗(Ax̃− b))‖

1 + ‖x̃‖+ ‖Ax̃− b‖
.

1http://www.maths.ed.ac.uk/ERGO/mfipmcs/
2http://www.caam.rice.edu/∼optimization/L1/FPC AS/
3http://yelab.net/software/SLEP/
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For a given tolerance ε > 0, we will stop the tested algorithms when η < ε. For
all the tests in this section, we set ε = 10−6. The algorithms will also be stopped
when they reach the maximum number of iterations (1000 iterations for our algorithm
and mfIPM, and 20000 iterations for FPC AS, APG, ADMM, and LADMM) or the
maximum computation time of 7 hours. All the parameters for mfIPM, FPC AS,
and APG are set to the default values. All our computational results are obtained
by running MATLAB (version 8.4) on a Windows workstation (16-core, Intel Xeon
E5-2650 @ 2.60GHz, 64 G RAM).

4.1. Numerical results for large-scale regression problems. In this sub-
section, we test all the algorithms with the test instances (A, b) obtained from large-
scale regression problems in the LIBSVM data sets [8]. These data sets are collected
from 10-K Corpus [28] and the UCI data repository [30]. For computational efficiency,
zero columns in A (the matrix representation of A) are removed. As suggested in
[23], for the data sets pyrim, triazines, abalone, bodyfat, housing, mpg, and
space ga, we expand their original features by using polynomial basis functions over
those features. For example, the last digit in pyrim5 indicates that an order 5 poly-
nomial is used to generate the basis functions. This naming convention is also used
in the rest of the expanded data sets. These test instances, shown in Table 1, can be
quite difficult in terms of the problem dimensions and the largest eigenvalue of AA∗,
which is denoted as λmax(AA∗).

Table 2 reports the detailed numerical results for Ssnal, mfIPM, FPC AS, APG,
LADMM, and ADMM in solving large-scale regression problems. In the table, m
denotes the number of samples, n denotes the number of features, and “nnz” denotes
the number of nonzeros in the solution x obtained by Ssnal using the following
estimation:

nnz := min

{
k |

k∑
i=1

|x̂i| ≥ 0.999‖x‖1

}
,

where x̂ is obtained by sorting x such that |x̂1| ≥ · · · ≥ |x̂n|. An entry marked as
“Error” indicates that the algorithm breaks down due to some internal errors. The
computation time is in the format of “hours:minutes:seconds,” and the entry “00” in
the column means that the computation time is less than 0.5 second.

One can observe from Table 2 that all the tested first order algorithms except
ADMM, i.e., FPC AS, APG, and LADMM fail to solve most of the test instances

Table 1
Statistics of the UCI test instances.

Probname m;n λmax(AA∗)
E2006.train 16087;150348 1.91e+05

log1p.E2006.train 16087;4265669 5.86e+07

E2006.test 3308;72812 4.79e+04

log1p.E2006.test 3308;1771946 1.46e+07

pyrim5 74;169911 1.22e+06

triazines4 186;557845 2.07e+07

abalone7 4177;6435 5.21e+05

bodyfat7 252;116280 5.29e+04

housing7 506;77520 3.28e+05

mpg7 392;3432 1.28e+04

space ga9 3107;5005 4.01e+03
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to the required accuracy after 20000 iterations or 7 hours. In particular, FPC AS
fails to produce a reasonably accurate solution for all the test instances. In fact, for
3 test instances, it breaks down due to some internal errors. This poor performance
indicates that these first order methods cannot obtain reasonably accurate solutions
when dealing with difficult large-scale problems. While ADMM can solve most of the
test instances, it needs much more time than Ssnal. For example, for the instance
housing7 with λc = 10−3, we can see that Ssnal is at least 330 times faster than
ADMM. In addition, Ssnal can solve the instance triazines4 in 30 seconds while
ADMM reaches the maximum of 20000 iterations and consumes about 2 hours but
only produces a rather inaccurate solution.

On the other hand, one can observe that the two second order information based
methods Ssnal and mfIPM perform quite robustly despite the huge dimensions and
the possibly badly conditioned data sets. More specifically, Ssnal is able to solve the
instance log1p.E2006.train with approximately 4.3 million features in 20 seconds
(λc = 10−3). Among these two algorithms, clearly, Ssnal is far more efficient than
the specialized interior-point method mfIPM for all the test instances, especially for
large-scale problems where the factor can be up to 300 times faster. While Ssnal
can solve all the instances to the desired accuracy, mfIPM fails on 6 instances (with
high-dimensional features) out of 22. We also note that mfIPM can only reach a
solution with the accuracy of 10−1 when it fails to compute the corresponding Newton
directions. These facts indicate that the nonsmooth approach employed by Ssnal is
far superior compared to the interior point method in exploiting the sparsity in the
generalized Hessian. The superior numerical performance of Ssnal indicates that it
is a robust, high-performance solver for high-dimensional lasso problems.

As pointed out by one referee, the polynomial expansion in our data-processing
step may affect the scaling of the problems. Since first order solvers are not affine in-
variant, this scaling may affect their performance. Hence, we normalize each column of
the matrix A (the matrix representation of A) to have unit norm and correspondingly
change the variables. This scaling step also changes the regularization parameter λ
accordingly to a nonuniform weight vector. Since it is not easy to call FPC AS when
λ is not a scalar, based on the recommendation of the referee we use another popular
active-set based solver PSSas4 [44] to replace FPC AS for the testing. All the param-
eters for PSSas are set to the default values. In our tests, PSSas will be stopped when
it reaches the maximum number of 20000 iterations or the maximum computation
time of 7 hours. We note that by default PSSas will terminate when its progress is
smaller than the threshold 10−9.

The detailed numerical results for Ssnal, mfIPM, PSSas, APG, LADMM, and
ADMM with the normalization step in solving the large-scale regression problems are
listed in Table 3. From Table 3, one can easily observe that the simple normalization
technique does not change the conclusions based on Table 2. The performance of
Ssnal is generally invariant with respect to the scaling and Ssnal is still much faster
and more robust than other solvers. Meanwhile, after the normalization, mfIPM
can solve 2 more instances to the required accuracy. On the other hand, APG and
the ADMM type of solvers (i.e., LADMM and ADMM) perform worse than the un-
scaled case. Furthermore PSSas can only solve 6 out of 22 instances to the required
accuracy. In fact, PSSas fails on all the test instances when λc = 10−4. For the in-
stance triazines4, it consumes about 6 hours but only generates a poor solution with
η = 3.2× 10−3. (Actually, we also run PSSas on these test instances without scaling

4https://www.cs.ubc.ca/schmidtm/Software/thesis.html
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and obtain similar performances. Detailed results are omitted to conserve space.)
Therefore, we can safely conclude that the simple normalization technique employed
here may not be suitable for general first order methods.

4.2. Numerical results for Sparco collection. In this subsection, the test
instances (A, b) are taken from 8 real-valued sparse reconstruction problems in the
Sparco collection [5]. For testing purposes, we introduce a 60dB noise to b (as in
[18]) by using the MATLAB command b = awgn(b,60,’measured’). For these
test instances, the matrix representations of the linear maps A are not available.
Hence, ADMM will not be tested in this subsection, as it will be extremely expensive,
if not impossible, to compute and factorize I + σAA∗.

In Table 4, we report the detailed computational results obtained by Ssnal,
mfIPM, FPC AS, APG, and LADMM in solving two large-scale instances srcsep1
and srcsep2 in the Sparco collection. Here, we test five choices of λc, i.e., λc =
10−0.8, 10−1, 10−1.2, 10−1.5, 10−2. As one can observe, as λc decreases, the number
of nonzeros (nnz) in the computed solution increases. In the table, we list some
statistics of the test instances, including the problem dimensions (m,n) and the largest
eigenvalue ofAA∗ (λmax(AA∗)). For all the tested algorithms, we present the iteration
counts, the relative KKT residuals as well as the computation times (in the format
of hours:minutes:seconds). One can observe from Table 4 that all the algorithms
perform very well for these test instances with small Lipschitz constants λmax(AA∗).
As such, Ssnal does not have a clear advantage, as shown in Table 2. Moreover,
since the matrix representations of the linear maps A and A∗ involved are not stored
explicitly (i.e., these linear maps can only be regarded as black-box functions), the
second order sparsity can hardly be fully exploited. Nevertheless, our Algorithm
Ssnal is generally faster than mfIPM, APG, and LADMM, while it is comparable
with the fastest algorithm, FPC AS.

In Table 5, we report the numerical results obtained by Ssnal, mfIPM, FPC AS,
APG, and LADMM in solving various instances of the lasso problem (1). For simplic-
ity, we only test two cases with λc = 10−3 and 10−4. We can observe that FPC AS

Table 4
The performance of Ssnal, mfIPM, FPC AS, APG, and LADMM on srcsep1 and srcsep2

(accuracy ε = 10−6, noise 60dB). In the table, a = Ssnal, b = mfIPM, c = FPC AS, d = APG,
and e = LADMM.

Iteration η Time

λc; nnz a | b | c | d | e a | b | c | d | e a | b | c | d | e

srcsep1, m = 29166, n = 57344, λmax(AA∗) = 3.56

0.16 ; 380 14 | 28 | 42 | 401 | 89 6.4-7| 9.0-7 | 2.7-8 | 5.3-7 | 9.5-7 07 | 09 | 05 | 15 | 07

0.10 ; 726 16 | 38 | 42 | 574 | 161 4.7-7| 5.9-7 | 2.1-8 | 2.8-7 | 9.6-7 11 | 15 | 05 | 22 | 13

0.06 ; 1402 19 | 41 | 63 | 801 | 393 1.5-7| 1.5-7 | 5.4-8 | 6.3-7 | 9.9-7 18 | 18 | 10 | 30 | 32

0.03 ; 2899 19 | 56 | 110 | 901 | 337 2.7-7| 9.4-7 | 7.3-8 | 9.3-7 | 9.9-7 28 | 53 | 16 | 33 | 28

0.01 ; 6538 17 | 88 | 223 | 1401 | 542 7.1-7| 5.7-7 | 1.1-7 | 9.9-7 | 9.9-7 1:21 | 2:15 | 34 | 53 | 45

srcsep2, m = 29166, n = 86016, λmax(AA∗) = 4.95

0.16 ; 423 15 | 29 | 42 | 501 | 127 3.2-7| 2.1-7 | 1.9-8 | 4.9-7 | 9.4-7 14 | 13 | 07 | 25 | 15

0.10 ; 805 16 | 37 | 84 | 601 | 212 8.8-7| 9.2-7 | 2.6-8 | 9.6-7 | 9.7-7 21 | 19 | 16 | 30 | 26

0.06 ; 1549 19 | 40 | 84 | 901 | 419 1.4-7| 3.1-7 | 5.4-8 | 4.7-7 | 9.9-7 32 | 28 | 18 | 44 | 50

0.03 ; 3254 20 | 69 | 128 | 901 | 488 1.3-7| 6.6-7 | 8.9-7 | 9.4-7 | 9.9-7 1:06 | 1:33 | 26 | 44 | 59

0.01 ; 7400 21 | 94 | 259 | 2201 | 837 8.8-7| 4.0-7 | 9.9-7 | 8.8-7 | 9.3-7 1:42 | 5:33 | 59 | 2:05 | 1:43
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Table 5
The performance of Ssnal, mfIPM, FPC AS, APG, and LADMM on 8 selected sparco problems

(accuracy ε = 10−6, noise 60dB). In the table, a = Ssnal, b = mfIPM, c = FPC AS, d = APG,
and e = LADMM.

λc nnz η Time

probname a | b | c | d | e a | b | c | d | e

m;n

blknheavi 10−3 12 5.7-7 | 9.2-7 | 1.3-1 | 2.0-6 | 9.9-7 01 | 01 | 55 | 08 | 06

1024;1024 10−4 12 9.2-8 | 8.7-7 | 4.6-3 | 8.5-5 | 9.9-7 01 | 01 | 49 | 07 | 07

srcsep1 10−3 14066 1.6-7 | 7.3-7 | 9.7-7 | 8.7-7 | 9.7-7 5:41 | 42:34 | 13:25 | 1:56 | 4:16

29166;57344 10−4 19306 9.8-7 | 9.5-7 | 9.9-7 | 9.9-7 | 9.5-7 9:28 | 3:31:08 | 32:28 | 2:50 | 13:06

srcsep2 10−3 16502 3.9-7 | 6.8-7 | 9.9-7 | 9.7-7 | 9.8-7 9:51 | 1:01:10 | 16:27 | 2:57 | 8:49

29166;86016 10−4 22315 7.9-7 | 9.5-7 | 1.0-3 | 9.6-7 | 9.5-7 19:14 | 6:40:21 | 2:01:06 | 4:56 | 16:01

srcsep3 10−3 27314 6.1-7 | 9.6-7 | 9.9-7 | 9.6-7 | 9.9-7 33 | 6:24 | 8:51 | 47 | 49

196608;196608 10−4 83785 9.7-7 | 9.9-7 | 9.9-7 | 9.9-7 | 9.9-7 2:03 | 1:42:59 | 3:40 | 1:15 | 3:06

soccer1 10−3 4 1.8-7 | 6.3-7 | 5.2-1 | 8.4-7 | 9.9-7 01 | 03 | 13:51 | 2:35 | 02

3200;4096 10−4 8 8.7-7 | 4.3-7 | 5.2-1 | 3.3-6 | 9.6-7 01 | 02 | 13:23 | 3:07 | 02

soccer2 10−3 4 3.4-7 | 6.3-7 | 5.0-1 | 8.2-7 | 9.9-7 00 | 03 | 13:46 | 1:40 | 02

3200;4096 10−4 8 2.1-7 | 1.4-7 | 6.8-1 | 1.8-6 | 9.1-7 01 | 03 | 13:27 | 3:07 | 02

blurrycam 10−3 1694 1.9-7 | 6.5-7 | 3.6-8 | 4.1-7 | 9.4-7 03 | 09 | 03 | 02 | 07

65536;65536 10−4 5630 1.0-7 | 9.7-7 | 1.3-7 | 9.7-7 | 9.9-7 05 | 1:35 | 08 | 03 | 29

blurspike 10−3 1954 3.1-7 | 9.5-7 | 7.4-4 | 9.9-7 | 9.9-7 03 | 05 | 6:38 | 03 | 27

16384;16384 10−4 11698 3.5-7 | 7.4-7 | 8.3-5 | 9.8-7 | 9.9-7 10 | 08 | 6:43 | 05 | 35

performs very well when it succeeds in obtaining a solution with the desired accu-
racy. However, it is not robust in that it fails to solve 4 out of 8 and 5 out of 8
problems when λc = 10−3 and 10−4, respectively. For a few cases, FPC AS can
only achieve a poor accuracy (10−1). The same nonrobustness also appears in the
performance of APG. This nonrobustness is in fact closely related to the value of
λmax(AA∗). For example, both FPC AS and APG fail to solve a rather small prob-
lem blknheavi (m = n = 1024) whose corresponding λmax(AA∗) = 709. On the
other hand, LADMM, Ssnal, and mfIPM can solve all the test instances success-
fully. Nevertheless, in some cases, LADMM requires much more time than Ssnal.
One can also observe that for large-scale problems, Ssnal outperforms mfIPM by a
large margin (sometimes up to a factor of 100). This also demonstrates the power
of Ssn based augmented Lagrangian methods over interior-point methods in solv-
ing large-scale problems. Due to the high sensitivity of the first order algorithms to
λmax(AA∗), one can safely conclude that the first order algorithms can only be used to
solve problems with relatively small λmax(AA∗). Moreover, in order to obtain efficient
and robust algorithms for lasso problems or more general convex composite optimiza-
tion problems, it is necessary to carefully exploit the second order information in the
algorithmic design.

5. Conclusion. In this paper, we have proposed an inexact augmented La-
grangian method of an asymptotic superlinear convergence rate for solving the large-
scale convex composite optimization problems of the form (P). It is particularly well
suited for solving `1-regularized least squares (LS) problems. With the intelligent
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incorporation of the semismooth Newton method, our Algorithm Ssnal is able to fully
exploit the second order sparsity of the problems. Numerical results have convinc-
ingly demonstrated the superior efficiency and robustness of our algorithm in solving
large-scale `1-regularized LS problems. Based on extensive numerical evidence, we
firmly believe that our algorithmic framework can be adapted to design robust and
efficient solvers for various large-scale convex composite optimization problems.
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