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Abstract

The octagonal shrinkage and clustering algorithm for regression (OSCAR), equipped with
the `1-norm and a pair-wise `∞-norm regularizer, is a useful tool for feature selection
and grouping in high-dimensional data analysis. The computational challenge posed by
OSCAR, for high dimensional and/or large sample size data, has not yet been well resolved
due to the non-smoothness and non-separability of the regularizer involved. In this paper,
we successfully resolve this numerical challenge by proposing a sparse semismooth Newton-
based augmented Lagrangian method to solve the more general SLOPE (the sorted L-one
penalized estimation) model. By appropriately exploiting the inherent sparse and low-rank
property of the generalized Jacobian of the semismooth Newton system in the augmented
Lagrangian subproblem, we show how the computational complexity can be substantially
reduced. Our algorithm offers a notable computational advantage in the high-dimensional
statistical regression settings. Numerical experiments are conducted on real data sets, and
the results demonstrate that our algorithm is far superior, in both speed and robustness,
to the existing state-of-the-art algorithms based on first-order iterative schemes, including
the widely used accelerated proximal gradient (APG) method and the alternating direction
method of multipliers (ADMM).
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1. Introduction

Feature selection and grouping is highly beneficial in learning with high-dimensional data
containing spurious features, and thus has found wide applications in statistics (Hocking,
1976; Miller, 2002), computer vision (Mairal et al., 2014), signal processing (Chen et al.,
1998; Tropp, 2006; Figueiredo et al., 2007), bioinformatics (Wang et al., 2005; Rapaport
et al., 2007). The octagonal shrinkage and clustering algorithm for regression (OSCAR)
proposed by (Bondell and Reich, 2008), serves as an efficient sparse modeling tool with
automatic feature grouping by employing the `1-norm regularizer together with a pairwise
`∞ penalty. The OSCAR penalized problem for linear regression with the least squares loss
function takes the form of

min
x∈Rn

1

2
‖Ax− b‖2 + w1‖x‖1 + w2

∑
i<j

max {|xi|, |xj |} , (1)

where b ∈ Rm is the response vector, A ∈ Rm×n is the design matrix, x ∈ Rn is the vector
of unknown coefficients to be estimated, w1 and w2 are two nonnegative tuning parameters
for the tradeoff of the sparsity and equality of coefficients for correlated features promoted
by the `1-norm and the pairwise `∞ term, respectively. Note that in high dimensional
statistical regressions, we often have n� m, that is, the number of features is larger than
the sample size.

The OSCAR penalized problem (1) is a convex optimization problem. When the pair-
wise `∞ term is removed, the problem (1) is reduced to the well-known LASSO model
proposed by Tibshirani (1996) in statistics and a rich variety of algorithms have been pro-
posed, most of them have taken the advantage of the componentwise separability of the
`1-norm in their algorithmic design. With the additional pairwise `∞ term, the problem (1)
becomes understandably more challenging due to the lack of separability of the OSCAR reg-
ularization term. In Bondell and Reich (2008), the traditional quadratic programming (QP)
and sequential quadratic programming (SQP) based algorithms are employed for solving (1)
with numerical implementations limited to small data sets. Efficient numerical algorithms
are in dire need especially for large scale problems resulting from the explosion in the size
and complexity of modern data sets in practical applications. In Zhong and Kwok (2012),
the accelerated proximal gradient (APG) method, proposed by Nesterov (1983) and coined
as FISTA for the `1-norm regularization problem by Beck and Teboulle (2009), is adopted
for solving relatively large scale instances by taking advantage of the efficient computation
of the proximal mapping of the OSCAR penalty function, which is explained in the next
paragraph.

We begin by introducing some notation. For a given vector x ∈ Rn, denote |x| to be
the vector obtained from x by taking the absolute value of its components. Let |x|(i) be the
i-th largest component of |x| such that |x|(1) ≥ |x|(2) · · · ≥ |x|(n). With the above notation,
the OSCAR penalty can be written as

w1‖x‖1 + w2

n∑
i=1

max
i<j
{|xi|, |xj |} =

n∑
i=1

λi|x|(i), (2)

where λi = w1 + w2(n− i), i = 1, . . . , n, satisfy the property that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
The resulting regularization function κλ(x) :=

∑n
i=1 λi|x|(i) for any x ∈ Rn, termed as the
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decreasing weighted sorted `1-norm (DWSL1) by Zeng and Figueiredo (2014b), is exactly
the weighted Ky Fan norm as studied in Wu et al. (2014) as long as λ1 > 0. The computation
of the proximal mapping of DWSL1 has been studied in the literature (see, e.g., Zeng and
Figueiredo, 2014a,b; Bogdan et al., 2015). It is heavily related to the pool adjacent violators
algorithm (PAVA) for solving isotonic regression problems (Barlow and Brunk, 1972) in the
field of ordered statistics (see, e.g., Robertson et al., 1988; Silvapulle and Sen, 2011).

As a more general framework of the OSCAR problem (1), the least-squares problem with
the DWSL1 regularization term is called the sorted L-one penalized estimation (SLOPE),
which has been shown to have good performance for controlling the false discovery rate
(FDR) in sparse statistical models in Bogdan et al. (2015). The APG method is employed
in the latter paper for solving the SLOPE model by relying on the efficient numerical
evaluation of the proximal mapping of the sorted `1-norm. As can be seen, most of the
existing methods for solving the OSCAR model and the more general SLOPE model in the
large scale settings are based on the first-order information of the underlying nonsmooth
optimization model. However, as demonstrated by the works of Li et al. (2018a) for the
LASSO and Li et al. (2018b) for the fused LASSO, there are compelling evidences to suggest
that one can design a much more efficient algorithm if one can fully exploit the inherent
second-order sparsity and low-rank property present in the OSCAR model or the more
general SLOPE model. In this paper, we will show how this can be achieved by focusing
on the following SLOPE model:

min
x∈Rn

1

2
‖Ax− b‖2 +

n∑
i=1

λi|x|(i) (3)

with parameters λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and λ1 > 0. Note that here the parameter vector
λ is a general vector satisfying the previous condition. It needs not be restricted to the
parameter vector associated with the OSCAR penalty in (2).

The main goal of this paper is to design a semismooth Newton-based augmented La-
grangian method (Newt-ALM for short) for solving the SLOPE model (2) from the dual
perspective. As a main contribution of this paper, in Section 2 and Subsection 3.4, we
will see that one can extract some special low-rank and sparsity structures in the gen-
eralized Jacobian of the proximal mapping associated with the sorted `1-norm. In turn,
the Hessian matrices involved in the ALM subproblems also inherit the special structures
which we can wisely exploit to design a very efficient semismooth Newton method to solve
the subproblems. The latter fact, combined with the fast linear convergence of the aug-
mented Lagrangian method which we will establish in Section 3, will enable our Newt-ALM
algorithm to perform highly efficiently later in the numerical experiments on large scale
instances. The comparison of our algorithm with the inexact ADMM (iADMM) proposed
in Chen et al. (2017) and the APG method implemeneted in the SLOPE solver in Bogdan
et al. (2015) for solving OSCAR problems indicates that our Newt-ALM can outperform
these state-of-the-art first-order algorithms substantially.

The remaining parts of the paper are organized as follows. In Section 2, some analytical
properties of the proximal mapping of the sorted `1-norm and their generalized Jacobians
are reviewed and developed. These properties are critical for the subsequent analysis on
the local convergence rate of the algorithm in the next section. Section 3 is dedicated to
the semismooth Newton augmented Lagrangian method and its convergence analysis. In
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addition, we also extract the low-rank and sparsity structures present in the generalized
Jacobians of the proximal mapping of the sorted `1-norm. These structures are crucial for
the efficient numerical computation in the semismooth Newton method. Numerical results
are reported in Section 4 to demonstrate the high efficiency and robustness of our algorithm.
We conclude our paper in Section 5. Technical proofs are provided in Appendix A.

2. The generalized Jacobian of the proximal mapping of the DWSL1
norm

As mentioned in the introduction, a key factor contributing to the high computational
efficiency of our proposed Newt-ALM is the characterization of the generalized Jacobian
matrix of the proximal mapping for the DWSL1 norm (or sorted `1-norm). In particular,
the characterization will enable us to extract the underlying low-rank and sparsity structures
present in the generalized Jacobian which we can fully exploit for computational efficiency
within the semismooth Newton method for solving the subproblem in each iteration of the
augmented Lagrangian method. The purpose of this section is to present the characteri-
zation of the generalized Jacobain of the proximal mapping for the DWSL1 norm and its
analytical properties.

Let Πs
n be the set of all signed permutation matrices in Rn×n. Recall that an n × n

signed permutation matrix is a matrix whose rows are the permutation of those of the n×n
identity matrix and the only non-zero element in each row can take the value ±1. Note
that the cardinality of Πs

n is 2nn!. For any given vector y ∈ Rn, denote

Πs(y) :=
{
π ∈ Πs

n | (πy)i = |y|(i), i = 1, . . . , n
}
.

Let κλ(x) :=
∑n

i=1 λi|x|(i) with λ1 ≥ · · · ≥ λn ≥ 0. The proximal mapping of κλ is

Proxκλ(y) = arg min
x

{
1

2
‖x− y‖2 + κλ(x)

}
, ∀y ∈ Rn.

Since the involved objective function is strongly convex (see, e.g., Wu et al., 2014; Bogdan
et al., 2015) and piecewise quadratic, the proximal mapping Proxκλ is then piecewise affine,
a result known from Sun (1986) or (Rockafellar and Wets, 1998, Proposition 12.30). Define

xλ(w) := arg min
x

{
1

2
‖x− w‖2 + λ>x | Bx ≥ 0

}
, w ∈ <n, (4)

where
Bx = [x1 − x2, x2 − x3, . . . , xn−1 − xn, xn]> ∈ Rn.

It is known from (Bogdan et al., 2015, Proposition 2.2) that for any y ∈ Rn and π ∈ Πs(y),
Proxκλ(πy) = xλ(πy). Furthermore, for any λ ∈ Rn+ satisfying λ1 ≥ · · · ≥ λn, and any
vector y ∈ Rn, we have

Proxκλ(y) = π−1xλ(πy), ∀π ∈ Πs(y) ⊆ Πs
n. (5)

Given the structure of xλ(·), one can see that the Jacobian of xλ(·) at any w ∈ Rn, as
constructed in (Han and Sun, 1997), is given by

P(w) =

{
P ∈ Rn×n | P = I −B>Γ

(
BΓB

>
Γ

)−1
BΓ,Γ ∈ K(w)

}
. (6)
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Here
K(w) := {Γ ⊆ {1, . . . , n} | Supp(zλ(w)) ⊆ Γ ⊆ I(xλ(w))} ,

where zλ(w) = (BB>)−1B(w − λ− xλ(w)) is an optimal dual multiplier vector associated
with the inequality constraints in (4), I(xλ(w)) = {i ∈ {1, . . . , n} | (Bxλ(w))i = 0} is the
set of active indices (the indices of the active constraints) in (4), and BΓ is the submatrix
obtained by extracting the rows of B with indices in Γ. In the above, Supp(zλ(w)) is the
support of zλ(w), i.e., the index set of nonzero compomonents of zλ(w). Observe that each
element of P(w) is the projection onto the null space of BΓ for some index set Γ sandwiched
between the set of active indices I(xλ(w)) and Supp(zλ(w)).

It is known from Lemma 2.1 in Han and Sun (1997) that for any w ∈ Rn, there exists
a neighborhood W of w such that for all w′ ∈W ,

K(w′) ⊆ K(w),
P(w′) ⊆ P(w),
xλ(w′)− xλ(w)− P (w′ − w) = 0, ∀P ∈ P(w′).

(7)

Define the multifunction M : Rn ⇒ Rn×n by

M(y) :=
{
M ∈ Rn×n |M = π−1Pπ, π ∈ Πs(y), P ∈ P(πy)

}
. (8)

Recall that the set-valued mapping M : <n ⇒ <n×n is said to be upper semicontin-
uous (Aubin and Frankowska, 1990, Definition 1.4.1) at a certain point y ∈ <n if for any
neighborhood N of M(y), there exists a constant ρ > 0 such that

M(y′) ⊂ N , ∀y′ ∈ B(y, ρ) :=
{
y′ ∈ <n | ‖y′ − y‖ ≤ ρ

}
.

Then we have the following theorem which is adapted from (Li et al., 2018b, Proposition
7). Its proof is given in Appendix A.

Theorem 1 Let λ ∈ Rn+ be such that λ1 ≥ λ2 ≥ · · · ≥ λn. Then M(·) is a nonempty
and compact valued, upper semicontinuous multifunction, and for any given y ∈ Rn, every
M ∈ M(y) is symmetric and positive semidefinite. Moreover, there exists a neighborhood
U of y such that for all y′ ∈ U ,

Proxκλ(y′)− Proxκλ(y)−M(y′ − y) = 0, ∀M ∈M(y′). (9)

Example. Next, we present an example to illustrate the result in equation (9) of
Theorem 1 explicitly. Consider the vector y = [4, 3, 0]> and the parameter vector λ =
[3, 1, 1]>. For any y′ = [y′1, y

′
2, y
′
3]> that is sufficiently close to y, say ‖y′ − y‖ ≤ 0.1, we can

show by using the pool adjacent violators algorithm that

Proxκλ(y) =

 1.5
1.5
0

 , Proxκλ(y′) =


y′1+y′2−4

2
y′1+y′2−4

2
0

 .
Thus

Proxκλ(y′)− Proxκλ(y) = M(y′ − y) with M =

 1/2 1/2 0
1/2 1/2 0
0 0 0

 .
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In this case M(y′) = {M}.
Next, we discuss the semismoothness property of the proximal mapping Proxκλ . Recall

from Mifflin (1977); Kummer (1988); Qi and Sun (1993); Sun and Sun (2002) or directly from
(Li et al., 2018b, Definition 1) that the semismoothness with respect to a given nonempty
compact valued, upper semicontinuous multifunction is defined as follows.

Let O ⊆ Rn be any given open set, K : O ⇒ Rm×n be a nonempty compact valued,
upper semicontinuous multifunction, and F : O → Rm be a locally Lipschitz continuous
function, i.e., for any x ∈ O, there exist positive constants Lx and δx such that for all
y, y′ ∈ O satisfying ‖y−x‖ ≤ δx and ‖y′−x‖ ≤ δx, we get ‖F (y)−F (y′)‖ ≤ Lx‖y− y′‖. F
is said to be semismooth at x ∈ O with respect to the multifunction K if F is directionally
differentiable at x and for any V ∈ K(x+ d) with d→ 0,

F (x+ d)− F (x)− V d = o(‖d‖).

Let γ be a positive scalar. F is said to be γ-order semismooth (stongly semismooth if γ = 1)
at x ∈ O with respect to K if F is directionally differentiable at x and for any V ∈ K(x+d)
with d→ 0,

F (x+ d)− F (x)− V d = O(‖d‖1+γ).

F is said to be a semismooth (γ-order semismooth, stongly) function on O with respect
to K if F is semismooth (γ-order semismooth, strongly semismooth) everywhere in O with
respect to K. It is known from Theorem 1 that Proxκλ is γ-order semismooth on Rn with
respect to M for any given positive γ.

3. A semismooth Newton augmented Lagrangian method

3.1 The algorithmic framework

Given A ∈ Rm×n, b ∈ Rm and λ1 ≥ · · · ≥ λn ≥ 0 with λ1 > 0, the DWSL1 regularized least
squares problem can be rewritten as

(P ) max
x∈Rn

{
−f(x) := −1

2
‖Ax− b‖2 − κλ(x)

}
. (10)

Its dual problem takes the form of

(D) min
y∈Rm, ξ∈Rn

{
1

2
‖y‖2 + 〈b, y〉+ κ∗λ(ξ)

∣∣∣A>y + ξ = 0

}
, (11)

where κ∗λ(v) := supx∈Rn{〈x, v〉 − κλ(x)} is the Fenchel conjugate function of κλ. For any
given scalar σ > 0, the corresponding reduced augmented Lagrangian function associated
with (D) is defined by

Lσ(y;x) := inf
ξ∈Rn

{
1

2
‖y‖2 + 〈b, y〉+ κ∗λ(ξ)− 〈A>y + ξ, x〉+

σ

2
‖A>y + ξ‖2

}
=

1

2
‖y‖2 + 〈b, y〉+ inf

ξ∈Rn

{
κ∗λ(ξ) +

σ

2
‖A>y + ξ − σ−1x‖2 − 1

2σ
‖x‖2

}
=

1

2
‖y‖2 + 〈b, y〉 − 1

2σ
‖x‖2 + σφκ∗λ/σ

(
σ−1x−A>y

)
,
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where φκ∗λ/σ is the Moreau-Yosida regularization of κ∗λ/σ defined as

φκ∗λ/σ(x) := min
u∈Rn

{
1

σ
κ∗λ(u) +

1

2
‖u− x‖2

}
, ∀x ∈ Rn.

The inexact augmented Lagrangian method (Rockafellar, 1976b) together with the semis-
mooth Newton method will be employed to solve (D) with the algorithmic framework as
described in Algorithm 1. Note that the most expensive part in each iteration of the ALM
is in solving the subproblem in Step 1.

Algorithm 1: An inexact augmented Lagrangian method for (D) (Newt-ALM)

Choose σ0 > 0 and
(
y0, x0

)
∈ Rm ×Rn . For k = 0, 1, . . ., perform the following steps

in each iteration:
Step 1. Compute yk+1 ≈ arg min

y∈Rm

{
Ψk(y) := Lσk(y;xk)

}
;

Step 2. Compute xk+1 = Proxσkκλ
(
xk − σkA>yk+1

)
;

Step 3. Update σk+1 ↑ σ∞ ≤ ∞.

The stopping criteria for the approximation in Step 1 of the inexact augmented La-
grangian method have been well discussed in Rockafellar (1976b,a). Given two summable
sequences of nonnegative numbers, {εk}k≥0 and {δk}k≥0, and a nonnegative convergent
sequence {δ′k}k≥0 with limit 0, the stopping criteria can be simplified as follows in our case:

(A) ‖∇Ψk(y
k+1)‖ ≤ εk/

√
σk;

(B1) ‖∇Ψk(y
k+1)‖ ≤ (δk/

√
σk) ‖xk+1 − xk‖;

(B2) ‖∇Ψk(y
k+1)‖ ≤ (δ′k/σk) ‖xk+1 − xk‖.

3.2 Convergence theory

The piecewise linear-quadratic property of f as defined in (10) leads to the polyhedral
multifunction ∂f (the sub-differential of f). By a fundamental result in Robinson (1981),
this further implies that ∂f satisfies the error bound condition with a common modulus, say
af . Specifically, the error bound condition states that for the optimal solution set (∂f)−1(0)
of (P), which we denote by S∗, there exists some ε > 0 such that for any x ∈ Rn satisfying
dist(0, ∂f(x)) ≤ ε, it holds that

dist(x, S∗) ≤ af dist(0, ∂f(x)). (12)

Similarly, consider the Lagrangian function associated with (D) which is defined by

l(y;x) :=
1

2
‖y‖2 + 〈b, y〉+ κ∗λ(ξ)− 〈A>y + ξ, x〉.

For the polyhedral multifunction Tl defined as Tl(y, x) = {(y′, x′) | (y′,−x′) ∈ ∂l(y;x)},
there exist some al and ε′ > 0 such that for any (y, x) ∈ Rm×Rn satisfying dist(0, Tl(y, x)) ≤
ε′, it has

dist ((y, x), {y∗} × S∗) ≤ al dist(0, Tl(y, x)), (13)

7
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where y∗ is the unique optimal solution of (D). Following the results on global and local
convergence of the ALM as stated in (Rockafellar, 1976b,a; Li et al., 2018a,b), we can readily
obtain the following convergence results on Algorithm 1 with the above stopping criteria.
As the proofs of the theorems are almost the same as those appeared in (Li et al., 2018a,
Theorems 3.2 and 3.3), we will omit them here.

Theorem 2 (Global convergence) Let
{

(yk, xk)
}

be the infinite sequence generated by
Algorithm 1 with stopping criterion (A) applied to Ψk in Step 1. Then

{
xk
}

converges to
an optimal solution to (P ), and

{
yk
}

converges to the unique optimal solution of (D).

Theorem 3 (Local linear-rate convergence) Let
{

(yk, xk)
}

be the infinite sequence gen-
erated by Algorithm 1 with stopping criteria (A) and (B1) applied to Ψk in Step 1. Then
for all k sufficiently large,

dist
(
xk+1, S∗

)
≤ θkdist

(
xk, S∗

)
,

where

θk :=

 af√
a2
f + σ2

k

+ 2δk

 1

1− δk
→ θ∞ :=

af√
a2
f + σ2

∞

< 1

as k → +∞, and af is from (12). Additionally, if the criterion (B2) is also adopted, then
for all k sufficiently large,

‖yk+1 − y∗‖ ≤ θ′k‖xk+1 − xk‖,

where

θ′k :=
al(1 + δ′k)

σk
→ al

σ∞

as k → +∞, and al is from (13).

Remark 4 (Global linear-rate convergence) Besides the local linear-rate convergence
as stated in Theorem 3, one can also obtain the global Q-linear convergence of the primal
sequence {xk} and the global R-linear convergence of the dual infeasibility and the duality
gaps for the sequence generated by Algorithm 1 based on (Cui et al., 2018, Proposition 2
and Lemma 3) or by mimicking the proofs of (Zhang et al., 2018, Theorem 4.1 and Remark
4.1) since problem (P ) possesses the following property: For any positive scalar r, there
exists t > 0 such that

dist(x, S∗) ≤ tdist(0, ∂f(x)), ∀x ∈ Rn satisfying dist(x, S∗) ≤ r,

(see, Zhang et al., 2018, Proposition 2.2). We omit the details here.

3.3 The semismooth Newton method for solving the subproblem in Step 1

It is known from Moreau (1965) or (Rockafellar, 1970, Theorem 31.5) that Ψk is continuously
differentiable and

∇Ψk(y) = y + b−AProxσkκλ(xk − σkA>y), ∀y ∈ Rm.

8
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Since Ψk is strongly convex with bounded level sets, the unique solution of the minimization
subproblem, miny∈Rm Ψk(y), in Step 1 of the ALM can be computed by solving the following
first-order optimality condition

∇Ψk(y) = 0. (14)

For any y ∈ Rm, define

Gk(y) :=
{
V ∈ Rm×m | V = Im + σkAMA>, M ∈M

(
(σk)

−1xk −A>y
)}

,

whereM is defined in (8). The following semismooth Newton (SSN) method is then applied
to solve the semismooth equation (14), as presented in Algorithm 2.

Algorithm 2: A semismooth Newton method for solving (14)

Choose µ ∈ (0, 1/2), η̄ ∈ (0, 1), δ ∈ (0, 1), τ ∈ (0, 1], y0 ∈ Rm. For j = 0, 1, . . .,
perform the following steps in each iteration:

Step 1. (Computing the Newton direction) Choose an element
Mj ∈M((σk)

−1xk −A>yj) and set Vj := Im + σkAMjA
>. Solve the Newton

equation
Vjd = −∇Ψk(y

j) (15)

exactly or by the conjugate gradient (CG) algorithm to get dj such that
‖Vjdj +∇Ψk(y

j)‖ ≤ min{η̄, ‖∇Ψk(y
j)‖1+τ}.

Step 2. (Line search) Set αj = δmj , where mj is the least nonnegative integer m
satisfying

Ψk(y
j + δmdj) ≤ Ψk(y

j) + µδm〈∇Ψk(y
j), dj〉.

Step 3. Set yj+1 = yj + αjd
j .

3.4 Efficient implementations of the semismooth Newton method

In this subsection, the sparsity and low-rank structure of the coefficient matrix in the
linear system (15) will first be uncovered. Then the structures will be exploited through
designing novel numerical techniques for solving the large scale system (15) to achieve
efficient implementations of the semismooth Newton method in Algorithm 2. For any given
index set Γ ⊆ {1, . . . , n}, define the diagonal matrix ΣΓ ∈ Rn×n by

(ΣΓ)ii =

{
1, if i ∈ Γ;
0, otherwise.

Similar to the case in (Li et al., 2018b, Proposition 6), there exists some positive integer N
such that ΣΓ can be rewritten as a block diagonal matrix

ΣΓ = Diag(Λ1, . . . ,ΛN )

with Λi ∈ {Oni , Ini} for each i ∈ {1, . . . , N} where any two consecutive blocks Λi and Λi+1

are not of the same type. Note that Oni denotes the ni by ni zero matrix. Denote

J = {j ∈ {1, . . . , N} | Λj = Inj}.

9
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Then we have

P = In −B>Γ (BΓB
>
Γ )−1BΓ = Diag(P1, . . . , PN ),

where

Pi =


1

ni+1eni+1e
>
ni+1, if i ∈ J and i 6= N ;

Oni , if i ∈ J and i = N ;
Ini−1, if i /∈ J and i 6= 1;
Ini , if i /∈ J and i = 1

with the convention I0 = ∅. This block diagonal matrix P can be further decomposed
into the sum of a sparse diagonal term and a low-rank term as P = H + UUT , where
H = Diag(H1, . . . ,HN ) ∈ Rn×n with

Hi =


Oni+1, if i ∈ J and i 6= N ;
Oni , if i ∈ J and i = N ;
Ini−1, if i /∈ J and i 6= 1;
Ini , if i /∈ J and i = 1

and U ∈ Rn×N with its (k, j)-th entry given by

Ukj =

 1/
√
nj + 1, if

j−1∑
t=1

nt + 1 ≤ k ≤
j∑
t=1

nt + 1 and j ∈ J\{N};

0, otherwise.

Define α := {j ∈ {1, . . . , n} | Hii = 1} = {1, . . . , n}\Γ, and let UJN be the submatrix of
U generated by extracting its columns indexed by J\{N}. Then for any given A ∈ Rm×n,
any Γ ∈ {1, . . . , n} with its corresponding matrix P defined as above, and any signed
permutation matrix π, we have

Aπ>PπA> = Aπ>HπA> +Aπ>UU>πA>

= Aπ(α, :)>π(α, :)A> + ÃŨJN Ũ
>
JN
Ã>

=: V1V
>

1 + V2V
>

2 , (16)

where V1 = Aπ(α, :)>, V2 = ÃŨJN with ŨJN being the submatrix of UJN obtained by

dropping all its zero rows and Ã is the submatrix obtained from the permuted matrix Aπ>

by dropping the columns corresponding to those zero rows in UJN . We call the structure
uncovered in (16) that is inherited from the sparse plus low-rank structure of the generalized
Jacobian P as the second-order sparsity.

Based on the structure in (16), the cost of computing Aπ>PπA> is dramatically reduced
from O(mn(n+m)) by naive computation to O(m2(r1+r2)), where r1 is number of columns
in V1 and r2 is the number of columns in V2. Here r1 refers to the number of inactive
constraints in Bx ≥ 0, and r2 refers to the number of distinct nonzero identical components
in Bx, both of which are generally no larger than the number of nonzero components of
x. In the setting of high-dimensional sparse grouping linear regression models, m, r1, r2

and N are generally much smaller than n, therefore the aforementioned reduction of the
computational cost can be highly significant.

10
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If m is not too large, we can use the (sparse) Cholesky factorization to directly solve the
linear system (15). In the case where r1 + r2 � m, the cost of solving (15) can be further
reduced by using the Sherman-Morrison-Woodbury (SMW) formula as follows:(

Im + σAπ>PπA>
)−1

= (Im +WW>)−1 = Im −W (Ir1+r2 +W>W )−1W>,

where W =
√
σ[V1 V2] ∈ Rm×(r1+r2). In the event when m is extremely large and r1 + r2 is

not small so that using the SMW formula is also expensive, we can use the preconditioned
conjugate gradient (PCG) method to solve the linear system (15).

4. Numerical experiments

The performance of our proposed sparse semismooth Newton-based augmented Lagrangian
method (Newt-ALM) for solving SLOPE (3) and the special case of the OSCAR model in
(1) will be evaluated by comparing it with the following first-order methods:

• the accelerated proximal gradient (APG) algorithm implemented in Bogdan et al.
(2015) with its Matlab code available at http://statweb.stanford.edu/~candes/
SortedL1;

• the semi-proximal alternating direction method of multipliers (sPADMM) (see, e.g.,
Fazel et al. (2013)) applied to the dual problem (with implementation details presented
in Subsection 4.2).

All the computational results are obtained from a desktop computer running on 64-bit Win-
dows Operating System having 4 cores with Intel(R) Core(TM) i5-5257U CPU at 2.70GHz
and 8 GB memory.

4.1 Stopping criteria

To measure the accuracy of an approximate optimal solution (y, x) for the dual problem
(11) and the primal problem (10), the relative duality gap and the dual infeasibility will be
adopted. Specifically, denote

ObjP :=
1

2
‖Ax− b‖2 + κλ(x), and ObjD := −b>y − 1

2
‖y‖2.

Then the relative duality gap can be defined by

ηG :=
|ObjP −ObjD|
max{1, |ObjP |}

.

Note that κ∗λ(·) is actually the indicator function induced by the closed convex set

Cλ :=

z ∣∣∣ ∑
j≤i
|z|(j) ≤

∑
j≤i

λj , i = 1, . . . , n

 ,

11
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which is exactly the unit ball of the dual norm to κλ (see, e.g., Bogdan et al., 2015; Wu
et al., 2014). To characterize the dual infeasibility of y, or equivalently −A>y ∈ Cλ, we
adopt the measure proposed in Bogdan et al. (2015) which is

ηD := max

0, max
1≤i≤n

∑
j≤i

(
|A>(Ax− b)|(j) − λj

) .

For given accuracy parameters εG and εD, our algorithm Newt-ALM will be terminated
once

ηG ≤ εG and ηD ≤ εD, (17)

while both the sPADMM and the APG method will be terminated if (17) holds or if the
number of iterations reaches the maximum of 50, 000. In our numerical experiments, we
choose εG = εD = 1e-6.

The relative KKT residual

η =
‖x− Proxκλ(x−A>(Ax− b))‖

1 + ‖x‖+ ‖A>(Ax− b)‖

is adopted to measure the accuracy of an approximate optimal solution x generated from
any of the algorithms tested in the numerical experiments.

4.2 ADMM for the dual problem (11)

The implementation details of the (semi-proximal) ADMM for solving problem (11) are
elaborated in this subsection. Recall the dual problem (11)

(D) min
y∈Rm, ξ∈Rn

{
1

2
‖y‖2 + 〈b, y〉+ κ∗λ(ξ)

∣∣∣ A>y + ξ = 0

}
.

We can apply the ADMM framework to solve (D) as follows:
yk+1 ≈ arg miny Lσ(y, ξk;xk) + 1

2‖y − y
k‖2S ,

ξk+1 ≈ arg minξ Lσ(yk+1, ξ;xk) + 1
2‖ξ − ξ

k‖2T ,
xk+1 = xk − τσ

(
A>yk+1 + ξk+1

)
,

(18)

where σ > 0 is a given penalty parameter, τ ∈ (0, 1+
√

5
2 ) is the dual steplength, which is

typically chosen to be 1.618,

Lσ(y, ξ;x) :=
1

2
‖y‖2 + 〈b, y〉+ κ∗λ(ξ)− 〈x,A>y + ξ〉+

σ

2
‖A>y + ξ‖2

is the augmented Lagrangian function associated with (D) and S and T are two symmetric
positive semidefinite matrices. The convergence results of such a general ADMM includ-
ing the classical ones with the subproblems solved exactly have been discussed in Fazel
et al. (2013) under some mild conditions. An inexact version for the general semi-proximal
ADMM scheme and its convergence proof can be found in the recent paper by Chen et al.
(2017).

12
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In (18), the subproblem for updating y can be handled by solving the following linear
system corresponding to its optimality condition:(

Im + σAA> + S
)
y = Axk − b− σAξk + Syk.

The weight matrix S in the proximal term can be simply chosen to be the zero matrix when
Im + σAA> admits a relatively cheap Cholesky factorization. Otherwise, we can adopt the
rule elaborated in Subsection 7.1 in Chen et al. (2017) for choosing S appropriately.

The subproblem for updating ξ can be reformulated as:

ξk+1 ≈ arg min
ξ
κ∗λ(ξ)/σ +

1

2
‖ξ − (xk/σ −A>yk+1)‖2 +

1

2σ
‖ξ − ξk‖2T .

By utilizing the efficient algorithm for computing the proximal mapping Proxσκλ(wk) (Bog-
dan et al., 2015), together with the Moreau identity, we can simply choose T = 0 and
update ξ as follows:

ξk+1 = Proxκ∗λ/σ(wk/σ) =
1

σ

(
wk − Proxσκλ(wk)

)
,

where wk := xk − σA>yk+1.

4.3 Results on solving the OSCAR model

In this subsection, we will test our proposed algorithm Newt-ALM for solving the OSCAR
model and benchmark it against the APG algorithm implemented in the SLOPE package
from Bogdan et al. (2015) and the ADMM scheme (Gabay and Mercier, 1976; Glowin-
ski and Marrocco, 1975) presented in Subsection 4.2. The comparison among these three
algorithms will be in terms of the computation time, the iteration number, and the accu-
racy measured via the relative KKT residual on several selected data from the UCI data
repository Lichman (2013) and the BioNUS data set considered in Li et al. (2018b). To
demonstrate the performance of these three methods for solving the OSCAR model, with
less consideration on the tuning parameter adjustment for pursuing a nice statistical be-
havior of the regularization model, here we manually choose the tuning parameters w1 and
w2 as follows:

w1 = a‖A>b‖∞ and w2 = w1/
√
n (19)

with several testing values for the factor a. The sparsity is recorded in terms of the minimum
number k such that the first k largest components in magnitude contribute a percentage of
no less than 99.9% for the `1-norm. Results are shown in Table 1 and the data description
is listed in Table 2. The “nnz” column in Table 1 counts the number of nonzeros in the
solution x obtained by Newt-ALM such that nnz = min{t :

∑t
i=1|x|(i) ≥ 0.999‖x‖1}.

Table 1: The comparison results obtained by testing real data from
the UCI and the BioNUS data sets with (w1, w2) set as in (19). A1:
the ADMM with τ = 1.618; A2: the APG method implemented by
the SLOPE package; A3: our Newt-ALM.
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No. a nnz η (A1|A2|A3) Time(s) (A1|A2|A3) Iter No. (A1|A2|A3)
1e-7 1 4.37e-07|8.47e-05|5.26e-10 6.86|3.01|1.97 51|25|7

p1 1e-8 2 2.53e-07|1.56e-05|3.37e-09 328.20|3071.39|7.11 2251|32704|37
1e-9 158 9.72e-08|7.37e-04|1.83e-10 779.00|4678.39|25.33 4054|50000|52
1e-7 1 4.00e-07|4.53e-05|2.60e-09 2.48|1.78|1.14 51|25|7

p2 1e-8 3 5.88e-07|3.14e-04|3.61e-08 99.28|961.80|3.86 2101|16525|35
1e-9 256 1.89e-07|3.77e-04|1.16e-11 277.84|2605.04|48.97 4627|50000|64
1e-3 6 9.07e-09|1.61e-07|6.48e-09 549.90|396.43|4.07 7827|5522|23

p3 1e-4 81 3.29e-08|1.18e-06|1.78e-09 4521.18|3652.90|8.77 50000|50000|39
1e-5 100 3.87e-06|3.26e-05|2.62e-10 5781.13|3776.61|38.20 50000|50000|48
1e-3 245 5.97e-10|1.62e-07|1.51e-11 351.95|203.92|9.22 802|607|7

p4 1e-4 343 1.04e-07|3.52e-07|1.02e-09 2498.72|7069.69|21.94 4139|21205|23
1e-5 419 1.84e-04|3.69e-05|3.63e-09 10800.80|17138.70|100.32 9893|50000|41
1e-4 11 1.22e-07|6.48e-07|1.90e-08 144.99|629.91|2.69 1292|17531|21

p5 1e-5 26 2.07e-07|1.31e-05|3.66e-09 815.35|1618.06|5.32 4896|50000|37
1e-6 70 2.44e-07|3.72e-04|7.74e-09 859.92|1613.81|24.21 4320|50000|44
1e-6 2 2.30e-07|1.95e-08|2.04e-10 215.07|712.95|4.31 1761|10696|23

p6 1e-7 10 2.14e-07|1.52e-05|1.42e-09 583.87|2899.70|8.19 3509|50000|33
1e-8 51 9.61e-09|1.11e-04|5.70e-10 1662.10|2886.64|19.88 6153|50000|46
1e-3 8 2.41e-08|1.70e-07|2.04e-08 286.68|89.86|3.03 2713|1401|16

p7 1e-4 39 9.98e-07|5.40e-07|4.96e-09 373.67|1745.63|4.64 1782|29896|24
1e-5 120 9.75e-07|6.81e-06|1.18e-08 1303.22|3032.56|11.39 4266|50000|32
1e-3 3 7.75e-08|2.54e-07|1.70e-07 2.20|5.73|0.73 302|881|13

p8 1e-4 14 1.06e-07|2.64e-06|1.57e-07 4.95|35.55|0.95 513|8013|21
1e-5 60 1.20e-07|3.90e-06|2.05e-08 16.28|106.13|1.61 1302|31678|32
1e-3 1 1.75e-09|1.42e-08|2.56e-07 2.50|1.01|0.55 51|28|4

p9 1e-4 6 6.64e-07|3.99e-07|5.24e-07 8.20|22.47|0.97 151|715|10
1e-5 15 4.66e-07|1.20e-06|2.50e-08 46.97|220.01|2.02 701|10905|15
1e-2 3 4.05e-08|7.39e-07|3.33e-08 4.20|0.84|0.72 623|82|20

p10 1e-3 130 2.76e-08|1.24e-06|9.58e-09 13.94|194.86|3.13 1910|25299|33
1e-4 160 9.66e-07|2.75e-06|1.53e-09 29.99|220.75|5.77 2963|50000|45
1e-3 32 2.93e-08|1.85e-06|7.21e-09 42.61|586.28|2.41 3755|50000|34

p11 1e-4 155 3.97e-07|1.83e-05|1.83e-08 32.15|713.13|3.25 2216|50000|40
1e-5 193 2.71e-07|4.08e-05|8.81e-10 93.55|352.37|11.47 4608|50000|54
1e-3 34 3.17e-08|7.60e-07|6.19e-09 9.84|218.69|1.06 3024|42154|34

p12 1e-4 54 5.97e-07|3.78e-06|2.31e-09 14.02|267.84|2.11 3766|50000|39
1e-5 59 7.55e-07|7.58e-06|8.24e-10 46.34|267.88|4.22 11501|50000|52
1e-3 7 2.71e-08|8.99e-06|1.93e-08 524.93|842.24|2.17 38456|50000|44

p13 1e-4 38 2.86e-08|4.68e-05|7.02e-09 761.06|840.22|5.83 50000|50000|45
1e-5 151 2.28e-07|1.33e-04|3.05e-10 246.02|670.25|10.42 8130|50000|53
1e-2 5 4.93e-08|6.27e-07|4.16e-08 2.20|4.07|0.62 997|1187|22

p14 1e-3 33 4.65e-07|6.93e-07|5.91e-09 2.89|68.43|1.11 1302|22498|34
1e-4 51 5.87e-07|3.37e-06|1.61e-08 7.89|154.98|2.08 4063|50000|39
1e-2 1 5.46e-09|4.47e-09|5.08e-09 3.71|1.72|0.72 1002|234|23

p15 1e-3 11 6.78e-08|2.50e-06|9.02e-09 9.89|300.71|1.17 2531|50000|32
1e-4 76 1.40e-08|1.79e-05|7.98e-09 13.93|304.82|4.67 3144|50000|41

Table 2: The problem names and sizes

No. Problem name [m,n]
p1 E2006.train [16087,150360]
p2 E2006.test [3308,150358]
p3 pyrim scaled-expanded5 [74, 201376]
p4 triazines-scaled-expanded4 [186,635376]
p5 abalone scale expanded7 [4177,6435]
p6 bodyfat scale expanded7 [252,116280]
p7 housing scale expanded7 [506,77520]
p8 mpg scale expanded7 [392, 3432]
p9 space ga scale expanded9 [3107,5005]
p10 DLBCL H [160, 7399]
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p11 lung H1 [203, 12600]
p12 NervousSystem [60, 7129]
p13 ovarian P [253, 15153]
p14 DLBCL S [47, 4026]
p15 lung M [96, 7129]

From Table 1, we observe that all the 45 tested instances are successfully solved by
Newt-ALM within 2 minutes (for most of the cases within less than half a minute), while 3
and 22 cases have failed (i.e., not achieving our stopping criteria) to be solved by ADMM
and SLOPE, respectively. This shows that our Hessian based Newt-ALM algorithm is more
robust compared to the first-order methods (ADMM and the accelerated proximal gradient
method implemented in SLOPE) in its ability to successfully solve difficult problems. Both
the solution accuracy (as shown in the column under “η”) and the computation time (as
shown in the column under “Time(s)”) also show a tremendous computational advantage
of Newt-ALM comparing to ADMM and SLOPE. In particular, for many of the instances
corresponding to p3, p4, p5, p6, p7, p13, our algorithm can be more than 100 times
faster than ADMM and SLOPE.

It is noteworthy that the dual-based ADMM also works better than SLOPE for majority
of the tested instances. The performance profiles of these three algorithms for all 45 tested
problems are presented in Figure 1. Recall that a point (x, y) on a particular profile curve
implies that the algorithm can solve (100y)% of all the tested instances up to the desired
accuracy within at most x times of the fastest algorithm for each instance. More specifically,
for x = 150, we can see from Figure 1 that even by consuming more than 150 times of
the computation time taken by Newt-ALM, there are still around 40% and 10% of tested
instances which are not successfully solved by SLOPE and ADMM, respectively.

Figure 1: Time comparison for ADMM, SLOPE and Newt-ALM.

4.4 Results on real data sets with group structures

Two real-world data sets with group structures are used to test our proposed algorithm
Newt-ALM against the other two first-order algorithms discussed in the previous subsection.
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The first one is the breast cancer data set compiled by Van de Vijver et al. (2002), which
consists of gene expression data for 8,141 genes in 295 breast cancer tumors (78 metastatic
and 217 non-metastatic). We restrict the analysis to 3510 genes which are in at least one
pathway. Since the data set is very unbalanced, we adopt the balancing scheme in Jacob
et al. (2009) by using 3 replicates of each metastasis tumor and yield a total number of 451
samples. The comparison results are listed in Table 3.

Table 3: The comparison results obtained by testing the breast can-
cer data set with (w1, w2) set as in (19) with different values for a.
A1: ADMM with τ = 1.618; A2: the APG method in the SLOPE
package; A3: our Newt-ALM.

a nnz η (A1|A2|A3) Time(s) (A1|A2|A3) Iter No. (A1|A2|A3)
1e-3 145 1.43e-08|7.09e-07|2.48e-09 2.42|26.02|0.86 402|6220|20
1e-4 306 3.66e-08|8.74e-07|9.35e-10 10.21|70.51|2.80 1310|18016|33
1e-5 335 1.86e-09|7.12e-06|8.31e-10 34.63|205.39|4.68 3051|50000|43

The second data set is the NCEP/NCAR reanalysis 1 data set from Kalnay et al. (1996)
which contains the monthly means of climate data measurements spread across the globe
in a grid of 2.5o × 2.5o resolutions (longitude and latitude 144 × 73) from 1948/01/01
to 2018/05/31. Each grid point has 7 predictive variables including the air temperature,
precipitable water, relative humidity, pressure, sea level pressure, horizontal wind speed and
vertical wind speed, which leads to a natural group structure in the data set (each group of
length 7). The resulting measurement matrix A is of size [m,n] = 845× 73584. Similar to
the parameter scheme chosen in Ndiaye et al. (2016) and Zhang et al. (2018), we manually
choose the tuning parameters w1 and w2 as follows:

w1 = 0.4w(t) and w2 = 0.6w(t) (20)

with w(t) = 10−5+[3(t−1)/99] × ‖A>b‖∞. The numerical results with different t’s are listed
in Table 4.

Table 4: The comparison results obtained by testing the
NCEP/NCAR reanalysis 1 data set with (w1, w2) set as in (20).
A1: ADMM with τ = 1.618; A2: the APG method in the SLOPE
package; A3: our Newt-ALM.

t η (A1|A2|A3) Time(s) (A1|A2|A3) Iter No. (A1|A2|A3)
10 6.85e-07|9.76e-07|6.07e-11 12.75|6.19|1.50 136|104|4
20 1.65e-10|5.29e-07|7.74e-10 18.73|11.68|0.94 201|203|2
30 1.09e-07|8.68e-07|1.33e-11 32.22|12.70|1.20 330|221|3
40 3.02e-07|7.55e-07|3.57e-12 47.10|15.14|0.98 506|265|2
50 3.38e-08|5.16e-07|1.73e-12 55.77|26.52|1.36 608|469|4
60 2.06e-07|8.96e-07|1.16e-10 71.26|28.92|1.12 761|504|2
70 1.35e-08|8.37e-07|1.51e-10 63.14|37.32|1.11 685|653|2
80 5.41e-07|1.24e-03|4.89e-08 574.57|2841.53|4.06 5451|50000|13
90 1.00e-03|2.06e-02|3.17e-08 4911.28|2969.07|3.72 50000|50000|18
100 1.24e-03|1.33e-02|4.05e-08 5833.23|2809.22|5.17 50000|50000|26
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From Tables 3 and 4, we can draw a similar conclusion as the experiments on the UCI and the BioNUS data sets
discussed in Subsection 4.3. That is, our Newt-ALM method is far superior to the tested first-order methods in terms
of computational efficiency and the ability to successfully solve the problems to the required level of accuracy.

4.5 The pathwise solution for a microarray data

The behavior of the OSCAR model for sparse feature selection and grouping for each specific
instance relies heavily on the tuning parameters w1 and w2. To get a reliable and effective
estimation for the coefficients of all involved predictors in the context of linear regression,
a two-dimensional grid of various w1 and w2 values are tested to generate a solution path.
The task of generating a solution path can be costly since each single pair of parameters
(w1, w2) will lead to a different instance of the OSCAR model. The path usually begins with
appropriately chosen parameters that shrink all the coefficients to zero, and moves on until
we are near the un-regularized solution by varying the values of the parameters. During the
construction of the solution path, the warm start strategy (Friedman et al., 2007, 2010) is
always used to accelerate the entire process by using the previous near-by solution as the
initial point for the next problem.

Here, we will use the microarray data set reported in Scheetz et al. (2006) and processed
it by following Huang et al. (2008); Gu et al. (2018), where the design matrix A ∈ Rm×n
and the response vector b ∈ Rm with m = 120 and n = 3000. A partial solution path
with the parameter w2 fixed at the value ‖A>b‖∞/n2, and the parameter w1 varying evenly
in the interval

[
10−4, 10−2

]
× ‖A>b‖∞ for 100 different values will be constructed. The

first 10 largest coefficients in magnitude of all the 100 numerical solutions are collected in
Figure 2 by using ADMM, SLOPE and Newt-ALM, respectively. The timing comparison
for generating the partial solution paths by these three algorithms is presented in Table 5.

Table 5: Computation time comparison among Newt-ALM,
ADMM and SLOPE for generating the partial solution paths,
where the row “Ratio” reports the ratios of the computation time
of each single algorithm to that of the fastest algorithm.

Newt-ALM ADMM SLOPE
Time(s) 27.74 323.65 1149.73
Ratio 1 11.7 41.4

As Figure 2 shows, all the three algorithms obtain almost the same partial solution paths
for the microarray data with the above parameters setting. This is due to fact that the size
of the data is relatively small ([m,n] = [120, 3000]), and all the instances corresponding to
the chosen tuning parameter pairs have rather sparse solutions (most of them have less than
10 nonzero components in the numerical solutions) and hence have been successfully solved
by all three algorithms. Even for such a nice scenario, the Newt-ALM is still more than 10
times and 40 times faster than ADMM and SLOPE, respectively, as shown in Table 5. For
difficult cases, such as large scale problems or those with relatively dense solutions in the
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(a)

(b)

(c)

Figure 2: The partial solution paths with the first 10 largest coefficients in magnitude for
the microarray data: (a) Newt-ALM; (b) ADMM; (c) SLOPE
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high-dimensional linear regression, both the advantage in computation time and solution
accuracy of our Newt-ALM will certainly be more significant, as can be observed in Table
1 and deduced from the computational complexity analysis in Subsection 3.4.

With a two-dimensional grid of varying w1 and w2 values, we can also construct a
three-dimensional scattergram to show those first k (e.g., k = 10) largest components in
magnitude for the microarray data. Figure 3 shows such a case, from which we can get
a partial solution path along w1 (or w2) with any fixed w2 (or w1), or along any set of
(w1, w2) pairs on the grid. Figure 3 shows the scattergram which collects the first 10 largest
components in magnitude with w1 and w2 varying evenly in

[
10−7, 10−4

]
× ‖A>b‖∞ and[

10−4, 10−2
]
×‖A>b‖∞/n, respectively. All the 10, 000 problems are solved by our algorithm

Newt-ALM in a total of about 70 minutes.

Figure 3: The first 10 largest components in magnitude of solutions with a two-dimensional
grid of w1 and w2 values for the microarray data

5. Discussions

In this paper we have proposed an efficient semismooth Newton-based augmented La-
grangian method for solving the OSCAR and SLOPE models in high-dimensional statistical
regressions from the dual perspective. Numerical results have demonstrated the overwhelm-
ing superiority of the proposed algorithm on high-dimensional real data sets, comparing to
the widely-used APG and ADMM. It is noteworthy that the original OSCAR and SLOPE
models have been transformed to their dual counterparts before applying our method to
take the advantage of the high-dimensional setting (i.e., the number of coefficients to be
estimated is far larger than the sample size). The success of our second-order iterative
method, both in accuracy and in computation time, relies heavily on the subtle second-
order sparsity structure present in the generalized Jacobian matrix that corresponds to the
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second-order differential information of the underlying structured regularizer. Besides the
least squares loss function adopted in the OSCAR and SLOPE models, our method is also
applicable for the case of the logistic loss function, in which the desired nice properties of
the corresponding subproblems are maintained to guarantee the efficiency and robustness
of the algorithm. For classical statistical regression with larger sample size, our method
is still applicable. But we may have to explore whether it is more efficient to apply our
algorithmic framework directly to the OSCAR and SLOPE models, instead of our current
application to the dual problem. The efficiency and effectiveness of our algorithm in solving
high-dimensional linear regression with the OSCAR and SLOPE regularizers will greatly
facilitate data analysis in statistical learning and related applications across a broad range
of fields.
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Appendix A.

In this appendix we prove the following theorem from Section 2:
Theorem Let λ ∈ Rn+ be such that λ1 ≥ · · · ≥ λn. Then M(·) is a nonempty and compact
valued, upper semicontinuous multifunction, and for any given y ∈ Rn, every M ∈ M(y)
is symmetric and positive semidefinite. Moreover, there exists a neighborhood U of y such
that for all y′ ∈ U ,

Proxκλ(y′)− Proxκλ(y)−M(y′ − y) = 0, ∀M ∈M(y′). (21)

Proof. Let y ∈ Rn be an arbitrary point. Then it is obvious thatM(y) is a nonempty and
compact set. The symmetric and positive semidefiniteness of M ∈ M(y) is trivial by the
definitions in (6) and (8). Now we claim that there exists a neighborhood V of y ∈ Rn such
that

Πs(y′) ⊆ Πs(y), ∀y′ ∈ V.

This claim is trivial for y = 0 since Πs(0) = Πs
n. For the case of a nonzero y ∈ Rn, let r

be the number of distinct values in |y|, and t1, . . ., tr be all those distinct values satisfying
t1 > t2 > · · · > tr ≥ 0. Consider the following two cases:

Case I: If tr > 0, set δ := 1
3 min

{
tr, min

1≤i≤r−1
{ti − ti+1}

}
;

Case II: If tr = 0, set δ := 1
3 min

1≤i≤r−1
{ti − ti+1}.

It is easy to verify that in both cases δ > 0 and

Πs(y′) ⊆ Πs(y), ∀y′ ∈ B(y, δ), (22)

where B(y, δ) is the 2-norm ball centered at y with radius δ. The upper semicontinuity of
M then can be obtained from (22) and (7). The remaining part is to show (21). For any
y′ ∈ B(y, δ) with δ defined as above, it is known from (5) and the inclusion property in (22)
that

Proxκλ(y′)− Proxκλ(y) = π−1
(
xλ(πy′)− xλ(πy)

)
, ∀π ∈ Πs(y′). (23)

By combining the properties in (7) and the fact that ‖πy′ − πy‖ = ‖y′ − y‖, we know that
there exists a neighborhood U ⊆ B(y, δ) of y such that for all y′ ∈ U ,

xλ(πy′)− xλ(πy) = P (πy′ − πy), ∀P ∈ P (πy′), ∀π ∈ Πs(y′),

which together with (23) leads to the desired result in (21). This completes the proof.
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linéaires. Revue française d’atomatique, Informatique Recherche Opérationelle. Analyse
Numérique, 9(2):41–76, 1975.

Yuwen Gu, Jun Fan, Lingchen Kong, Shiqian Ma, and Hui Zou. ADMM for high-
dimensional sparse penalized quantile regression. Technometrics, 60(3):319–331, 2018.

Jiye Han and Defeng Sun. Newton and quasi-Newton methods for normal maps with
polyhedral sets. Journal of Optimization Theory and Applications, 94(3):659–676, 1997.

22



Semismooth Newton-based Augmented Lagrangian Method

Ronald R. Hocking. The analysis and selection of variables in linear regression. Biometrics,
32:1–49, 1976.

Jian Huang, Shuangge Ma, and Cun-Hui Zhang. Adaptive lasso for sparse high-dimensional
regression models. Statistica Sinica, 18(4):1603–1618, 2008.

Laurent Jacob, Guillaume Obozinski, and Jean Philippe Vert. Group lasso with overlap
and graph lasso. In International Conference on Machine Learning, pages 433–440, 2009.

E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha,
G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C.
Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and Joseph J. D. The
NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society,
77:437–472, 1996.

Bernd Kummer. Newton’s method for non-differentiable functions. Advances in Mathemat-
ical Optimization, 45:114–125, 1988.

Xudong Li, Defeng Sun, and Kim-Chuan Toh. An efficient linearly convergent semismooth
Netwon-CG augmented lagrangian method for Lasso problems. SIAM Journal on Opti-
mization, 28(1):433–458, 2018a.

Xudong Li, Defeng Sun, and Kim-Chuan Toh. On efficiently solving the subproblems of a
level-set method for fused lasso problems. SIAM Journal on Optimization, 28:1842–1866,
2018b.

Moshe Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml/

datasets.html, 2013.

Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision pro-
cessing. Foundations and Trends in Computer Graphics and Vision, 8:85–283, 2014.

Robert Mifflin. Semismooth and semiconvex functions in constrained optimization. SIAM
Journal on Control and Optimization, 15(6):959–972, 1977.

Alan Miller. Subset Selection in Regression. Chapman & Hall, London, UK, 2002.
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