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Let us consider the matrix correlation problem

min
1

2
‖X − G ‖2

F

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn
+ ,

where G ∈ Sn is given, but may not be positive
semidefinite.

This is a special problem in stress testing in finance.
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• The matrix correlation problem can be cast into
Semidefinite Programming.

• IMPs can solve the SDP with a small n (e.g., n = 80).

• In practice, n can be large (say, n = 2, 000).
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The Lagrangian dual of the matrix correlation problem
is

max
y∈<n

−θ(y) := −1

2
‖ΠSn

+
(G + A∗y) ‖2 + eTy ,

where ΠSn
+
(·) denotes the metric projection operator

onto Sn
+ and A∗ is the adjoint of A:

A∗(y) = Diag(y) with A(X) = diag(X) .
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The dual is an unconstrained convex problem with a
continuously differentiable objective function

∇θ(y) = AΠSn
+
(G + A∗y) − e .

Note that θ /∈ C2 due to the nonsmoothness of ΠSn
+
.

However, this is NOT a problem for us.

The key is to understand ΠSn
+
.



Erice’2007 Defeng Sun 6'

&

$

%

Let Y be a finite-dimensional real vector Hilbert space.
For any y ∈ Y , let ΠK(y) denote the metric projection
of y onto the closed convex set K ⊆ Y :

min
1

2
〈s − y, s − y〉

s.t. s ∈ K .

The operator ΠK : Y → Y is called the metric
projection operator or metric projector over K.
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The point s ∈ K is an optimal solution to the metric
projection problem if and only if it satisfies

〈y − s, d − s〉 ≤ 0 ∀ d ∈ K .

Note that the above property holds even if Y is infinite
dimensional.
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Figure 0.1: Metric projection onto closed convex sets
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There are many classical properties for the metric
projector. For example, the metric projector ΠK(·)
satisfies

〈y−z, ΠK(y)−ΠK(z)〉 ≥ ‖ΠK(y)−ΠK(z)‖2 ∀ y, z ∈ Y .
(1)

Note that (1) implies

‖ΠK(y) − ΠK(z)‖ ≤ ‖y − z‖ ∀ y, z ∈ Y .
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The metric projector ΠK(·) is only globally Lipschitz
continuous and is not differentiable everywhere, but we
have

Proposition. Let K be a nonempty closed convex set
in Y . Let

θ(y) :=
1

2
‖y − ΠK(y)‖2, y ∈ Y .

Then θ is continuously differentiable with

∇θ(y) = y − ΠK(y) , y ∈ Y .
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Proposition. Let K be a nonempty closed convex cone
in Y and Ko := −K∗ be the polar of K. Then any
y ∈ Y can be uniquely decomposed into

y = ΠK(y) + ΠKo(y) ,

where K∗ is the dual cone of K defined by

K∗ := {y ∈ Y | 〈y, d〉 ≥ 0 ∀ d ∈ K}.
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Let Ξ : O ⊆ Y → Z be a locally Lipschitz continuous
function on an open set O. [Z is another
finite-dimensional real Hilbert space.]

Then, Rademacher’s Theorem says that Ξ is almost
everywhere Fréchet differentiable in O.

We denote by OΞ the set of points in O where Ξ is
F-differentiable.
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Then Clarke’s generalized Jacobian of Ξ at y is:

∂Ξ(y) := conv{∂BΞ(y)},

where “conv” denotes the convex hull and

∂BΞ(y) := {V : V = lim
k→∞

JyΞ(yk) , yk → y , yk ∈ OΞ}.
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For the metric projector ΠK(·), we have

Proposition. For any y ∈ Y and V ∈ ∂ΠK(y), (a) V is
self-adjoint; (b) 〈d, V d〉 ≥ 0 ∀ d ∈ Y ; and (c)

V º V 2 .

For applications, we need more specific characterizations
than the above.
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An Example: For A and B in Sp, define

〈A,B〉 := Tr
(
ATB

)
= Tr (AB) ,

where “Tr” denotes the trace of a square matrix. Let
A ∈ Sp have the following spectral decomposition

A = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of A and
P is a corresponding orthogonal matrix of orthonormal
eigenvectors.
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Let

A+ := PΛ+P T .

Then, 〈A − A+, A+〉 = 〈Λ − Λ+, Λ+〉 = 0 and

〈A − A+, H〉 = 〈Λ − Λ+, P THP 〉 ≤ 0 ∀H ∈ Sp
+.

Then we know:

ΠSp
+
(A) = A+ = PΛ+P T .
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Note that computing A+ is equivalent to computing the
full eigen-decomposition of A, which in turn needs 9n3

flops.

For a typical Pentium IV type desktop PC, it needs
about 10 seconds for n = 1, 000 and less than 90 seconds
for n = 2, 000.
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Define

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =


Λα 0 0

0 0 0

0 0 Λγ

 and P = [ Pα Pβ Pγ ].



Erice’2007 Defeng Sun 19'

&

$

%

Define U ∈ Sp:

Uij :=
max{λi, 0} + max{λj, 0}

|λi| + |λj|
, i, j = 1, . . . , p,

where 0/0 is defined to be 1.

ΠSp
+

is directionally differentiable with Π′
Sp

+
(A; H) being

given by

P


P T

α HPα P T
α HPβ Uαγ ◦ P T

α HPγ

P T
β HPα ΠS |β|

+
(P T

β HPβ) 0

P T
γ HPα ◦ UT

αγ 0 0

 P T .
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When |β| = 0, ΠSn
+
(·) is continuously differentiable

around A and the above formula reduces to the classical
result of Löwnera.

By using the above formula for Π′
Sp

+
(A; H), one can

easily compute tangent cone of Sp
+ at A+ = ΠSp

+
(A) is

TSp
+
(A+) = {B ∈ Sp : P T

ᾱ BPᾱ º 0} .

where ᾱ := {1, . . . , p}\α and Pᾱ := [Pβ Pγ].

aK. Löwner. Über monotone matrixfunktionen. Mathematische
Zeitschrift 38 (1934) 177–216.
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Proposition. For any V ∈ ∂BΠSp
+
(A) (respectively,

∂ΠSp
+
(A)), if and only if there exists a W ∈ ∂BΠS |β|

+
(0)

(respectively, ∂ΠS |β|
+

(0)) such that

V (H) = P


H̃αα H̃αβ Uαγ ◦ H̃αγ

H̃T
αβ W (H̃ββ) 0

H̃T
αγ ◦ UT

αγ 0 0

P T (2)

for all H ∈ Sp, where H̃ := P THP . The important fact
is that P can be any one used in the eigen-factorization.
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One crucial non-classical result is the strong
semismoothness of ΠSp

+
(·) at any X ∈ Sp:

(i) ΠSp
+
(·) is directionally differentiable at X; and

(ii) for any Sp 3 Y → X and V ∈ ∂ΠSp
+
(Y ),

ΠSp
+
(Y ) − ΠSp

+
(X) − V (Y − X) = O(||Y − X||)2.
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Sensitivity Analysis

Consider the optimization problem

(OP )

min f(x)

s.t. G(x) ∈ K,

x ∈ X ,

where f : X → < and G : X → Y are C2, X,Y
finite-dimensional real Hilbert spaces and K is a closed
convex set in Y .
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The Lagrangian function L : X × Y → < is defined by

L(x, µ) := f(x) + 〈µ,G(x)〉 , (x, µ) ∈ X × Y.

Let x̄ be a feasible solution to (OP ). Robinson’s
constraint qualification (CQ) is as follows:

0 ∈ int{G(x̄) + JxG(x̄)X − K},

(or JxG(x̄)X + TK(G(x̄)) = Y ),
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If x̄ is a locally optimal solution to (OP ) and Robinson’s
CQ holds at x̄, then there exists a Lagrangian multiplier
µ̄ ∈ Y , together with x̄, satisfying the KKT condition:

JxL(x̄, µ̄) = 0 and µ̄ ∈ NK(G(x̄)).

Let M(x̄) denote the set of Lagrangian multipliers.
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In this talk, we use the nonlinear semidefinite
programming as an example to demonstrate the
importance of the metric projector in sensitivity analysis

(NLSDP )

min f(x)

s.t. h(x) = 0,

g(x) ∈ Sp
+,

x ∈ X,
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Definition. For any given B ∈ Sp, define the
linear-quadratic function ΥB : Sp × Sp → < by

ΥB(Γ, A) := 2
〈
Γ, AB†A

〉
, (Γ, A) ∈ Sp × Sp,

where B† is the Moore-Penrose pseudo-inverse of B.
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Proposition. Suppose that B ∈ Sp
+ and Γ ∈ NSp

+
(B).

Then for any V ∈ ∂ΠSp
+
(B + Γ) and ∆B, ∆Γ ∈ Sp such

that

∆B = V (∆B + ∆Γ),

it holds that

〈∆B, ∆Γ〉 ≥ −ΥB(Γ, ∆B).
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Let x̄ is a stationary point of (NLSDP ). Let
(ζ̄ , Γ) ∈ M(x̄) such that

JxL(x̄, ζ̄, Γ) = 0, −h(x̄) = 0, and Γ ∈ NSp
+
(g(x̄)).

Let A := g(x̄) + Γ̄ and

g(x̄) = P


Λα 0 0

0 0 0

0 0 0

P T , and Γ = P


0 0 0

0 0 0

0 0 Λγ

 P T .
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The outer approximation set to aff(C(x̄)) with respect
to (ζ̄ , Γ) is defined by

app(ζ̄ , Γ) =
{
d : Jxh(x̄)d = 0, P T

β (Jxg(x̄)d)Pγ = 0,

P T
γ (Jxg(x̄)d)Pγ = 0

}
.
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Definition. Let x̄ be a stationary point of (NLSDP ).
We say that the strong second order sufficient condition
(SSOSC) holds at x̄ if

sup
(ζ,Γ)∈M(x̄)

{〈
d,J 2

xxL(x̄, ζ, Γ)d
〉
− Υg(x̄)(Γ,Jxg(x̄)d)

}
> 0

for all d ∈ Ĉ(x̄)\{0}, where for any (ζ, Γ) ∈ M(x̄),
(ζ, Γ) ∈ <m × Sp and

Ĉ(x̄) :=
⋂

(ζ,Γ)∈M(x̄)

app(ζ, Γ).
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Next, we define a nondegeneracy condition for
(NLSDP ), which is an analogue of the LICQ for
(NLP ). The concept of nondegeneracy originally
appeared in Robinson [1984] for (OP ).

Definition. We say that a feasible point x̄ to (OP ) is
constraint nondegenerate if

JxG(x̄)X + lin(TK(ȳ)) = Y,

where ȳ := G(x̄).
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Write down the KKT condition as

F (x, ζ, Γ) :=

 JxL(x, ζ, Γ)

−h(x)

−g(x) + ΠSp
+
(g(x) + Γ)

 = 0,

which is equivalent to the following generalized equation:

0 ∈ φ(z) + ND(z),

where φ is C1 and D is a closed convex set in Z.
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Definition. [Robinson’80] Let z̄ be a solution of the
generalized equation. We say that z̄ is a
strongly regular solution if there exist neighborhoods B
of the origin 0 ∈ Z and V of z̄ such that for every δ ∈ B,
the following linearized generalized equation

δ ∈ φ(z̄) + Jzφ(z̄)(z − z̄) + ND(z)

has a unique solution in V , denoted by zV(δ), and the
mapping zV : B → V is Lipschitz continuous.
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Let U be a Banach space and f : X × U → < and
G : X × U → Y .

We say that (f(x, u), G(x, u)), with u ∈ U , is a
C2-smooth parameterization of (OP ) if f(·, ·) and g(·, ·)
are C2 and there exists a ū ∈ U such that f(·, ū) = f(·)
and G(·, ū) = G(·). The corresponding parameterized
problem takes the form:

(OPu)

min f(x, u)

s.t. G(x, u) ∈ K,

x ∈ X .
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We say that a parameterization is canonical if
U := X × Y , ū = (0, 0) ∈ X × Y , and

(f(x, u), G(x, u)) := (f(x)− 〈u1, x〉, G(x) + u2), x ∈ X.
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Definition. [Bonnans and Shapiro’00] Let x̄ be a
stationary point of (OP ). We say that the
uniform second order (quadratic) growth condition

holds at x̄ with respect to a C2-smooth parameterization
(f(x, u), G(x, u)) if there exist c > 0 and neighborhoods
VX of x̄ and VU of ū such that for any u ∈ VU and any
stationary point x(u) ∈ VX of (OPu), the following
holds:
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f(x, u) ≥ f(x(u), u) + c‖x − x(u)‖2 ∀ x ∈ VX

such that G(x, u) ∈ K.

We say that the uniform second order growth condition
holds at x̄ if the above inequality holds for every
C2-smooth parameterization of (OP ).
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Definition. [Kojima’80] and [Bonnans and Shapiro’00]

Let x̄ be a stationary point of (OP ). We say that x̄ is
strongly stable with respect to a C2-smooth
parameterization (f(x, u), G(x, u)) if there exist
neighborhoods VX of x̄ and VU of ū such that for any
u ∈ VU , (OPu) has a unique stationary point x(u) ∈ VX

and x(·) is continuous on VU .

If this holds for any C2-smooth parameterization, we say
that x̄ is strongly stable.
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Let

Φ(δ) := F ′(x̄, ζ̄, Γ; δ).

Theorem. Let x̄ be a locally optimal solution to
(NLSDP ). Suppose that Robinson’s CQ holds at x̄ so
that x̄ is necessarily a stationary point of (NLSDP ).
Let (ζ̄ , Γ) ∈ <m × Sp be such that (x̄, ζ̄, Γ) is a KKT
point of (NLSDP ).

Then the following TEN (there are more!) statements
are equivalent:



Erice’2007 Defeng Sun 41'

&

$

%

(a) The SSOSC holds at x̄ and x̄ is constraint
nondegenerate.

(b) Any element in ∂F (x̄, ζ̄, Γ) is nonsingular.

(c) The KKT point (x̄, ζ̄, Γ) is strongly regular.

(d) The uniform second order growth condition holds at
x̄ and x̄ is constraint nondegenerate.

(e) The point x̄ is strongly stable and x̄ is constraint
nondegenerate.
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(continued)

(f) F is a locally Lipschitz homeomorphism near
(x̄, ζ̄, Γ).

(g) For every V ∈ ∂BF (x̄, ζ̄, Γ),
sgn detV = ind(F, (x̄, ζ̄, Γ)) = ±1.

(h) Φ is a globally Lipschitz homeomorphism.

(i) For every V ∈ ∂BΦ(0), sgn detV = ind(Φ, 0) = ±1.

(j) Any element in ∂Φ(0) is nonsingular.
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Moreover, if f , g, and h are linear functions (linear SDP
problems), each of the above statements is equivalent to

(k) Any element in ∂BF (x̄, ζ̄, Γ) is nonsingular.

(l) The point x̄ is constraint nondegenerate to the
primal and (ζ̄ , Γ) is constraint nondegenerate to the
dual [Primal-Dual Non-degeneracies].

(m) More ...
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Convergence Analysis

Recall that for given c > 0, the augmented Lagrangian
function for the equality constrained optimization
problem

min
x∈X

f(x)

s.t. h(x) = 0 .

takes the following form

Lc(x, y) = f(x) + 〈y, h(x)〉 + c||h(x)||2/2 .
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The general optimization problem OP can be written as

min
x∈X,s∈Y

f(x)

s.t. h(x) = 0 ,

s − g(x) = 0

s ∈ K .
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So, it is natural to define the augmented Lagrangian
function for (OP) as

Lc(x, ζ, ξ) := min
s∈K

{
f(x) + 〈ζ, h(x)〉 + c||h(x)||2/2

+ 〈ξ, s − g(x)〉 + c||s − g(x)||2/2
}

.
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Suppose that K is a closd convex cone. Then the
augmented Lagrangian function reduces to

Lc(x, ζ, ξ)

K is cone
= f(x) + 〈ζ, h(x)〉 + c||h(x)||2/2

+
1

2c
(‖ΠK∗(ξ − cg(x))‖2 − ‖ξ‖2) .
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The augmented Lagrangian function Lc(·, ζ, ξ) is
continuously differentiable with

∇xLc(x, ζ, ξ) = ∇f(x) + ∇h(x)(ζ + ch(x))

−∇g(x)ΠK∗(ξ − cg(x)) .
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Let c0 > 0 be given. Let (ζ0, ξ0) ∈ <m ×K∗ be the initial
estimated Lagrange multiplier. At the kth iteration, the
augmented Lagrangian method determines xk by
minimizing Lck

(x, ζk, ξk) , computes (ζk+1, ξk+1) by{
ζk+1 := ζk + ckh(xk) ,

ξk+1 := ΠK∗(ξk − ckg(xk)) ,

and updates ck+1 by

ck+1 := ck or ck+1 := κck

according to certain rules, where κ > 1 is a preselected
positive number.
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Let us again consider (NLSDP ) with K = Sp
+. Let x̄ be

a locally optimal solution to (NLSDP ). Suppose that
Robinson’s CQ holds at x̄ so that x̄ is necessarily a
stationary point of (NLSDP ). Suppose that the strong
second order sufficient condition and the constraint
non-degeneracy hold.

Let ϑc : <m × Y 7→ < be defined as

ϑc(ζ, ξ) := min
x∈Bε(x)

Lc(x, ζ, ξ), (ζ, ξ) ∈ <m × Y . (3)
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Since for each fixed x ∈ X, Lc(x, ·) is a concave
function, ϑc(·) is also a concave function as it is the
minimum function of a family of concave functions.

We can choose ε > 0 and δ0 > 0 such that for any
y ∈ Bδ0

(y), xc(y) is the unique minimizer of Lc(·, y) over
Bε(x) and

ϑc(y) = Lc(xc(y), y) , y ∈ Bδ0
(y) ,

where y := (ζ, ξ).
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For any y ∈ Bδ0
(y) with y = (ζ, ξ) ∈ <m × Y , let(

ζc(y)

ξc(y)

)
:=

(
ζ + ch(xc(y))

ΠK(ξ − cg(xc(y)))

)
. (4)

Then we have

∇xL0(xc(y), ζc(y), ξc(y)) = ∇xLc(xc(y), y) = 0 , y ∈ Bδ0
(y).

(5)
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Let c ≥ c0. Then the concave function ϑc(·) defined by
(3) is continuously differentiable on Bδ0

(y) with

∇ϑc(y) =

(
h(xc(y))

−c−1ξ + c−1ΠK(ξ − cg(xc(y)))

)
for y = (ζ, ξ) ∈ Bδ0

(y). Moreover, ∇ϑc(·) is semismooth
at any point in Bδ0

(y). It is strongly semismooth at any
point in Bδ0

(y) if ∇2f,∇2g, and ∇2h are locally
Lipschitz continuous as ΠSp

+
(·) is strongly semismooth

everywhere.
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The augmented Lagrangian method can locally be
regarded as the gradient ascent method applied to the
dual problem

max ϑc(ζ, ξ) s.t. (ζ, ξ) ∈ <m × Y

with a constant step-length c, i.e., for all k sufficiently
large (

ζk+1

ξk+1

)
=

(
ζk

ξk

)
+ c∇ϑc(ζ

k, ξk) .
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Here, we show that locally the augmented Lagrangian
method can also be treated as an approximate
generalized Newton method applied to the following
nonsmooth equation

∇ϑc(ζ, ξ) = 0

with −c−1I as a good estimate to elements in
∂∇ϑc(ζ

k, ξk) for all (ζk, ξk) sufficiently close to (ζ, ξ)
and c sufficiently large as every element in ∂∇ϑc(ζ, ξ) is
in the form of

−c−1I + O(c−2),

where I is the identity operator in <m × Y .
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Since ∇ϑc(·, ·) is semismooth at (ζ, ξ), the fast local
convergence of the augmented Lagrangian method
comes no surprise for those who are familiar with

”the theory on the superlinear convergence of the
generalized Newton method for semismooth equations.”
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Computational Results

Let us come back to the matrix correlation problem

min
1

2
‖X − G ‖2

F

s.t. Xii = 1, i = 1, . . . , n ,

X ∈ Sn
+ ,

and its dual

max
y∈<n

−θ(y) := −1

2
‖ΠSn

+
(G + A∗y) ‖2 + eTy ,
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Below are some numerical results by applying a
generalized Newton method to the dual problem:

n cputime It. Func. Tol.

500 34.3 s 8 9 3.7 × 10−9

1,000 4 m 55 s 9 10 3.1 × 10−9

1,500 14 m 04 s 9 10 4.5 × 10−7

2,000 33 m 52 s 9 10 2.6 × 10−6
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