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Let Sn be the set of all real symmetric matrices and Sn
+

be the cone of all positive semidefinite matrices in Sn.

A symmetric matrix X ∈ Sn is called a covariance
matrix if X ∈ Sn

+, i.e., X º 0.

A covariance matrix X ∈ Sn
+ is called a correlation

matrix if its diagonal elements are all ones.



Nanjing, July 26, 2008 Defeng Sun 3'

&

$

%

In finance and statistics, covariance matrices are in
many situations found to be inconsistent, i.e., X � 0.

These include, but are not limited to,

• expert opinions in reinsurance

• stress testing regulated by Basel II

• structured statistical estimations, and etc.
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Partial market dataa

G =




1.0000 0.9872 0.9485 0.9216 −0.0485 −0.0424

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.0424 −0.0612 −0.0536 −0.1229 0.9869 1.0000




The eigenvalues of G are: 0.0087, 0.0162, 0.0347, 0.1000,
1.9669, and 3.8736.

aRiskMetrics (www.riskmetrics.com/stddownload edu.html)
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Let’s change G to

[change G(1, 6) = G(6, 1) from −0.0424 to −0.1000]



1.0000 0.9872 0.9485 0.9216 −0.0485 −0.1000

0.9872 1.0000 0.9551 0.9272 −0.0754 −0.0612

0.9485 0.9551 1.0000 0.9583 −0.0688 −0.0536

0.9216 0.9272 0.9583 1.0000 −0.1354 −0.1229

−0.0485 −0.0754 −0.0688 −0.1354 1.0000 0.9869

−0.1000 −0.0612 −0.0536 −0.1229 0.9869 1.0000




The eigenvalues of G are: −0.0216, 0.0305, 0.0441,
0.1078, 1.9609, and 3.8783.
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We are interested in the following least squares
covariance matrix (LSCM) problem

min
1

2
‖X − C‖2

s.t. 〈Ai, X〉 = bi, i = 1, . . . , p ,

〈Ai, X〉 ≥ bi, i = p + 1, . . . , m ,

X ∈ Sn
+ ,

where ‖ · ‖ is the Frobenius norm induced by the
standard trace inner product 〈·, ·〉 in Sn, C and Ai,
i = 1, . . . , m are given matrices in Sn, and b ∈ <m.
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Mathematically, the LSCM problem can be equivalently
written as

min t

s.t. 〈Ai, X〉 = bi, i = 1, . . . , p ,

〈Ai, X〉 ≥ bi, i = p + 1, . . . , m ,

t + 1 ≥
√

(t− 1)2 + 2‖X − C‖2 ,

X ∈ Sn
+ .
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So we have is a linear optimization problem with linear
equality/inequality, the second order cone, and the
positive semidefinite cone constraints.

We may use publicly available softwares, based on
interior point methods (IPMs), such as SeDuMi and
SDPT3 to solve the LSCM problem, directly.
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• This is indeed feasible on a Pentium IV PC as long as
n is small (say 80 at most) and m is not too large (say
5, 000).

• IPMs need at each iteration to formulate and solve a
linear system with a dense Schur complement matrix of
the size (m + 1 + n̄)× (m + 1 + n̄), where n̄ := 1

2n(n + 1).

• So, how about large n and m? First order methods?
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The LSCM problem is a special case of the

best approximation problem

min
1

2
‖x− c‖2

s.t. Ax ∈ b + Q ,

x ∈ K ,

where X is a real Hilbert space equipped with a scalar
product 〈·, ·〉 and its induced norm ‖ · ‖, A : X → <m is
a bounded linear operator, Q = {0}p ×<q

+ is a
polyhedral convex cone, 1 ≤ p ≤ m, q = m− p, and K

is a closed convex cone in X .
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The Karush-Kuhn-Tucker conditions for the best
approximation problem problem are:





x− c−A∗y + z = 0

Q+ 3 y ⊥ Ax− b ∈ Q

Ko 3 z ⊥ x ∈ K

,

where Q+ = <p ×<q
+ is the dual cone of Q and Ko is

the polar of K.
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Equivalently,




(x + z)− c +A∗y = 0

Q+ 3 y ⊥ Ax− b ∈ Q

x− ΠK(x + z) = 0

,

where ΠK(x) is the unique optimal solution to

min
1

2
‖u− x‖2

s.t. u ∈ K .
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Consequently, by first eliminating (x + z) and then x,
we get

Q+ 3 y ⊥ AΠK(c +A∗y)− b ∈ Q ,

which is equivalent to

F (y) := y−ΠQ+[y− (AΠK(c+A∗y)− b)] = 0, y ∈ <m .
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The above is nothing but the first order optimality
condition to the convex dual problem

max −θ(y) := −
[
1

2
‖ΠK(c +A∗y)‖2 − 〈b, y〉 − 1

2
‖c‖2

]

s.t. y ∈ Q+ .

Then F can be written as

F (y) = y − ΠQ+(y −∇θ(y)) .
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Now, we only need to solve

F (y) = 0, y ∈ <m .

• But, F involves two metric projection operators.

• Even if F is differentiable at y, it is too costly to
compute F ′(y).
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Let consider K = Sn
+.

x

x
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η
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Figure 0.1: Metric projection onto closed convex sets
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Let X ∈ Sn have the following spectral decomposition

X = PΛP T ,

where Λ is the diagonal matrix of eigenvalues of X and
P is a corresponding orthogonal matrix of orthonormal
eigenvectors. Then

X+ := PSn
+
(X) = PΛ+P T .
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• Note that computing X+ is equivalent to computing
the full eigen-decomposition of X, which in turn needs
9n3 flops.

• For my Dell Laptop, it needs about 5 or 6 seconds for
n = 1, 000, about 45 seconds for n = 2, 000, and less
than 155 seconds for n = 3, 000.

• For semidefinite optimization, at each step O(n3) cost
is not a problem.
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Define

α := {i : λi > 0}, β := {i : λi = 0}, γ := {i : λi < 0}.

Write

Λ =




Λα 0 0

0 0 0

0 0 Λγ


 and P = [ Pα Pβ Pγ ].
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Define Ω ∈ Sn:

Ωij :=
max{λi, 0}+ max{λj, 0}

|λi|+ |λj| , i, j = 1, . . . , n,

where 0/0 is defined to be 1.

ΠSn
+

is directionally differentiable with Π′
Sn

+
(X; H) being

given by

P




P T
α HPα P T

α HPβ Ωαγ ◦ P T
α HPγ

P T
β HPα ΠS |β|+

(P T
β HPβ) 0

P T
γ HPα ◦ ΩT

αγ 0 0


P T .
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When |β| = 0, ΠSn
+
(·) is continuously differentiable

around X and the above formula reduces to the classical
result of Löwnera:

Π′
Sn

+
(X)H = P


 P T

α HPα Ωαγ ◦ P T
α HPγ

P T
γ HPα ◦ ΩT

αγ 0


P T .

aK. Löwner. Über monotone matrixfunktionen. Mathematische
Zeitschrift 38 (1934) 177–216.
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Let φ : <× < → < be defined by

φ(ε, t) =
[
t +

√
ε2 + t2

]
/2, (ε, t) ∈ < × < . (1)

For any ε ∈ <, let

Φ(ε,X) := P




φ(ε, λ1)
. . .

φ(ε, λn)


P T . (2)
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Then, by matrix analysis, we have

Φ(ε,X) =
[
X +

√
ε2I + X2

]
/2,

where we use I to represent the identity matrix of
appropriate dimension. Note that when ε = 0,
Φ(0, X) = ΠSn

+
(X).

By the above famous result of Löwner, we know that
when ε 6= 0 or β = ∅,

Φ′
X(ε,X)(H) = P [Ω(ε, λ) ◦ (P THP )]P T ∀H ∈ Sn ,
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where “ ◦ ” denotes the Hadamard product,
λ = (λ1, . . . , λn)

T , and the symmetric matrix Ω(ε, λ) is
given by

[
Ω(ε, λ)

]
ij

=





φ(ε, λi)− φ(ε, λj)

λi − λj
∈ [0, 1] if λi 6= λj ,

φ′λi
(ε, λi) ∈ [0, 1] if λi = λj .

When ε 6= 0 or β = ∅, the partial derivative of Φ(·, ·)
with respect to ε can be computed by

Φ′
ε(ε,X) = Pdiag(φ′ε(ε, λ1), · · · , φ′ε(ε, λn))P

T .
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Let ψ : <× <m → <m be defined by

ψi(ε, z) =

{
zi if i = 1, . . . , p,

φ(ε, zi) if i = p + 1, . . . , m,
(ε, z) ∈ <×<m .

The function ψ is obviously continuously differentiable
around any (ε, z) ∈ < × <m as long as ε 6= 0 and is
strongly semismooth everywhere.
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Now, we are ready to define a smoothing function for
F (·) itself. Let

Υ(ε, y) := y − ψ (ε, y − (AΦ(ε, C +A∗y)− b)) ,

where (ε, y) ∈ < × <m.

By the definitions of Υ, ψ, and Φ, we know that for any
y ∈ <m, F (y) = Υ(0, y).



Nanjing, July 26, 2008 Defeng Sun 27'

&

$

%

In general, let G : <× <m → <m be a locally Lipschitz
continuous function satisfying

G(ε, y′) → F (y) as (ε, y′) → (0, y) .

Furthermore, G is required to be continuously
differentiable around any (ε, y) unless ε = 0. The
existence of such a function G can be easily proven via
convolution.

Define E : <× <m → <×<m by

E(ε, y) :=

[
ε

G(ε, y)

]
, (ε, y) ∈ < × <m .
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Then solving the nonsmooth equation

F (y) = 0

is equivalent to solving the following
smoothing-nonsmooth equation

E(ε, y) = 0 .
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Define the merit function ϕ : <× <m → <+ by

ϕ(ε, y) := ‖E(ε, y)‖2 , (ε, y) ∈ < × <m .

Choose r ∈ (0, 1). Let

ζ(ε, y) := r min{1, ϕ(ε, y)} , (ε, y) ∈ < × <m .
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(An inexact smoothing Newton method)

Step 0. Let ε̂ ∈ (0,∞) and η ∈ (0, 1) be such that

δ :=
√

2 max{rε̂, η} < 1 .

Select constants ρ ∈ (0, 1), σ ∈ (0, 1/2), τ ∈ (0, 1),
and τ̂ ∈ [1,∞). Let ε0 := ε̂ and y0 ∈ <m be an
arbitrary point. k := 0.

Step 1. Compute ζk := r min{1, ϕ(εk, yk)} and
ηk := min{τ, τ̂‖E(εk, yk)‖} .
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Step 2. Solve the following equation

E(εk, yk) + E ′(εk, yk)

[
∆εk

∆yk

]
=

[
ζkε̂

0

]

approximately such that

‖Rk‖ ≤ min{ηk‖G(εk, yk)+G′
ε(ε

k, yk)∆εk‖, η‖E(εk, yk)‖} ,

where

∆εk := −εk + ζkε̂

and

Rk := G(εk, yk) + G′(εk, yk)

[
∆εk

∆yk

]
.
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Step 3. Let lk be the smallest nonnegative integer l

satisfying

ϕ(εk + ρl∆εk, yk + ρl∆yk) ≤ [1− 2σ(1− δ)ρl]ϕ(εk, yk) .

Define:

(εk+1, yk+1) := (εk + ρlk∆εk, yk + ρlk∆yk) .

Step 4. Replace k by k + 1 and go to Step 1.
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Theorem 1 (global convergence). Suppose that for any
(ε, y) ∈ <++ ×<n, E ′(ε, y) is nonsingular.

Then our inexact smoothing Newton method is well
defined and generates an infinite sequence
{(εk, yk)} ∈ N with the property that any accumulation
point (ε̄, ȳ) of {(εk, yk)} is a solution of E(ε, y) = 0.



Nanjing, July 26, 2008 Defeng Sun 34'

&

$

%

Theorem 2 (local convergence). Suppose that for any
(ε, y) ∈ <++ ×<n, E ′(ε, y) is nonsingular.

Let (ε̄, ȳ) be an accumulation point of the generated
infinite sequence {(εk, yk)}. Suppose that E is
strongly semismooth at (ε̄, ȳ) and that all
V ∈ ∂BE(dε̄, ȳ) are nonsingular. Then the whole
sequence {(εk, yk)} converges to (ε̄, ȳ) quadratically, i.e.,

∥∥(εk+1 − ε̄, yk+1 − ȳ)
∥∥ = O

(‖(εk − ε̄, yk − ȳ)‖2) .
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Now consider the LSCM problem. Let κ ∈ (0,∞) be a
constant. Define G : <× <m → <m by

G(ε, y) := Υ(ε, y) + κ|ε|y , (ε, y) ∈ < × <m .

Let E : <× <m → <×<m be defined by

E(ε, y) :=

[
ε

G(ε, y)

]
=

[
ε

Υ(ε, y) + κ|ε|y

]
.
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Theorem 1′ (global convergence). The inexact
smoothing Newton method is well defined and generates
an infinite sequence {(εk, yk)} with the properties that
any accumulation point (ε̄, ȳ) of {(εk, yk)} is a solution
of E(ε, y) = 0 and limk→∞ ϕ(εk, yk) = 0.

Additionally, if the generalized Slater condition holds,
then {(εk, yk)} is bounded.
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Theorem 2′ (local convergence). Let (ε̄, ȳ) be an
accumulation point of generated the infinite sequence
{(εk, yk)}. Assume that the constraint nondegeneracy
(LICQ) holds at X := ΠSn

+
(C +A∗ȳ).

Then the whole sequence {(εk, yk)} converges to (ε̄, ȳ)
quadratically, i.e.,

∥∥(εk+1 − ε̄, yk+1 − ȳ)
∥∥ = O

(‖(εk − ε̄, yk − ȳ)‖2) .
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Numerical results:

Consider

min
1

2
‖X − C‖2

s.t. Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ .
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Here Be, Bl, and Bu are three index subsets of
{(i, j) | 1 ≤ i ≤ j ≤ n} satisfying Be ∩ Bl = ∅,
Be ∩ Bu = ∅, and lij < uij for any (i, j) ∈ Bl ∩ Bu.
Denote the cardinalities of Be, Bl, and Bu by p, ql, and
qu, respectively. Let m := p + ql + qu. For any
(i, j) ∈ {1, . . . , n} × {1, . . . , n}, define E ij ∈ <n×n by

(E ij)st :=

{
1 if (s, t) = (i, j) ,

0 otherwise ,
s, t = 1, . . . , n .
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In numerical implementation, we first obtain
∆εk = −εk + ζkε̂, and then apply the BiCGStab iterative
solver of Van der Vorst to the resulted linear system

G′
y(ε

k, yk)∆yk = −G(εk, yk)−G′
ε(ε

k, yk)∆εk

to obtain ∆yk such that it satisfies

‖Rk‖ ≤ min{ηk‖G(εk, yk)+G′
ε(ε

k, yk)∆εk‖, η‖E(εk, yk)‖} ,
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We have

G′
y(ε, y)∆y

= Υ′
y(ε, y)∆y + κε∆y

= ∆y − ψ′z(ε, z)(∆y −AΦ′
X(ε,X)(A∗∆y)) + κε∆y

= ∆y − ψ′z(ε, z)∆y + ψ′z(ε, z)(AΦ′
X(ε,X)(A∗∆y)) + κε∆y,

where z := y − (AΦ(ε,X)− b) and X := C +A∗y.
Then,

Φ′
X(ε,X)(A∗∆y) = P [Ω(ε, λ) ◦ (P TA∗∆yP )]P T .
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In order to compute the coefficient matrix G′
y(ε, y) one

needs O(m2n3) flops. This implies that it is impractical
to use direct methods to solve the Newton linear system
even when n and m are not large, say n = 100 and
m = 1, 000.

Given the fact that the coefficient matrix G′
y(ε, y) is

nonsymmetric when the LSCM problem has inequality
constraints, i.e., q 6= 0, it is natural to choose the
BiCGStab as our iterative solver for solving the Newton
linear system.
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A diagonal preconditioner:

Define the vector d ∈ <m as the diagonal part of the
coefficient matrix G′

y(ε, y). Then for each l ∈ {1, . . . , m}
that

dl = [G′
y(ε, y)]ll = [G′

y(ε, y)Il]l

= 1− φ′zl
(ε, zl) + φ′zl

(ε, zl)wl + κε,

where Il ∈ <m denotes the lth column of the identity
matrix I
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And wl is defined by

wl := [AΦ′
X(ε,X)(A∗Il) ]l

= 〈 Il , AΦ′
X(ε,X)(A∗Il) 〉

= 〈A∗Il , Φ′
X(ε,X)(A∗Il) 〉

= 〈A∗Il , P [Ω(ε, λ) ◦ (P TA∗IlP )]P T 〉
= 〈P TAlP , Ω(ε, λ) ◦ (P TAlP )〉.
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To compute the diagonal matrix D := diag(d) needs
O(mn3) flops.

The cost for computing D can be reduced if most of the
matrices Al’s are sparse.

For instance, for each l ∈ {1, . . . , m}, let the matrix Al

take the form

Al =
1

2
(E iljl + E jlil),

where

(il, jl) ∈





Be if l = 1, . . . , p,

Bl if l = p + 1, . . . , p + ql,

Bu if l = p + ql + 1, . . . , m.
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By taking account of such a special structure of Al, wl

can be further simplified as follows

wl = 〈P TAlP , Ω(ε, λ) ◦ (P TAlP )〉
=

1

2
[ a2

il
Ω(ε, λ)(a2

jl
)T + (ail ◦ ajl

)Ω(ε, λ)(ail ◦ ajl
)T ],

where l = 1, . . . , m and “◦” denotes the Hadamard
product of two vectors, ai is the ith row of P , and
a2

i := ai ◦ ai, i = 1, . . . , n.
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Thus, in this case the diagonal matrix D can be
computed with a reduced cost of O(mn2) flops.

However, when m is much larger than n, say
m = O(n2), this cost is still too expensive.

In our numerical implementation, we use an estimated
diagonal matrix of D as our diagonal preconditioner
with cost of O(n3) flops.
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Let w̃ ∈ <m and d̃ ∈ <m be defined by

w̃l := a2
il
Ω(ε, λ)(a2

jl
)T , l = 1, . . . , m,

and

d̃l := 1− φ′zl
(ε, zl) + φ′zl

(ε, zl)w̃l + κε , l = 1, . . . , m ,

respectively. Then it holds

0 <
dl

d̃l

≤ 1 , l = 1, . . . , m .
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Since

(ail ◦ ajl
)Ω(ε, λ)(ail ◦ ajl

)T

is usually very small compared with

a2
il
Ω(ε, λ)(a2

jl
)T ,

we have dl

d̃l
≈ 1.

Let D̃ := diag(d̃). Computing the diagonal matrix D̃

only requires O(n3) flops, which is independent of m.

We use the diagonal matrix D̃ instead of D as our
diagonal preconditioner.
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Example 0.1 The matrix C is the 387× 387 1-day
correlation matrix (as of June 15, 2006) from the lagged
datasets of RiskMetrics
(www.riskmetrics.com/stddownload edu.html). For
the test purpose, we perturb C to

C := (1− α)C + αR,

where α0.1 and R is a randomly generated symmetric
matrix with entries in [−1, 1]. The index sets

Be := {(i, i) | i = 1, . . . , 387}, Bl ∪ Bu = ∅
and eii = 1 for (i, i) ∈ Be.
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Example 0.2 All the data are the same as in Example
0.1 except that eii ∈ [0, 1] for (i, i) ∈ Be are randomly
generated. This example corresponds to the W -weighted
nearest correlation problem when the weight matrix W is
a randomly generated diagonal matrix.
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Example 0.3 The matrix C is a randomly generated
n× n symmetric matrix with entries in [−1, 1]. The
index sets Bl, Bu ⊂ {(i, j) | 1 ≤ i < j ≤ n} consist of the
indices of min(n̂r, n− i) randomly generated elements at
the ith row of X, i = 1, . . . , n with n̂r taking the
following values: a) n̂r = 5; and n̂r = 10. We take
lij = −0.1 for (i, j) ∈ Bl and uij = 0.1 for (i, j) ∈ Bu.

We consider the following two cases: a) eii = 1,
(i, i) ∈ Be and b) eii = α + (1− α)ω, (i, i) ∈ Be, where
α = 0.1 and ω is a randomly generated number in [0, 1].
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Example 0.1 Example 0.2

Method Iter cputime Res Iter cputime Res

GM 37 0:44 1.0e-5 5000∗ 1:23:00 3.3e-2

BFGS 16 0:33 7.4e-6 1203 34:35 9.8e-6

Semismooth 5 0:09 1.6e-7 12 0:21 4.0e-8

IP-NCM 11 1:18 6.8e-9 18 3:07 2.6e-8

Smoothing 5 0:10 3.2e-7 12 0:23 1.0e-7

Table 1: Numerical results for Examples 0.1 and 0.2
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Example 0.3 n=2000

Method Case |n̂r Iter cputime Res

PGM a) 5 213 6:23:57 9.5e-6
10 229 7:02:37 9.7e-6

b) 5 372 >10 hrs 4.0e-2
10 371 >10 hrs 1.5e-2

BFGS-SQP a) 5 −−
10 −−

b) 5 −−
10 −−

Smoothing a) 5 9 29:33 1.5e-8
10 9 30:37 7.3e-7

b) 5 10 29:49 4.3e-8
10 13 46:39 1.5e-8


