An Introduction to a Class of Matrix Cone Programming

Defeng Sun

Department of Mathematics and Risk Management Institute National University of Singapore

This is a joint work with Chao Ding and Kim Chuan Toh at NUS

July 25, 2010

Let $X \in \Re^{m \times n}$ admit the following singular value decomposition:

$$
X=\bar{U}\left[\begin{array}{ll}
\Sigma(X) & 0
\end{array}\right] \bar{V}^{T}=\bar{U}[\Sigma(X) \quad 0]\left[\begin{array}{ll}
\bar{V}_{1} & \bar{V}_{2} \tag{1}
\end{array}\right]^{T}=\bar{U} \Sigma(X) \bar{V}_{1}^{T}
$$

where $\bar{U} \in \mathcal{O}^{m}, \bar{V} \in \mathcal{O}^{n}$ and $\bar{V}_{1} \in \Re^{n \times m}, \bar{V}_{2} \in \Re^{n \times(n-m)}$ and $\bar{V}=\left[\begin{array}{ll}\bar{V}_{1} & \bar{V}_{2}\end{array}\right]$. The set of such matrices (U, V) in the singular value decomposition (1) is denoted by $\mathcal{O}^{m, n}(X)$, i.e.,

$$
\mathcal{O}^{m, n}(X):=\left\{(U, V) \in \Re^{m \times m} \times \Re^{n \times n} \mid X=U[\Sigma(X) \quad 0] V^{T}\right\} .
$$

Define the index sets a, b and c by

$$
\begin{equation*}
a:=\left\{i \mid \sigma_{i}(X)>0\right\}, \quad b:=\left\{i \mid \sigma_{i}(X)=0\right\} \quad \text { and } \quad c:=\{m+1, \ldots, n\} . \tag{2}
\end{equation*}
$$

Let $\bar{\mu}_{1}>\bar{\mu}_{2}>\ldots>\bar{\mu}_{r}>0$ be the nonzero distinct singular values of X. Then, let

$$
\begin{equation*}
a_{k}:=\left\{i \mid \sigma_{i}(X)=\bar{\mu}_{k}\right\}, \quad k=1, \ldots, r . \tag{3}
\end{equation*}
$$

For any positive constant $\varepsilon>0$, denote the closed convex cone $\mathcal{D}_{n}^{\varepsilon}$ by

$$
\begin{equation*}
\mathcal{D}_{n}^{\varepsilon}:=\left\{(t, x) \in \Re \times \Re^{n} \mid \varepsilon^{-1} t \geq x_{i}, i=1, \ldots, n\right\} . \tag{4}
\end{equation*}
$$

Let $\Pi_{\mathcal{D}_{n}^{\varepsilon}}(\cdot)$ be the metric projector over $\mathcal{D}_{n}^{\varepsilon}$ under the Euclidean inner product in \Re^{n}. That is, for any $(t, x) \in \Re \times \Re^{n}, \Pi_{\mathcal{D}_{n}^{\varepsilon}}(t, x)$ is the unique optimal solution to the following convex optimization problem

$$
\begin{array}{ll}
\min & \frac{1}{2}\left((\tau-t)^{2}+\|y-x\|^{2}\right) \tag{5}\\
\text { s.t. } & \varepsilon^{-1} \tau \geq y_{i}, i=1, \ldots, n .
\end{array}
$$

The we have the following useful result about $\Pi_{\mathcal{D}_{n}^{s}}(\cdot, \cdot)$.

For any $x \in \Re^{n}$, let x^{\downarrow} be the vector of components of x being arranged in the non-increasing order $x_{1}^{\downarrow} \geq \ldots \geq x_{n}^{\downarrow}$. Let $\operatorname{sgn}(x)$ be the sign vector of x, i.e., $(\operatorname{sgn})_{i}(x)=1$ if $x_{i} \geq 0$ and -1 otherwise. We use " o" to denote the Hadamard product operation either for two vectors or two matrices of the same dimensions.

Proposition 1. Assume that $\varepsilon>0$ and $(t, x) \in \Re \times \Re^{n}$ are given. Let π be a permutation of $\{1, \ldots, n\}$ such that $x^{\downarrow}=x_{\pi}$, i.e., $x_{i}^{\downarrow}=x_{\pi(i)}, i=1, \ldots, n$ and π^{-1} the inverse of π. For convenience, write $x_{0}^{\downarrow}=+\infty$ and $x_{n+1}^{\downarrow}=-\infty$. Let $\bar{\kappa}$ be the smallest integer $k \in\{0,1, \ldots, n\}$ such that

$$
\begin{equation*}
x_{k+1}^{\downarrow} \leq\left(\sum_{j=1}^{k} x_{j}^{\downarrow}+\varepsilon t\right) /\left(k+\varepsilon^{2}\right)<x_{k}^{\downarrow} \tag{6}
\end{equation*}
$$

Define $\bar{y} \in \Re^{n}$ and $\bar{\tau} \in \Re_{+}$, respectively, by

$$
\bar{y}_{i}:= \begin{cases}\left(\sum_{j=1}^{\bar{\kappa}} x_{j}^{\downarrow}+\varepsilon t\right) /\left(\bar{\kappa}+\varepsilon^{2}\right) & \text { if } 1 \leq i \leq \bar{\kappa}, \\ x_{i}^{\downarrow} & \text { otherwise }\end{cases}
$$

and

$$
\bar{\tau}:=\varepsilon \bar{y}_{1}=\varepsilon\left(\sum_{j=1}^{\bar{k}} x_{j}^{\downarrow}+\varepsilon t\right) /\left(\bar{k}+\varepsilon^{2}\right) .
$$

The metric projection $\Pi_{\mathcal{D}_{n}^{s}}(t, x)$ is computed by $\Pi_{\mathcal{D}_{n}^{s}}(t, x)=\left(\bar{\tau}, \bar{y}_{\pi^{-1}}\right)$.

For any positive constant $\varepsilon>0$, denote the closed convex cone $\mathcal{C}_{n}^{\varepsilon}$ by

$$
\begin{equation*}
\mathcal{C}_{n}^{\varepsilon}:=\left\{(t, x) \in \Re \times \Re^{n} \mid \varepsilon^{-1} t \geq\|x\|_{\infty}\right\} . \tag{7}
\end{equation*}
$$

Let $\Pi_{\mathcal{C}_{n}^{\varepsilon}}(\cdot, \cdot)$ be the metric projector over $\mathcal{C}_{n}^{\varepsilon}$ under the Euclidean inner product in \Re^{n}. That is, for any $(t, x) \in \Re \times \Re^{n}, \Pi_{\mathcal{C}_{n}^{\varepsilon}}(t, x)$ is the unique optimal solution to the following convex optimization problem

$$
\begin{array}{ll}
\min & \frac{1}{2}\left((\tau-t)^{2}+\|y-x\|^{2}\right) \tag{8}\\
\text { s.t. } & \varepsilon^{-1} \tau \geq\|y\|_{\infty}
\end{array}
$$

In the following discussions, we frequently $\operatorname{drop} n$ from $\mathcal{C}_{n}^{\varepsilon}$ when its size can be found from the context.

Assume that $\varepsilon>0$ and $(t, x) \in \Re \times \Re^{n}$ are given. Let π be a permutation of $\{1, \ldots, n\}$ such that $|x|^{\downarrow}=|x|_{\pi}$, i.e., $|x|_{i}^{\downarrow}=|x|_{\pi(i)}, i=1, \ldots, n$ and π^{-1} be the inverse of π. Let $|x|_{0}^{\downarrow}=+\infty$ and $|x|_{n+1}^{\downarrow}=0$. Let $s_{0}=0$ and $s_{k}=\sum_{i=1}^{k}|x|_{i}^{\downarrow}, k=1, \ldots, n+1$. Let \bar{k} be the smallest integer $k \in\{0,1, \ldots, n\}$ such that

$$
\begin{equation*}
|x|_{k+1}^{\downarrow} \leq\left(s_{k}+\varepsilon t\right) /\left(k+\varepsilon^{2}\right)<|x|_{k}^{\downarrow} \tag{9}
\end{equation*}
$$

or $\bar{k}=n+1$ if such an integer does not exist. Denote

$$
\begin{equation*}
\theta^{\varepsilon}(t, x):=\left(s_{\bar{k}}+\varepsilon t\right) /\left(\bar{k}+\varepsilon^{2}\right) . \tag{10}
\end{equation*}
$$

Let α, β and γ be the index sets of $|x|^{\downarrow}$ as

$$
\begin{equation*}
\alpha:=\left\{\left.i| | x\right|_{i} ^{\downarrow}>\theta^{\varepsilon}(t, x)\right\}, \quad \beta:=\left\{\left.i| | x\right|_{i} ^{\downarrow}=\theta^{\varepsilon}(t, x)\right\} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma:=\left\{\left.i| | x\right|_{i} ^{\downarrow}<\theta^{\varepsilon}(t, x)\right\} \tag{12}
\end{equation*}
$$

Define $\bar{y} \in \Re^{n}$ and $\bar{\tau} \in \Re_{+}$, respectively, by

$$
\bar{y}_{i}:= \begin{cases}\max \left\{\theta^{\varepsilon}(t, x), 0\right\} & \text { if } i \in \alpha \\ |x|_{i}^{\downarrow} & \text { otherwise }\end{cases}
$$

and

$$
\bar{\tau}:=\varepsilon \max \left\{\theta^{\varepsilon}(t, x), 0\right\}
$$

Proposition 2. Assume that $\varepsilon>0$ and $(t, x) \in \Re \times \Re^{n}$ are given.
(i) The metric projection $\Pi_{\mathcal{C}^{\varepsilon}}(t, x)$ of (t, x) onto $\mathcal{C}^{\varepsilon}$ can be computed as follows

$$
\begin{equation*}
\Pi_{\mathcal{C}^{\varepsilon}}(t, x)=\left(\bar{\tau}, \operatorname{sgn}(x) \circ \bar{y}_{\pi^{-1}}\right) . \tag{13}
\end{equation*}
$$

(ii) The mapping $\Pi_{\mathcal{C}^{\varepsilon}}(\cdot, \cdot)$ is piecewise linear. Denote $\delta:=\sqrt{\varepsilon^{2}+\bar{k}}$. For any $(\eta, h) \in \Re \times \Re^{n}$, let

$$
\eta^{\prime}:= \begin{cases}\delta^{-1}\left(\varepsilon \eta+\sum_{i \in \pi^{-1}(\alpha)} \operatorname{sgn}\left(x_{i}\right) h_{i}\right) & \text { if } t \geq-\varepsilon^{-1}\|x\|_{1} \\ 0 & \text { otherwise }\end{cases}
$$

Let $h^{\prime}=\operatorname{sgn}(x) \circ h$. Then, the directional derivative of $\Pi_{\mathcal{C}^{\varepsilon}}(\cdot, \cdot)$ at (t, x) along the direction (η, h) is given by

$$
\begin{equation*}
(\bar{\eta}, \bar{h}):=\Pi_{\mathcal{C}^{\varepsilon}}^{\prime}((t, x) ;(\eta, h)) \tag{14}
\end{equation*}
$$

with

$$
\begin{gathered}
\left(\delta \varepsilon^{-1} \bar{\eta},(\operatorname{sgn}(x) \circ \bar{h})_{\pi^{-1}(\beta)}\right)= \begin{cases}\Pi_{\mathcal{D}_{|\beta|}^{\delta}}\left(\eta^{\prime}, h_{\pi^{-1}(\beta)}^{\prime}\right) & \text { if } t>-\varepsilon^{-1}\|x\|_{1} \\
\Pi_{\mathcal{C}_{|\beta|}^{\delta}}\left(\eta^{\prime}, h_{\pi^{-1}(\beta)}^{\prime}\right) & \text { otherwise }\end{cases} \\
\bar{h}_{i}=\bar{\eta}, \quad i \in \pi^{-1}(\alpha) \quad \text { and } \quad \bar{h}_{i}=h_{i}, \quad i \in \pi^{-1}(\gamma)
\end{gathered}
$$

Note that if $\beta=\emptyset$, let $\mathcal{D}_{|\beta|}^{\delta}:=\Re$ and $\mathcal{C}_{|\beta|}^{\delta}:=\Re_{+}$.
(iii) The mapping $\Pi_{\mathcal{C}^{\varepsilon}}(\cdot, \cdot)$ is differentiable at (t, x) if and only if $t>\varepsilon\|x\|_{\infty}$, or $\varepsilon\|x\|_{\infty}>t>-\varepsilon^{-1}\|x\|_{1}$ but $|x| \frac{\downarrow}{k}+1<\left(s_{k}+\varepsilon t\right) /\left(\bar{k}+\varepsilon^{2}\right)$ or $t<-\varepsilon^{-1}\|x\|_{1}$.

For any positive constant $\varepsilon>0$, define the matrix cone $\mathcal{M}_{n}^{\varepsilon}$ in \mathcal{S}^{n} as the epigraph of the convex function $\varepsilon \lambda_{\max }(\cdot)$, i.e.,

$$
\begin{equation*}
\mathcal{M}_{n}^{\varepsilon}:=\left\{(t, X) \in \Re \times \mathcal{S}^{n} \mid \varepsilon^{-1} t \geq \lambda_{\max }(X)\right\} \tag{15}
\end{equation*}
$$

Proposition 3. Assume that $(t, X) \in \Re \times \mathcal{S}^{n}$ is given. Let X have the eigenvalue decomposition

$$
\begin{equation*}
X=\bar{P} \operatorname{diag}(\lambda(X)) \bar{P}^{T} \tag{16}
\end{equation*}
$$

where $\bar{P} \in \mathcal{O}^{n}$. Let $\Pi_{\mathcal{M}_{n}^{\varepsilon}}(\cdot, \cdot)$ be the metric projector over $\mathcal{M}_{n}^{\varepsilon}$ under Frobenius norm in \mathcal{S}^{n}. Then,

$$
\begin{equation*}
\Pi_{\mathcal{M}_{n}^{\varepsilon}}(t, X)=\left(\bar{t}, \bar{P} \operatorname{diag}(\bar{y}) \bar{P}^{T}\right) \quad \forall(t, X) \in \Re \times \mathcal{S}^{n} \tag{17}
\end{equation*}
$$

where $(\bar{t}, \bar{y})=\Pi_{\mathcal{D}_{n}^{\varepsilon}}(t, \lambda(X)) \in \Re \times \Re^{n}$.

Theorem 1. Assume that $(t, X) \in \Re \times \Re^{m \times n}$ is given. Let X have the singular value decomposition (1). Let $\Pi_{\mathcal{K}^{\varepsilon}}(\cdot, \cdot)$ be the metric projector over $\mathcal{K}^{\varepsilon}$ under Frobenius norm in $\Re^{m \times n}$. For any $(t, X) \in \Re \times \Re^{m \times n}$, we have

$$
\left.\Pi_{\mathcal{K}^{\varepsilon}}(t, X)=\left(\begin{array}{ll}
\bar{t}, \bar{U}[\operatorname{diag}(\bar{y}) & 0 \tag{18}
\end{array}\right] \bar{V}^{T}\right),
$$

where

$$
(\bar{t}, \bar{y})=\Pi_{\mathcal{C}^{\varepsilon}}(t, \sigma(X)) \in \Re \times \Re^{m} .
$$

Define $S: \Re^{m \times m} \rightarrow \mathcal{S}^{m}$ and $T: \Re^{m \times m} \rightarrow \Re^{m \times m}$ as follows

$$
S(Z):=\frac{1}{2}\left(Z+Z^{T}\right) \quad \text { and } \quad T(Z):=\frac{1}{2}\left(Z-Z^{T}\right)
$$

For any given $(t, X) \in \Re \times \Re^{m \times n}$, Let X have the singular value decomposition (1). For convenience, write $\sigma_{0}(X)=+\infty$ and $\sigma_{n+1}(X)=0$. Let $s_{0}=0$ and $s_{k}=\sum_{i=1}^{k} \sigma_{i}(X), k=1, \ldots, n+1$. Let \bar{k} be the smallest integer $k \in\{0,1, \ldots, n\}$ such that

$$
\begin{equation*}
\sigma_{k+1}(X) \leq\left(s_{k}+\varepsilon t\right) /\left(k+\varepsilon^{2}\right)<\sigma_{k}(X) \tag{19}
\end{equation*}
$$

or $\bar{k}=n+1$ if such an integer does not exist.

Denote by

$$
\begin{equation*}
\theta(t, \sigma(X)):=\left(s_{\bar{k}}+\varepsilon t\right) /\left(\bar{k}+\varepsilon^{2}\right) . \tag{20}
\end{equation*}
$$

Let α, β and γ be the index sets of $\sigma(X)$, which are defined by (11) and (12). Let $\delta:=\sqrt{1+\bar{k}}$. Define a linear operator $\rho: \Re \times \Re^{m \times n} \rightarrow \Re$ as follows

$$
\rho(\eta, H):= \begin{cases}\delta^{-1}\left(\operatorname{Tr}\left(S\left(\bar{U}_{\alpha}^{T} H\left(\bar{V}_{1}\right)_{\alpha}\right)\right)+\eta\right) & \text { if } t \geq-\|X\|_{*}, \tag{21}\\ 0 & \text { otherwise } .\end{cases}
$$

Denote by

$$
\left(g_{0}(t, \sigma(X)), g(t, \sigma(X))\right):=\Pi_{\mathcal{C}}(t, \sigma(X)) .
$$

Define $\Omega_{1} \in \Re^{m \times m}, \Omega_{2} \in \Re^{m \times m}$ and $\Omega_{3} \in \Re^{m \times(n-m)}$ (depend on X) as follows, for any $i, j \in\{1, \ldots, m\}$,

$$
\begin{gather*}
\left(\Omega_{1}\right)_{i j}:= \begin{cases}\frac{g_{i}(t, \sigma(X))-g_{j}(t, \sigma(X))}{\sigma_{i}(X)-\sigma_{j}(X)} & \text { if } \sigma_{i}(X) \neq \sigma_{j}(X), \\
0 & \text { otherwise },\end{cases} \tag{22}\\
\left(\Omega_{2}\right)_{i j}:= \begin{cases}\frac{g_{i}(t, \sigma(X))+g_{j}(t, \sigma(X))}{\sigma_{i}(X)+\sigma_{j}(X)} & \text { if } \sigma_{i}(X)+\sigma_{j}(X) \neq 0, \\
0 & \text { otherwise }\end{cases} \tag{23}
\end{gather*}
$$

and for any $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n-m\}$

$$
\left(\Omega_{3}\right)_{i j}:= \begin{cases}\frac{g_{i}(t, \sigma(X))}{\sigma_{i}(X)} & \text { if } \sigma_{i}(X) \neq 0, \tag{24}\\ 0 & \text { if } \sigma_{i}(X)=0\end{cases}
$$

Theorem 2. Assume that $(t, X) \in \Re \times \Re^{m \times n}$ is given. Let X have the singular value decomposition (1). Then, the metric projector over the matrix cone $\mathcal{K}, \Pi_{\mathcal{K}}(\cdot, \cdot)$ is directionally differentiable at (t, X). For any given direction $(\eta, H) \in \Re \times \Re^{m \times n}$, the directional derivative $\Pi_{\mathcal{K}}^{\prime}((t, X) ;(\eta, H))$ is given by
(i) if $t>\|X\|_{2}$, then $\Pi_{\mathcal{K}}^{\prime}((t, X) ;(\eta, H))=(\eta, H)$.
(ii) if $\|X\|_{2} \geq t>-\|X\|_{*}$, then $\Pi_{\mathcal{K}}^{\prime}((t, X) ;(\eta, H))=(\bar{\eta}, \bar{H})$ with

$$
\begin{aligned}
\bar{\eta}= & \delta^{-1} \psi_{0}^{\delta}(\eta, H), \\
\bar{H}= & \bar{U}\left[\begin{array}{ccc}
\delta^{-1} \psi_{0}^{\delta}(\eta, H) I_{\alpha \alpha} & 0 & \left(\Omega_{1}\right)_{\alpha \gamma} \circ S\left(A_{\alpha \gamma}\right) \\
0 & \Psi^{\delta}(\eta, H) & S\left(A_{\beta \gamma}\right) \\
\left(\Omega_{1}\right)_{\gamma \alpha} \circ S\left(A_{\gamma \alpha}\right) & S\left(A_{\gamma \beta}\right) & S\left(A_{\gamma \gamma}\right)
\end{array}\right] \bar{V}_{1}^{T} \\
& +\bar{U}\left[\begin{array}{cc}
\left(\Omega_{2}\right)_{a a} \circ T\left(A_{a a}\right) & \left(\Omega_{2}\right)_{a b} \circ T\left(A_{a b}\right) \\
\left(\Omega_{2}\right)_{b a} \circ T\left(A_{b a}\right) & T\left(A_{b b}\right)
\end{array}\right] \bar{V}_{1}^{T}+\bar{U}\left[\begin{array}{c}
\left(\Omega_{3}\right)_{a c} \circ B_{a c} \\
B_{b c}
\end{array}\right] \bar{V}_{2}^{T}
\end{aligned}
$$

where $A:=\bar{U}^{T} H \bar{V}_{1}, B:=\bar{U}^{T} H \bar{V}_{2}$ and
$\left(\psi_{0}^{\delta}(\eta, H), \Psi^{\delta}(\eta, H)\right) \in \Re \times \Re^{|\beta| \times|\beta|}$ is given by

$$
\begin{equation*}
\left(\psi_{0}^{\delta}(\eta, H), \Psi^{\delta}(\eta, H)\right):=\Pi_{\mathcal{M}_{|\beta|}^{\delta}}\left(\rho(\eta, H), S\left(\bar{U}_{\beta}^{T} H\left(\bar{V}_{1}\right)_{\beta}\right)\right) . \tag{25}
\end{equation*}
$$

(iii) if $t=-\|X\|_{*}$, then $\Pi_{\mathcal{K}}^{\prime}((t, X) ;(\eta, H))=(\bar{\eta}, \bar{H})$ with

$$
\begin{aligned}
\bar{\eta}= & \delta^{-1} \psi_{0}^{\delta}(\eta, H), \\
\bar{H}= & \bar{U}\left[\begin{array}{cc}
\bar{\eta} I_{\alpha \alpha} & 0 \\
0 & \Psi_{1}^{\delta}(\eta, H)
\end{array}\right] \bar{V}_{1}^{T} \\
& +\bar{U}\left[\Omega_{2} \circ T(A)\right] \bar{V}_{1}^{T}+\bar{U}\left[\begin{array}{c}
\left(\Omega_{3}\right)_{a c} \circ B_{a c} \\
\Psi_{2}^{\delta}(\eta, H)
\end{array}\right] \bar{V}_{2}^{T}
\end{aligned}
$$

where $\psi_{0}^{\delta}(\eta, H) \in \Re, \Psi_{1}^{\delta}(\eta, H) \in \Re^{|\beta| \times|\beta|}$ and $\Psi_{2}^{\delta}(\eta, H) \in \Re^{|\beta| \times(n-m)}$ are given by

$$
\begin{aligned}
& \left(\psi_{0}^{\delta}(\eta, H),\left[\Psi_{1}^{\delta}(\eta, H) \Psi_{2}^{\delta}(\eta, H)\right]\right) \\
:= & \Pi_{\mathcal{K}_{|\beta|,(n-|a|)}^{\delta}}\left(\rho(\eta, H),\left[\bar{U}_{\beta}^{T} H V_{\beta} \bar{U}_{\beta}^{T} H \bar{V}_{2}\right]\right) .
\end{aligned}
$$

(iv) if $t<-\|X\|_{*}$, then

$$
\Pi_{\mathcal{K}}^{\prime}((t, X) ;(\eta, H))=(0,0) .
$$

Moreover, $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is strongly B -differentiable at (t, X), i.e., for any $(\eta, H) \in \Re \times \Re^{m \times n}$ and $(\eta, H) \rightarrow(0,0)$, we have

$$
\begin{equation*}
\Pi_{\mathcal{K}}(t+\eta, X+H)-\Pi_{\mathcal{K}}(t, X)-\Pi_{\mathcal{K}}^{\prime}((t, X) ;(\eta, H))=O\left(\|(\eta, H)\|^{2}\right) . \tag{26}
\end{equation*}
$$

Theorem 3. The mapping $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is F-differentiable at $(t, X) \in \Re \times \Re^{m \times n}$ if and only if (t, X) satisfies one of the following conditions:
(i) $t>\|X\|_{2}$;
(ii) $\|X\|_{2}>t>-\|X\|_{*}$ but $\sigma_{\bar{k}}(X)<\theta(t, \sigma(X))$, where \bar{k} and $\theta(t, \sigma(X))$ are given by (9) and (10), respectively;
(iii) $t<-\|X\|_{*}$.

Denote $\delta:=\sqrt{1+\bar{k}}$. Let $\rho: \Re \times \Re^{m \times n} \rightarrow \Re$ be the linear operator defined by (21). Then for any $(\eta, H) \in \Re \times \Re^{m \times n}, \Pi_{\mathcal{K}}^{\prime}(t, X)(\eta, H)=(\bar{\eta}, \bar{H})$ with

$$
\bar{\eta}=\delta^{-1} \rho(\eta, H)
$$

and

$$
\begin{aligned}
\bar{H}= & \bar{U}\left[\begin{array}{cc}
\delta^{-1} \rho(\eta, H) I_{\alpha \alpha} & \left(\Omega_{1}\right)_{\alpha \gamma} \circ S\left(A_{\alpha \gamma}\right) \\
\left(\Omega_{1}\right)_{\gamma \alpha} \circ S\left(A_{\gamma \alpha}\right) & S\left(A_{\gamma \gamma}\right)
\end{array}\right] \bar{V}_{1}^{T} \\
& +\bar{U}\left[\begin{array}{cc}
\left(\Omega_{2}\right)_{a a} \circ T\left(A_{a a}\right) & \left(\Omega_{2}\right)_{a b} \circ T\left(A_{a b}\right) \\
\left(\Omega_{2}\right)_{b a} \circ T\left(A_{b a}\right) & T\left(A_{b b}\right)
\end{array}\right] \bar{V}_{1}^{T}+\bar{U}\left[\begin{array}{c}
\left(\Omega_{3}\right)_{a c} \circ B_{a c} \\
B_{b c}
\end{array}\right] \bar{V}_{2}^{T}
\end{aligned}
$$

where $A:=\bar{U}^{T} H \bar{V}_{1}$ and $B:=\bar{U}^{T} H \bar{V}_{2}^{T}$.

Theorem 4. $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is strongly G-semismooth at any $(t, X) \in \Re \times \Re^{m \times n}$.

