

An Introduction to a Class of Matrix Cone Programming

Defeng Sun

Department of Mathematics and Risk Management Institute National University of Singapore

This is a joint work with Chao Ding and Kim Chuan Toh at NUS

July 25, 2010

Let $X \in \Re^{m \times n}$ admit the following singular value decomposition:

$$X = \overline{U} \begin{bmatrix} \Sigma(X) & 0 \end{bmatrix} \overline{V}^T = \overline{U} \begin{bmatrix} \Sigma(X) & 0 \end{bmatrix} \begin{bmatrix} \overline{V}_1 & \overline{V}_2 \end{bmatrix}^T = \overline{U} \Sigma(X) \overline{V}_1^T, \quad (1)$$

where $\overline{U} \in \mathcal{O}^m$, $\overline{V} \in \mathcal{O}^n$ and $\overline{V}_1 \in \Re^{n \times m}$, $\overline{V}_2 \in \Re^{n \times (n-m)}$ and $\overline{V} = \begin{bmatrix} \overline{V}_1 & \overline{V}_2 \end{bmatrix}$. The set of such matrices (U, V) in the singular value decomposition (1) is denoted by $\mathcal{O}^{m,n}(X)$, i.e.,

 $\mathcal{O}^{m,n}(X) := \{ (U,V) \in \Re^{m \times m} \times \Re^{n \times n} \mid X = U [\Sigma(X) \ 0] V^T \}.$

$$a := \{i \mid \sigma_i(X) > 0\}, \quad b := \{i \mid \sigma_i(X) = 0\} \text{ and } c := \{m+1, \dots, n\}.$$
(2)
Let $\overline{\mu}_1 > \overline{\mu}_2 > \dots > \overline{\mu}_r > 0$ be the nonzero distinct singular values of X.
Then, let

$$a_k := \{i \mid \sigma_i(X) = \overline{\mu}_k\}, \quad k = 1, \dots, r.$$
(3)

For any positive constant $\varepsilon > 0$, denote the closed convex cone $\mathcal{D}_n^{\varepsilon}$ by

$$\mathcal{D}_n^{\varepsilon} := \{ (t, x) \in \Re \times \Re^n \, | \, \varepsilon^{-1} t \ge x_i, \ i = 1, \dots, n \} \,. \tag{4}$$

Let $\Pi_{\mathcal{D}_n^{\varepsilon}}(\cdot)$ be the metric projector over $\mathcal{D}_n^{\varepsilon}$ under the Euclidean inner product in \mathfrak{R}^n . That is, for any $(t, x) \in \mathfrak{R} \times \mathfrak{R}^n$, $\Pi_{\mathcal{D}_n^{\varepsilon}}(t, x)$ is the unique optimal solution to the following convex optimization problem

min
$$\frac{1}{2}((\tau - t)^2 + ||y - x||^2)$$

s.t. $\varepsilon^{-1}\tau \ge y_i, \ i = 1, \dots, n$. (5)

The we have the following useful result about $\Pi_{\mathcal{D}_n^{\varepsilon}}(\cdot, \cdot)$.

For any $x \in \Re^n$, let x^{\downarrow} be the vector of components of x being arranged in the non-increasing order $x_1^{\downarrow} \ge \ldots \ge x_n^{\downarrow}$. Let $\operatorname{sgn}(x)$ be the sign vector of x, i.e., $(\operatorname{sgn})_i(x) = 1$ if $x_i \ge 0$ and -1 otherwise. We use " \circ " to denote the Hadamard product operation either for two vectors or two matrices of the same dimensions.

Proposition 1. Assume that $\varepsilon > 0$ and $(t, x) \in \Re \times \Re^n$ are given. Let π be a permutation of $\{1, \ldots, n\}$ such that $x^{\downarrow} = x_{\pi}$, i.e., $x_i^{\downarrow} = x_{\pi(i)}$, $i = 1, \ldots, n$ and π^{-1} the inverse of π . For convenience, write $x_0^{\downarrow} = +\infty$ and $x_{n+1}^{\downarrow} = -\infty$. Let $\bar{\kappa}$ be the smallest integer $k \in \{0, 1, \ldots, n\}$ such that

$$x_{k+1}^{\downarrow} \le \Big(\sum_{j=1}^{k} x_j^{\downarrow} + \varepsilon t\Big)/(k + \varepsilon^2) < x_k^{\downarrow}.$$
(6)

Define $\bar{y} \in \Re^n$ and $\bar{\tau} \in \Re_+$, respectively, by

$$\bar{y}_i := \begin{cases} \left(\sum_{j=1}^{\bar{\kappa}} x_j^{\downarrow} + \varepsilon t\right) / (\bar{\kappa} + \varepsilon^2) & \text{if } 1 \le i \le \bar{\kappa} \\ x_i^{\downarrow} & \text{otherwise} \end{cases}$$

and

$$\bar{\tau} := \varepsilon \bar{y}_1 = \varepsilon \Big(\sum_{j=1}^{\bar{k}} x_j^{\downarrow} + \varepsilon t \Big) / (\bar{k} + \varepsilon^2) \,.$$

The metric projection $\Pi_{\mathcal{D}_n^{\varepsilon}}(t,x)$ is computed by $\Pi_{\mathcal{D}_n^{\varepsilon}}(t,x) = (\bar{\tau}, \bar{y}_{\pi^{-1}}).$

For any positive constant $\varepsilon > 0$, denote the closed convex cone $\mathcal{C}_n^{\varepsilon}$ by

$$\mathcal{C}_n^{\varepsilon} := \{ (t, x) \in \Re \times \Re^n \, | \, \varepsilon^{-1} t \ge \|x\|_{\infty} \} \,. \tag{7}$$

Let $\Pi_{\mathcal{C}_n^{\varepsilon}}(\cdot, \cdot)$ be the metric projector over $\mathcal{C}_n^{\varepsilon}$ under the Euclidean inner product in \Re^n . That is, for any $(t, x) \in \Re \times \Re^n$, $\Pi_{\mathcal{C}_n^{\varepsilon}}(t, x)$ is the unique optimal solution to the following convex optimization problem

$$\min \quad \frac{1}{2} ((\tau - t)^2 + \|y - x\|^2)$$
s.t. $\varepsilon^{-1} \tau \ge \|y\|_{\infty}$. (8)

In the following discussions, we frequently drop n from C_n^{ε} when its size can be found from the context.

Assume that $\varepsilon > 0$ and $(t, x) \in \Re \times \Re^n$ are given. Let π be a permutation of $\{1, \ldots, n\}$ such that $|x|^{\downarrow} = |x|_{\pi}$, i.e., $|x|_i^{\downarrow} = |x|_{\pi(i)}$, $i = 1, \ldots, n$ and π^{-1} be the inverse of π . Let $|x|_0^{\downarrow} = +\infty$ and $|x|_{n+1}^{\downarrow} = 0$. Let $s_0 = 0$ and $s_k = \sum_{i=1}^k |x|_i^{\downarrow}$, $k = 1, \ldots, n+1$. Let \overline{k} be the smallest integer $k \in \{0, 1, \ldots, n\}$ such that

$$|x|_{k+1}^{\downarrow} \le (s_k + \varepsilon t)/(k + \varepsilon^2) < |x|_k^{\downarrow}$$
(9)

or $\overline{k} = n + 1$ if such an integer does not exist. Denote

$$\theta^{\varepsilon}(t,x) := (s_{\overline{k}} + \varepsilon t) / (\overline{k} + \varepsilon^2).$$
(10)

Let α, β and γ be the index sets of $|x|^{\downarrow}$ as $\alpha := \{i \mid |x|_i^{\downarrow} > \theta^{\varepsilon}(t, x)\}, \quad \beta := \{i \mid |x|_i^{\downarrow} = \theta^{\varepsilon}(t, x)\}$ (11) and

$$\gamma := \left\{ i \, | \, |x|_i^{\downarrow} < \theta^{\varepsilon}(t, x) \right\}. \tag{12}$$

Define $\bar{y} \in \Re^n$ and $\bar{\tau} \in \Re_+$, respectively, by

$$\bar{y}_i := \begin{cases} \max\{\theta^{\varepsilon}(t,x),0\} & \text{if } i \in \alpha, \\ |x|_i^{\downarrow} & \text{otherwise} \end{cases}$$

and

$$\bar{\tau} := \varepsilon \max\{\theta^{\varepsilon}(t,x), 0\}.$$

Proposition 2. Assume that $\varepsilon > 0$ and $(t, x) \in \Re \times \Re^n$ are given.

(i) The metric projection $\Pi_{\mathcal{C}^{\varepsilon}}(t,x)$ of (t,x) onto $\mathcal{C}^{\varepsilon}$ can be computed as follows

$$\Pi_{\mathcal{C}^{\varepsilon}}(t,x) = (\bar{\tau}, \operatorname{sgn}(x) \circ \bar{y}_{\pi^{-1}}).$$
(13)

(ii) The mapping $\Pi_{\mathcal{C}^{\varepsilon}}(\cdot, \cdot)$ is piecewise linear. Denote $\delta := \sqrt{\varepsilon^2 + \overline{k}}$. For any $(\eta, h) \in \Re \times \Re^n$, let

$$\eta' := \begin{cases} \delta^{-1}(\varepsilon \eta + \sum_{i \in \pi^{-1}(\alpha)} \operatorname{sgn}(x_i) h_i) & \text{if } t \ge -\varepsilon^{-1} \|x\|_1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $h' = \operatorname{sgn}(x) \circ h$. Then, the directional derivative of $\prod_{\mathcal{C}^{\varepsilon}}(\cdot, \cdot)$ at (t, x) along the direction (η, h) is given by

$$(\bar{\eta}, \bar{h}) := \Pi'_{\mathcal{C}^{\varepsilon}}((t, x); (\eta, h)), \qquad (14)$$

with

$$\left(\delta\varepsilon^{-1}\bar{\eta}, (\operatorname{sgn}(x)\circ\bar{h})_{\pi^{-1}(\beta)}\right) = \begin{cases} \Pi_{\mathcal{D}_{|\beta|}^{\delta}}(\eta', h'_{\pi^{-1}(\beta)}) & \text{if } t > -\varepsilon^{-1} \|x\|_{1}, \\ \Pi_{\mathcal{C}_{|\beta|}^{\delta}}(\eta', h'_{\pi^{-1}(\beta)}) & \text{otherwise}, \end{cases}$$

$$\bar{h}_i = \bar{\eta}, \quad i \in \pi^{-1}(\alpha) \quad \text{and} \quad \bar{h}_i = h_i, \quad i \in \pi^{-1}(\gamma).$$

Note that if $\beta = \emptyset$, let $\mathcal{D}_{|\beta|}^{\delta} := \Re$ and $\mathcal{C}_{|\beta|}^{\delta} := \Re_+$.

(iii) The mapping $\Pi_{\mathcal{C}^{\varepsilon}}(\cdot, \cdot)$ is differentiable at (t, x) if and only if $t > \varepsilon ||x||_{\infty}$, or $\varepsilon ||x||_{\infty} > t > -\varepsilon^{-1} ||x||_1$ but $|x|_{\overline{k}+1}^{\downarrow} < (s_k + \varepsilon t)/(\overline{k} + \varepsilon^2)$ or $t < -\varepsilon^{-1} ||x||_1$.

For any positive constant $\varepsilon > 0$, define the matrix cone $\mathcal{M}_n^{\varepsilon}$ in \mathcal{S}^n as the epigraph of the convex function $\varepsilon \lambda_{\max}(\cdot)$, i.e.,

$$\mathcal{M}_{n}^{\varepsilon} := \left\{ (t, X) \in \Re \times \mathcal{S}^{n} \, | \, \varepsilon^{-1} t \ge \lambda_{\max}(X) \right\}.$$
(15)

Proposition 3. Assume that $(t, X) \in \Re \times S^n$ is given. Let X have the eigenvalue decomposition

$$X = \overline{P} \operatorname{diag}(\lambda(X)) \overline{P}^T, \qquad (16)$$

where $\overline{P} \in \mathcal{O}^n$. Let $\prod_{\mathcal{M}_n^{\varepsilon}}(\cdot, \cdot)$ be the metric projector over $\mathcal{M}_n^{\varepsilon}$ under Frobenius norm in S^n . Then,

$$\Pi_{\mathcal{M}_{n}^{\varepsilon}}(t,X) = (\bar{t}, \overline{P} \operatorname{diag}(\bar{y}) \overline{P}^{T}) \quad \forall \ (t,X) \in \Re \times \mathcal{S}^{n} ,$$
(17)

where $(\bar{t}, \bar{y}) = \Pi_{\mathcal{D}_n^{\varepsilon}}(t, \lambda(X)) \in \Re \times \Re^n$.

Theorem 1. Assume that $(t, X) \in \Re \times \Re^{m \times n}$ is given. Let X have the singular value decomposition (1). Let $\Pi_{\mathcal{K}^{\varepsilon}}(\cdot, \cdot)$ be the metric projector over $\mathcal{K}^{\varepsilon}$ under Frobenius norm in $\Re^{m \times n}$. For any $(t, X) \in \Re \times \Re^{m \times n}$, we have

$$\Pi_{\mathcal{K}^{\varepsilon}}(t,X) = \left(\overline{t}, \overline{U} \left[\operatorname{diag}(\overline{y}) \ 0\right] \overline{V}^{T}\right), \tag{18}$$

where

$$(\bar{t},\bar{y}) = \Pi_{\mathcal{C}^{\varepsilon}}(t,\sigma(X)) \in \Re \times \Re^{m}$$

Define $S: \Re^{m \times m} \to S^m$ and $T: \Re^{m \times m} \to \Re^{m \times m}$ as follows

$$S(Z) := \frac{1}{2}(Z + Z^T)$$
 and $T(Z) := \frac{1}{2}(Z - Z^T)$.

For any given $(t, X) \in \Re \times \Re^{m \times n}$, Let X have the singular value decomposition (1). For convenience, write $\sigma_0(X) = +\infty$ and $\sigma_{n+1}(X) = 0$. Let $s_0 = 0$ and $s_k = \sum_{i=1}^k \sigma_i(X)$, $k = 1, \ldots, n+1$. Let \overline{k} be the smallest integer $k \in \{0, 1, \ldots, n\}$ such that

$$\sigma_{k+1}(X) \le (s_k + \varepsilon t)/(k + \varepsilon^2) < \sigma_k(X)$$
(19)

or $\overline{k} = n + 1$ if such an integer does not exist.

Denote by

$$\theta(t,\sigma(X)) := (s_{\overline{k}} + \varepsilon t) / (\overline{k} + \varepsilon^2).$$
(20)

Let α , β and γ be the index sets of $\sigma(X)$, which are defined by (11) and (12). Let $\delta := \sqrt{1 + \overline{k}}$. Define a linear operator $\rho : \Re \times \Re^{m \times n} \to \Re$ as follows

$$\rho(\eta, H) := \begin{cases} \delta^{-1}(\operatorname{Tr}(S(\overline{U}_{\alpha}^{T}H(\overline{V}_{1})_{\alpha})) + \eta) & \text{if } t \ge -\|X\|_{*}, \\ 0 & \text{otherwise.} \end{cases}$$
(21)

Denote by

$$\left(g_0(t,\sigma(X)),g(t,\sigma(X))\right) := \Pi_{\mathcal{C}}(t,\sigma(X)).$$

Define $\Omega_1 \in \Re^{m \times m}$, $\Omega_2 \in \Re^{m \times m}$ and $\Omega_3 \in \Re^{m \times (n-m)}$ (depend on X) as follows, for any $i, j \in \{1, \ldots, m\}$,

$$(\Omega_1)_{ij} := \begin{cases} \frac{g_i(t, \sigma(X)) - g_j(t, \sigma(X))}{\sigma_i(X) - \sigma_j(X)} & \text{if } \sigma_i(X) \neq \sigma_j(X), \\ 0 & \text{otherwise}, \end{cases}$$
(22)

$$(\Omega_2)_{ij} := \begin{cases} \frac{g_i(t, \sigma(X)) + g_j(t, \sigma(X))}{\sigma_i(X) + \sigma_j(X)} & \text{if } \sigma_i(X) + \sigma_j(X) \neq 0, \\ 0 & \text{otherwise} \end{cases}$$
(23)

and for any $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n-m\}$

$$(\Omega_3)_{ij} := \begin{cases} \frac{g_i(t, \sigma(X))}{\sigma_i(X)} & \text{if } \sigma_i(X) \neq 0, \\ 0 & \text{if } \sigma_i(X) = 0, \end{cases}$$
(24)

Theorem 2. Assume that $(t, X) \in \Re \times \Re^{m \times n}$ is given. Let X have the singular value decomposition (1). Then, the metric projector over the matrix cone \mathcal{K} , $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is directionally differentiable at (t, X). For any given direction $(\eta, H) \in \Re \times \Re^{m \times n}$, the directional derivative $\Pi'_{\mathcal{K}}((t, X); (\eta, H))$ is given by

(i) if
$$t > ||X||_2$$
, then $\Pi'_{\mathcal{K}}((t,X);(\eta,H)) = (\eta,H)$.

(ii) if $||X||_2 \ge t > -||X||_*$, then $\Pi'_{\mathcal{K}}((t,X);(\eta,H)) = (\overline{\eta},\overline{H})$ with

$$\begin{split} \overline{\eta} &= \delta^{-1} \psi_0^{\delta}(\eta, H) \,, \\ \overline{H} &= \overline{U} \begin{bmatrix} \delta^{-1} \psi_0^{\delta}(\eta, H) I_{\alpha \alpha} & 0 & (\Omega_1)_{\alpha \gamma} \circ S(A_{\alpha \gamma}) \\ 0 & \Psi^{\delta}(\eta, H) & S(A_{\beta \gamma}) \\ (\Omega_1)_{\gamma \alpha} \circ S(A_{\gamma \alpha}) & S(A_{\gamma \beta}) & S(A_{\gamma \gamma}) \end{bmatrix} \overline{V}_1^T \\ &+ \overline{U} \begin{bmatrix} (\Omega_2)_{aa} \circ T(A_{aa}) & (\Omega_2)_{ab} \circ T(A_{ab}) \\ (\Omega_2)_{ba} \circ T(A_{ba}) & T(A_{bb}) \end{bmatrix} \overline{V}_1^T + \overline{U} \begin{bmatrix} (\Omega_3)_{ac} \circ B_{ac} \\ B_{bc} \end{bmatrix} \overline{V}_2^T \\ \end{split}$$
where $A := \overline{U}^T H \overline{V}_1, B := \overline{U}^T H \overline{V}_2$ and
 $\left(\psi_0^{\delta}(\eta, H), \Psi^{\delta}(\eta, H)\right) \in \Re \times \Re^{|\beta| \times |\beta|}$ is given by
 $\left(\psi_0^{\delta}(\eta, H), \Psi^{\delta}(\eta, H)\right) := \Pi_{\mathcal{M}_{|\beta|}^{\delta}}(\rho(\eta, H), S(\overline{U}_{\beta}^T H(\overline{V}_1)_{\beta})) \,. \end{split}$ (25)

(iii) if $t = -\|X\|_*$, then $\Pi'_{\mathcal{K}}((t,X);(\eta,H)) = (\overline{\eta},\overline{H})$ with

$$\overline{\eta} = \delta^{-1} \psi_0^{\delta}(\eta, H),$$

$$\overline{H} = \overline{U} \begin{bmatrix} \overline{\eta} I_{\alpha \alpha} & 0 \\ 0 & \Psi_1^{\delta}(\eta, H) \end{bmatrix} \overline{V}_1^T$$

$$+ \overline{U} [\Omega_2 \circ T(A)] \overline{V}_1^T + \overline{U} \begin{bmatrix} (\Omega_3)_{ac} \circ B_{ac} \\ \Psi_2^{\delta}(\eta, H) \end{bmatrix} \overline{V}_2^T$$

where $\psi_0^\delta(\eta, H) \in \Re$, $\Psi_1^\delta(\eta, H) \in \Re^{|\beta| \times |\beta|}$ and $\Psi_2^\delta(\eta, H) \in \Re^{|\beta| \times (n-m)}$ are given by

$$\begin{pmatrix} \psi_0^{\delta}(\eta, H), \left[\Psi_1^{\delta}(\eta, H) \ \Psi_2^{\delta}(\eta, H) \right] \end{pmatrix}$$

:= $\Pi_{\mathcal{K}_{|\beta|, (n-|a|)}^{\delta}} \left(\rho(\eta, H), \left[\overline{U}_{\beta}^T H V_{\beta} \ \overline{U}_{\beta}^T H \overline{V}_2 \right] \right).$

(iv) if $t < -\|X\|_*$, then

$$\Pi'_{\mathcal{K}}((t,X);(\eta,H)) = (0,0) \, .$$

Moreover, $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is strongly B-differentiable at (t, X), i.e., for any $(\eta, H) \in \Re \times \Re^{m \times n}$ and $(\eta, H) \to (0, 0)$, we have

 $\Pi_{\mathcal{K}}(t+\eta, X+H) - \Pi_{\mathcal{K}}(t, X) - \Pi_{\mathcal{K}}'((t, X); (\eta, H)) = O(\|(\eta, H)\|^2).$ (26)

Theorem 3. The mapping $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is *F*-differentiable at $(t, X) \in \Re \times \Re^{m \times n}$ if and only if (t, X) satisfies one of the following conditions:

(i) $t > ||X||_2;$

(ii) $||X||_2 > t > -||X||_*$ but $\sigma_{\bar{k}}(X) < \theta(t, \sigma(X))$, where \bar{k} and $\theta(t, \sigma(X))$ are given by (9) and (10), respectively;

(iii) $t < -\|X\|_{*}$.

Denote $\delta := \sqrt{1 + \overline{k}}$. Let $\rho : \Re \times \Re^{m \times n} \to \Re$ be the linear operator defined by (21). Then for any $(\eta, H) \in \Re \times \Re^{m \times n}$, $\Pi'_{\mathcal{K}}(t, X)(\eta, H) = (\overline{\eta}, \overline{H})$ with

$$\overline{\eta} = \delta^{-1} \rho(\eta, H)$$

and

$$\overline{H} = \overline{U} \begin{bmatrix} \delta^{-1} \rho(\eta, H) I_{\alpha \alpha} & (\Omega_1)_{\alpha \gamma} \circ S(A_{\alpha \gamma}) \\ (\Omega_1)_{\gamma \alpha} \circ S(A_{\gamma \alpha}) & S(A_{\gamma \gamma}) \end{bmatrix} \overline{V}_1^T \\ + \overline{U} \begin{bmatrix} (\Omega_2)_{aa} \circ T(A_{aa}) & (\Omega_2)_{ab} \circ T(A_{ab}) \\ (\Omega_2)_{ba} \circ T(A_{ba}) & T(A_{bb}) \end{bmatrix} \overline{V}_1^T + \overline{U} \begin{bmatrix} (\Omega_3)_{ac} \circ B_{ac} \\ B_{bc} \end{bmatrix} \overline{V}_2^T$$

where $A := \overline{U}^T H \overline{V}_1$ and $B := \overline{U}^T H \overline{V}_2^T$.

Theorem 4. $\Pi_{\mathcal{K}}(\cdot, \cdot)$ is strongly *G*-semismooth at any $(t, X) \in \Re \times \Re^{m \times n}$.